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a b s t r a c t

In order to approximate nonlinear dynamic systems utilizing time-series data, recurrent 

neural networks (RNNs) and long short-term memory (LSTM) networks have frequently 

been used. The training error of neural networks may often be made suitably modest; 

however, the accuracy can be further improved by incorporating prior knowledge in the 

construction of machine learning-based models. Specifically, physics-based RNN mod-

eling has yielded more reliable RNN models than traditional RNNs. Yet, a framework for 

constructing and assessing the generalization ability of such RNN models as well as LSTM 

models to be utilized in model predictive control (MPC) systems is lacking. In this work, we 

develop a methodological framework to quantify the generalization error bounds for 

partially-connected RNNs and LSTM models. The partially-connected RNN model is then 

utilized to predict the state evolution in a MPC scheme. We illustrate through open-loop 

and closed-loop simulations of a nonlinear chemical process of two reactors-in-series that 

the proposed approach provides a flexible framework for leveraging both prior knowledge 

and data, thereby improving the performance significantly when compared to a fully- 

connected modeling approach under Lyapunov-based MPC.

© 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved. 

1. Introduction

An ongoing research issue in process systems engineering is 
the modeling of large-scale, complicated nonlinear pro-
cesses. Traditional methods for modeling nonlinear systems 
include first-principles modeling, which is based on a fun-
damental comprehension of the core physico-chemical 

phenomena, and data-driven modeling, which identifies 
parameters from simulation or industry data (e.g., Cozad 
et al., 2015; Wilson and Sahinidis, 2017). Although the classic 
first-principles modeling approach has been widely utilized 
in the control, monitoring, and optimization of different 
chemical processes, applying first-principles computational 
methods to represent complicated nonlinear systems can be 
time-consuming and inaccurate. Given their ability to 
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successfully handle large data sets from processes and to 
model a diverse range of nonlinear functions, machine 
learning techniques are being used more and more to ap-
proximate complicated nonlinear systems (e.g., Han et al., 
2013; Ali et al., 2015; Wong et al., 2018; Shahnazari et al., 
2019). Among various machine learning modeling tools, 
when modeling nonlinear dynamic systems utilizing time- 
series data, recurrent neural networks (RNN) are frequently 
employed (Fan and Han, 2012; Xu et al., 2016). Although 
machine learning techniques have been used in chemical 
process control since the nighties (Vepa, 1993), they have 
recently gained popularity again due to a variety of factors, 
including more affordable computation (thanks to mature 
and effective libraries and hardware), the accessibility of 
large data sets, and sophisticated learning algorithms. The 
upcoming generation of industrial control systems will cer-
tainly be impacted by the developments of model predictive 
controllers (MPC) that make use of machine learning models 
with well-characterized fidelity.

The traditional choice to analyze time-series data in a 
black-box fashion is a fully-connected RNN model, which 
densely relates all the available inputs to all the outputs. 
However, this method may not always be the finest, parti-
cularly for intricate chemical processes. For instance, in an 
integrated chemical plant, the downstream units do not have 
an impact on the upstream ones. Therefore, in order to fur-
ther increase a RNN model’s accuracy, numerous studies 
(e.g., Stephanopoulos and Han, 1996; De Azevedo et al., 1997; 
Kahrs and Marquardt, 2007) have studied gray-box modeling, 
also referred to in the literature as hybrid modeling, which 
involves incorporating prior knowledge into the design of 
neural network models of various chemical processes. A 
strategy for combining data-driven modeling with first- 
principles knowledge was recently developed by Patel et al. 
(2020), and it explicitly permits the inclusion of data on 
known gains among particular inputs and outcomes. With 
prior knowledge of relations, this suggested strategy can be 
used in large-scale processes. Also, other approaches to im-
prove the RNN model’s prediction accuracy were proposed, 
for example a weight-constrained RNN modeling was in-
vestigated in Wu et al. (2020) with chemical process example 
and yield improvements in both open-loop and closed-loop 
simulations under ML based MPC.

Another modeling strategy to follow is the recently pro-
posed partially-connected RNN which, as the name in-
dicates, partially connects layers based on pre-existing 
knowledge in terms of physical relations among the under-
lying system inputs and outputs (Lu et al., 2017; Wu et al., 
2020; Alhajeri et al., 2022b). Specifically, on a large and 
complex chemical process modeled in Aspen Plus Dynamics 
simulator, Alhajeri et al. (2022b) investigated this approach 
by carrying out open-loop and closed-loop simulations using 
a fully-connected RNN model against a partially-connected 
RNN model. A partially-connected RNN model was shown to 
outperform the fully-connected RNN model when in-
corporated into a MPC, with smoother state trajectories and 
less computational burden. Furthermore, in Alhajeri et al. 
(2022a), they considered the case of industrial noise (i.e., non- 
Gaussian noise), where the Monte Carlo dropout and co- 
teaching strategies were used to train partially-connected 
RNN models to overcome the over-fitting issue. Subse-
quently, open-loop and closed-loop simulations were per-
formed on an Aspen Plus Dynamics process model to 
illustrate the superiority of partially-connected RNN based 

MPC over fully-connected RNN models trained with dropout/ 
co-teaching and standard partially-connected RNN models 
with regular training. Additionally, one can consider the 
Long Short-Term Memory (LSTM), a variant of the RNN that 
was introduced three decades ago, to model nonlinear sys-
tems. LSTMs have a unique structure, which enables them to 
enhance the model’s performance when dealing with data 
that requires long time dependencies. Such data may occur 
when modeling nonlinear time-delay systems or even non-
linear systems with disturbances and noise. For instance, in 
Alhajeri et al. (2022a), a nonlinear system was modeled as an 
LSTM network using noisy data, and closed loop stability was 
achieved. Moreover, LSTMs have been shown to overcome 
the vanishing gradient phenomenon that usually occurs 
when using RNNs (see Chen et al., 2020 for further details). 
Hence, LSTMs are widely used in many recent chemical en-
gineering applications, and have proven to be an efficient 
and powerful machine learning tool.

The adaptation of machine-learning-based MPC to actual 
chemical processes is still met with several challenges, de-
spite the effectiveness of machine learning approaches in 
approximating nonlinear process dynamics within the con-
text of MPC. Furthermore, characterizing the generalization 
capability of machine learning models learned using finite 
training samples on new data is a significant challenge. The 
work of Wu et al. (2021) has filled in this gap by computing an 
explicit expression for the theoretical upper bound of fully- 
connected RNN models’ generalization error. However, the 
fundamental question regarding the generalization accuracy 
of partially-connected RNN models in MPC has not been 
addressed—specifically, how the structure of an RNN model 
affects its generalization accuracy.

Due to the aforementioned considerations, in this work, 
we develop, from machine learning theory, a conceptual 
framework to quantify generalization error bounds for par-
tially-connected RNN models. Also, we integrate these 
models into model predictive control systems to be im-
plemented in nonlinear chemical processes. This manuscript 
is divided into 5 sections. Section 2 presents the class of 
nonlinear systems considered and assumptions regarding 
system stability. In Section 3, the representation and the 
construction of RNNs both fully-connected and partially- 
connected, and LSTMs is presented. Section 4 starts with key 
definitions and lemmas, and then develop probabilistic 
generalization error upper bounds for partially-connected 
RNN models and LSTM networks. The integrating of a par-
tially-connected RNN model and LSTM model into a MPC 
while accounting for Lyapunov stability considerations is 
proposed and discussed in Section 5. Lastly, the improve-
ments associated with incorporating prior physical knowl-
edge into RNN modeling is illustrated in Section 6 via both 
open-loop and closed-loop simulations using a two reactors 
in series chemical process under Lyapunov-based MPC.

2. Preliminaries

2.1. Notation

Given a vector b n, its Euclidean norm is denoted by the 
operator ∥b∥, and the weighted Euclidean norm of a vector is 
denoted by the operator ∥b∥Q where Q is a positive definite 
matrix. Moreover, the infinity norm of b is given by ∥b∥∞. 

