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a b s t r a c t   

Due to the occurrence of over-fitting at the learning phase, the modeling of chemical 

processes via artificial neural networks (ANN) by using corrupted data (i.e., noisy data) is 

an ongoing challenge. Therefore, this work investigates the effect of both Gaussian and 

non-Gaussian noise on the performance of process-structure based recurrent neural 

networks (RNN) models, which take the form of partially-connected RNN models in this 

work, that are used to approximate a class of multi-input-multi-outputs nonlinear sys-

tems. Furthermore, two different techniques, specifically Monte Carlo dropout and co- 

teaching, are utilized in the development of partially-connected RNN models. These two 

techniques are employed to reduce the over-fitting in ANNs when noisy data is used in the 

training process and, hence, to improve the open-loop accuracy as well as the closed-loop 

performance under a Lyapunov-based model predictive controller (MPC). Aspen Plus 

Dynamics, a well-known high-fidelity process simulator, is used to simulate a large-scale 

chemical process application in order to demonstrate the anticipated improvements in 

both open-loop approximation and closed-loop controller performance in the presence of 

Gaussian and non-Gaussian noise in the data set using physics-informed RNNs. 

© 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.     

1. Introduction 

The fundamental benefit of data-driven modeling techniques 
is that no prior knowledge of the process is required. 
However, historical data including key measured process 
variables is required to develop data-driven models. The ef-
fectiveness of data-driven modeling methods is based on the 
quality and amount of process data. Moreover, owing to their 
capability to analyze data in vast quantities from industrial 
processes, machine learning techniques have attracted 

significant attention in traditional engineering fields re-
cently. Machine learning is a broad family of techniques in-
cluding neural networks and their variants, which have been 
used successfully in regression and classification problems 
such as process modeling, process monitoring, and fault 
detection. Recurrent neural networks (RNN) and long short- 
term memory (LSTM) networks are two of the many types of 
neural networks that have gained popularity for modeling 
nonlinear dynamic systems from sequential data (i.e., time- 
series data), and have been used in advanced control stra-
tegies such as model predictive control (MPC) to predict the 
evolution of process states when first-principles process 
models are unavailable (e.g., Drgoňa et al., 2018; Wu et al., 
2019; Chen et al., 2020). While many studies have been con-
ducted on utilizing neural networks for modeling of chemical 
processes using clean/noise-free data, learning with noisy 
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data is an essentially challenging task due to the high like-
lihood of neural networks ending up fitting the noisy data 
(i.e., over-fitting). Given that noise commonly affects sensor 
measurements in chemical plants during real-time opera-
tion, modeling of chemical processes via machine learning 
approaches utilizing industrial data (i.e., corrupted with 
noise) continues to be an important research topic. 

To mitigate the effect of noise in data sets during mod-
eling, several methods have been proposed in the literature. 
For linear dynamical systems, the famous Kalman filtering is 
one approach for dealing with noisy measurements. 
Furthermore, other approaches have been proposed such as 
unscented Kalman filter and moving horizon estimation (e.g.,  
Patwardhan et al., 2012). An accurate explicit model re-
presentation is generally required in the state estimation 
technique in order to achieve a correct estimation, and also 
tuning of the co-variance matrices is required (Lima and 
Rawlings, 2011). The result of learning using raw vibration 
signals generated from water flow system in a laboratory- 
scale was recently investigated by Shah et al. (2020) using 
three different approaches; linear statistical learning ap-
proach, LSTM neural networks, and feed-forward neural 
network (FNN). According to their analyses, both the ma-
chine learning methods and the linear statistical model 
under-performed when utilizing raw vibration signals, and 
additional data treatment was required to enhance the de-
veloped models performance. 

Since machine learning approaches were originally devel-
oped in the field of computer science, they generally either 
presume the access to high-fidelity data, or refer to mislabeling 
in classification tasks and numerical fallacies in regression 
tasks as “noisy data” (Han et al., 2018). As a result, the accuracy 
and effectiveness of these methods are typically evaluated 
using noise-free data sets. However, finding and collecting 
noise-free data in the domain of science and engineering, 
especially chemical engineering, remains a long-standing 
challenge. Thus, numerous works in the literature investigate 
machine learning methods with various types of noise. For 
instance, in the work of Hsu and Wang (2009), the robustness 
of an RNN model of Wiener type is evaluated by two types of 
noise: white noise and sinusoidal noise. Furthermore, a study 
by Krishnaiah et al. (2006) investigated the impact of Gaussian 
noise on an RNN modeling of chaotic systems represented by 
short time-series. Moreover, data quality can also be improved 
by using data preparation and smoothing techniques. For 
foaming control implementation in bio-processes using en-
semble-based machine learning method, noisy and repetitive 
data are filtered in the work of Agarwal et al. (2019). In the 
same vein, Ma et al. (2020) conducted a data smoothing (i.e., 
pre-treatment) and dealt with incomplete data points by ap-
plying a third-order polynomial to the experimental data and 
then combined it with an ANN to create a deep reinforcement 
learning strategy to control a bio-reactor. 

Many machine learning modeling algorithms can handle 
Gaussian noise. However, non-Gaussian noise can cause a 
degraded modeling performance between the input and the 
(noise-free) ground-truth output, and this is because of its 
over-fitting of the corrupted training data set’s noisy beha-
vior. In nonlinear processes modeling by machine learning 
algorithms exposed to industrial data noise with a non- 
Gaussian distribution, the work of Wu et al. (2021) utilized 
Monte Carlo dropout and co-teaching. The Monte Carlo 
dropout strategy in the neural network training process is an 
excellent way to minimize over-fitting to non-Gaussian noisy 

input without requiring any a prior process knowledge. As 
for the co-teaching technique, it’s essentially using noise- 
free data generated from a first-principles model to mitigate 
the impact of noise in the training phase of machine learning 
models. Abdullah et al. (2022) used a training data set where 
20% of the data set was noise-free to improve the overall 
modeling performance using co-teaching method. 

