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Conducting preventive maintenance of measurement sensors in real-time during process operation under feedback con-
trol while ensuring the reliability and improving the economic performance of a process is a central problem of the
research area focusing on closed-loop preventive maintenance of sensors and actuators. To address this problem, a
robust moving horizon estimation (RMHE) scheme and an economic model predictive control system are combined to
simultaneously achieve preventive sensor maintenance and optimal process economic performance with closed-loop sta-
bility. Specifically, given a preventive sensor maintenance schedule, a RMHE scheme is developed that accommodates
varying numbers of sensors to continuously supply accurate state estimates to a Lyapunov-based economic model pre-
dictive control (LEMPC) system. Closed-loop stability for this control approach can be proven under fairly general
observability and stabilizability assumptions to be made precise in the manuscript. Subsequently, a chemical process
example incorporating this RMHE-based LEMPC scheme demonstrates its ability to maintain process stability and
achieve optimal process economic performance as scheduled preventive maintenance is performed on the sensors.
VC 2015 American Institute of Chemical Engineers AIChE J, 61: 3374–3389, 2015
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Introduction

In the context of process operation, sensor and actuator

maintenance programs and policies can greatly impact the pro-

cess reliability, manufacturing safety and process economic

performance. Among modern maintenance programs for pro-

cess manufacturing, preventive maintenance of sensors and

actuators in real-time can significantly mitigate the damage

from production losses, process upsets, and downtime based

on specific routine regulations.1 Specifically, sensor preventive

maintenance programs are important in the chemical process-

ing industry.2 For example, sensors working under severe con-

ditions need to be frequently replaced as they may not

withstand their working environment and consequently result

in inaccurate readings.3 In terms of when to conduct preven-

tive maintenance on a sensor, the predicted time of failure or

the replacement frequency can usually be obtained from the

past sensor readings and probability distribution data of sensor

failure.4,5 Furthermore, continuous use of old sensors even

without any obvious faults occurring may still result in unac-

ceptably high manufacturing and maintenance costs in the

long term.1

From a maintenance logistics point of view, sensors present a

challenge because they are widely dispersed throughout a man-

ufacturing plant. During a maintenance procedure when no

redundant sensors are available, sensor replacement will

directly result in sensor data losses which may cause significant

process performance degradation under continuous operation.

For example, when conducting the maintenance of some impor-

tant sensors, vital machinery may be affected and bring process

operation to a halt which makes large production losses

unavoidable. Consequently, control system designs accounting

for sensor data losses have received a lot of attention lately.6–9

More specifically, in Ref. 7, a sensor reconfiguration-based

method was proposed through characterizing stability regions

for different control configurations utilizing different numbers

of sensors to ensure stability after a sensor is taken off-line. In

Ref. 9, a Lyapunov-based model predictive control system was

designed to explicitly account for sensor data losses and imple-

ment the last computed optimal input trajectory (when sensor

measurements are available for the last time) when sensor data

is not available. However, in the context of smart manufactur-

ing, integrating preventive sensor maintenance and process
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economic optimization becomes an important problem to avoid
unnecessary plant shutdown.10,11

To address the process performance degradation brought by
sensor data losses, state estimation methodology can be adopted
to provide accurate estimated state values when a sensor is taken
off-line. In terms of state estimation for nonlinear systems,
deterministic observer design approaches that explicitly account
for nonlinearities have been developed, such as high-gain
observers (HGOs) (including Luenberger-type observers)12–15;
stochastic approaches or optimization-based methods are other
choices for state estimation for nonlinear systems, such as the
moving horizon estimation (MHE) method.16,17 To achieve bet-
ter robustness of the high-gain observer to measurement noise,
robust moving horizon estimation (RMHE)18 can be utilized to
provide more robust state estimates than HGOs. In RMHE, the
optimal state estimates are calculated within a confidence region
depending on the measurement noise characteristics.

A recent theoretical development within the process control
community is the establishment of a theoretical basis for eco-
nomic model predictive control (EMPC), an optimization-
based control methodology with a structure based on that of
traditional tracking model predictive control (MPC) but with a
cost function that represents the process economics. Thus, the
control actions computed by EMPC will, ideally, force the
process operation to remain economically optimal throughout
time. Examples of recent developments for EMPC are
asymptotic average performance bounds for EMPC using a
self-tuning terminal cost and generalized terminal region con-
straint,19 a performance and stability analysis for EMPC with-
out terminal costs or constraints,20 the use of event-triggering
to initiate EMPC evaluations and reduce computation require-
ments,21 an output feedback EMPC scheme with RMHE,22

and a fast EMPC scheme by employing nonlinear program-
ming sensitivities23 (see, also, the review24 for more recent
results on EMPC).

In terms of control system design accounting for preventive
actuator maintenance, our previous works25,26 proposed inte-
grating preventive maintenance on actuators and control sys-
tem reconfiguration for tracking MPC25 and economic MPC.26

To complete the preventive maintenance tasks on sensors in
real-time, it is necessary to design a control system that can
simultaneously compute economically optimal control actions
for a process and maintain process closed-loop stability even
as the number of sensors is varied. While the preventive main-
tenance on actuators in Ref. 26 requires that the control system
be able to adjust to a change in the number of manipulated
inputs that it controls, preventive maintenance on sensors as
described in the present work requires the control system to be
able to adjust to changes in the number of measurements that
it receives for feedback.

Considering all of the above requirements and objectives,
EMPC is one natural approach to accomplish these tasks. In
this work, a state estimation methodology is used with the
EMPC system to provide state estimates when some state
measurements become unavailable; such a state estimation
methodology is not required in the case of preventive mainte-
nance of actuators. Also, from the viewpoint of closed-loop
stability, the way to handle sensor maintenance is different
from that of handling actuator maintenance tasks. Once the
actuator number changes in the actuator maintenance program,
the available control energy changes which may lead to a
change in the region of stable operation (i.e., EMPC may need
to force the closed-loop state to another operating region to
maintain closed-loop stability). For the sensor maintenance
task, the available control energy stays the same during the
maintenance, but the number of measurements changes. While
the change in the number of measurements may not require a
change in the region of operation, the state estimation problem
changes as sensors are taken offline/brought back online, which
poses unique theoretical and implementation challenges.

Figure 1. Logic sequence for real-time preventive sensor maintenance, incorporating maintenance events, eco-
nomic optimization, and process control.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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In this work, handling scheduled preventive sensor mainte-
nance via the EMPC system design is considered. A RMHE
scheme is developed that accommodates a varying number of
sensors to continuously supply accurate state estimates to an
EMPC system. Figure 1 illustrates the overall scheme integrat-
ing the real-time preventive sensor maintenance, process eco-
nomics optimization, and control system reconfiguration. The
Lyapunov-based EMPC (LEMPC) combined with RMHE is
proved to be stabilizing under certain observability and stabi-
lizability assumptions. Then, a chemical process example uti-
lizing the proposed RMHE-based LEMPC is presented for
which the controller maintains the process stability, accom-
plishes control system reconfiguration under a changing num-
ber of online sensors, and achieves minimal economic
performance degradation by adjusting the optimization prob-
lem as the number of online sensors changes.

Preliminaries

Notation

The Euclidean norm of a vector is denoted by j � j, and the
notation j � jQ denotes the weighted Euclidean norm with
weighting matrix Q. A scalar-valued function V : Rn ! R is
positive definite if it evaluates to a positive scalar for all vec-
tors x 2 Rn in its domain except that Vð0Þ50. The level set of
a positive definite scalar-valued function is denoted
Xr :5 x : VðxÞ � rf g. A continuous, strictly increasing func-
tion a : ½0; aÞ ! ½0;1Þ with að0Þ50 is said to be a class K
function. The relative complement of A with respect to B is
denoted as B n A :5 x 2 B : x 62 Af g. The symbol diagðvÞ sig-
nifies a diagonal matrix with the elements of the vector v on
the diagonal. The sequence ftk�0g denotes a synchronous par-
titioning of R1 where tk :5 kD for k50; 1; . . . and D > 0 is
the sampling period.