Generally, for b n and γ ≥ 1, b b( )i
n

i1
1

= = . Given a 
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matrix W m n× , its Frobenius and spectral norms are de-
noted by ∥W∥F and ∥W∥∞, respectively. Given real numbers γ 
and κ, the κ-norm of the γ-norms of the columns of W is de-

noted by W W( ( ) )i
m

j
n

j i, ,
1= . R+ denotes non-negative 

real numbers. xT denotes the transpose of x. The notation LfV 

(x) denotes the standard Lie derivative L V x f x( ) ( )f
V x
x
( ) . Set 

subtraction is denoted by ‘− ’, i.e., 
A B x x A x B{ , }n . A function f( ⋅ ) is of class C 1 if it 
is continuously differentiable. A continuous function 
α: [0, a) → [0, ∞ ) belongs to class K if it is strictly increasing 
and is zero only when evaluated at zero. A function 
f : n m is said to be Lr-Lipschitz, Lr ⩾ 0, if ∣f(a) − f 
(b)∣≤Lr∣a − b∣ for all a b, n. A( ) denotes the probability that 
the event A will occur. X[ ] denotes the expected value of a 
random variable X. We note that the infinity norm of a vector 
and the spectral norm of a matrix both have the notation 
∥. ∥∞, by mathematical convention. Therefore, in order to 
differentiate between them, it is important to identify the 
argument of the norm.

2.2. Class of systems

We consider the class of multi-input multi-output (MIMO) 
nonlinear continuous-time systems represented by the fol-
lowing state-space form:

x x u F x G x uF( , ) ( ) ( )= + (1) 

where the state vector of the system is [ ]x x x, , n
T n

1 x
x= … , 

[ ]y y y, , n
T n

1 y
y= … is the output vector, and the manipu-

lated input vector is [ ]u u u, , n
T n

1 u
u= … . F(x, u) represents a 

nonlinear vector function of x and u. The constraints on 
control inputs are given by u U u u u{ }i i i

min max . F( ⋅ ) 
and G( ⋅ ) denote nonlinear vector and matrix functions of nx 

× 1 and nx × nu dimensions, respectively, and both are as-
sumed to be sufficiently smooth.

2.3. Stabilizability assumption

We assume that there exists a control law u = Φ(x) ∈ U based 
on state feedback that can make the origin of the system of 
Eq. (1) exponentially stable. This stabilizability assumption 
implies the existence of a C 1 control Lyapunov function de-
noted as V(x), such that the following inequalities hold for all 
x in an open neighborhood D around the origin:

c x V x c x( )1
2

2
2 (2a) 

V x
x

x x c xF
( )

( , ( )) 3
2

(2b) 

V x
x

c x
( )

4
(2c) 

where ci, i = 1, 2, 3, 4, are positive constants. A candidate 
controller Φ(x) may be constructed via Sontag’s control law 
(Lin and Sontag, 1991). Then, following Wu et al. (2019), we 
characterize the closed-loop stability region Ωρ to be a level 
set of the Lyapunov function in the region D in which the 
time-derivative V x( ) is negative under the controller 
u = Φ(x) ∈ U such that Ωρ ≔ {x ∈ D∣V(x)≤ ρ}, where ρ  >  0. Fur-
thermore, based on the Lipschitz property of F(x, u) and the 
boundedness of u, there exists positive constants M, L L,x

such that the following inequalities hold for all x x D,

and u ∈ U:

x u MF( , ) (3a) 

x u x u L x xF F( , ) ( , ) x (3b) 

V x
x

x u
V x

x
x u L x xF F

( )
( , )

( )
( , )

(3c) 

3. Recurrent neural networks (RNNs)

The prospect of utilizing artificial intelligence (AI) techniques 
in chemical engineering has been investigated at length in 
the recent literature. AI technology has led to the rise of 
classical and powerful modeling tools such as fuzzy logic in 
the 1960 s (Zadeh, 1968), expert systems in the 1980 s (Liao, 
2005; Lee, 1990), and machine learning (ML) in the 1990 s 
(Vepa, 1993). Moreover, the implementation of ML techni-
ques in the modeling of complex systems comes with a 
successful history in different chemical processes applica-
tions (Banerjee et al., 2017; Singh et al., 2017; Wong et al., 
2018; Dias et al., 2017). For example, in Banerjee et al. (2017), 
an artificial neural network (ANN) model is developed for a 
bio-diesel production process. The ANN model provided an 
approximation of the percentage of fatty acid methyl ester 
yield within ±  8% deviation from the experimental data. Si-
milarly, recurrent neural networks (RNN) have been broadly 
employed for modeling a general class of dynamical systems 
for control and state estimation purposes (Pan and Wang, 
2011). In Singh et al. (2017), a RNN model of a continuous 
binary distillation column (BDC) was trained and validated 
using experimental data, and the study demonstrated that 
the predictive ability of the RNN model could outperform the 
first-principles model for the large-scale, complex, nonlinear 
process studied. This was attributed to the RNN possessing a 
high degree of freedom to solve the complex non-linear re-
gression problem with the process data set.

RNN models are a powerful tool for modeling dynamic 
systems. Consider an RNN model that resembles the non-
linear dynamics of the system of Eq. (1) using m sequences of 
T-time-length data points (xi,t, yi,t), with xi t

d
, x serving as 

the RNN input and yi t
d

,
y serving as the RNN output with 

i = 1, …, m and t = 1, …, T. It is important to emphasize that 
the nonlinear system’s inputs, states, and outputs in Eq. (1) 
are not always represented by the RNN inputs and outputs. 
Hence, all the vectors for RNN models are represented in 
boldface to distinguish them from those of the nonlinear 
system of Eq. (1).

Moreover, to make the discussion simpler, the RNN model 
of Eq. (4) and (5) is created to forecast states over a single 
sampling period with overall time steps T = Δ∕hc (i.e., within 
one sampling period Δ, the RNN model aims to predict states 
evolution for each integration time step hc). Thus, the present 
manipulated inputs and state measurements that will be 
employed over t = 1 → T make up the RNN input xi,t, while the 
predicted states over t = 1 → T make up the RNN output yi,t. 
Owing to the sample-and-hold execution of manipulated 
inputs, xi,t does not change over t = 1 → T. The data set is 
created of m data sequences that were individually selected 
from an underlying distribution over d T d Tx y×× × . To sim-
plify the theoretical development, we consider a single- 
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hidden-layer RNN model with the following form to ap-
proximate the nonlinear dynamics of Eq. (1):

U Wh h x( )t h t t1= + (4) 

Vy h( )t y t= (5) 

where ht denotes the hidden state, and W, U, and V are the 
weight matrices connecting different layers. The possibly 
nonlinear activation functions used are denoted by σh and σy. 
Specifically, σh is often chosen to be a nonlinear activation 
function that may take different forms (e.g, tanh or ReLU), 
while σy typically uses a linear element-wise activation 
function for regression problems. Without loss of generality, 
we have the following assumptions for the development of 
RNN models:
Assumption 1. The input data is bounded, i.e., ∥xi,t∥≤Bx for all 
i = 1, …, m and t = 1, …, T.

Assumption 2. The Frobenius norms of the weight matrices 
are bounded, i.e., ∥W∥F≤BW,F, ∥Q∥F≤BV,F, ∥U∥F≤BU,F.

Assumption 3. The training, validation, and testing data sets 
are drawn from the same distribution.

Assumption 4. σh is a 1-Lipschitz continuous activation 
function, where, a function f : n m is said to be L- 
Lipschitz, L ⩾ 0, if ∣f(a) − f(b)∣≤L∣a − b∣ for all a b, n. 
Additionally, σh is a positive-homogeneous function in the 
sense that σh(αz) = ασh(z) holds for all α ≥ 0 and z .

Furthermore, consider a hypothesis class H of RNN 
models h( ⋅ ) that map a dx-dimensional input x dx to a dy- 
dimensional output y dy. The predicted output of the RNN 
model and the loss function are denoted by yt = h(xt) and 
L y y( , ˜ )t t , respectively, where L y y( , ˜ ) calculates the squared 
difference between the predicted output y and the true 
output ỹ.