Standard RNN models, also known as fully-connected 
RNN models, are a popular option for analyzing time-series 
data within a black-box modeling framework. Such a mod-
eling methodology, however, may not always be preferable, 
particularly for large chemical processes due to the complex 
interactions among process variables. Hence, to improve 
RNN performance, several studies (e.g., Stephanopoulos and 
Han, 1996; Kahrs and Marquardt, 2007; Zhang et al., 2019) 
have looked into gray-box modeling, also referred to as hy-
brid modeling, which involves integration of a prior physical 
knowledge and expertise into the modeling of neural net-
works. Another method is to reflect physical relations among 
the given process inputs and outputs into the modeling of 
neural networks (i.e., known as partially-connected mod-
eling) which was proposed in Wu et al. (2020). In this direc-
tion, Alhajeri et al. (2022) examined the partially-connected 
method by comparatively investigating open-loop and 
closed-loop simulations utilizing a fully-connected RNN 
model against a partially-connected RNN model on a large- 
scale complex chemical process modeled in Aspen Plus Dy-
namics. It was demonstrated that a partially-connected RNN 
model outperformed a fully-connected RNN model in terms 
of smoother state trajectories and lower computational 
burden under the MPC. Yet, to our knowledge, the perfor-
mance of partially-connected RNN has not been studied in 
the presence of industrial noise. 

Taking into consideration the preceding factors, the cur-
rent study takes noise into account and attempts to evaluate 
the performance of a partially-connected RNN-based MPC 
through application on a large-scale nonlinear chemical 
process. Initially, we use the process simulators Aspen Plus 
and Aspen Plus Dynamics to create a simulation model of a 
chemical plant that produces Ethylbenzene via two con-
tinuous stirred tank reactors (CSTR) in series. Then, we carry 
out extensive open-loop simulations using Aspen dynamical 
model to construct a base data set, which will be corrupted 
with two types of noise (i.e., Gaussian and non-Gaussian) to 
obtain two separate data sets based on the noise type. 
Subsequently, we train a standard partially-connected RNN 
model as described in Alhajeri et al. (2022) using the noisy 
data. Then, two other models are developed by employing 
the co-teaching and Monte Carlo dropout techniques, re-
spectively. Eventually, we evaluate both open-loop and 
closed-loop performance of each model, and show the ben-
efits of using the two proposed approaches to overcome 
noisy data presence in a partially-connected RNN-based MPC 
framework. 

The remainder of this manuscript is structured as follows: 
In Section 2, the class of nonlinear chemical process systems, 
mathematical notation, and stabilizing feedback control law 
assumptions are discussed. Next, the conceptualization and 
the development of partially-connected RNN models, and 
LSTM models are introduced in Section 3. Subsequently,  
Sections 4 and 5 introduce the concepts of co-teaching and 
Monte Carlo dropout techniques, respectively. The in-
corporation of a partially-connected RNN model into a model 
predictive controller with Lyapunov stability assumption is 
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proposed and discussed in Section 6. In Section 7, the open- 
loop as well as the closed-loop performances of MPCs using 
different RNN models that underwent different training 
procedures are assessed utilizing chemical process applica-
tion modeled in Aspen Plus Dynamics simulator. 

2. Preliminaries 

2.1. Notations 

Throughout this work, the Euclidean norm of a vector κ is 
represented by the notation ∣κ∣2. The standard Lie derivative 

is notated by =L h x f x( ) ( )f
h x

x
( ) . Set subtraction operator used 

in this work is “ − ”, as in A − B = {x ∈ Rn∣x ∈ A, x ∉ B}. A 
function f(x) is regarded as of class C1 if it is continuously 
differentiable in its domain. 

2.2. Class of systems 

We consider the class of nonlinear continuous-time multi- 
input multi-output (MIMO) systems with the following state- 
space form: 

= + =x F x u f x g x u x t x( , ) ( ) ( ) , ( )o o (1a)    

= +y x (1b) 

where =x x x R[ , ..., ]n
T n

1 denotes the state vector, and the 
vector of manipulated variables (i.e., inputs) is denoted by 

=u u u R[ , ..., ]r
T r

1 . The term =y y y R[ , ..., ]n
T n

1 represents 
the vector of state measurements that are continuously 
sampled, and the measurements noise vector is denoted by 
ν ∈ Rn. The input vector u is bounded by a lower bound umin

and an upper bond umax and both are ∈ Rr. f( ⋅ ) is a vector 
function ∈ Rn×1 and g( ⋅ ) is a matrix function ∈ Rn×r, and both 
are assumed to be adequately smooth. We assume that the 
entire state vector is in deviation form from the steady state 
of the considered system, such that when ν(t) = 0 and the 
function F(0, 0) is equal to zero then the origin is a steady- 
state of the nominal system in Eq. 1a, i.e., (xs, us) = (0, 0), 
where the subscript “s” indicates the steady-state. 

2.3. Stabilizability Assumption 

For closed-loop stability considerations, a stabilizing feed-
back controller u = Φ(x) ∈ U, where U u u u{ }min max is 
assumed to exist. This controller is assumed to be able to 
enforce the steady state (i.e., the origin) of the system of Eq. 1 
to be exponentially stable in a neighborhood around the 
origin. Such an assumption implies that a control Lyapunov 
function of class C 1 exists and is represented by V(x), such 
that for all x in an open neighborhood D around the origin, 
the following inequalities hold: 

c x V x c x( ) ,1
2

2
2 (2a)    

V x
x

F x x c x
( )

( , ( )) ,3
2 (2b)    

V x
x

c x
( )

4 (2c) 

where ci are positive real numbers ∀ i ∈ {1, . . . , 4}. There are 
several methods to construct the controller Φ(x); for instance, 
a possible method is the universal Sontag’s control law (Lin 
and Sontag, 1991). Other methods can also be applied, such 
as finding a well-tuned proportional control law (i.e., P- 

controller). Once the controller is chosen, subsequently, fol-
lowing Wu et al. (2019) the closed-loop stability region Ωρ is 
defined to be a level set of V(x) within the region D that is 
characterized under the controller u = Φ(x) ∈ U, i.e., Ωρ 

≔ {x ∈ D∣V(x)≤ ρ, ρ  >  0}. 

3. Recurrent neural networks model (RNN) 

RNN models, as noted in the introduction, are an effective 
tool for modeling time-series data. The hidden layer neurons’ 
recursive action enables the RNN to retain the memory of 
earlier states, allowing it to adequately mimic a time-series 
dataset behaviour. RNN models are utilized to estimate the 
nonlinear system of Eq. (1a) using process operational data in 
this study is represented as follows: 

= +x F x u Ax¯ ( ¯ , ) ¯rnn
T (3) 

where the RNN state vector is =x x x¯ [ ¯ , ..., ¯ ]n1 , and 
u = [u1, . . . , ur] is the vector of the manipulated inputs. The 
vector γ is based on x̄ and u, and is defined as [γ1, . . . , γn, γn 

+1, . . . , γn+r]= +x x u u R[ ( ¯ ), ..., ( ¯ ), , ..., ]n r
n r

1 1 . The notation α( ⋅ ) 
denotes the nonlinear activation function utilized for the 
activation of the hidden layers. Such activation functions 
include the sigmoid function and the hyperbolic tangent 
function. The diagonal matrix A = diag[ − a1, . . . , − an] consists 
of negative coefficients with each ai >  0 with the intention 
that the states are kept stable in the sense of bounded-input- 
bounded-state stability. Regarding the matrix 
Θ = [θ1, . . . , θn] ∈ R(n+r)×n, it consists of a vector θi = bi[wi1, . . . , wi 

(n+r)], where the elements of each θi are bi, which are con-
stants, and wij, which is the weight on the interrelation that 
links the jth input to the ith neuron, where j ∈ {1, . . . , (n + r)}, 
and i ∈ {1, . . . , n}. 