Class of nonlinear process systems

The control methodology that accounts for preventive sen-
sor maintenance, as presented in this work, is developed for
nonlinear systems of the following form

_xðtÞ5f ðxðtÞÞ1gðxðtÞÞuðtÞ1lðxðtÞÞwðtÞ

yðtÞ5hðxðtÞÞ1vðtÞ
(1)

where the vector of states is x 2 Rn, the vector of manipulated
inputs is u 2 Rm, the vector of disturbances is w 2 Rl, the vec-
tor of measured outputs is y 2 Rq, the vector of measurement
noise is v 2 Rq, and f, g, l, and h are sufficiently smooth vector
or matrix functions of their arguments. Without loss of gener-
ality, we assume that f ð0Þ50 (the origin is assumed to be the
equilibrium of the unforced system) and the initial time t050.
It is assumed that the bounds on the available control energy
restrict its allowable values to a convex set

U5 u 2 Rm : umin
i � ui � umax

i ; i51; . . . ; m
� �

(2)

The disturbance and measurement noise vectors are also
assumed to be bounded

W5 w 2 Rl : jwj � hw

� �
(3)

V5 v 2 Rq : jvj � hvf g (4)

where hw and hv are positive constants that bound the disturb-
ance and measurement noise vectors, respectively. The output
measurement vector y of the system is assumed to be continu-
ously available. It is assumed that the instantaneous value of

the real-time process economics of the system of Eq. 1 can be

modeled with a time-invariant, scalar-valued cost function
Leðx; uÞ.

The real-time preventive sensor maintenance schedule is

defined as the change of the sensor group used in the EMPC

system in real-time from the ith sensor group with qi number
of sensors functioning well to the jth sensor group with qj

number of sensors functioning well. This change in the num-

ber of online sensors occurs at the time t 5 tm determined by a
scheduler or decision-maker, at which time one or more sen-

sors are taken offline for preventive maintenance. As a result,

the measurement vector changes from yiðtÞ5hiðxðtÞÞ1viðtÞ
2 Rqi to yjðtÞ5hjðxðtÞÞ1vjðtÞ 2 Rqj (qi and qj are less than or

equal to q). The state estimation structure will change to the

jth group of sensors (yjðtÞ) from the original ith group of sen-

sors (yiðtÞ).

Stabilizability assumption under state feedback control

A state feedback controller u5kðxÞ that can asymptotically

(and locally exponentially) stabilize the origin of the system
of Eq. 1 when no disturbances are applied (the nominal

closed-loop system, with wðtÞ � 0) is assumed to exist. It is

further assumed that this controller k(x) meets all input con-

straints (kðxÞ 2 U) for all the initial states inside a given com-
pact set containing the origin. These assumptions ensure the

existence of class K functions aið�Þ; i51; 2; 3; 4 and of a con-

tinuously differentiable Lyapunov function V(x) for the
closed-loop nominal system under the feedback control law

k(x) that satisfy27–29

a1ðjxjÞ � VðxÞ � a2ðjxjÞ
@VðxÞ
@x
ðf ðxÞ1gðxÞkðxÞÞ � 2a3ðjxjÞ

@VðxÞ
@x

����
���� � a4ðjxjÞ

(5)

These inequalities hold for all x 2 D � Rn where D is an

open neighborhood of the origin. The region of attraction of
the nominal closed-loop system under the controller k(x) is

estimated as a level set of a Lyapunov function V(x) for this

closed-loop system (Xq � D) and is termed the “stability

region.”

Lyapunov-based economic model predictive control

This section describes the mathematical formulation of

Lyapunov-based economic model predictive control

(LEMPC),30 a control strategy that will be used in this work to
develop the structure and stability properties of a controller

that can account for real-time preventive sensor maintenance.

LEMPC is an optimization-based control methodology that
calculates an input trajectory based on the following optimiza-

tion problem

max
u2SðDÞ

ðtk1N

tk

Leð~xðsÞ; uðsÞÞ ds (6a)

s:t: _~xðtÞ5f ð~xðtÞÞ1gð~xðtÞÞuðtÞ (6b)

~xðtkÞ5xðtkÞ (6c)

uðtÞ 2 U; 8 t 2 ½tk; tk1NÞ (6d)

Vð~xðtÞÞ � qe; 8 t 2 ½tk; tk1NÞ

if VðxðtkÞÞ � qe

(6e)
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@V

@x
ðf ðxðtkÞÞ1gðxðtkÞÞuðtkÞÞ �

@V

@x
ðf ðxðtkÞÞ1gðxðtkÞÞkðxðtkÞÞÞ

if VðxðtkÞÞ > qe

(6f)

The LEMPC maximizes the economics-based objective
function in Eq. 6a to find the optimal value of the input u
within the set SðDÞ, which denotes the set of all piecewise con-
stant input trajectories with period D. The input u must be
maintained in the set of allowable inputs U per Eq. 6d, and
also must cause the predicted state trajectory ~x (from Eq. 6b)
to satisfy the stability constraints of Eqs. 6e and 6f. Equations
6e and 6f define two modes of operation of the LEMPC,
depending on the measured value xðtkÞ (Eq. 6c) of the actual
process system state at time tk, the time at the beginning of a
sampling period D. The first mode (Mode 1) maintains the
state within the level set Xqe

of the Lyapunov function V,
where Xqe

� Xq. The set Xqe
is a region within which, if the

process state at the beginning of a sampling period is within
Xqe

, the process state at the end of the sampling period will
still be within Xq even if bounded process noise is present. If
the process state is not in Xqe

at the beginning of a sampling
period, the constraint of Eq. 6f, which represents Mode 2, is
activated. This constraint forces the time derivative of the
Lyapunov function V along the trajectories of the nominal
closed-loop system under LEMPC at the time tk to decrease by
at least as much as the time derivative of the Lyapunov func-
tion along the trajectories of the closed-loop system under the
controller k(x) at time tk. The constraint of Eq. 6f is guaranteed
to drive the closed-loop system state under LEMPC from Xqn
Xqe

into Xqe
in finite time.

LEMPC is a receding-horizon strategy, which means that it
receives a measurement of the process state x at the current
time tk, solves the optimization problem of Eq. 6 for the trajec-
tory of u throughout the (finite) N sampling periods in the pre-
diction horizon, and then only implements u�ðtkÞ, the value of u
for the first sampling period (sample-and-hold implementation).
At the beginning of the next sampling period, the LEMPC
receives a new state measurement and is resolved. The two-
mode LEMPC design maintains stability of the closed-loop sys-
tem in the sense that the state trajectories are always within Xq

for any initial condition within this stability region.30

Observability assumption

For both the ith and jth state estimation structures, it is
assumed that there exists a deterministic observer that takes
the following general form (to facilitate the presentation, the
subscript i/j is used to denote that an observer, which is
required to satisfy specific assumptions given below, is defined
for both the ith and the jth groups of sensors)

_zi=j5Fi=jð�i=j; zi=j; yi=jÞ (7)

where zi=j are the observer states which are estimates of the
actual system states, yi=j is the output measurement vector, and
�i=j are positive parameters. When the state feedback controller
u5kðxÞ uses state estimates from the observers, it becomes an
output feedback controller: _zi=j5Fð�i=j; zi=j; yi=jÞ; u5kðzi=jÞ.
The following assumptions are made:

ASSUMPTION 1 (c.f. Ref. 22).

1. there exist positive constants h�w; h�vi=j such that for
each pair fhw; hvi=jg with hw � h�w; hvi=j � h�vi=j, there exist

0 < q1i=j < q; em0i=j > 0; ��Li=j > 0; ��Ui=j > 0 such that if xð0Þ
2 Xq1i=j

; jzi=jð0Þ2xð0Þj � em0i=j and �i=j 2 ð��Li=j; �
�
Ui=jÞ, the

trajectories of the closed-loop system are bounded in Xq for
all t � 0;

2. there exists e�mi=j > 0 such that for each emi=j � e�mi=j,
there exists tbi=jð�i=jÞ such that jzi=jðtÞ2xðtÞj � emi=j for all
t � tbi=jð�i=jÞ.

An example of an observer for which these assumptions
hold is a high-gain observer.15 To increase the speed of esti-
mation error convergence, the observer parameter �i=j should
be chosen as small as possible; however, when the parameter
�i=j is too small (i.e., the observer gain is too large), it will
make the observer state estimate very sensitive to measure-
ment noise. Thus, the observer parameter �i=j must be picked
to be small enough so that the estimation error is reduced as
quickly as possible, but not so small that the state estimates
are corrupted by the noise. In the remainder of this work, the
estimate given by the observer Fi=j will be denoted as zi=j.

REMARK 1. Assumption 1 defines a state-space region (i.e.,
Xq1i=j

) from which the closed-loop system will be bounded in
the stability region Xq for all initial conditions in Xq1i=j

and
a required time length (i.e., tbi=j) which the observer needs
for the state estimates to converge to a neighborhood of the
actual process state values.