3.1. Physics-informed RNNs

From a modeling point of view, even cutting-edge black-box 
ML models (e.g., dense fully-connected RNN models) have 
had only limited success when applied in scientific domains 
(Karpatne et al., 2017) due to such models’ large data size 
needs, failure to yield physically consistent outputs, and lack 
of generalizability to unseen samples. Researchers have 
begun to investigate the continuum between mechanistic 
and ML models, in which both scientific knowledge and data 
are integrated in a synergistic way. This is because neither a 
pure ML algorithm nor solely scientific theory may be suffi-
cient for complex scientific and engineering applications 
(e.g., Alber et al., 2019; Baker et al., 2019; Rai and Sahu, 2020). 
A physics-based machine learning paradigm uses domain- 
specific knowledge, but in supporting roles such as feature 
engineering or post-processing, in a way fundamentally dif-
ferent than dominant approaches in the ML field. On the 
other hand, the concept of combining scientific principles 
and ML in developing models has only recently gained po-
pularity (Karpatne et al., 2017), when there has already been 
a substantial amount of research done on the subject. This 
research direction is being conducted in various disciplines 
including earth systems (Reichstein et al., 2019), climatology 
(Krasnopolsky and Fox-Rabinovitz, 2006; O’Gorman and 
Dwyer, 2018), material exploration (Cang et al., 2018; 

Schleder et al., 2019), quantum chemistry (Schütt et al., 2017; 
Chakraborty et al., 2014), biological sciences (Yazdani et al., 
2020), and hydrology (Xu and Valocchi, 2015). Early findings 
in isolated and straightforward scenarios have been en-
couraging, and expectations are growing that this paradigm 
will speed up scientific advancement and aid in resolving 
some of the global challenges with regards to the environ-
ment (Faghmous and Kumar, 2014), healthcare (Wang et al., 
2020a), and food and nutrition security (Jia et al., 2019).

Similarly, in process systems engineering, the traditional 
paradigm of developing numerical approaches to approx-
imate solutions is based solely on physics—numerical dif-
ferentiation and integration algorithms are used to solve 
systems of differential equations that reflect established 
physical principles through space and time (Butcher, 1996; 
Sagaut et al., 2013; Houska et al., 2012). A different approach 
is to look for simplified models that can roughly characterize 
the dynamics of the underlying systems, such as the Euler 
equations for gas dynamics and the Reynolds-averaged Na-
vier-Stokes equations for turbulent flows (Chaouat, 2017; 
Tompson et al., 2017). However, creating a simplified model 
that accurately captures a complex phenomenon is quite 
difficult. More importantly, only a portion of the dynamics of 
many complicated real-world processes may be captured by 
a simple model. The equations may not accurately reflect the 
original system’s states. On the other hand, numerous recent 
studies, from turbulence to reaction modeling, have de-
monstrated that ML-based models can produce realistic 
predictions and greatly speed up the simulation of complex 
dynamics compared to numerical solvers (Wang et al., 2020b; 
Kochkov et al., 2021; Luo et al., 2022). However, ML-based 
models are dense and purely data-driven by nature, which 
has many limitations. Without strict boundaries, ML-based 
models are likely to provide predictions that defy the fun-
damental principles governing physical systems. Further-
more, machine learning models frequently experience 
difficulties with generalization, i.e., models trained on a 
single data set cannot adequately adapt to unseen scenarios. 
Hence, approximating complicated dynamical systems in 
scientific applications cannot be considered to be a problem 
that can be easily solved by either machine-learning-based 
models or physics-based theory alone. There is, therefore, a 
significant benefit in integrating machine learning models 
with conventional physics-based methodologies, through 
which we can maximize the benefits of both techniques.

The investigation of more structured system modeling is 
driven by a variety of factors. In contrast to a system with 
structured local connectivity, fully-connected systems ne-
cessitate long-range connections, and have slower commu-
nication times between neurons. Real-world problems may 
have local correlations as well. It would be considerably ea-
sier and take up less memory to construct networks with 
organized neighborhoods than a fully-connected network 
(Canning and Gardner, 1988). Typically, when creating a dy-
namic model for a general nonlinear process, a neural net-
work model that uses all available process inputs to predict 
the desired output is preferred. Creating a fully-connected, 
black-box dynamic model for these processes is relatively 
simple with open-source machine learning tools, and such a 
model would attempt to capture any connections that might 
exist between each input and each output of the underlying 
process. As depicted in Fig. 1, at least three layers (i.e., an 
input layer, hidden layers, and an output layer) make up the 
general structure of a fully-connected RNN. For such reasons, 
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fully-connected RNN models are frequently the best option 
for modeling processes where no prior knowledge is 
available.

Although standard RNNs do not consider any domain- 
specific knowledge in the model development phase and 
generally use fully-connected layers to capture input-output 
relationship using the given training dataset, it has been 
demonstrated in Wu et al. (2020) that a priori process struc-
tural knowledge can be utilized to improve an RNN’s per-
formance by using a partially-connected architecture. Fig. 1
shows the difference between fully-connected and partially- 
connected RNNs, from which it can be observed that the 
connection between some neurons is removed in a partially- 
connected structure to resemble the underlying input-output 
relationship based on a priori process structural knowledge. 
Partially-connected RNNs can be used to model a multiple- 
unit process in which upstream units affect downstream 
units, but not in the opposite direction. For example, con-
sider the nonlinear system of Eq. (1) for which the input 
vector u1 affects only the state x1, but both u1 and u2 affect 
the state x2, where [ ]x x x,n n

1 2x x1 2= and 

[ ]u u u,n n n
1 2u u u1 2= with n n nu u u1 2+ = and 

n n nx x x1 2+ = . Wu et al. (2020) demonstrates that, by using a 
partially-connected architecture, the number of weight 
parameters can be significantly reduced to achieve the de-
sired model accuracy compared to a fully-connected RNN 
model. Additionally, in Alhajeri et al. (2022b), an Aspen si-
mulation study of two CSTRs in series was carried out to 
demonstrate that the MPC using partially-connected RNN 
models achieved better closed-loop performances with a 
reduced computational time. To better understand the ben-
efits of partially-connected RNNs in terms of higher mod-
eling accuracy, a theoretical analysis of generalization error 
needs to be carried out.

3.2. Long short-term memory RNN

In this subsection, we present the long short-term memory 
(LSTM) network. LSTM is a variant of RNNs that has been 
widely used to make predictions based on time series data. 
Although standard RNNs have proven to be efficient in many 
engineering applications, RNNs struggle to deal with long 
time dependencies. Based on the structure of RNNs, as their 
hidden states are only propagated forward in time, they 
cannot receive future input data to predict the current state. 

As a result, the vanishing gradient phenomena is often en-
countered when training standard RNNs. As we proceed 
backwards through the layers of the network, the vanishing 
gradient problem occurs due to having exponentially de-
caying gradients in the loss function, which makes it harder 
to train the network and more challenging to retain in-
formation over longer time periods. Given these limitations, 
LSTM networks, with a well-known and unique structure, 
were introduced in 1997 (Hochreiter and Schmidhuber, 1997). 
Furthermore, in LSTMs, the concept of gates were introduced 
to keep track of how much useful history should be passed 
between the LSTM units. More specifically, the input gate, 
forget gate, and output gate control how much memory is to 
be stored in the cell state and retained throughout the net-
work (Schmidhuber, 2015).