3.1. Partially-connected RNN 

For constructing a dynamic model for a nonlinear process, a 
neural network model that takes all available process inputs 
and predicts the desired outputs is usually preferred. Using 
open-source machine learning software, a dynamic RNN 
model for such processes may be simply developed, and this 
model will be able to account for all conceivable correlations 
between each input and output of the underlying process. 
The general construction of such a fully-connected RNN with 
an input layer, hidden layers, and an output layer is depicted 
on the left side of Fig. 1. As a result, fully-connected RNN 
models are typically the best initial choice for modeling 
processes where no prior knowledge is available. 

The term “process prior knowledge” is defined as a phy-
sical understanding of the process considered that exists 
before the derivation of the first-principles process model. It 
involves, but is not restricted to, the model’s intended goal, 
each and every hard and soft physical constraint imposed on 
the process as a result of design considerations, as well as 
the process structure. We focus on process structure 
knowledge in the form of connections between process input 
and output variables in this paper. Physical connections be-
tween process variables can sometimes be straightforward, 
especially in the chemical process industry. Upstream pro-
cesses, for example, have an effect on downstream pro-
cesses, whereas the opposite effect may not exist. This 
relationship among upstream and downstream stages is 
frequently reflected explicitly in a first-principles mathema-
tical model. As a result, as discussed in Thompson and 
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Kramer (1994), integrating process knowledge that defines 
physical relationships among the considered system’s inputs 
and outputs into neural network modeling enhance its per-
formance. This modeling approach is referred to as partially- 
connected neural network modeling. 

We consider the system with x = [xa, xb] and u = [ua, ub], 
such that x Ra

n1, x Rb
n2, u Ra

r1, and u Rb
r2 where r1 + r2 

= r and n1 + n2 = n. It is assumed that the input vector ua ex-
clusively influences the state vector xa, whereas xb is influ-
enced by both ua and ub. Physical knowledge is incorporated 
into the RNN modeling of the nominal system by modifying 
the RNN structure to explicitly disconnect the links between 
ub and xa. In due course, an enhanced model approximation 
is achieved as a result of implementing partially-connected 
RNN model as discussed and demonstrated in Alhajeri et al. 
(2022) and Wu et al. (2020). 

The development framework for partially-connected RNN 
models is similar to that of fully-connected RNN models, but 
with additional specifications. Alhajeri et al. (2022) discussed 
the construction and training processes of partially- 

connected RNN models and provided the pseudocode of 
these modeling methods. Basically, a training/validation 
dataset can be collected from experimental and industrial 
sources, or through extensive open-loop simulations. The 
general principle of splitting the collected data set into 70% 
training and 30% validating can be followed, or more ad-
vanced techniques such as cross-validation may be em-
ployed. Prior to training RNN models, the input vectors ua 

and ub, as well as the output vectors xa and xb, should be 
defined, which is also referred to as data preprocessing. 

To build and train the RNN models in this study, we used the 
Keras library, which is an open source Python library. Our 
models consist of four layers: an input layer, two hidden layers, 
and an output layer, where the hidden neurons are activated by 
nonlinear functions: hyperbolic tangent and sigmoid functions. 
Instead of feeding the full input vector u through one input 
layer, in partially connected RNN models the input vectors ua 

and ub are fed independently through different input layers 
according to the process structure, as illustrated in Fig. 1. The 
first hidden layer predicts the output vector xa based on the 
input vector ua. Subsequently, ub and xa are concatenated and 
then sent to the subsequent hidden layer to estimate xb. Ulti-
mately, the developed model will be able to estimate both the 
output vectors xa and xb given ua and ub. 

3.2. Long short term memory (LSTM) 

Long-short-term memory networks, or LSTMs in short, are a 
class of RNNs, and henceforth will be referred to as RNN- 
LSTM. Due to the design of three gates in the network struc-
ture, namely the input gate, the forget gate, and the output 
gate, RNN-LSTM networks are capable of capturing long-term 
dependencies in problems involving sequential prediction.  
Fig. 2 shows a diagram of an LSTM network. In this study, 
RNN-LSTM based models are developed in the framework of 
partially-connected modeling. When given control actions 

Fig. 1 – Schematic of (a) Standard and (b) Physics-informed 
RNN structures, with u = [ua, ub] and x = [xa, xb]. 

Fig. 2 – RNN-LSTM network schematic.  
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and previous noisy state measurements, the generated RNN- 
LSTM models are used to predict the states of Eq. 1a. In par-
ticular, considering the input sequence m(k), where k = 1, . . . , T 
and T denotes the number of measured states of the nominal 
system in Eq. 1a, the approximate output sequence x k¯ ( ) is 
computed using the following equation: 

= + +i k m k h k b( ) ( ( ) ( 1) )i
m

i
h

i (4a)    

= + +f k m k h k b( ) ( ( ) ( 1) )f
m

f
h

f (4b)    

= + + +c k f k c k i k m k h k b( ) ( ) ( 1) ( )tanh( ( ) ( 1) )c
m

c
h

c (4c)    

= + +o k m k h k b( ) ( ( ) ( 1) )o
m

o
h

o (4d)    

=h k o k c k( ) ( )tanh( ( )) (4e)    

= +x k h k b¯ ( ) ( )y y (4 f) 

where m(k) denotes the input sequence, while c(k) and h(k) are 
the cell state and the internal state, respectively. Regarding 
the gates, f(k) is the forget gate, o(k) represents the output gate, 
and the output of the input gate is denoted by i(k). The output 
sequences ×x R¯ n T is the RNN-LSTM network output. 