State Estimation with Varying Number of Sensors

In this section, to compute the state estimates for both the
ith and jth state estimation structures, the RMHE method is
adopted with a deterministic observer used to calculate a con-
fidence region. One of the deterministic observer designs is
the high-gain observer formulation for multiple-input multi-
ple-output systems.14 For the sake of brevity, only the RMHE
formulation is provided below.

Robust moving horizon estimation

To achieve considerable convergence speed of the state
observer while significantly reducing its sensitivity to mea-
surement noise, a RMHE scheme18 is adopted with the follow-
ing formulation

min
~XðtkÞ

Xk21

i5k2Ne

jwðtiÞj2Q21 1
Xk

i5k2Ne

jvðtiÞj2R21 1 VTðtk2Ne
Þ (8a)

s:t: _~xðtÞ5f ð~xðtÞÞ1gð~xðtÞÞuðtÞ1lð~xðtÞÞwðtÞ (8b)

vðtÞ5yðtÞ2hð~xðtÞÞ; 8 t 2 ½tk2Ne
; tk	 (8c)

wðtÞ 2W; vðtÞ 2 V; ~xðtÞ 2 Xq (8d)

_zðtÞ5Fð�; zðtÞ; yðtÞÞ (8e)

zðtk21Þ5x̂�RMHEðtk21Þ (8f)

j~xðtkÞ2zðtkÞj � jjyðtkÞ2hðzðtkÞÞj (8g)

~XðtkÞ :5~xðtk2Ne
Þ; . . . ; ~xðtkÞ (8h)

where Ne is the estimation horizon, j is a positive adjustable
parameter, Q is the covariance matrix for w, and R is the
covariance matrix for v. The function VTðtk2Ne

Þ is an arrival
cost, which is a function that contains information on past pro-
cess states, ~x is the estimate of the state x which follows the
dynamic model in Eq. 8b, yðtkÞ is the vector of measured out-
puts at time tk, and zðtkÞ is the estimate of the process states
from the deterministic state observer of Eq. 8e at time tk based
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on continuous measurement of the output vector y(t). The

value of the observer state at tk21 is initialized with the opti-

mal estimate of the state x̂�RMHEðtk21Þ from the RMHE at time

tk21 (Eq. 8f). This RMHE scheme is implemented with a finite

horizon by approximating w(t) and v(t) as piecewise constant

functions with sampling period D.
The RMHE is evaluated at time instants ftk�0g. It explicitly

uses distribution/boundedness information on w, v, and x by

considering that the most recent Ne measurements and past

measurements are accounted for in the arrival cost VTðtk2Ne
Þ.

The RMHE scheme optimizes the state estimate within a con-

fidence region by maintaining the difference between the pre-

dicted and observer states within the region specified by Eq.

8g. In this way, the RMHE inherits the robustness properties

of the deterministic observer and gives estimates with bounded

errors. The solution to the optimization problem gives the opti-

mal estimate of the current state which is denoted by

x̂�RMHEðtkÞ5~x�ðtkÞ (9)

Preventive Sensor Maintenance via RMHE-Based
LEMPC

We assume that the process operates under the RMHE-

based LEMPC system with qi sensors online (ith state estima-

tion structure); at tm, one or more sensors are taken offline for

preventive maintenance and subsequently, the RMHE-based

LEMPC system with qj sensors (jth state estimation structure)

is used. We note that the case that the sensors are brought

back online could also be handled within this framework. In

this section, the details are provided for the RMHE-based

LEMPC design that facilitates preventive sensor maintenance,

and in addition, stability of the process of Eq. 1 in closed-loop

with such a controller is proved under the assumptions to be

given below.

RMHE-based LEMPC design

As a result of the considered bounded process noise and

uncertainties in the state estimation, subsets of the stability

region Xq will be used to bound the process states in the

design of the RMHE-based LEMPC. Specifically, the sets are

defined as follows: Xqei
is the subset of Xq for the state estima-

tion based on the ith group of sensors and Xqej
is the subset of

Xq under the state estimation based on the jth group of sen-

sors. To deal with the process uncertainty and measurement

noise when the sensor state estimation structure changes from

the ith group of sensors to the jth group of sensors, we need to

ensure that the process state is driven into the new operation

region Xqej
by the time the available sensor group changes at

t 5 tm. Specifically, the RMHE-based LEMPC drives the pro-

cess state into the suitable operation region Xqej
by the time

the qj sensors are used to measure yj. Once the jth group of

sensors is active, the RMHE method based on the new

observer denoted as Fj using the jth group of sensors and the

corresponding new measurement vector, yj, is used to provide

the optimal state estimate x̂�RMHEðtkÞ to the RMHE-based

LEMPC. To facilitate practical implementation, we assume

that tbi=j is an integer multiple of the sampling time, D, and tm
� tbi=j so that the process state estimation can converge before

the available number of sensors changes.
The proposed RMHE-based LEMPC scheme can incorpo-

rate these issues that arise from real-time preventive sensor

maintenance by solving the following

max
u2SðDÞ

ðtk1N

tk

Leð~xðsÞ; uðsÞÞ ds (10a)

s:t: _~xðtÞ5f ð~xðtÞÞ1gð~xðtÞÞuðtÞ (10b)

~xðtkÞ5
ziðtkÞ; if tk < tbi

x̂�RMHEiðtkÞ; if tbi � tk < tm

(
(10c)

uðtÞ 2 U; 8 t 2 ½tk; tk1NÞ (10d)

Vð~xðtÞÞ � qei; 8 t 2 ½tk; tk1NÞ

if Vðx̂ðtkÞÞ � qei and tk < tm2ts
(10e)

@V

@x
ðf ðx̂ðtkÞÞ1gðx̂ðtkÞÞuðtkÞÞ �

@V

@x
ðf ðx̂ðtkÞÞ1gðx̂ðtkÞÞkðx̂ðtkÞÞÞ

if Vðx̂ðtkÞÞ > qei or tk � tm2ts

(10f)

where the notation follows that in Eq. 6. When t < tbi, state

estimates, ziðtÞ, are provided by an observer denoted as Fi

using the ith group of sensors. When tbi � t < tm, the RMHE

based on the observer Fi is utilized to provide the state esti-

mate, which is denoted x̂�RMHEiðtÞ, to the RMHE-based

LEMPC. After tm, the RMHE-based LEMPC problem is

defined similarly to Eq. 10 and is based on the observer Fj

(i.e., for t 2 ½tm; tm1tbjÞ, the state estimate is provided by the

observer Fj and for t � tm1tbj, the state estimate is provided

by the RMHE based on the observer Fj).
The Mode 1 and Mode 2 Lyapunov-based constraints of

Eq. 6 are modified for the RMHE-based LEMPC strategy to

account for the changing number of sensors. The Mode 2 con-

straint of the RMHE-based LEMPC is triggered not only if the

state is outside Xqei
, but also when the time is between tm2ts

and tm. This adjustment to the constraints is made for stability

reasons which are explained further in the “Stability Analysis”

subsection below (i.e., ts > 0 is selected such that the RMHE-

based LEMPC operates in Mode 2 for sufficiently long to

ensure closed-loop stability after tm).

REMARK 2. The objective of this work is to propose a con-
trol framework that integrates process economic optimiza-
tion, process control, and preventive sensor maintenance.
Because EMPC is a control scheme that integrates economic
optimization within the context of feedback control, it has
been chosen for use as the controller for this work. Also, it
is important to point out that EMPC may be considered a
more general form of MPC than tracking MPC, which uses
a positive definite cost function with respect to a prespecified
reference trajectory or set-point. While other MPC schemes
may be considered in place of EMPC for preventive sensor
maintenance, the specific EMPC scheme considered (Lyapu-
nov-based EMPC) may dictate a time-varying operating pol-
icy along with allowing for closed-loop stability guarantees.
Furthermore, as the available number of sensors that are
online changes, the state estimation problem must change to
account for the varying number of measurements, which is
not an issue of whether EMPC or MPC is used, but rather,
an issue of the estimation scheme design to account for a
varying number of measurements.

REMARK 3. While the integration of scheduling and con-
trol has become a popular research topic in the process/sys-
tems engineering community, it is not immediately clear
what, if any, benefit would be achieved by integrating
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scheduling of sensor maintenance tasks into the proposed
control framework because it is likely that the use of a
scheduler or another decision-maker would be used in deter-
mining which sensor needs to be taken offline for mainte-
nance to minimize the impact of process performance
degradation. The scheduler may be based on the life-cycle
data of sensors, the observability of the process which has
one or more sensors under maintenance, and the priority of
different sensors. Nevertheless, closed-loop simulations like
the type performed in the example section may help to
develop a plan/schedule for sensor maintenance based on
stability, reliability and economics concerns.