The LSTM is composed of several gates, and is formulated 
by the following equations:

f W Ux h( ¯ )t l f t f t 1= + (6a) 

r W Ux h( ¯ )t l r t r t 1= + (6b) 

o W Ux h( ¯ )t o t o t 1= + (6c) 

c W Ux h˜ tanh( ¯ )t c t c t 1= + (6d) 

c f c r c̃t t t t t1= + (6e) 

o ch̄ tanh( )t t t= (6f) 

where W W W W, , ,f r o c
d dh x× are the weights associated with 

the inputs, and U U U U, , ,f r o c
d dh h× are the weights asso-

ciated with the hidden states. r f o, ,t t t
dh represent the 

input, forget, and output gates, respectively. ct
dh is the 

cell state, and c̃t is the cell integrated with the input gate. σl is 
the nonlinear activation function sigmoid, and tanh is the 
hyperbolic tangent function. The output at time t is 

Zy h¯ ( ¯ )t y t¯= . We note that the memory cell state ct is one of 
the most important parts in LSTMs as it is the part that stores 
and carries the essential information for long-term and 
short-term dependencies. This information is then passed to 
the subsequent LSTM units, and is recursively updated 
through the other remaining gates (i.e., rt, ft, ot). Specifically, 
the memory cell state, presented in Eq. (6e), consists of two 
terms: the first term expresses the quantity of old informa-
tion to be discarded from the previous ct, while the second 
term expresses the essential new information that is in-
troduced to the memory cell state ct (Ren et al., 2022). Fig. 2
shows the schematic of an LSTM cell with all its gates. In 
addition to the previous assumption, we also consider the 
following for LSTM models:
Assumption 5. The norms of weight matrices are bounded as 
follows: 

W B W B W B W B U B, , , , ,f F Wf r F Wr o F Wo c F Wc g F Ug

U B U B U B Z B, , ,r F U o F U h F U Z¯ 1,r o h̄

Assumption 6. The nonlinear activation functions , ȳ are 1- 
Lipschitz continuous, and (0) (0) 0ȳ= = .

Fig. 1 – Structure of (a) standard fully-connected and (b) 
partially-connected RNN.
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4. Generalization error

4.1. General considerations

Generalizability or generalization error is a metric that 
measures a machine learning model’s ability to adapt to new, 
previously unseen data that is drawn from the same dis-
tribution as the one used to train the model. Several in-
vestigations were conducted for the interpretation and 
improvement of generalization of different machine 
learning-based models (e.g., Roelofs, 2019; Emmert-Streib 
and Dehmer, 2019). Furthermore, a theoretical analysis of the 
generalization error is of significant importance as it pro-
vides a fundamental understanding on how well the model 
performs on unseen data that will be collected in real-world 
systems. This section will provide derivations of the gen-
eralization error for RNNs using statistical learning theory. 
Before we present the results on generalization error bounds, 
we first introduce the necessary definitions of generalization 
error.
Definition 1. A centered random variable x is said to be 
sub-Gaussian with variance proxy σ2 if x[ ] 0= and the 
moment generating function satisfies:

aX
a

a[exp( )] exp
2

,
2 2

(7) 

Definition 2. Given a data distribution, D, and a function, h, 
that predicts y (output) based on x (input), the generalization 
error is given by

L h x y L h x y x y dxdy[ ( ( ), )] ( ( ), ) ( , ) .
X Y

=
× (8) 

where ρ(x, y) denotes the joint probability distribution for x 
and y, and Y and X represent the vector space for all possible 
outputs and inputs, respectively.

Definition 3. L( ⋅ , ⋅ ) is the loss function (e.g., mean squared 
error (MSE) for regression problems). Since the distribution 
may be unknown, the following empirical error is often used 
as an approximation measure for the generalization error:

L h x y
m

L h x yˆ [ ( ( ), )]
1

( ( ), )S i
m

i i1= = (9) 

where S = (s1, …, sm), si = (xi, yi) includes m data samples 
drawn from the data distribution D.

Definition 4. Given a set of data samples S = {s1, …, sm}, and a 
hypothesis class F of real-valued functions, the definition of 
the empirical Rademacher complexity of F is

R F
F m

f s( ) sup
1

( )S
f i

m

i i
1

=
= (10) 

where ( , , )m
T

1= … , and ϵi are Rademacher random variables 
that are independent and identically distributed (i.i.d.) and 
satisfy ( 1) ( 1) 0.5i i= = = = .

The following lemma gives the generalization error bound 
for a general class of RNN models.
Lemma 1. Consider a hypothesis class H of vector-valued 
functions h dy and a set of data samples S = {s1, …, sm}. Let 
L(. ) be a Lr -Lipschitz function mapping h dy to R. Then,

F H

L h L hx y xsup ( ( ), ) 2 sup ( )
f

i
m

i i i r
h

i
m

k
d

ik i1 1 1
y

= = =

(11) 

where hk(. ) is the kth component in the vector-valued 
function h(. ), and ϵik is an m × dy matrix of independent 
Rademacher variables. In the following text, we will omit the 
subscript ϵ of the expectation operator for simplicity.

Since the right-hand side of the previous inequality is 
generally difficult to compute, we can reduce it to scalar 
classes and derive the following bound:

H H

h hx xsup ( ) sup ( )
h

i
m

k
d

ik i k
d

h
i
m

i i1 1 1 1
y y

= = = = (12) 

where H k d, 1, ,k y= … are classes of scalar-valued functions 
that correspond to the components of vector-valued func-
tions in H . The previous inequality will later be used in the 
derivation of the generalization error bound for LSTM 
models.
Lemma 2. (c.f. Theorem 3.3 in Mohri et al. (2018)) Let H be 
the hypothesis class of ML models that map x x{ , , }t d t

1 x… ×

(i.e., the first t time step inputs) to yt
dy (i.e., the tth output) 

and Gt be the loss function set with H ,

G Hg L h hx y x y{ : ( , ˜ ) ( ( ), ˜ ), }t t= (13) 

where ỹ and x are the true output vector and the input vector 
of the ML model, respectively. Then, given a data set 
consisting of m i.i.d. data samples, the inequality below 
holds in probability for all Ggt t over the data samples 

S x y( , )i t i t t
T

, , 1= = , i = 1, …, m:

R G
( )

g
m

g
m

x y x y[ ( , )]
1

( , ) 2 ( ) 3
log

2t i
m

t i i S t1

2

+ += (14) 

Eq. (14) demonstrates that the upper bound for the gen-
eralization error depends on the training error (first term), 
the Rademacher complexity of Gt (second term), and a 
function of the samples size m and the confidence δ. There-
fore, to derive a generalization error bound for RNN models, 
an upper bound for the Rademacher complexity of RNN hy-
potheses needs to be developed.
Lemma 3. Given a hypothesis class Hk of real-valued 
functions corresponding to the kth component of the 
vector-valued function class H and a set of m i.i.d. data 
samples S i mx y( , ) , 1, ,i t i t t

T
, , 1= = …= , the following inequality 

holds for the scaled empirical Rademacher complexity:

Fig. 2 – Schematic of an LSTM cell structure. 

669 Chemical Engineering Research and Design 189 (2023) 664–679  



R H
H

H

H

m h

h

h

x

x

x

( ) sup ( ) .

1
log exp sup ( )

1
log sup exp ( )

s k
h i

m

i i

h i

m

i i

h i

m

i i

1

1

1

k

k

k

=

=

=

=

= (15) 

where λ  >  0 is an arbitrary parameter.

Lemma 4. Let Hk t, , k = 1, …, dy be the class of real-valued 
functions that corresponds to the kth component of the RNN 
output at tth time step, with weight matrices and activation 
functions satisfying Assumptions 1–4. Given a set of m i.i.d. 
data samples S x y( , )i t i t

T
t, , 1

=
=

, i = 1, …, m, the following 

equation holds for the Rademacher complexity:

R H
M t B

m
( )

( 2 log(2) 1)
S k t

X
,

+
(16) 

where M B BV F W F
B

B, ,
1U F

t

U F

,

,
1= , and BX is the upper bound for RNN 

inputs.