The weight matrices here are given by p
l , where 

p ∈ {i, c, f, o} represents the gate or the state, while l re-
presents the associated vector (i.e., either m or h). Similarly, 
the bias term is denoted by bp. Eventually, Eq. 4f is used to 
compute the predicted state of the RNN-LSTM, which the 
terms by and ωy represent the bias vector and the output 
weight matrix, respectively. Because the RNN-LSTM model 
predicts future states using control actions and previous 
state measurements, the input sequence m ∈ R(n+r)×T consists 
of manipulated input u ∈ Rr along with previous measured 
states x ∈ Rn during a given time period (i.e., T). The nonlinear 
activation functions used in the LSTM model are σ( ⋅ ) and 
tanh( ), which are sigmoid and hyperbolic tangent functions, 
respectively. 

4. Co-Teaching technique 

Noisy data in classification problems could result in mis-
labelling (e.g., an image with a label “A” is mislabeled as “B”), 
and for regression problems noise in the data might result in 
a deviation from its ground truth value (i.e., the true value). 
In both cases, it is quite challenging for a machine learning 
model to fulfill the desired model accuracy with a noisy data 
set following the standard learning algorithms. 

The co-teaching technique was originally proposed to 
improve the accuracy of ML-based models in image classifi-
cation problems when the training data set is corrupted with 
noise (Han et al., 2018). Abdullah et al. (2022) utilized co- 
teaching in the context of regression to handle noisy data 
with an observed enhancement in model accuracy. In the 
same vein, to reduce the affect of noisy data on RNN-LSTM 
modeling, Wu et al. (2021) employed the co-teaching method, 
and achieved better closed-loop performance under MPC 
when applied to a reactor example in comparison with the 
standard RNN-LSTM model. To our knowledge, little atten-
tion has been paid to the implementation of the co-teaching 
method in solving regression problems. Hence, there is 
growing research into extending the co-teaching technique 
to regression problems using RNN-LSTM networks. 

The idea behind the co-teaching technique comes from  

the fact that earlier in the training process, neural networks 
would employ a simple pattern to fit training data (Han et al., 
2018). As a result, when evaluating the loss function value 
under a simple pattern that approximates the relationship 
between inputs and outputs of a neural network, noisy data 
typically have a large loss function value, and noise-free data 
typically have a small value. Therefore, merging the two data 
sets provides a possible way to train machine learning 
models in the presence of noisy data by benefiting from 
noise-free data. Such clean data can be generated from si-
mulation of first-principles models. Therefore, mixing the 
two data sets in some ratio (i.e., noisy data set and noise-free 
data set) can improve the robustness of the RNN-LSTM 
model training process to over-fitting to noisy data. To apply 
this technique, after merging the two data sets (i.e., the noisy 
and the clean data) into one data set, then the new data set is 
to be shuffled first and then split into training and validating 
sets as a prerequisite for machine learning based model de-
velopment. Subsequently, both partially-connected and 
fully-connected RNN models can be developed following the 
procedure proposed in Wu et al. (2020) and Alhajeri 
et al. (2022). 

5. Dropout technique 

Another candidate strategy to reduce over-fitting caused by 
noisy data, specifically non-Gaussian type (Wu et al., 2021), 
without having any prior process knowledge is to utilize a 
dropout technique in the neural network development pro-
cess. In particular, as depicted in Fig. 3, a dropout strategy 
arbitrarily drops the associations between units in neigh-
boring layers during training and provides an efficient 
method for combining various neural network structures to 
improve prediction accuracy. 

Consider the RNN-LSTM model in its general form as in 
Eq. 3. For all RNN-LSTM layers, let W = {W1, . . . WL} denote the 
set of weight matrices that incorporate both weights and bias 
terms, where W1 denotes the weight matrix associated with 
the first layer in the RNN-LSTM structure and L denotes the 
number of layers. The primary objective of the Monte Carlo 
(MC) dropout technique is to acquire the posterior distribu-
tion (i.e., an integration of the prior distribution as well as the 
likelihood function, which reveals what information the ob-
served data contain) of the RNN-LSTM weights W, denoted by 
p(W), from the training data (M, X) in which M and X are the 
input and output data matrices, respectively. The weight 
matrix Wi is described as follows, following the method in  
Gal and Ghahramani (2016a): 

=W B Zi i i (5a) 

where Zi = diag(zi) and i = 1, . . . , L. Each zi is a set of binary 
variables that follows the well-known Bernoulli distribution 
and symbolizes the weights which are dropped out according 
to a particular user-defined probability, and Bi denotes the 
variational variables that shall be optimized. The RNN-LSTM 
predicted output distribution can be estimated by conducting 
Monte Carlo dropout at testing time after the RNN-LSTM 
model has been trained using the Monte Carlo dropout 
technique. Several realizations of the RNN-LSTM model are 
used to obtain the predicted distribution by taking the mean 
of the distribution as follows: 
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=
p x m M X

N
p x m W( * *, , )

1
( * *, )

t i

N

i
1

t

(6a) 

where the RNN-LSTM input and output are m* and x * in the 
test set, respectively. The total number of Monte Carlo rea-
lizations at the testing stage is Nt. Given the same input, the 
RNN-LSTM output is no longer deterministic, because the 
RNN-LSTM model obtained utilizing the MC dropout tech-
nique is a probabilistic model, which is approximated by its 
mean value in this work, as shown in Eq. 6a. As a result of 
using Eq. 6a, a probabilistic distribution is obtained as an 
approximation of the model predictions’ uncertainty. Fur-
thermore, the ground-truth process dynamics can be roughly 
evaluated via the sample mean of all the model estimations. 

The dropout rate (i.e., the likelihood of a neuron to be 
dropped out) plays a critical role in the model’s performance, 
and is determined during model training to accomplish de-
sired training/validation results. In particular, a small 
dropout value (e.g., 0.2–0.5) is suggested to begin with. Then, 
the user may increase the dropout rate value if over-fitting 
still occurs, or to decrease the value if the network fails to 
capture (i.e., learn) the dynamics of the underlying process. 
Remark 1. Since the considered training data is corrupted 
with noise, our perception of the process dynamics via 
machine learning-based models utilizing the dropout 
strategy is expressed in a probabilistic manner. The Monte 
Carlo dropout method is an effective tool for modeling 
uncertain process dynamics and to estimate underlying 
nominal dynamics by a sequence of probabilistic forward 
passes. In particular, the RNN-LSTM model, developed via 
the Monte Carlo dropout technique, can be considered an 
uncertain process model, with the RNN-LSTM weights as 
uncertain variables. 

