
Chemical Engineering Research and Design 205 (2024) 1–12

A
0

Contents lists available at ScienceDirect

Chemical Engineering Research and Design

journal homepage: www.elsevier.com/locate/cherd

Model predictive control of nonlinear processes using transfer learning-based
recurrent neural networks
Mohammed S. Alhajeri a, Yi Ming Ren b, Feiyang Ou b, Fahim Abdullah b,
Panagiotis D. Christofides b,c,∗

a Department of Chemical Engineering, Kuwait University, Safat 13060, Kuwait
b Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA
c Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095-1592, USA

A R T I C L E I N F O

Keywords:
Transfer learning
Masking technique
Weight sharing
Recurrent neural networks
Model predictive control
Nonlinear processes

A B S T R A C T

Artificial neural networks (ANNs), one of the deep learning techniques that has sparked a lot of attention
recently for its exceptional modeling capabilities of nonlinear systems, are an essential candidate for model-
based control systems. In particular, recurrent neural networks (RNN) have shown remarkable capacity to
forecast the dynamic behavior of nonlinear processes using time-series data. In order to regulate the rate at
which chemical species are produced in intricate processes, RNNs have successfully served as the predictive
model in model-based controllers. However, the necessity for massive amounts of data to capture complex
processes is a drawback of typical RNN models. With the goal of efficient utilization of the available data, a
different, transfer learning-based training approach for RNNs is presented in this work. The transfer learning
strategy is taken into consideration to overcome the challenges stemming from lack of data for the construction
of RNN models. In particular, weight-sharing RNNs are developed using a priori physical knowledge. Next, a
comprehensive analysis of a complex chemical process on a large scale is conducted to showcase the benefits
of the suggested approach across various data sizes and its effectiveness when combined with MPC in contrast
to conventional RNNs.
1. Introduction

With the continuous development of effective learning algorithms,
machine learning is receiving substantial interest across a variety of
engineering disciplines. Modeling highly nonlinear dynamical systems
is a long standing challenge since first-principles models can generally
not be derived for such systems or may not achieve the desired accu-
racy (Yin and Kaynak, 2015; Ghadami and Epureanu, 2022). In order
to represent nonlinear dynamic systems utilizing sequential or time-
series data, recurrent neural networks (RNNs) have been frequently
used (Wong et al., 2018; Zheng et al., 2022). RNNs have been used
in a number of studies to optimize process operation with guaranteed
stability and feasibility since they can capture nonlinear dynamics and
can be integrated into model predictive controller (MPC) schemes (Pan
and Wang, 2008; Xu et al., 2016; Zarzycki and Ławryńczuk, 2021).

Although machine learning (ML) has been found to be an effective
modeling tool for nonlinear, complex manufacturing processes (e.g.,
Ren et al., 2022), the majority of ML modeling is carried out for

∗ Corresponding author at: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA.
E-mail address: pdc@seas.ucla.edu (P.D. Christofides).

individual processes using historical data obtained from the particular
process of concern and the resulting model cannot then be used to
describe a broader class of processes with similar configurations. In
addition, the highly accurate ML models for such systems are con-
structed using large, clean, simulated data sets (e.g., Wu et al., 2022;
Alhajeri et al., 2022), which are often unavailable in practice. Since
the fidelity of ML models is highly dependent on the size and quality
of the training data, the deployment of ML models in practical systems
remains challenging because there often is not enough training data
available (Baier et al., 2019) due to it being expensive and often
impractical to install numerous sensors for measuring diverse physical
quantities with a high sampling rate. Nevertheless, the development
of RNN models for nonlinear process with limited data remains an
unanswered question, primarily due to the high volume of training
data required for machine learning modeling of highly nonlinear and
complex chemical processes, which is often challenging to acquire in
practical settings.
vailable online 20 March 2024
263-8762/© 2024 Institution of Chemical Engineers. Published by Elsevier Ltd. All

https://doi.org/10.1016/j.cherd.2024.03.019
Received 7 March 2024; Received in revised form 13 March 2024; Accepted 15 Ma
rights reserved.

rch 2024

https://www.elsevier.com/locate/cherd
https://www.elsevier.com/locate/cherd
mailto:pdc@seas.ucla.edu
https://doi.org/10.1016/j.cherd.2024.03.019
https://doi.org/10.1016/j.cherd.2024.03.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cherd.2024.03.019&domain=pdf

Chemical Engineering Research and Design 205 (2024) 1–12M.S. Alhajeri et al.

c
i
I
c
t
c

2

o
o
n
t

𝑥

w
s
d
𝑖
e
p
d
o

𝑢

w
e
s
s
t
i

𝑥

w
c
t
r
t
i

Transfer learning (TL) is a method that entails the transfer of
knowledge from a source process abundant in data to a target process
with minimal data availability. TL serves as a potent strategy for
mitigating data scarcity in the modeling of chemical processes and
facilitates transfer of physical knowledge to novel processes (Amabilino
et al., 2020). In particular, transfer learning involves the adaptation of
a pretrained model originally designed for a data-rich source process
to suit a target process with limited data. This approach aims to
enhance both learning speed and training performance compared to the
primitive method of training a machine learning model for the target
process from the ground up without utilizing any prior knowledge,
effectively treating machine learning modeling as a purely black-box
procedure. Several approaches for transfer learning have been devel-
oped, including instance-based, feature-based, parameter-based, and
relational-based methods.