Lemma 5. (c.f. Theorem 1 in Wu et al. (2021)) Given a dataset 
S x y( , )i t i t t

T
, , 1= = with i.i.d. data samples, i = 1, …, m, and the Lr- 

Lipschitz loss function class Gt associated with the RNN 
function class Ht that predicts outputs at the tth time step, 
with probability at least 1 − δ over S, the following inequality 
holds for the RNN models:

O

( )
g

m
g

m

L d
MB t

m

x y x y[ ( , )]
1

( , ) 3
log

2

(1 2 log(2) )

t i
m

t i i

r y
X

1

2

+

+
+

=

(17) 

The above equation represents the theoretical general-
ization error’s upper bound for RNN models. This theory will 
be utilized to find a relationship between a RNN model and 
its structure in Section 4.2.

4.2. Physics-based RNNs generalization bound

In a partially-connected structure, the connections between 
inputs and outputs should be carefully designed to reflect a 
priori physical knowledge. In particular, as illustrated in 
Fig. 3, x2 does not affect y1, so the weights corresponding to 
the linkages between x2 and y1 (dashed lines in Fig. 3) are 
assigned a value of zero (i.e., wi,j = vl,j = 0). This structure 
superiority in accuracy and model identification to dense 
fully-connected RNNs has been demonstrated through sev-
eral works. Hence, we develop the following theory to in-
terpreter this observation.
Theorem 1. Consider the following inequalities: 

g x y[ ( , )]t and g x y[ ( , )] ˆtˆ , where ν and ˆ represent 
the generalization error bound for a fully-connected RNN 
model and a partially-connected RNN model, respectively. 
Given that both models are constructed with the same 
hyperparameters and trained over the same i.i.d data set 
with m samples, the following inequality holds:

ˆ < (18) 

Proof. If we let ν denote the right-hand side of Eq. (17), ν can 
be represented as the sum of the three terms in the right- 
hand side of Eq. (17) i.e., ν = νI + νII + νIII, where the subscripts I, 
II, and III are the term indices, and the same applies for ˆ i.e., 

gE x y[ ( , )] ˆ ˆ ˆ ˆt I II IIIˆ = + + . Then, with respect to the first 
terms, ˆI and νI, they depend on the sizes of both the training 
data set and the hypothesis class H . Due to the dense 
structure of FCRNN models, the size of the hypothesis class 
H will be larger, which leads to a higher probability of 
convergence to the optimal hypothesis h* . On the contrary, 
by incorporating physical knowledge into the RNN modeling 
by assigning some weight entries to be zero, the size of the 
hypothesis class H is reduced, yet the model can be closer to 
the optimal hypothesis h* for the data distribution D. Thus, 
both models will have close values for the first term (i.e., 

ˆI I). Additionally, since we are developing the two models 
using the same data set with m samples, the second terms 
for both the PCRNN model and the FCRNN model are 

Fig. 3 – Weights and connections in (a) standard fully-connected and (b) partially-connected RNN structures, where zeroed 
weights for links between units are represented by dashed lines.
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approximately equal (i.e., ˆII II). Therefore, we are left to 
investigate the third term, which is given by:

O L d
MB t

m

(1 2 log(2) )
III r y

X=
+

(19a) 

O L d
MB t

m
ˆ

ˆ (1 2 log(2) )
III r y

X=
+

(19b) 

where M = BV,FBW,F, and M B Bˆ V F W Fˆ , ˆ ,= . 

Note that M and M̂ are products of the RNN weight matrix 
bounds in Eq. (17), where the PCRNN model weight matrices 
are denoted by the symbols V̂ and Ŵ , and their Frobenius 
norm bounds are BV Fˆ , and BW Fˆ , , respectively. After training 
both FCRNN and PCRNN models with the same random in-
itialization and optimization algorithm, the weight matrices 
in the PCRNN model will have some zero entries, while the 
other entries (i.e., the nonzero ones) would be numerically 
close for both models. Since the Frobenius norm of matrix A 
is expressed as the square root of the matrix trace of AA(H), 
where A(H) is the conjugate transpose, more zero entries in 
the weight matrices will yield lower bounds on their Frobe-
nius norms i.e.,

B BW F W Fˆ , ,< (20a) 

B BV F V Fˆ , ,< (20b) 

which yields

ˆIII III< (20c) 

Hence, this proves that the partially-connected RNN mod-
eling approach provides a lower generalization error bound 
than the dense fully-connected RNN architecture. □.

Remark 1. By incorporating process structural knowledge 
into the development of partially-connected RNN models, 
the complexity of RNN hypothesis class is reduced compared 
to fully-connected RNNs, which leads to a tighter bound on 
the Rademacher complexity. Additionally, by revealing the 
correct direction for RNNs to find the optimal weight 
parameters, the training error (the first term in Eq. (17)) is 
more likely to be minimized using the same 
hyperparameters (i.e., the number of layers and neurons) 
and the same training set of m i.i.d. data samples.

4.3. LSTM generalization error

LSTM networks structure and complexity are different from 
standard fully-connected RNN models as well as partially- 
connected RNNs. Hence, a generalizability theoretical fra-
mework of LSTMs is discussed in this subsection. We recall 
the fundamental definitions and lemmas from the Section 
4.1. In addition we present the following theoretical bases 
(i.e., remarks and lemmas) needed for the development of a 
LSTM network’s generalization accuracy bound.
Remark 2. From the definitions of norms, if given a vector 
b n, the following inequalities hold:

b b b bmax{ }i i
n

i
2= = (21) 

b b b bmax{ }i i
n

i 1= = (22) 

Lemma 6. Given a hypothesis class H of vector-valued 
functions that map the LSTM inputs x dx to the hidden 
states h̄ dh, and any convex and monotonically increasing 
function p: R → [0, ∞ ), the following inequality holds for the 
LSTM model of Eq. (6) with a 1-Lipschitz activation function 
σy(0) = 0, applied element-wise:

H

H

( )

( )

p Z

p B

h

h

sup ( ¯ ) 2

sup ¯

h Z B
i
m

i y i

h
Z i

m
i i

¯ ,
1 ¯

¯
1

Z1,
=

= (23) 

where ∥Z∥1,∞ is the maximal 1-norm of its rows.

Proof. Based on the previous works of Golowich et al. (2018), 
Wu et al. (2021), we proceed with this proof as follows:

( )

( )

( )

p Z

p z

p z

h

h

h

sup ( ¯ )

sup max ( ¯ )

sup ( ¯ )

Z B
i
m

i y i

z B j
i
m

i y j
T

i

z B
i
m

i y
T

i

1 ¯

1 ¯

1 ¯

Z

k Z

Z

1,

1

1

=

=

=

=

=
(24) 

where zk is the k-th row of the matrix Z. Since p is a convex 
monotonically increasing function, p(∣x∣)≤ p(x) + p( − x), and 
hence, Eq. (24) can be bounded by:

( )

( ) ( )

p Z

p z p z

h

h h

sup ( ¯ )

sup ( ¯ ) sup ( ¯ )

Z B
i
m

i y i

z B
i
m

i y
T

i
z B

i
m

i y
T

i

1 ¯

1 ¯ 1 ¯

Z

Z Z

1,

1 1

+

=

= =
(25) 

Note that ϵi follows a symmetric distribution, i.e. 
( 1) ( 1) 0.5i i= = = = . Hence, Eq. (25) becomes:

p Z

p z

p z

p z

h

h

h

h

sup ( ¯ )

2 sup ( ¯ )

2 sup ( ¯ )

2 sup ( ¯ )

Z B i

m

i y i

z B i

m

i y
T

i

z B i

m

i
T

i

z B i

m

i i

1
¯

1
¯

1

1

Z

Z

Z

Z

1,

1

1

1

=

=

= =

= =

= = (26) 

Using Eq. (22) in Remark 2, the inequality in Eq. (26) is 
bounded as follows:

p Z

p z

p B

h

h

h

sup ( ¯ )

2 sup ( ¯ )

2 sup ( ¯ )

Z B i

m

i y i

z B i

m

i i

Z
i

m

i i

1
¯

1
1

1

Z

Z

1,

1

=

= =

= (27) 

This completes the proof of Lemma 6, where it “peels off” the 
matrix Z between the LSTM hidden layer and the output 
layer. □.