Implementation strategy

The implementation strategy of the preventive sensor main-

tenance method is illustrated by Figure 2. Specifically, the

control system initially uses the ith group of sensors where qi

(qi < n) outputs are continuously measured to compose the

measurement vector, yi. A state estimation method is utilized

to obtain the state estimate based on these qi sensor measure-

ments by either observer Fi or RMHE. Initially, the RMHE is

not utilized until the state estimation error converges to a small

value based on the observability assumption (i.e., up to t5tbi

only the observer is utilized to provide state estimates to the

RMHE-based LEMPC for the optimal input trajectory calcula-

tion). Then, starting from t5tbi, the RMHE-based LEMPC

takes advantage of the state estimate from the RMHE to com-

pute the optimal input trajectories. At the same time, as the

optimal state estimate from RMHE is expected to be more

accurate after t5tbi, the current state of the observer Fi is reset

to be the optimal state estimate from RMHE at every sampling

period. A similar RMHE implementation holds using Fj after

the sensor group changes at tm.
LEMPC is the proposed control framework for this preven-

tive sensor maintenance problem because of its ability to eco-

nomically optimize the process even while switching

constraints as the online sensor groups are varied. The RMHE-

based LEMPC is a receding horizon control strategy like the

LEMPC of Eq. 6a. The following algorithm describes the logic

for the implementation of the RMHE-based LEMPC, includ-

ing the change in the state estimation structure:

1. Initialize the observer Fi with zið0Þ and implement the

observer Fi continuously based on the continuous output

measurement yiðtÞ.
2. At the current sampling instance tk, if tk< tbi or

tk 2 ½tm; tm1tbjÞ, go to Step 2.1; else if tk 2 ½tbi; tmÞ or

tk � tm1tbj, go to Step 2.2.
2.1 The RMHE-based LEMPC receives the state estimate

from the deterministic observer of Eq. 7; then go to Step 3.
2.2 Based on the state estimate provided by the state observer

of Eq. 7 and the output measurements at the current and

previous sampling instants, the RMHE of Eq. 8 calculates

the optimal state estimate x̂�RMHEðtkÞ which is sent to the

RMHE-based LEMPC; then go to Step 3.
3. If xðtkÞ 62 Xqei

and tk 2 ½0; tm2tsÞ, or if xðtkÞ 62 Xqej

and tk � tm, or if tk 2 ½tm2ts; tmÞ, go to Step 3.1. Else, go to

Step 3.2.
3.1 The RMHE-based LEMPC operates in Mode 2. Go

to Step 4.
3.2 The RMHE-based LEMPC operates in Mode 1. Go

to Step 4.

4. The RMHE-based LEMPC calculates N vectors of con-

trol actions, one for each sampling period in the prediction
horizon t 2 ½tk; tk1NÞ, and sends the control action u�ðtkÞ to

the actuators for sample-and-hold implementation for one

sampling period (t 2 ½tk; tk11Þ).
5. Go to Step 2 (k k11).

REMARK 4. Variations of the maintenance schedule outside
of the schedule considered in the article can be handled by
the proposed RMHE-based LEMPC scheme and are a con-
ceptually straightforward extension of the present work. For
example, a sensor maintenance schedule where some sensors
are taken offline at time tm, but only a few are brought back
online at a later time can be handled. For simplicity of pre-
sentation and notation, we have only presented the most
(conceptually) challenging case where sensors are taken off-
line at a time for preventive sensor maintenance. Neverthe-
less, all of the arguments could be repeated to handle the
case where (some) sensors are being brought online through
redefining the notation (e.g., tm now becomes the time at
which the sensors are being brought back online). From a
stability and observability perspective, the stabilizability and

Figure 2. RMHE-based LEMPC system reconfiguration
diagram for real-time preventive sensor
maintenance (LEMPCi denotes the LEMPC
scheme with the ith sensor group based on
the state estimates from the RMHE denoted
as RMHEi and the HGO denoted as HGOi; the
same holds for LEMPCj but with i replaced
by j).

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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observability assumptions must be satisfied for the new sen-
sor group, which may require the design of an additional
deterministic observer and RMHE scheme for this sensor
group.

REMARK 5. From a practical perspective, when sensors are
being brought back online or taken offline and the estimation
problem changes, the estimation error may be sufficiently small
such that one may use the RMHE to provide state estimates to
the LEMPC starting at tm (i.e., applying the deterministic
observer from tm to tm1tbj may not be required). This is the
case in the chemical process example presented in this work.

REMARK 6. For output feedback-based control of nonlinear
systems, typically what is required to prove closed-loop stabil-
ity is that the estimation error converges sufficiently fast rela-
tive to the time-scale of the process dynamics (i.e., there is a
time-scale separation between the estimation error dynamics
and the process dynamics). This means that it takes very little
time for the estimation error to converge. Therefore, there is
little, if not no, limitation to conducting sensor maintenance
after the state estimation problem has converged. For the case
that a sensor is taken offline before the estimation error has
converged, one may simply disregard the measurements of the
sensor(s) that will be taken offline and formulate the estimation
problem at t 5 0 utilizing the measurements of sensors that will
remain online. Moreover, for the proposed RMHE-based
LEMPC scheme to work in either case (whether the sensor is
taken offline before the estimation error converges or the sen-
sor is taken offline after the state estimator has converged), the
same assumptions need to be satisfied. We note that when the
state estimation problem converges, it converges to a neigh-
borhood of the actual state value (i.e., the estimated state never
becomes identically equal to the actual state).

Stability analysis

This section addresses the stability of the system of Eq. 1
when controlled by the RMHE-based LEMPC of Eq. 10a. We
first present several propositions and then summarize the main
results in a theorem. Proposition 1 characterizes the continuity
property of the Lyapunov function V. Proposition 2 character-
izes the effects of bounded state estimation error and process
noise. The proofs of these statements can be found in the sour-
ces referenced for each.

Proposition 1 (c.f. Refs. 9 and 31). Consider the Lyapu-
nov function Vð�Þ. There exists a quadratic function fVð�Þ
such that

VðxÞ � Vðx̂Þ1fVðjx2x̂jÞ (11)

for all x; x̂ 2 Xq with

fVðsÞ5a4ða21
1 ðqÞÞs1Mvs2 (12)

where Mv is a positive constant.

Proposition 2 (c.f. Ref. 22). Consider the systems

_xaðtÞ5f ðxaÞ1gðxaÞuðtÞ1lðxaÞwðtÞ

_xbðtÞ5f ðxbÞ1gðxbÞuðtÞ
(13)

with initial states jxað0Þ2xbð0Þj � dxi=j. There exists a func-
tion fWð�; �Þ such that

jxaðtÞ2xbðtÞj � fWðdxi=j; tÞ (14)

for all xaðtÞ; xbðtÞ 2 Xq and u 2 U; w 2W with

fWðs; sÞ :5 s1
Mlhw

Lf 1Lgumax

� �
eðLf 1LgumaxÞs2

Mlhw

Lf 1Lgumax
(15)

where Lf, Lg, Ml are positive constants associated with func-
tions f, g, l.

If the system is initialized using either the ith sensor group
or jth sensor group and the sensor group does not change
online throughout the length of operation, then closed-loop sta-
bility follows if certain conditions hold.22 The following result
provides sufficient conditions such that the closed-loop state
under the RMHE-based LEMPC of Eq. 10 will be bounded in
Xq for the case that the available sensors do not change online.

Proposition 3 (Ref. 22). Consider the system of Eq. 1 in
closed-loop under the RMHE-based LEMPC of Eq. 10 based
on an observer satisfying Assumption 1 (formulated for
either the ith sensor group or the jth sensor group) and a
controller that renders the origin of the closed-loop system
asymptotically (and locally exponentially) stable under state
feedback and continuous implementation. Let hw � h�w; hvi=j

� h�vi=j; �i=j 2 ð��Li=j; �
�
Ui=jÞ; and jzi=jð0Þ2xð0Þj � em0i=j. Also,

let �w > 0; D > 0 and q > q1i=j > qei=j > qmin;i=j > qsi=j > 0
and ji=j � 0 satisfy the following conditions

qei=j � q2maxffVðfWðdxi=j;DÞÞ1fVðdxi=jÞ;Mtbi=ja4ða21
1 ðqÞÞg

(16)

2a3ða21
2 ðqsi=jÞÞ1 Lf

V1Lg
Vumax

� �
ðMD1dxi=jÞ1Ml

Vhw

� 2�w=D (17)

where dxi=j5ðji=jLhi=j11Þemi=j1ji=jhvi=j; Lhi=j; Lf
V ; L

g
V are Lip-

schitz constants associated with hi=j;
@V
@x f , and @V

@x g, respec-
tively, M is a constant that bounds the time derivative of x
(i.e., j _xj � M) and Ml

V is a constant that bounds j @V
@x lj for

x 2 Xq. Then, if xð0Þ 2 Xqei=j
, then xðtÞ 2 Xq for all t � 0.