Remark 2. The Monte Carlo dropout technique can be used to 
address over-fitting issues for different tasks with regards to 
chemical processes. For example, it can be employed to 
improve the machine learning-based model accuracy for 
state estimation, fault diagnosis, and other tasks in the 
presence of process noise, measurements noise, and other 
uncertainties associated with the process of interest. 
Furthermore, this technique may not only be used for 
regression but can also be applied to classification problems. 
The interested reader may refer to Gal and Ghahramani 
(2016a), Gal and Ghahramani (2016b), Srivastava et al. (2014),  
Wu and Zhao (2018), and Kwon et al. (2022) for details. 

6. RNN-LSTM based model predictive control 

In this section, we integrate an RNN-LSTM model into a 
Lyapunov-based model predictive controller (LMPC) for-
mulation. In particular, the partially-connected modelling of 
RNN-LSTM is executed as discussed in Alhajeri et al. (2022) 
and then utilized as a predictive model to provide state es-
timation to solve the optimization problem of the LMPC, 
which is expressed in the following form: 

J =
+

L x t u t dtmin ( ˜ ( ), ( ))
u S t

t P

( ) k

k

(7a)    

=x t F x t u ts.t. ˜( ) ( ˜ ( ), ( ))rnn (7b)    

+u t U t t t P( ) , [ , )k k (7c)    

=x t x t˜ ( ) ( )k k (7d)    

V x t u V x t x t

x t

( ( ), ) ( ( )), ( ( )),

if ( )
k k nn k

k nn
(7e)    

+V x t t t t P x t( ˜ ( )) , [ , ), if ( )nn k k k nn (7 f) 

where S(Δ) denotes a set of piecewise constant functions 
with period Δ, x̃ is the state trajectory predicted by the RNN- 
LSTM model, and P is the prediction horizon expressed as a 
multiple of the sampling period (i.e., P = N × Δ, N  >  0). The 
time-derivative of the Lyapunov function V in Eq. 7e is given 

as V x u( , ), i.e., F x u( ( , ))V x
x rnn
( ) . During the prediction horizon 

t ∈ [tk, tk + P), the LMPC computes the optimum input se-
quence u* (t) and delivers the first control signal u* (tk) to the 
system to be implemented for the following sampling period. 
After that, at the following sampling interval, the LMPC re-
ceives new data and is resolved with updated state estima-
tions. Furthermore, the MPC optimization problem’s goal is 
to minimize the integral of L x t u t( ˜ ( ), ( )), given in Eq. 7a, which 
represents the cost function over the prediction horizon 
while satisfying the constraints of Eqs. 7b–7f. The RNN-LSTM 
model from Eq. 7b is used to forecast the evolution of the 
closed-loop state trajectory x t˜ ( )k under the MPC, and its in-
itial conditions are updated according to Eq. 7d, where x(tk) is 
the last state measurement. The input constraints are ex-
pressed in Eq. 7c, and they are imposed across the prediction 
horizon. 

To ensure the stability of the closed-loop system, when 
x t( )k nn, where nn is the target region, the 

Fig. 3 – Fully-connected neural network layers (a) without dropout and (b) with dropout.  
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condition of Eq. 7e is triggered. As a result of this constraint, 
the Lyapunov function of the closed-loop states declines, and 
the state approaches the steady-state within a finite period 
of time. Eventually, when the state x(tk) arrives to nn, the 
predicted closed-loop state will be kept within this region for 
the duration of the prediction horizon. Following section 2.3, 
the controller Φnn(x) was developed with the intent of en-
suring that the origin of the RNN-LSTM system of Eq. (3) is 
exponentially stable. 

When using noise-free data for training, a well-condi-
tioned RNN-LSTM model can be generated with adequate 
model accuracy. Therefore, by using the RNN-LSTM based 
LMPC of Eq. 7a-f to control a nonlinear system as that of Eq.  
1a, the closed-loop state is assured to be bounded within the 
stability region Ωρ throughout the simulation time and 
eventually will converge to a small region around the origin 
under the condition that the modeling error, i.e., 

= F x u F x u( , ) ( ¯ , )rnn , is sufficiently small (Wu et al., 2019; 
Alhajeri et al., 2021). 

7. Application to a chemical process using 
aspen plus simulator 

In this section, we evaluate the proposed partially-connected 
RNN-based LMPC using a large-scale chemical process in the 
presence of industrial noise. First, we use Aspen Plus 
Dynamics V11 to create a dynamic model of a chemical 
process. Following that, a time-series data set of the process 
states and input variables is generated in order to train and 
test the RNN-LSTM models using extensive open-loop si-
mulation. Subsequently, open-loop and closed-loop simula-
tions using an RNN-model-based MPC are performed and 
discussed. Henceforth, PCRNN-LSTM will stand for partially- 
connected RNN-LSTM. 

7.1. Process description 

The process of producing Ethylbenzene (EB) from Ethylene (E) 
and Benzene (B) as reactive raw materials is used to de-
monstrate the performance of the proposed control strategy. 
There are three reactions in this process, which take place in 
two nonisothermal and well-mixed continuous stirred tank 
reactors (CSTR). The reaction scheme is shown below: 

+C H C H C H (primary)2 4 6 6 8 10 (8a)    

+C H C H C H2 4 8 10 10 14 (8b)    

+C H C H 2C H6 6 10 14 8 10 (8c) 

where the desired reaction is the second-order, exothermic, 
irreversible reaction labeled as “primary”. 

The first-principles model for the two CSTRs is derived 
using mass and energy balances. Particularly, the dynamic 
model of the two reactors is given by the following system of 
ordinary differential equations (ODEs): 
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where the reaction rates are calculated by the following 
expressions: 

=r k e C Ci

E
RT E B,1 1 i i i

1
(10a)    

= =r k e C C i, 1, 2 (reactor index)i

E
RT EB E,2 2 i i i

2
(10b)    

=r k e C Ci

E
RT DEB B,3 3 i i i

3
(10c)  

In this work, the two CSTRs are connected in series, so 
that the output of the first reactor affects the output of the 
second one, but not vice versa. Furthermore, the model of 
this process is created with Aspen Plus and Aspen Plus 
Dynamics V11, which are high-fidelity simulators that are 
used for steady-state and/or dynamics of complex chemical 
processes modeling. The process model is initially built in 
Aspen Plus, where steady-state simulation is carried out and 
solved using material and energy balances. Following that, 
we use Aspen Plus Dynamics to run a dynamic simulation of 
the underlying process to analyze and control its dynamical 
performance. The dynamic model is developed following the 
procedure described in Alhajeri et al. (2022), and the resulting 
flow sheet is shown in Fig. 4. 