Remark 3. It is well established that the activation functions 
sigmoid and tanh are essential for the development of 
different types of neural networks, including LSTMs. This is 
due to the LSTM network’s special structure and the 
importance of the gating functionality performed by sigmoid 
functions. Therefore, the purpose of utilizing the infinity- 
norm, which is based on the peeling strategy as in Lemma 6, 
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is to eliminate the requirement of the positive homogeneity 
property in activation functions. Hence, this lemma suits 
neural networks requiring non-positive and non- 
homogeneous activation functions.

Remark 4. In LSTMs, signals are categorized into two main 
types. The first type are propagating signals, which are h̄t and 
ct. These signals connect the LSTM cells in sequential time 
steps with each other. In other words, the LSTM unit at a 
certain time step t, receives as an input the hidden state h̄t 1

and the cell state ct−1, both from the previous time step t − 1, 
in addition to xt, which is the input vector at time t. The 
second type of signals are gating signals, represented by ot, ft, 
and rt, which are responsible for the flow of information 
inside the LSTM unit. Their outputs range from 0 to 1, which 
means they determine how much of the information is 
passed. In the extreme cases, if the output is 0, this means 
no information is passed, and if the output is 1, this means 
all the information is passed. Taking this into consideration, 
these gating signals can be upper-bounded by 1, for 
simplicity in the generalization error bound proof.

Lemma 7. Let H k d, 1, ,k t y, = … be the class of real-valued 
functions that corresponds to the kth component of the LSTM 
output at the tth time step, with weight matrices and 
activation functions satisfying Assumptions 1–6. Given a 
set of m i.i.d. data samples S i mx y( , ) , 1, ,i t i t t

T
, , 1= = …= , the 

following equation holds for the Rademacher complexity:

R Hm M m( )
2 1

2
¯s k t,

+
(28) 

where M B B B¯ V W x
1
1c

t
= and B1 Uc= + .

Proof. Recalling that zk is the kth row of the weight matrix Z 
and by using Eq. (16) in lemma 3, we obtain the following 
bound for the Rademacher complexity R Hm ( )s k t, :

R Hm z

z

h

h

( ) sup ( ¯ )

1
log sup exp ( ¯ )

s k t
i

m

i y k i t

i

m

i y k i t

,
1

¯ ,

1
¯ ,

=
=

= (29) 

Now, by applying the peeling strategy of Eq. (23), we can 
further bound the previous inequality as follows:

R Hm B

B

B

h

h

h

( )
1

log sup exp ¯

1
log sup exp ¯

1
log sup exp ¯

s k t Z
i

m

i i t

Z
i

m

i i t

Z
i

m

i i t

,
1

,

1
,

1
,=

=

=

= (30) 

Using Eq. (6f) from the LSTM equations and applying Eq. (21) 
from Remark 2, we expand the propagation signal h̄i t, and get 
the following bound:

R Hm B o c

B o c

( )
1

log sup exp tanh( )

1
log sup exp

s k t Z
i

m

i i t i t

Z
i

m

i i t i t

,
1

, ,

1
, ,

=
=

=

(31) 

Following Remark 4, we can bound the gating signal oi,t as 
follows: ∥oi,t∥∞≤ 1. Also, we apply Eq. (21) from Remark 2 and 

further expand the propagation signal ci,t using Eq. (6e) based 
on the LSTM structure, thereby obtaining the following 
inequality:

R Hm B f c

r c

( )
1

log sup exp (

˜ )

s k t Z
i

m

i i t i t

i t i t

,
1

, , 1

, ,+

=

(32) 

We further expand c̃i t, using Eq. (6d) and Remark 2. 

Subsequently, we expand h̄i t, 1 using Eq. (6f). Moreover, 
using the upper bound of the input data and the upper 
bounds of the weight matrices mentioned in assumption 1
and assumption 5, respectively, the following bound is 
obtained:

R H

(
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(
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) )

m B f c
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r B B B
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i t c i t c i t

Z
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i i t i t
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Z
i
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i i t i t

i t W x U i t

Z
i

m

i i t i t

i t W x U i t i t

Z
i

m

i i t

i t i t U i t W x i t
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, , 1

, , , 1

1
, , 1

, , , 1

1
, , 1

, , 1

1
, , 1

, , 1 , 1

1
,

, , 1 , 1 ,

c c

c c

c c

+ +

+ +

+ +

+ +

=

+ +

=

=

=

=

=

(33) 

From the LSTM formulation, Eq. (6), and the fact that the 
LSTM’s gating signals can be bounded by 1 (i.e., ∥fi,t∥≤1, 
∥ri,t∥≤1, and ∥oi,t−1∥≤1), Eq. (33) can be further bounded as 
follows:

R H (( ) )m B B c B B( )
1

log exp 1s k t Z
i

m

i Uc i t Wc x,
1

, 1+ +
=

(34) 

By expanding the term ∥ci,t−1∥ recursively, the above 
inequality reaches:

R Hm B B B

B B B

( )
1

log exp (1 )

1
log exp

s k t Z
i

m

i Wc x

Z
i

m

i Wc x
p

t
p

,
1

2

1 0

1

+ + +

=

=

= = (35) 

We apply the formula for the sum of a geometric series, 

p
t p

0
1 1

1

t
== to obtain the following:

R Hm B B B( )
1

log exp
1
1

s k t Z
i

m

i W x

t

,
1

2 c=
= (36) 

where B1 Uc= + . 
Let q M̄ i

m
i1= = , where M̄ is the product of some weight 

matrices and contains a fraction involving ¯, specifically 
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M B B B¯ V W x
1
1c

t
= . Notice that the Rademacher complexity 

variables ϵi are the elements giving rise to randomness in the 
bound. Then, the Rademacher complexity bound in in-
equality (36) becomes:

R Hm q

q q q

( )
1

log [exp( )]

1
log [exp( ( [ ]))] [ ]

s k t,

= +
(37) 

Using Jensen’s inequality, q[ ] is bounded as follows:

q M M M

M M m

[ ] ¯ ¯ ¯

¯ (1) ¯

i

m

i i
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i
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m

i
T

i

i i

m

1
1

2

1,¯ 1
¯

1,¯ 1

= =

= =

= =
= =

= = (38) 

We can show q is sub-Gaussian with the following variance 
factor v, since q satisfies a bounded-difference condition with 
respect to its random variables ϵi, i.e., q(ϵ1, …, ϵi, …, ϵm) − q 
(ϵ1, …, − ϵi, …, ϵm)≤ 2\bar{M}∥xi,t∥:

v M Mx x
1
4

(2 ¯ ) ¯
i
m

i t i
m

i t1 ,
2 2

1 ,= == = (39) 

According to the property of sub-Gaussian random variables 
in Definition 1, the following inequality holds for q:

q q
M x1

log [exp( ( [ ]))]
¯

2
i
m

i t
2

1 ,=
(40) 

Assuming t

M x

2

¯
i
m i t1 ,

2
=

=
, the Rademacher complexity can 

be bounded as the following:
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(41) 

□

Theorem 2. Let Gt be the family of loss function associated with 
the hypothesis class Ht of vector-valued functions that map the 
LSTM inputs to the LSTM output at tth time step, with weight 
matrices and activation functions satisfying Assumptions 1–6. 
Given a set of m i.i.d. data samples S i mx y( , ) , 1, ,i t i t t

T
, , 1= = …= , 

with probability at least 1 − δ over S, we have:
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(42) 

where M B B B¯ Z W x
1
1c

t
= and B1 Uc= + .