Moreover, if after some time, the RMHE-based LEMPC
operates in Mode 2 only then the state is ultimately bounded
in Xqmin;i=j

.

To cope with the changing number of sensors at tm, the state
needs to be forced to a compact set containing the origin (i.e.,
Xqej

) in preparation for the switch from sensor group i to sen-
sor group j. This is addressed by enforcing the Mode 2 con-
straint in the RMHE-based LEMPC of Eq. 10 from tm2ts to
tm. If xðtmÞ 2 Xqej

, we can apply the results of Proposition 3
and thus, guarantee that the closed-loop state is bounded in
Xq. This result is stated in the following theorem.

Theorem 1. Let qmin;i � qej (Xqmin;i
� Xqej

), emi � em0j,
and the assumptions of Proposition 3 be satisfied for the ith
and jth sensor groups. If ts > 0 is sufficiently large and
xð0Þ 2 Xqei

, then the closed-loop state under the RMHE-
based LEMPC of Eq. 10 is bounded in Xq for t � 0.

Proof. It is necessary to show that the estimation error is
less than em0j at tm and that the RMHE-based LEMPC drives
the state of the closed-loop system into Xqej

by tm. If both of
these can be shown, Proposition 3 states that the closed-loop
trajectory for t > tm will remain bounded in Xq.
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After tbi (i.e., after the deterministic observer Fi has con-
verged), the estimation error is bounded by emi owing to the
properties of the deterministic observer (Assumption 1). If
the deterministic observer Fj is initialized at tm with the state
estimate computed by the RMHE for the ith sensor group at
tm, then the initial error when Fj takes over at tm is bounded
by jzðtmÞ2xðtmÞj � emi � em0j if emi � em0j. Thus, the esti-
mation error is less than em0j at tm.

It is possible for the RMHE-based LEMPC with Mode 2
operation only, in a finite but sufficiently long time interval,
to drive the state from any initial condition in Xq into Xqmin;i

and maintain the state within that set (i.e., Xqmin;i
is forward

invariant under the RMHE-based LEMPC). This follows
from the fact that the state is ultimately bounded in Xqmin;i

(Proposition 3) if the RMHE-based LEMPC operates exclu-
sively in Mode 2 and no changes are made to the sensors
throughout the length of operation (see, also, the proof of
[Ref. 22, Theorem 1] for a complete proof of this fact). If
qmin;i � qej, then there exists N� 2 I1 such that under the
RMHE-based LEMPC of Eq. 10 operating under Mode 2
only xðN�DÞ 2 Xqmin;i

� Xqej
for all xð0Þ 2 Xqei

. If ts � N�D,
then xðtmÞ 2 Xqmin;i

� Xqej
under the RMHE-based LEMPC

of Eq. 10. From Proposition 3, boundedness of the closed-
loop state in Xq under the RMHE-based LEMPC when the
available sensors change at tm follows. �

REMARK 7. In terms of the relationship between tbi=j and
NeD, we note here that when t � tbi=j, the RMHE is activated
and its horizon length is chosen as minftbi=j

D ; Neg consider-
ing the assumption that tbi=j is an integer multiple of D.
Based on this choice, after the RMHE is activated (i.e.,
t � tbi=j) it is possible for the process to have a time-varying
horizon length for several sampling times if tbi=j � NeD.

Application to a Chemical Process Network

Description of the chemical process network

The chemical process network from Ref. 32 is used to illus-
trate the design of the proposed RMHE-based LEMPC and its
usefulness when sensor preventive maintenance is scheduled.
The process consists of three vessels: two continuously stirred
tank reactors (CSTRs) in series, and a flash tank that receives
the effluent from the second CSTR. The process is depicted by
the process flow diagram of Figure 3. A second-order reaction
with rate r occurs in the CSTRs

A!r B

Both CSTRs (CSTR-1 and CSTR-2) receive fresh feeds of

the reactant A in an inert solvent C at flow rates F10 and F20

with concentrations CA10 and CA20, respectively. In addition, to

recover unreacted A, CSTR-1 receives recycled condensed

vapor at flow rate Fr from the flash tank separator (SEP). The

desired product B is obtained from the liquid that exits the flash

tank. The temperature in the vessels is adjusted by controlling

the heating/cooling rate Qj, j 5 1, 2, 3 to each of the vessels. It

is assumed that the heat of reaction and heat capacity are con-

stant in the temperature range considered and that the liquid has

constant density such that all three vessels have static holdup.

In the separator, the reaction rate of the reaction A!r B is negli-

gible. Material and energy balances were used to derive the fol-

lowing dynamic equations for the system

dT1

dt
5

F10

V1

ðT102T1Þ1
Fr

V1

ðT32T1Þ1
2DH

qCp
ke

2E
RT1 C2

A11
Q1

qCpV1

(18a)

dCA1

dt
5

F10

V1

ðCA102CA1Þ1
Fr

V1

ðCAr2CA1Þ2ke
2E
RT1 C2

A1 (18b)

dCB1

dt
5

2F10

V1

CB11
Fr

V1

ðCBr2CB1Þ1ke
2E
RT1 C2

A1 (18c)

dT2

dt
5

F1

V2

ðT12T2Þ1
F20

V2

ðT202T2Þ1
2DH

qCp
ke

2E
RT2 C2

A21
Q2

qCpV2

(18d)

dCA2

dt
5

F1

V2

ðCA12CA2Þ1
F20

V2

ðCA202CA2Þ2ke
2E
RT2 C2

A2 (18e)

dCB2

dt
5

F1

V2

ðCB12CB2Þ2
F20

V2

CB21ke
2E
RT2 C2

A2 (18f)

dT3

dt
5

F2

V3

ðT22T3Þ2
DHvapFrm

qCpV3

1
Q3

qCpV3

(18g)

dCA3

dt
5

F2

V3

ðCA22CA3Þ2
Fr

V3

ðCAr2CA3Þ (18h)

dCB3

dt
5

F2

V3

ðCB22CB3Þ2
Fr

V3

ðCBr2CB3Þ (18i)

where the temperatures of vessels j 5 1, 2, 3, corresponding to

CSTR-1, CSTR-2, and SEP, respectively, are denoted as Tj,

CAj, and CBj are the concentrations of species A and B in vessel

Figure 3. Process flow diagram of the CSTR-CSTR-Separator process network from Ref. 32.
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j, and the molar flow rate of the recycle stream is Fr. The
parameter notation and values are given in Table 1 where ‘h’
is the unit for hours. The flow rates F1, F2, and F3 are the
outlet flow rates from CSTR-1, CSTR-2, and SEP, respec-
tively, and their values can be obtained by setting the sums of
the flow rates into each vessel equal to the sums of the flow
rates out of each vessel because of the constant fluid density
assumption used with the mass balances.

It is assumed that approximating the relative volatilities of
A, B, and C as constants results in a sufficiently accurate
model for this process. Under that assumption, the flash sepa-
rator overhead composition can be described using algebraic
equations

CC35ðq2CA3MA2CB3MBÞ=MC (19a)

Cir5
aiqCi3

aACA3MA1aBCB3MB1aCCC3MC
; i5A; B; C (19b)

Frm5FrðCAr1CBr1CCrÞ (19c)

where ai and Cir are the relative volatility and the overhead
vapor concentration of each species, respectively, and Frm is
the molar flow rate of the recycle stream.