The flow rates F1 and F2 are the raw material feed to the 
first and second reactors, respectively. The concentrations of 
the species considered in this process are given as: CE, CB, CEB, 
and CDEB and they represent Ethylene, Benzene, 
Ethylbenzene, and Di-Ethylbenzene, respectively. Process 
parameters such as reactor temperature, mass density, and 
liquid volume of each CSTR are denoted, in the same order, 
by Ti, ρi, Vi where i ∈ {1, 2} and refers to the CSTR index. The 
values of these parameters are listed in Table 1, which also 
includes the steady-state values and the liquid mixture’s 
mass heat capacity, denoted as Cp which is considered con-
stant in this work. The subscript “s” refers to steady-state 
value, and “o” represents the value at t = to. To control the 
reactors temperature, we added a cooling/heating jacket to 
each reactor that removes/provides heat to the reactor at a 
rate Qi. The pressure is set to 15 bar initially for both reactors,   
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while the temperatures of the first and second reactors at 
t = to are set to T10 = 400K and T20 = 450K, respectively. This 
choice of initial temperature, is made to keep both the re-
actants and products as liquids during the operation (i.e., 
simulation of the process). These values will be auto-
matically adjusted by running Aspen Plus built-in steady- 
state simulations. After configuring the reactions in the two 
reactors, the steady-state simulation is carried on in order to 
analyze the behavior of the process. Moreover, the reactor 
geometry as well as thermodynamic parameters must be 
specified before exporting the steady-state model to Aspen 
Plus Dynamics. In this study, the vessels in the Aspen model 
are all vertical, the heads are flat, and each CSTR is ten me-
ters long. Table 1 contains a list of the thermodynamic 
parameters that were used in the Aspen model. Finally, after 
running a pressure check, the steady-state model is exported 
to Aspen Plus Dynamics to generate and initiate the dynamic 
model. Moreover, to prepare the model for both open-loop 
and closed-loop simulation the flow rates F1 and F2 are fixed, 
and the two reactors’ heating modes are switched to con-
stant duty to enable external control over the manipulated 
variables (i.e., Q1 and Q2). By following the procedure outlined 
above, the dynamical model of the considered process is 
completed. 

7.2. Data generation and model training 

Data are required for the development of data-driven models 
and, generally given that the data are independent and 
identically distributed, the larger the data set size, the more 
accurate the model can be (Wu et al., 2022). However, 

excessive use of corrupted data (e.g., noisy, repeated, etc.) in 
the training data-set may lead to a less accurate RNN model, 
especially if the training is not carried out with potential 
pitfalls in mind. Therefore, this trade-off between data gen-
eration/collection and model accuracy should always be 
taken into account. In addition, large data sets are available 
from several sources, including industries, pilot plants, and 
computer-based simulations. However, in general, industrial 
data is not publicly accessible, and collecting data from pilot 
plants and laboratory experiments are expensive and time 
intensive. Therefore, in this work, we build our data set via 
extensive open-loop simulations utilizing an alternative ap-
proach. 

The constructed dynamical model in Aspen Plus Dynamics 
is used in open-loop simulations with the input signals ran-
domly generated via MATLAB and then implemented in a 
sample-and-hold fashion, such that the input remains fixed 
throughout each sampling time Δ. A local message passing 
interface (MPI) is created to connect Aspen Plus Dynamics and 
MATLAB, so that the Aspen dynamical model can auto-
matically read the input signals from MATLAB. The MATLAB 
code, in particular, generates the manipulated variables in 
deviation form in relation to their steady-state values (i.e., u1 

= Q1 − Q1s and u2 = Q2 − Q2s). The two manipulated variables 
randomly vary within the lower bounds 

= × ×u u kW kW[ , ] [ 1 10 , 1.5 10 ]1
min

2
min 4 4 and the upper 

bounds = × ×u u kW kW[ , ] [1 10 , 5 10 ]1
max

2
max 3 3 . Both inputs are 

employed to the dynamic simulation in which the values are 
updated every five minutes (i.e., the sampling time). According 
to Aspen’s manual, the default numerical integration method 
of the Aspen process dynamic model is the Implicit Euler 
scheme with an adaptive integration time step. In this study, 
we used a sampling time Δ = 5min i.e., the integration scheme 
records the process state values every 5 min in process op-
eration time. Note that the numerical integration time step 
while adaptive is always several orders of magnitude smaller 
that the sampling time. Other integration techniques in Aspen 
that are available for users to choose from include the 4th- 
order Runge-Kutta method, the explicit Euler scheme, and 
Gear methods. 

We employ Aspen dynamic simulations to generate data 
sets for neural network training, since the Aspen dynamic 
model can be regarded as a high-fidelity process model for 
various complex chemical processes such as a system of 
CSTRs. To simulate typical sensor variability in chemical 
plants, industrial noise is incorporated into the state mea-
surements. The normalized data noise obtained from Aspen 
public domain is shown in Fig. 5. The probability distribution 
of the normalized industrial noise in Fig. 5 is shown in Fig. 6, 
from which we confirm that the industrial noise has a non- 

Fig. 4 – Aspen Plus model flow sheet of two chemical reactors in series.  

Table 1 – Parameter values, steady-state values, and 
model configuration of the Aspen Plus model.    

=T K400o1 =T K310.523s1

=T K450o2 =T K430.542s2

F1 = 43.2m3∕hr F2 = 91.079m3∕hr 

=C kmol m4.2455E1
3 =C kmol m0.3254E2

3

=C kmol m5.3532B1
3 =C kmol m1.3841B2

3

=C kmol m0.1854EB1
3 =C kmol m3.8744EB2

3

= ×C kmol m9.1426 10DEB1
7 3 =C kmol m0.0058DEB2

3

Heat transfer option Dynamics 
Medium temperature 298K 
Temperature approach 77.33K 
Heat capacity of coolant 4200J∕kgK 
Medium holdup 1000kg 
Cp = 2.411kJ∕kgK ρ1 = 639.1530kg∕m3 

V1 = V2 = 60m3 ρ2 = 607.5040kg∕m3   

41 Chemical Engineering Research and Design 186 (2022) 34–49   



Gaussian distribution. With the random inputs generated 
from Matlab as discussed in the previous paragraph, and the 
normalized noise are amplified by six times and then added 
to the reactors temperature measurements. To create the 
training/validating data sets, all input values and output 
states (such as T, CA, and CB) are recorded as sequential time 
series data. For the Gaussian noise case, we generated nor-
malized white noise with zero mean and standard deviation 
of 0.1, which was amplified six times and added to the 

temperature measurements. The dataset generated via this 
procedure for the Gaussian and non-Gaussian cases are de-
noted as Snoisy(G)(x, u) and Snoisy(NG)(x, u), respectively. 