Proof. Using the inequalities obtained in lemma 1, we can 
derive the following upper bound for the loss function 
L h x y( ¯ ( ), )i i , with h x¯ ( )i being vector-valued functions, as 
follows:

R G L L

L d
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h x y h x( ) sup ( ¯ ( ), ) 2 sup ¯ ( )
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(43) 

Plugging the Rademacher complexity bound that we just 

obtained, i.e., R G L d( )S t r y
t M

m
( 2 ) ¯+ , into inequality (14) 

mentioned in lemma 2, we get the following inequality of 
Theorem 2:

O

( )
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g L d
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1

( , )
( 2 ) ¯
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log

2

t i
m

t i i r y1

2

+ +

+

=

(44) 

□

Remark 5. By observing the three different terms in the 
generalization error bound of Eq. (42), it appears that several 
ways to reduce the generalization error may be considered. 
The first approach is to design a LSTM network such that the 
value of the empirical loss g x y( , )

m i
m

t i i
1

1= over the training 
data samples is minimized. Additionally, noticing that the 
number of training samples m occurs in the denominator of 
both the second and third terms of Eq. (42), one can consider 
increasing the number of training samples m and, as a result, 
the value of the generalization error should decrease. Also, it 
is important to note that the complexity hypothesis class 
may affect the value of the generalization error, in the sense 
that increasing the complexity hypothesis class results in an 
increase in the values of the weight matrices bounds M and, 
subsequently, an increase in the second term O in Eq. (42). 
Hence, when designing the LSTM network, we consider 
starting with a simple design and, based on the training 
and testing performance, we can increase the complexity 
such that it improves the model performance for a given 
application without causing overfitting to the data.

5. RNN/LSTM based model predictive control

In this section, we integrate an RNN/LSTM model into a 
Lyapunov-based model predictive controller (LMPC) for-
mulation. In particular, the partially-connected modeling of 
RNN/LSTM is executed as discussed in Alhajeri et al. (2022b)
and then employed as a predictive model to provide state 
estimation to solve the optimization problem of the LMPC, 
which is expressed in the following form:

J L x t u t dtmin ( ( ), ( ))
u S t

t P
c

( ) k

k=
+

(45a) 

x t F x t u ts.t. ˜ ( ) ( ˜ ( ), ( ))nn= (45b) 

Pu t U t t t( ) , [ , )k k + (45c) 

x t x t˜ ( ) ( )k k= (45d) 

V x t u V x t x t( ( ), ) ( ( ), ( ( ))),k k nn k

x tif ( )k nn (45e) 

PV x t t t t x t( ˜ ( )) , [ , ), if ( )nn k k k nn+ (45f) 

where S(Δ) denotes a set of piecewise constant functions 
with period Δ, x̃ is the state trajectory predicted by the RNN/ 
LSTM model, and P is the prediction horizon expressed as a 
multiple of the sampling period (i.e., P = N × Δ, N  >  0). The 
time-derivative of the Lyapunov function V in Eq. (45e) is 
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given as V x u( , ), i.e., F x u( , )V x
x nn
( ) . During the prediction hor-

izon t ∈ [tk, tk + P), the LMPC computes the optimum input 
sequence u* (t) and delivers the first control signal u* (tk) to 
the system to be implemented for the following sampling 
period. After that, at the following sampling interval, the 
LMPC receives new data and is resolved with updated state 
estimations. Furthermore, the MPC optimization problem’s 

goal is to minimize the integral of L x t u t( ( ), ( ))c , given in Eq. 
(45a), which represents the cost function over the prediction 
horizon while satisfying the constraints of Eqs. (45b) to (45f). 
The RNN/LSTM model from Eq. (45b) is used to forecast the 
evolution of the closed-loop state trajectory x t˜ ( )k under the 
MPC, and its initial conditions are updated according to Eq. 
(45d), where x(tk) is the last state measurement. The input 
constraints are expressed in Eq. (45c), and they are imposed 
across the prediction horizon.

To ensure the stability of the closed-loop system, when 
x t( )k nn, where nn is the target region, the condi-
tion of Eq. (45e) is triggered. As a result of this constraint, the 
Lyapunov function of the closed-loop state declines, and the 
state approaches the steady-state within a finite period of 
time. Eventually, when the state x(tk) arrives to nn, the 
predicted closed-loop state will be kept within this region for 
the duration of the prediction horizon via the constraint of 
Eq. (45f). Following section 2.3, the controller Φnn(x) was de-
veloped with the intent of ensuring that the origin of the 
RNN/LSTM system is exponentially stable.

A well-conditioned RNN or LSTM model with sufficient 
model accuracy can be readily produced when utilizing 
noise-free data for training. Therefore, the closed-loop state 
is guaranteed to be bound inside the predefined stability re-
gion Ωρ during the simulation time and will finally converge 
to a small region around the origin via application of the 
RNN/LSTM-based LMPC of Eq. (45) for the regulation of the 
nonlinear system of Eq. (1). This is true provided that the 
modeling error, which is given by ∣υ∣ = ∣F(x, u) − Fnn(x, u)∣, is 
sufficiently small (Wu et al., 2019; Alhajeri et al., 2021).

6. Application

A chemical process example is used for demonstrating the 
anticipated improvements associated with physics-informed 
modeling of RNNs. Particularly, two non-isothermal con-
tinuous-stirred tank reactors (CSTR) in sequence with ideal 
mixing are taken into consideration, as shown in Fig. 4, with 
each reactor containing an irreversible second-order exo-
thermic reaction, where a raw material A is transformed to a 
product B (i.e., A → B). The feed flow rate to each reactor Fio

contains only chemical A with initial concentration and 
temperature CA i, o and Tio, respectively, where i = 1, 2 is the 
reactor index. Each reactor has a heating jacket that delivers 
or removes heat at a rate of Qi. The dynamical model de-
scribing the two CSTRs is derived from material and energy 
balance equations in the form of the following ODEs:

( )dC
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The notations CA,i, Ti, and Qi represent the reactant A 
concentration, reactor temperature, and the heat supply rate, 
respectively. Vi is the volume of the reacting liquid, which 
has a density of ρ and a heat capacity of Cp that are constants 
for both reactors. ΔH, ko, R, and E denote the reaction’s en-
thalpy, pre-exponential constant, ideal gas constant, and 
activation energy, in the same order, and these parameters 
are unchanged for both reactors. Process parameter values 
are listed in Table 1.

The manipulated inputs for this process are the heat 
supply rate to both reactors (i.e., Q1 and Q2), which are re-
presented in deviation form from their steady-state values as 
u1 = Q1 − Q1s and u2 = Q2 − Q2s. The upper and lower physical 
bounds on the inputs are U U kJ h[ , ] [5, 5] 10max min 5= × , re-
spectively. The states are also represented in deviation 
fashion from their steady-state values as 

[ ]x x x x C C T T C C T T[ , , , ] , , ,A A s A A s1 2 3 4 ,1 ,1 1 1 ,2 ,2 2 2s s= , such 
that the origin is the equilibrium point of the state-space 
representation of the underlying system.

6.1. Data generation and RNN models construction

Large data sets are necessary for the development of ma-
chine-learning-based models, and, generally speaking, the 
larger the data set size, the more accurate the model can be 
(Wu et al., 2022), provided that the data is independent and 
identically distributed. Large data sets are also accessible 
from a variety of sources, including industries, pilot plants 
and laboratories, and computer-based simulations. In-
dustrial data is typically not accessible to the general public, 
and collecting data from pilot plants and laboratory studies is 
both expensive and time-consuming. Hence, we use 

Fig. 4 – Two continuous-stirred tank reactors in series. 

Table 1 – Parameter and steady-state values for 
the CSTR. 

C kmol m1.95A s,1
3= T1s = 402 K

C kmol m4A o,1
3= T2s = 402 K

C kmol m1.95A s,2
3= Q1s = 0.0 kJ∕h

C kmol m4A o,2
3= Q2s = 0.0 kJ∕h

T K300o1 = T K300o2 =
F m h5o1

3= F m h5o2
3=

V1 = 1 m3 V2 = 1 m3

ko = 8.46 × 106 m3∕kmolh EA = 5 × 104 kJ∕kmol
R = 8.314 kJ∕(kmol K) ΔH = − 1.15 × 104 kJ∕kmol
ρ = 1000 kg∕m3 Cp = 0.231 kJ∕(kg K)
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extensive open-loop simulations in our work to create our 
data set.