Control objectives and process economics

The five manipulated inputs for the process are the heat
rates Qj to vessels j51; 2; 3 and the concentrations CA10 and
CA20 of A in the fresh feeds to CSTR-1 and CSTR-2, respec-
tively. These inputs are bounded as follows

jQjj � 1:03105 kJ=h; j 51; 2 (20a)

2:23106 � Q3 � 2:63106 kJ=h (20b)

0:5 � CAj0 � 7:5 kmol=m3; j51; 2 (20c)

where the input vector has the form
u5½Q1 Q2 Q3 CA10 CA20	T5½u1 u2 u3 u4 u5	T . In addition to the
input constraints, state constraints are imposed on the operat-
ing temperature of the two CSTRs and of the separator of the
form

370 � Tj � 395 K; j51; 2 (21a)

380 � T3 � 400 K (21b)

The control objective is to maximize the revenue per unit

cost under the proposed RMHE-based LEMPC while account-

ing for preventive sensor maintenance. The process economic

objective function chosen to accomplish this goal is

Leðx; uÞ5
PpCB3

PhðjQ1j1jQ2j1jQ3jÞ1PmðF10CA101F20CA20Þ
(22)

where the unit price of product is Pp 5 10, the unit price of reac-

tant material is Pm 5 2, and the unit price of heat supply/removal

is Ph51:031024. The same pricing is taken to apply for both

heating and cooling, but this assumption does not limit the

essence of the results of this study and can be readily relaxed.
The economically optimal steady state is determined so that

its stability region can be used in the RMHE-based LEMPC.

The economically optimal steady state is determined by solving

max
xs;us

Leðxs; usÞ (23a)

s:t: f ðxsÞ1gðxsÞus50 (23b)

us 2 U (23c)

xs 2 X (23d)

where Lðxs; usÞ is the revenue per unit cost that will be used as

the RMHE-based LEMPC objective (Eq. 22). The algebraic

equation in Eq. 23b provides the steady-state solutions to the

nominal input-affine dynamic system of Eq. 18, and the con-

straints in Eqs. 23c and 23d correspond to the input constraints

of Eq. 20 and the state constraints of Eq. 21, respectively. The

solution to this steady-state optimization problem is x�s , which

satisfies Eq. 23b when paired with u�s

x�s 5 T�1s C�A1s C�B1s T�2s C�A2s C�B2s T�3s C�A3s C�B3s½ 	T

5 395 2:32 2:17 395 2:75 2:15 380 1:88 2:31½ 	T

u�s 5 Q�1s Q�2s Q�3s C�A10s C�A20s½ 	T

5 23:253103 21:083103 2:23106 0:5 0:5
	 
T

(24)

The units for each variable in the optimal steady-state vector

x�s and optimal steady-state input vector u�s are the same as for

the corresponding variables in Table 1. The steady state of Eq.

24 is open-loop unstable.
It is assumed that the sensors in this chemical process exam-

ple undergo routine sensor preventive maintenance to prevent

the potentially large economic losses that could occur due to

the consequences of sensor failure, such as product contamina-

tion or plant shut-down. Thus, we assume that the given pro-

cess can be safely operated with the remaining sensors when

the maintenance procedures considered in this example are

performed (the process can continue to be safely operated

even as certain sensors are taken offline).
The process is outfitted with sensors that provide measure-

ments of CA3; CB1; CB2; CB3, T1, T2, and T3. A state estimation

method is applied to the process to compute state estimates of

CA1 and CA2. There is a scheduled maintenance task on the

sensor that measures CA3 at tm50:3 h (i.e., for t � tm, the con-

trol system will not receive any measurements from the sensor

of CA3 any longer). The sensors that provide the measurements

of CB1; CB2; CB3, T1, T2, and T3 will continue to be available

to the control system and the states CA1; CA2, and CA3 need to

be estimated. Thus, the first sensor group consists of all the

Table 1. Description of Process Parameters and Their Values

for the Reactor and Separator Process Network
32

Parameter/Value Description

F1055:0 m3=h Flow rate of CSTR-1 inlet
F2055:0 m3=h Flow rate of CSTR-2 inlet
Fr52:0 m3=h Recycle flow rate of SEP
T105300 K Temperature of F10

T205300 K Temperature of F20

V155:0 m3 Volume of CSTR-1
V255:0 m3 Volume of CSTR-2
V353:0 m3 Volume of SEP
k51:93109 m3=ðkmol hÞ Pre-exponential factor
E57:1 3 104 kJ=kmol Activation energy
DH527:83103 kJ=kmol Heat of reaction
DHvap54:023104 kJ=kmol Heat of vaporization
Cp50:231 kJ=ðkg KÞ Heat capacity
R58:314 kJ=ðkmol KÞ Gas constant
q51000 kg=m3 Liquid solution density
aA53:0 Relative volatility of A
aB50:8 Relative volatility of B
aC51:0 Relative volatility of C
MA518 kg=kmol Molecular weight of A
MB518 kg=kmol Molecular weight of B
MC540 kg=kmol Molecular weight of C
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available sensors and the second sensor group consists of all

the available sensors except the sensor that measures CA3.

Deterministic observer and RMHE design

Here, we use a HGO as the deterministic observer in the

RMHE design. We note that the HGO changes after the preven-

tive sensor maintenance is conducted at tm. We will use HGO-1

and HGO-2 to denote the HGOs formulated for the first and sec-

ond sensor groups, respectively. The design of HGO-2 (see Ref.

14) is provided here, and the design of HGO-1 follows from the

design of HGO-2. The measurement vector after the CA3 sensor

is taken offline at tm is defined as y5 ½h1ðxÞ h2ðxÞ h3ðxÞ h4ðxÞ
h5ðxÞ h6ðxÞ	5 ½T1 CB1 T2 CB2 T3 CB3	. To obtain the state

estimates, a high-gain observer is formulated as follows

d�z1

dt
5

a1

�
ðy12�z1Þ (25a)

d�z2

dt
5

a2

�
ðy22�z2Þ1�z3 (25b)

d�z3

dt
5

a3

�2
ðy22�z2Þ (25c)

d�z4

dt
5

a4

�
ðy32�z4Þ (25d)

d�z5

dt
5

a5

�
ðy42�z5Þ1�z6 (25e)

d�z6

dt
5

a6

�2
ðy42�z5Þ (25f)

d�z7

dt
5

a7

�
ðy52�z7Þ (25g)

d�z8

dt
5

a8

�
ðy52�z8Þ1�z9 (25h)

d�z9

dt
5

a9

�2
ðy62�z8Þ (25i)

where the observer states are defined as

�z5TðxÞ5½T1 CB1
_CB1 T2 CB2

_CB2 T3 CB3
_CB3	T

and the mapping T : Rn ! Rn is an appropriately chosen

invertible coordinate change. The design parameters of HGO-

2 are �, which is a small positive design parameter, and

a5½a1 � � � a9	T . Based on the mapping �z5TðxÞ of Eq. 25, the

estimated state, z5½z1 � � � z9	T , is derived as z5T21ðsatð�zÞÞ
where satð�Þ is a saturation function of the form

satð�ziÞ :5

�zi;m; �zi � �zi;m

�zi; 2�zi;m � �zi � �zi;m

2�zi;m; �zi � 2�zi;m

8>><
>>: (26)

where �zi;m (i51; . . . ; 9) is the saturation limit of the trans-

formed state �zi. The saturation function is used to prevent the

peaking phenomenon.
The following design parameters for the HGOs and for the

RMHE scheme of Eq. 8 were used in all case studies below. It

was verified through extensive closed-loop simulations that

these parameters achieved good estimation performance. The

parameters of HGO-1 were chosen to be

½a1 a2 a3 a4 a5 a6	5½2 15 1022 2 15 1022	 (27)

and �50:01, and for HGO-2

½a1 a2 a3 a4 a5 a6 a7 a8 a9	
5½1 10 1022 1 10 1022 1 10 1022	

(28)

and �50:01. The design parameters of the RMHE of Eq. 8 were

chosen as j50:4 and Ne 5 8. The estimation horizon was cho-

sen so that acceptable estimation performance was achieved

without the use of an arrival cost. In the subsequent sections, we

use RMHE-1 to denote the RMHE designed based on HGO-1

and RMHE-2 to denote the RMHE designed based on HGO-2.