For the co-teaching method, noise-free data is required 
for the ML-based model development. This noise-free data 
set is non-trivial to collect in practice (i.e., not readily avail-
able from the laboratory/plant). First-principles (FP) models 
with simplifying assumptions are developed as candidates 
for generating such clean data for training/validating 

Fig. 5 – Normalized industrial noise from Aspen public domain data.  

Fig. 6 – Probability density plot of normalized industrial noise introduced to the Aspen model.  
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processes to solve this challenge. Therefore, in this work, we 
numerically solved the FP model developed in the previous 
section to generate noise-free data SFP(x, u) to train the 
PCRNN-LSTM model using the co-teaching method. The 
noise-free open-loop trajectories of the Aspen dynamical 
model and the first-principles model denoted by FP under 
time-varying inputs are shown in Fig. 7. Although the first- 
principles model may not fully capture the dynamics of the 
Aspen model under the different operating conditions, we 

will show that the co-teaching method using noisy data from 
the Aspen model and noise-free data from solving the first- 
principles model can still improve the LSTM model’s pre-
diction accuracy. 

The generated data sets are used in the development of 
three different RNN-LSTM models, as illustrated in Fig. 8. Both 
the standard RNN-LSTM model and the dropout RNN-LSTM 
model use either Snoisy(G) or Snoisy(NG) according to the noise 
type, yet we use the dropout rate while training the dropout 
RNN model. Basically, we perform a grid search for the 
dropout rate in the range 0.2–0.5 that achieves the lowest 
training/validation loss (i.e., mean squared error (MSE)), and 
the results are summarized in Table 3. From the table, for the 
case of non-Gaussian noise and Gaussian noise, dropout rates 
of 0.2 and 0.4 are selected, respectively. As for the co-teaching 
model, it was trained typically as the standard model. Using 

Fig. 7 – Open-loop state and manipulated inputs profiles for the process (noise-free).  

Table 2 – Input and output states of the RNN-LSTM 
models.     

Notation State (in deviation form)   

x1 Concentration of Ethane 1st CSTR 
x2 Concentration of Benzene  
x3 Concentration of Ethylbenzene  
x4 Concentration of Diethylbenzene  
x5 Reactor’s Temperature  
u1 Heating/cooling duty  
x6 Concentration of Ethane 2nd CSTR 
x7 Concentration of Benzene  
x8 Concentration of Ethylbenzene  
x9 Concentration of Diethylbenzene  
x10 Reactor’s Temperature  
u2 Heating/cooling duty    

Fig. 8 – Partially-connected RNN model development methods.  

Table 3 – Open-loop prediction MSE results under 
Gaussian and non-Gaussian noise.     

Dropout rate Non-Gaussian Gaussian  

0.2 7.487 × 10−6 2.02 × 10−6 

0.3 8.66 × 10−6 2.87 × 10−6 

0.4 7.428 × 10−6 5.08 × 10−6 

0.5 1.144 × 10−5 6.75 × 10−6   
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the Keras library, the three RNN-LSTM models are constructed 
following the strategy discussed in section 3.1. The models are 
designed as follows: each neural network has two LSTM layers 
with thirty neurons in each, where we select the hyperbolic 

tangent functions (i.e., = +xtanh( ) e e
e e

x x

x x ) as the activation 
function. In addition, the output layer is to be activated by a 
linear activation function, and this layer will provide the es-
timated ten states, while the input layer will receive twelve 
inputs. The inputs to RNN-LSTM models are the states and the 
manipulated variables at tk, where the model outputs are the 

states at t = tk + Δ, and all are defined in Table 2. Specifically, 
we predict the evolution of the states for the next five minutes 
(the equivalent of one sampling time) using input data from 
the previous five-minute sampling period. Rather than the 
traditional gradient descent optimization algorithm, we em-
ploy the Adam optimizer, which is a hybrid of two algorithms: 
gradient descent with momentum and RMSprop. Further-
more, to generate more robust models, we perform a five-fold 
cross-validation on the RNN-LSTM models and choose the 
models with the lowest validation MSE. 

Fig. 9 – Open-loop state trajectory predicted by dropout LSTM, co-teaching LSTM, and standard LSTM, respectively, under 
the same time varying inputs in the presence of non-Gaussian noise. 

Fig. 10 – Open-loop state trajectory predicted by dropout LSTM, co-teaching LSTM, and standard LSTM, respectively, under 
the same time varying inputs in the presence of Gaussian noise. 
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After the development of the three RNN-LSTM models, we 
run two open-loop simulations considering the existence of 
Gaussian and non-Gaussian noise independently. Figs. 9 and  
10 illustrate the open-loop prediction of the three models, 
with the process output (i.e., the Aspen dynamical model 

output) denoted as the ``True state'', in response to time 
varying inputs generated randomly from MATLAB, and 
starting from the exact same initial conditions. Both figures 
demonstrate the improvement in the prediction accuracy of 
the RNN-LSTM models utilizing the two proposed methods; 
the dropout and the co-teaching methods. The open-loop 
prediction MSEs of the two scenarios are listed in Table 4, 
with noticeable improvements in the approximation of the 
process outputs, since both the dropout and the co-teaching 
RNN-LSTM provided relatively lower MSE values compared 
to the standard RNN-LSTM model. 

7.3. Closed-loop simulation: Gaussian noise 

Following the open-loop simulations, we performed closed- 
loop simulations in the case of existence of Gaussian noise in 
the measurement of the two reactor temperatures under an 

Table 4 – Open-loop prediction results (MSE) by the three 
different models under non-Gaussian and Gaussian 
industrial noise.       

Model Non-Gaussian Gaussian  

x5 x10 x5 x10  

Dropout 0.2445 24.197 0.27385 10.5538 
Co-teaching 0.28458 35.56 0.265 19.255 
Standard 0.9088 47.564 0.4485 21.968   

Fig. 11 – State and input profiles of the closed-loop simulation in the presence of Gaussian noise under the LMPC using 
PCRNN-LSTM models developed by: standard method (dashed line) and co-teaching method (dash-dotted line). 