For the development of the RNN model, the procedures 
for data generation, neural network training, and validation 
are described. The explicit Euler method with an integration 
time step of hc = 5 × 10−4 h is used to numerically simulate the 
dynamic model of Eq. (46) for one sampling period Δ under 
various initial conditions (a total of 3000 different combina-
tions of initial conditions). Particularly, MATLAB is used to 
create a data set of size mdata. The data set is then split into 
two matrices: an output matrix with x1, x2, x3, and x4 as 
outputs at t = tk + Δ and an input matrix with u1, u2, x1, x2, x3, 
and x4 at t = tk.

Subsequently, by using the generated data and the Keras 
library, two RNN models are constructed, where each of the 
models has two hidden layers with 30 neurons in each, and 

hyperbolic tangent (i.e., xtanh( ) e e
e e

x x

x x= + ) as the activation 
function for all layers except for the input and output layers. 
The activation function in the output layer is set to be linear. 
The links between the layers is untouched in the fully-con-
nected RNN modeling, while, on the other hand, the inputs 
are fed to different layers in the partially connected RNN 
modeling in a manner that reflects the physical structure of 
the underlying process. Specifically, the partially-connected 
RNN model is developed following the algorithm discussed in 
Alhajeri et al. (2022b).

Using input information from the previous sampling in-
terval, we forecast the evolution of the states for the sub-
sequent 0.01 hr (the equivalent of one sampling time Δ). We 
use the Adam optimizer, a combination of RMSprop and 
gradient descent with momentum optimization techniques, 
as opposed to the conventional gradient descent optimiza-
tion process. Additionally, we perform five-fold cross-vali-
dation on the RNN models in order to produce more reliable 
models, and select the models with the lowest validation 
MSE. In addition, we use five, different (i.e., no repetition) 
testing data sets, as shown in Fig. 5, to test the developed 
models. The generalization error for each testing data set is 
illustrated in Fig. 6, where the partially-connected RNN 
model yielded higher generalization accuracy (i.e., less error). 
These results aligned with Theorem 1.

6.2. Open-loop simulation

Before incorporating the generated models into closed-loop 
tests, open-loop simulations are essential to check that the 
predictive models can estimate the future trajectory ade-
quately. Hence, we carried out open-loop simulations, illu-
strated in Fig. 7, where the time-varying inputs are randomly 
chosen. Furthermore, from the figure, it can be noticed that 
the state trajectories predicted by the partially-connected 
RNN model are all closer to the true state trajectories (de-
noted by FP) than the states predicted by the fully-connected 
RNN model.

Table 2 presents the open loop simulation MSEs between 
the predicted states from each RNN model architecture and 
the corresponding first-principles model outputs as the 
ground-truth process output value. From Table 2, the ratios 
of fully-connected RNN MSE to the partially-connected RNN 
MSE for x1, x2, x3, and x4 are 6.05, 2.3991, 4.3018, and 10.3013, 
receptively. All the ratios are greater than one, which implies 
that the partially-connected RNN architecture yields a higher 

Fig. 5 – Five different testing data sets, where each marker indicates a single set. 

Fig. 6 – Generalization error for five different testing data 
sets, where PCRNN and FCRNN stand for partially- 
connected RNNs (orange bars) and fully-connected RNNs 
(blue bars), respectively.
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accuracy for state estimation. Furthermore, the open-loop 
responses initiated close to the steady state and predicted by 
the partially-connected and the fully-connected RNN models 
under a step change only in u2 are depicted in Fig. 8. The 
figure demonstrates that the partially-connected RNN model 
captures the process dynamics better, as the trajectory of the 
first reactor’s temperature was not altered by this change. All 
these results indicate that both RNN models provide rea-
sonable prediction, yet, the partially-connected RNN model 

approximates the underlying process model more accu-
rately.

6.3. Closed-loop simulation

Next, in order to run closed-loop simulations with the cer-
tainty that both RNN models give high accuracy approx-
imation for the process outputs, we design LMPCs based on 
the fully-connected RNN model and the partially-connected 
RNN model, respectively. For each sampling period, the 
nonlinear minimization problem of the LMPC is solved using 
the Python front-end of the interior point optimizer (IPOPT) 
software (Biegler and Zavala, 2009). For the purpose of sol-
ving complex nonlinear optimization problems, this opti-
mizer is an open source program. It uses an interior point 
line search filter technique to try to locate a local solution to 
a nonlinear mathematical program. The LMPC objective 
function is defined as Lc(x, u) = xTQx + uTRu, where Q and R are 
diagonal penalty matrices for the set-point error and control 

Fig. 7 – Time-varying profiles of the states and inputs for the second open-loop simulation under random time-varying 
inputs using the first-principles process model (red line), the partially-connected RNN model (blue line), and the fully- 
connected RNN model (black line).

Table 2 – Open-loop prediction results (MSE). 

State Modeling architecture

FCRNN PCRNN

x1 0.0065 0.0011
x2 125.4551 52.2929
x3 0.0134 0.0031
x4 156.3076 15.1736

Fig. 8 – Time-varying profiles of the states and inputs for the open-loop simulation under a step change in u2 using the first- 
principles process model (red line), the partially-connected RNN model (blue line), and the fully-connected RNN model 
(black line).
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actions, respectively. The two matrices critically impact the 
performance of the LMPC and require proper tuning. MPC 
tuning guidelines discussed in Alhajeri and Soroush (2020)
are followed. Lastly, we choose V(x) = xTPx as the Lyapunov 
function, where P is a positive definite matrix obtained by 
applying a grid search.

Under the LMPCs, we perform closed-loop simulations 
initiating from two different initial conditions, and the 

results are shown in Figs. 9 and 10. From the figures, both 
LMPCs, each based on its predictive RNN model, were able to 
drive the states to the steady-state values and to stabilize the 
system within a small neighborhood around the origin. 
However, the partially-connected RNN-based LMPC yielded 
better performance in terms of state trajectories being 
smoother and not exhibiting fluctuation around the steady 
state. Moreover, the MSE of each state corresponding to the 

Fig. 9 – State and input profiles of the first closed-loop simulation under the LMPC using three models: first-principles (red 
line), partially-connected RNN (blue line), and fully-connected RNN (black line).

Fig. 10 – State and input profiles of the second closed-loop simulation under the LMPC using three models: first-principles 
(red line), partially-connected RNN (blue line), and fully-connected RNN (black line).

Table 3 – Closed-loop prediction results (MSE). 

State 1st Closed-loop Simulation 2nd Closed-loop Simulation

FCRNN PCRNN FCRNN PCRNN

x1 0.020705316 0.002051591 0.2411215725 0.025175541
x2 170.280344 39.13188574 596.3087136 88.72292971
x3 0.001812249 0.000111788 0.015817003 0.001061295
x4 3.788903947 0.511854559 20.3473683 0.400205264
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two RNN architectures are calculated for the two closed-loop 
simulations and presented in Table 3. As it can be noted from 
the table, the partially-connected RNN model yielded a more 
reliable controller with smaller MSE values by an order of 
magnitude compared to the fully-connected RNN model. Due 
to the fully-connected RNN’s deterioration in the prediction 
accuracy caused by the assumption that every input influ-
ences every potential output, these results are expected.

7. Conclusion

In this study, we used the Rademacher complexity approach 
for vector-valued functions to create an upper bound for the 
generalization error of two classes of RNN models—partially- 
connected and fully-connected—and LSTM networks. For the 
partially-connected RNN, theoretical results connecting a 
RNN model’s accuracy to its architecture were established 
and proved, as for the latter a generalizability bound for this 
specific structure of RNNs. Open-loop simulations utilizing a 
complex, nonlinear chemical process was performed to de-
monstrate the superior model accuracy of the partially-con-
nected RNN when compared to the fully-connected RNN 
across various testing data sets. Additionally, the developed 
partially-connected RNN model was then utilized in the de-
sign of a Lyapunov-based MPC. Through several closed-loop 
simulations, it was shown that adopting the partially-con-
nected RNN model yielded smoother state trajectories with 
lower loss function values (i.e., smaller mean squared errors), 
and the applied inputs suffered less from oscillatory be-
havior.
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