RMHE-based LEMPC design handling real-time

preventive sensor maintenance

A Lyapunov-based controller is designed for the process

that can asymptotically stabilize the economically optimal

steady state. It will be used to define the Lyapunov-based con-

straints of the RMHE-based LEMPC. The heat rate inputs Q1,

Q2, and Q3 have a larger impact on closed-loop stability of

Figure 4. The estimated reactant concentration profiles
(dashed lines) compared with the closed-loop
reactant concentration profiles (solid lines) of
the process network of Eq. 18 under (a) the
RMHE-based output feedback LEMPC and (b)
the HGO-based output feedback LEMPC for
Case I (no sensor maintenance).
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this process system than the concentration inputs CA10 and
CA20. For this reason, the inputs in vector uq (uq5½Q1 Q2 Q3	T)
are used to stabilize the closed-loop system, while the inputs
in vector uc (uc5½CA10 CA20	T) are primarily used to attain bet-
ter economic performance of the closed-loop process and
u5½uT

q uT
c 	

T
. The Lyapunov-based controller will be designed

using different control laws for the heat rates and for the inlet
concentrations. The heat rate inputs are controlled per the fol-
lowing feedback control law33

kqiðxÞ5 2
Lf V1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLf VÞ21ðLgi

VÞ4
q
ðLgi

VÞ2
Lgi

V if Lgi
V 6¼ 0

0 if Lgi
V50

8>><
>>: (29)

for i51; 2; 3 where gi denotes the ith column of g and Lf V
5ð@V=@xÞf ðxÞ and Lgi

V5ð@V=@xÞgiðxÞ denote the Lie deriva-
tives of V with respect to the vector fields f and gi, respec-
tively. The elements of uc per the Lyapunov-based strategy are
kcðxÞ5½0:5 0:5	T . The full Lyapunov-based control law for all
five inputs is kðxÞ5½kT

q ðxÞ kT
c ðxÞ	

T
.

A quadratic function (i.e., VðxÞ5ðx2x�s Þ
TPðx2x�s Þ) was

chosen for the Lyapunov function of the process under the
controller k(x), and extensive closed-loop simulations under
this controller facilitated the choice of the matrix P and an
estimate of the stability region of the process under the k(x)

control law. The stability region estimate was made by choos-
ing the largest level set of V within which _V < 0 along the tra-
jectories of the closed-loop system. The positive definite
matrix P is given by

P5diagð½1023 1:5 0:5 1023 1:5 0:5 1023 1:5 0:5	Þ (30)

The stability region is estimated to be the level set Xq with
q512:4. The subsets of the stability region Xq are estimated
to be level sets: Xqe1

with qe1510 and Xqe2
with qe258.

To deal with the scheduled preventive maintenance on the sen-
sor of CA3 at tm50:3 h, the proposed RMHE-based LEMPC of
Eq. 10 for this chemical process network has the following form
(for N 5 8)

max
u2SðDÞ

ðtk18

tk

Leð~xðsÞ; uðsÞÞ ds (31a)

s:t: _~xðtÞ5f ð~xðtÞÞ1gð~xðtÞÞuðtÞ (31b)

~xðtkÞ5
x̂HGO21ðtkÞ; if tk < tb150:08

x̂�RMHE21ðtkÞ; if 0:08 � tk < 0:30

(
(31c)

uðtÞ 2 U; 8 t 2 ½tk; tk18Þ (31d)

~xðtÞ 2 X; 8 t 2 ½tk; tk18Þ

Vð~xðtÞÞ � 10; 8 t 2 ½tk; tk18Þ
(31e)

Figure 5. The estimated product concentration and temperature profiles (dashed lines) compared with the closed-
loop product concentration and temperature profiles (solid lines) of the process network of Eq. 18 under
(a) the RMHE-based output feedback LEMPC and (b) the HGO-based output feedback LEMPC for Case I
(no sensor maintenance).
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if Vðx̂ðtkÞÞ � 10 and tm 62 ½tk; tk18Þ (31f)

@V

@x
ðf ðx̂ðtkÞÞ1gðx̂ðtkÞÞuðtkÞÞ �

@V

@x
ðf ðx̂ðtkÞÞ1gðx̂ðtkÞÞkðx̂ðtkÞÞÞ

if Vðx̂ðtkÞÞ > 10 and tm 62 ½tk; tk18Þð Þ

or tm 2 ½tk; tk18Þð Þ
(31g)

which is used for t 2 ½0; tmÞ and

max
u2SðDÞ

ðtk18

tk

Leð~xðsÞ; uðsÞÞ ds (32a)

s:t: _~xðtÞ5f ð~xðtÞÞ1gð~xðtÞÞuðtÞ (32b)

~xðtkÞ5x̂�RMHE22ðtkÞ; if tk � 0:30 (32c)

uðtÞ 2 U; 8 t 2 ½tk; tk18Þ (32d)

~xðtÞ 2 X; 8 t 2 ½tk; tk18Þ (32e)

Vð~xðtÞÞ � 8; 8 t 2 ½tk; tk18Þ

if Vðx̂ðtkÞÞ � 8
(32f)

@V

@x
ðf ðx̂ðtkÞÞ1gðx̂ðtkÞÞuðtkÞÞ �

@V

@x
ðf ðx̂ðtkÞÞ1gðx̂ðtkÞÞkðx̂ðtkÞÞÞ;

if Vðx̂ðtkÞÞ > 8

(32g)

which is used for t � tm. For this example, tb1 is estimated to

be 0:08 h. Considering that this means tb15NeD for this spe-

cific case, HGO-1 is utilized to provide the state estimates of

CA1 and CA2 during the first Ne sampling times. For

t � 0:08 h, RMHE-1 is activated to provide the estimates of

CA1 and CA2 until tm50:3 h. After tm50:3 h, RMHE-2 is uti-

lized to provide state estimates of not only CA1 and CA2 but

also CA3 as well. RMHE-2 is immediately used at tm to provide

the state estimate to the LEMPC of Eq. 32 because the state

estimation error is small at t 5 tm, which was verified through

simulations (i.e., applying HGO-2 from tm to tm1tb2 to ensure

the convergence of the estimation error to a small value was

not needed for this particular example).
The sampling time used for the RMHE-based LEMPC is D

50:01 h and the prediction horizon used is N 5 8. The opti-

mization software Ipopt34 was used to find a local solution to

the RMHE-based LEMPC optimization problem. The simula-

tions were carried out using the Java programming language

in a IntelVR i7 3.40 GHz processor running a Windows 7 Pro-

fessional system.

Case studies

As we discussed in the Introduction of this work, routine

sensor replacement is necessary to avoid potential sensor fail-

ure which may bring production loss to the process. We now

compare four case studies which a process operation manager

may evaluate when weighing the risks, costs, and benefits of

conducting a sensor maintenance procedure
I. Process operation without preventive sensor mainte-

nance on the sensor of CA3.
II. Process operation with preventive sensor maintenance

on the sensor of CA3 at tm50:3 h.
III. Process operation subject to faulty sensor readings of

CA3 after tf 50:5 h.

IV. Process operation with preventive maintenance of the
sensor of CA3 at tm50:3 h followed by preventive mainte-
nance of the actuator of CA20 at ta50:6 h.

In these four case studies, the RMHE-based LEMPC formu-
lation of Eqs. 31 and 32 is applied to the process of Eq. 18.
The state estimation accuracy between the high-gain observer
and the RMHE method is compared, and the RMHE-based
LEMPC’s ability to handle the preventive sensor maintenance
task is demonstrated in all four cases; the process economic
performance degradation is also evaluated for different cases
under the preventive sensor maintenance.

To model the process and measurement noise, bounded
Gaussian white noise is added to the process state and mea-
surement values, respectively, with a zero mean and standard
deviation rw;CA

5rw;CB
50:05; rw;T55:0; rv;CA

5rv;CB
50:03,

and rv;T55:0, and subject to the bounds hw;CA
5hw;CB

50:1
kmol=m3; hw;T510:0 K; hv;CA

5hv;CB
50:05 kmol=m3 and

Figure 6. The estimated reactant concentration profiles
(dashed lines) compared with the closed-loop
reactant concentration profiles (solid lines) of
the process network of Eq. 18 under (a) the
RMHE-based output feedback LEMPC and (b)
the HGO-based output feedback LEMPC for
Case II where preventive maintenance is con-
ducted on the CA3 sensor making it unavail-
able at 0:3 h.
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hv;T55:0 K. For each case study, the same realization of the

noise was used to compare the various control strategies.

Case I: RMHE vs. HGO—No Preventive Sensor Mainte-
nance. In the first case, we compare the state estimation per-

formance between the RMHE method (Eq. 8) and the HGO

method (HGO-1) for the process network of Eq. 18. For this

case, no preventive sensor maintenance is completed. The

RMHE method consists of the output feedback RMHE-based

LEMPC of Eq. 31 with tm !1, while the HGO method con-

sists of the output feedback RMHE-based LEMPC of Eq. 31

with tm !1 and tb1 !1 (i.e., HGO-1 provides the state

estimate to the LEMPC for all time).
HGO-1 for both the RMHE and HGO methods is initialized

such that initially there is nonzero estimation error (i.e., it is

initialized with an initial condition not equal to the actual state

value). The estimated state and closed-loop state profiles under

the HGO and RMHE methods are shown in Figures 4 and 5.