Fig. 12 – State and input profiles of the closed-loop simulation in the presence of Gaussian noise under the LMPC using 
PCRNN-LSTM models developed by: standard method (dashed line) and MC dropout method (dash-dotted line). 
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LMPC controller utilizing each of the three different PCRNN- 
LSTM models separately. The process dynamics corre-
sponding to the PCRNN-LSTM model developed by the co- 
teaching method versus the standard PCRNN-LSTM model is 
presented in Fig. 11. Both LMPCs were able to derive the 
process to the desired steady-state and to stabilize the 
system around the origin even in the presence of Gaussian 
industrial noise. However, the improvement of the closed- 
loop performance when utilizing the co-teaching method is 
noticeable throughout the figure, as the temperatures tra-
jectories are smoother and show less oscillation in compar-
ison to the standard model. 

Concurrently, a closed-loop simulation is performed using 
the dropout trained PCRNN-LSTM model. The results are 
plotted in Fig. 12. From the state trajectories and control 
actions in Fig. 12, similarly to the co-teaching strategy, the 
dropout method has observably enhanced the performance 
of the LMPC. 

7.4. Closed-loop simulation: non-Gaussian noise 

In this subsection, we discuss the results of closed-loop si-
mulation in the existence of non-Gaussian type of noise.  
Fig. 13 shows the closed-loop inputs and state trajectories 
under the LMPC when using the PCRNN-LSTM model trained 
according to the standard strategy and the co-teaching 
strategy. It is notable that the standard PCRNN-LSTM model 
shows significant variation when the closed-loop state 
reaches the steady-state. This stems from the fact that the 
states predicted using the standard LSTM model are not 
sufficiently close to the true state values; hence, the LMPC is 
deceived to provide a solution that drives the process states 
in the wrong direction. In the same figure, the co-teaching 
based PCRNN-LSTM demonstrated enhanced model accu-
racy, and that the LMPC using the co-teaching method was 
successfully able to derive the state to the steady-state. As 
for the stability, the co-teaching method enabled the LMPC to 

Fig. 13 – State and input profiles of the closed-loop simulation in the presence of non-Gaussian noise under the LMPC using 
PCRNN-LSTM models developed by: standard method (dashed line) and co-teaching method (dash-dotted line). 

Fig. 14 – State and input profiles of the closed-loop simulation in the presence of non-Gaussian noise under the LMPC using 
PCRNN-LSTM models developed by: standard method (dashed line) and MC dropout method (dash-dotted line). 
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maintain the state in a small neighborhood around the 
steady-state more smoothly in comparison with the PCRNN- 
LSTM model built following the standard training algorithm. 
Note that the MPC will not be able to stabilize the system 
exactly at the steady state due to the sample-and-hold im-
plementation of control actions and the model mismatch 
between the LSTM model and the actual nonlinear process. 
Therefore, if the state trajectory of the closed-loop system 

starting from the stability region Ωρ remains bounded in Ωρ 

and converges to a small compact set around the origin 
where it will be maintained thereafter, then the system is 
considered practically stable under the sample-and-hold 
implementation of MPC. 

Similarly, the dropout strategy in training the PCRNN- 
LSTM model, referred to as the “dropout model”, is used as 
the predictive model for LMPC. The closed-loop simulation 

Fig. 15 – State and input profiles of the closed-loop simulation in the presence of non-Gaussian noise under the LMPC using 
FCRNN-LSTM models developed by: standard method (dashed line) and co-teaching method (dash-dotted line). 

Fig. 16 – State and input profiles of the closed-loop simulation in the presence of non-Gaussian noise under the LMPC using 
FCRNN-LSTM models developed by: standard method (dashed line) and MC dropout method (dotted line). 
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results of using the dropout model for the LMPC prediction is 
illustrated in Fig. 14. The figure demonstrates the superiority 
of the dropout model over the standard PCRNN-LSTM model 
in both metrics: (i) smoothness of the trajectories, and (ii) the 
ability to stabilize the underlying process within the stability 
region Ωρ as discussed previously. 

In the same vein, we carried out a closed-loop simulation 
in the presence of non-Gaussian noise using fully-connected 
RNN-LSTM models (FCRNN-LSTM) trained according to the 
three strategies considered in this work. Figs. 15 and 16 show 
the process state under the FCRNN-LSTM-based LMPC. Spe-
cifically, Fig. 15 depicts the states and inputs trajectories by 
models trained by co-teaching and standard strategies. Once 
more, the co-teaching improved the LMPC performance more 
observably in the T2 − T2s trajectory. Similarly, in Fig. 16, the 
trained FCRNN-LSTM model based on the dropout strategy 
provided a more favorable closed-loop dynamics in relation 
to the standard FCRNN-LSTM. The three FCRNN-LSTM model 
based LMPCs were also able to derive the system to steady- 
state values, but took longer time and experienced more 
oscillatory behaviour than the PCRNN-LSTM models. 

In both fully-connected and partially-connected archi-
tectures, using co-teaching and dropout approaches lead to 
changes in the value of the integration of the cost function 
over the complete simulation duration against the standard 
method. In the partially-connected scenario, the cost func-
tion values for co-teaching and dropout approaches fell by 
40.6 % and 45.05 %, respectively, when compared to the 
standard method, as shown in Table 5. Moreover, by using 
the partially-connected modeling over the fully-connected 
modeling the value of the integrated cost function associated 
with the controllers using the standard, co-teaching, and 
dropout based models are reduced by 37.5 %, 12 %, and 4 %, 
respectively. 

8. Conclusion 

In this paper, we used the Monte Carlo dropout and the co- 
teaching strategies to train PCRNN-LSTM models for pre-
dicting underlying process dynamics (ground truth) from 
noisy data. The Ethylbenzene production process by two 
CSTRs in series is considered, and modeled via the Aspen 
Plus dynamics simulator. The co-teaching and dropout 
strategies were applied to create PCRNN-LSTM models with 
two type of noise independently (i.e., Gaussian and non- 
Gaussian), where noisy and noise-free data were generated 
by extensive open-loop simulation of Aspen dynamical 
model and first-principles model, respectively. Subsequently, 
open-loop as well as closed-loop simulations were performed 
to illustrate the superiority of PCRNN-LSTM based models 
trained via co-teaching and dropout techniques over the 
standard PCRNN-LSTM modeling technique in terms of en-
hancing the accuracy of open-loop prediction as well as im-
proving the closed-loop performance. In comparison to the 

standard approach, both co-teaching and dropout techni-
ques obtained lower values of the cost function time integral 
in the two modeling methodologies (i.e., partially-connected 
and fully-connected), indicating faster convergence and 
lower energy. 
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