From Figure 4, the HGO initially computes a state estimate

close to the actual values of CA1 and CA2. After RMHE-1 is

activated at 0:08 h in the RMHE method (Figure 4a), it com-

putes state estimates of CA1 and CA2 very close to the actual

state values throughout the length of operation. When compar-

ing the estimated state profiles of CA3, CB, and T, the HGO

is more sensitive to the measurement noise (e.g., compare

Figure 5a with Figure 5b). Thus, the RMHE method provides

better state estimation performance and robustness to measure-

ment noise when compared with the HGO method. In addition,

the closed-loop economic performance under the RMHE

method is 14.8% greater than that under steady-state operation

for the 1 h operation period.

Case II: RMHE vs. HGO—Preventive Sensor Mainte-
nance. In this case study, we consider that preventive sensor

maintenance on the sensor of CA3 will be conducted as sched-

uled at tm50:3 h. Again, we compare the RMHE method with

the HGO method, but here the RMHE method is applied

according to the output feedback RMHE-based LEMPC strat-

egy of Eqs. 31 and 32, and the HGO method is applied using

HGO-1 and HGO-2 to provide state estimates to the output

feedback-based LEMPC schemes of Eqs. 31 and 32 before

and after tm, respectively.
We compare the estimated state profiles from the RMHE

and HGO methods with the actual closed-loop state profiles in

Figures 6 and 7. From Figure 6a, we can see that the estimated

CA3 trajectory from the RMHE method is nearly overlapping

with the actual state trajectories after the CA3 sensor is taken

offline at tm50:3 h. However, the state estimate for CA3 from

the HGO method significantly deviates from the actual state

profile as shown by Figure 6b. From Figure 6b, the state

Figure 7. The estimated product concentration and temperature profiles (dashed lines) compared with the closed-
loop product concentration and temperature profiles (solid lines) of the process network of Eq. 18 under
(a) the RMHE-based output feedback LEMPC and (b) the HGO-based output feedback LEMPC for Case II
where preventive maintenance is conducted on the CA3 sensor making it unavailable at 0:3 h.
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estimates of CA1 and CA2 from the HGO are also affected by

its sensitivity to the measurement noise and the removal of the

measurement of CA3. Figure 7 displays the T and CB profiles

of the process under the RMHE and HGO methods. The inac-

curate estimation of CA3 from the HGO decreases the estima-

tion accuracy of the estimated profiles of CB and T as shown

in Figures 7a, b. These results demonstrate the advantage of

the RMHE method for state estimation when the measure-

ments are corrupted by noise as it provides accurate state esti-

mates within a small neighborhood of the actual process

states. They also show that the proposed RMHE-based

LEMPC is able to smoothly deal with the preventive sensor

maintenance task without leading to poor performance and

process shut-down.
Case III: RMHE vs. Faulty Sensor Readings. The state

profiles of the third case are shown in Figures 8 and 9. The

third case with the faulty sensor illustrates the consequences

of not performing sensor maintenance and then having a sen-

sor fault. It is developed using the output feedback RMHE-

based LEMPC of Eq. 31, except that this LEMPC is used for

all times and it does not account for the faulty sensor readings.

To model the faulty sensor, random noise is added to the pro-

cess measurements starting at time tf.
From Figure 8, the faulty reading from the sensor of CA3

causes large deviations of the estimated states from the actual

closed-loop states. The different estimated state values, which

are provided to the RMHE-based LEMPC system of Eqs. 31

and 32, result in a different computed input trajectory for Case

III than for Cases I and II as shown in Figure 9. Specifically,

the input profiles from the process with preventive mainte-

nance on the sensor of CA3 are close to those from the process

without preventive sensor maintenance on the sensor of CA3

due to the accurate state estimate of CA3, while for the process

with a faulty sensor reading of CA3, the controller requires

increased energy consumption than that actually required due

to the inaccurate state estimates.
In terms of the economic cost of Eq. 22, the average reve-

nue per unit cost over the 1 h operation period for the process

with faulty sensor readings decreases 5:18% when compared

with the process using state feedback without sensor mainte-

nance and with fully functional sensors. However, the process

economic performance degradation for the process conducting

the preventive sensor maintenance work based on the pro-

posed output feedback RMHE-based LEMPC is only 1:27%

due to the accurate state estimates provided by the RMHE

Figure 8. The estimated reactant concentration profiles
(dashed lines) compared with the closed-loop
reactant concentration profiles (solid lines) of
the process network of Eq. 18 under the
RMHE-based output feedback LEMPC for
Case III where no preventive maintenance is
completed on the CA3 sensor and the sensor
provides faulty readings at 0:5 h.

Figure 9. Manipulated input profiles from the RMHE-based LEMPC of Eqs. 31 and 32 when sensor maintenance is
completed on the CA3 sensor at 0:3 h [dashed lines in (a)], when the CA3 sensor provides faulty readings
of CA3 after 0:5 h [dashed lines in (b)].

For a comparison, the manipulated input profiles from the RMHE-based LEMPC when the sensor of CA3 is available and func-

tioning well for all times are given as the solid lines.
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method and the control system reconfiguration of the LEMPC

scheme of Eqs. 31 and 32 when t approaches tm. In particular,

the RMHE-based LEMPC takes full advantage of the estima-

tion performance from the RMHE method.

REMARK 8. Sensor faults can come in a variety of forms.
For the purposes of the Case III comparison made in this
article, the sensor fault type simulated demonstrates that
sensor faults can be more costly than removing a sensor for
preventive maintenance using the proposed control strategy.
If the faulty sensors have more severe problems, such as
constant or drifting signals, the process economic perform-
ance degradation will likely be much larger than that dem-
onstrated in Case III.

Case IV: Integrating Actuator and Sensor Maintenance.
The chemical processing industry is concerned not only with

maintenance of sensors, but also with preventive maintenance

of actuators. It is possible to consider the situation that the

maintenance work for the sensor and actuator is scheduled in

sequence. To address this problem, we apply a LEMPC

scheme handling preventive maintenance on both sensors and

actuators to the chemical process network based on the

LEMPC design handling preventive actuator maintenance26

and the LEMPC handling the preventive sensor maintenance

of Eqs. 31 and 32.
In this case, the preventive sensor maintenance on CA3 is

scheduled at tm50:3 h, and we assume the actuator of CA20 is

taken offline at ta50:6 h when it is no longer available to the

LEMPC. In Figure 10, closed-loop state and estimated state

profiles under the RMHE-based LEMPC are compared. From
Figure 10, we can see that the proposed RMHE-based LEMPC
still provides accurate state estimates even after the actuator of

Figure 10. The closed-loop state (solid lines) and estimated state (dashed) profiles for the process network of Eq.
18 under the RMHE-based LEMPC for handling sensor and actuator maintenance where the sensor of
CA3 is unavailable after tm50:3 h and actuator of CA20 is unavailable after ta50:6 h.

Figure 11. Manipulated input profiles with the sensor of
CA3 unavailable after tm50:3 h and the actu-
ator of CA20 unavailable after ta50:6 h under
the RMHE-based LEMPC for handling both
sensor and actuator preventive maintenance.
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CA20 is taken offline (i.e., control system reconfiguration

caused by the loss of the actuator of CA20). Based on the

manipulated input profiles shown in Figure 11, the manipu-

lated input value of CA20 is set to be 0 when its actuator is

taken offline for maintenance at ta50:6 h. The process eco-

nomic performance following Eq. 22 decreases 2:63% com-

pared with the situation shown in Case II where the actuator

maintenance is not conducted over this 1 h operation but sen-

sor maintenance is performed. This Case IV simulation run

demonstrates that the integration of the method proposed in

the present manuscript and the results of Ref. 26 produces a

control scheme capable of handling both sensor and actuator

maintenance in a single framework.

Conclusions

This article establishes a novel RMHE scheme that accom-

modates a varying number of sensors to continuously supply

accurate state estimates to a LEMPC system. It was shown

that the proposed RMHE-based LEMPC scheme can maintain

process closed-loop stability under standard observability and

stabilizability assumptions. Then, the proposed RMHE-based

LEMPC was applied to a chemical process; the simulation

results exhibited its ability to accomplish control system

reconfiguration under a changing number of online sensors

and to achieve minimal economic performance degradation by

operating the process in an economically optimal fashion,

while preserving closed-loop stability.
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