Given the high data requirements for neural network (NN) models,
transfer learning has been growing in popularity and applicability in
many domains where NN models are used, within and beyond the
computer science domain. In process systems engineering, TL has been
used in a number of various areas, including the development of
efficient meta-models to assist high-fidelity computational fluid dy-
namics simulations (Chuang et al., 2018) and non-invasive monitoring
of opaque multiphase flow systems (Lindner et al., 2022). Possibly
the widest application of TL in process systems is in fault detection,
prognostics, and diagnostics, where TL has been used for improving
detection of unknown faults (Wang et al., 2022), for multimode chem-
ical processes where the number of data points available for faulty
process operation may vary greatly between the modes or steady-state
operating points (Wu and Zhao, 2020; Zhou et al., 2023), and to build
models based on simulation data and use a smaller data set from a
physical process to improve model performance (Li et al., 2020). In
terms of process modeling and optimization, the field of TL is still in
its infancy. Laptev et al. (2018) have shown that the incorporation of
transfer learning dramatically improves time-series forecasting accu-
racy in most cases, especially under small to medium training data size
conditions. In healthcare applications, Gupta et al. (2020) proposed the
usage of transfer learning for time-series classification tasks by adapting
a pre-trained RNN on a diverse set of tasks to predict new related tasks.
In environmental science applications, Fong et al. (2020) have demon-
strated that applying transfer learning on LSTM RNNs for the prediction
of air pollutant concentrations leads to not only a higher level of
prediction accuracy but also reduced training time. TL has also been
applied to find potential design changes to improve the performance
of fuel cells (Briceno-Mena et al., 2023). To build predictive models
for unseen bioprocesses, Rogers et al. (2022) investigated two different
case studies and various network topologies for TL. While the results
were promising, the network topology greatly impacted the results,
and it is generally not clear for process systems how the topology
must be altered, if required, for efficient transfer learning. Xiao and
Wu (2023) proposed a physics-based TL methodology to obtain an ML
model for a larger chemical process network based on a limited number
of subsystems from the network.

An accurate process model is an essential initial step for advanced
process control employing model-based controllers, such as model pre-
dictive controllers (MPC). Model accuracy remains the primary factor
in helping MPC cope with various systems, even with the availability
of several tuning parameters. Owing to the aforementioned modeling
difficulties, transfer learning offers a chance to quickly construct new
NN models for process systems by leveraging old models and scarce
new data sets; these models can then be used in MPC if they are judged
accurate enough. The development of TL models for MPC has been
investigated in Xiao et al. (2023), where generalization error bounds
as well as a blueprint for the construction of TL models based on the
model capacity and discrepancy between source and target domains
2

were derived. s
Motivated by the above considerations, in this work, we propose
a transfer learning based RNN architecture, specifically weight-sharing
RNN model to incorporate process physical knowledge into RNN mod-
eling and training. Subsequently, the proposed weight-sharing RNN
model is incorporated in the design of an MPC to provide predictions of
future states for the optimization problem to optimize process perfor-
mance in terms of closed-loop stability and setpoint tracking. Finally,
the RNN-MPC is applied to a chemical process example to demonstrate
its improved closed-loop performances in terms of faster convergence
to the steady-state under RNN-MPC and enhanced dynamical behavior
in terms of lower cost, and faster and smoother responses under RNN
based MPC than the controllers using a conventional RNN (C-RNN)
model.

2. Preliminaries

2.1. Notation

The notation |⋅| is used to represent the Euclidean norm, while
𝑥𝑇 denotes the transpose of 𝑥. A function 𝑓 (⋅) is of class 1 if it is
ontinuously differentiable in its domain. Finally, for variable notation
n this paper, 𝑥 is used to denote two objects depending on the context.
n the context of control, 𝑥 denotes the states within the system. In the
ontext of machine learning, 𝑥 denotes the input to the model. This is
o keep the notation consistent with other work in the fields of both
ontrol systems and machine learning.

.2. Class of systems

In this work we consider a generalized nonlinear multi-input multi-
utput (MIMO) system with subsystems, where each subsystem depends
n its own inputs and the outputs of the previous subsystems. A
onlinear state-space representation is used for each subsystem, with
he dynamics of the 𝑛 subsystems expressed as:

�̇�1 = 𝑓1(𝑥1, 𝑢1, 𝑥0), 𝑥1(𝑡0) = 𝑥1,0 (1a)

̇ 2 = 𝑓2(𝑥2, 𝑢2, 𝑥1), 𝑥2(𝑡0) = 𝑥2,0 (1b)
⋮

�̇�𝑛 = 𝑓𝑛(𝑥𝑛, 𝑢𝑛, 𝑥𝑛−1), 𝑥𝑛(𝑡0) = 𝑥𝑛,0 (1c)

here 𝑓𝑖 represents the vector of nonlinear differential equations de-
cribing the evolution of the state variables for subsystem 𝑖, and 𝑡
enotes time. The state vector 𝑥𝑖(𝑡) represents the state of subsystem
, and �̇�𝑖(𝑡) is its time derivative. The input vector 𝑢𝑖(𝑡) consists of
xternal inputs to subsystem 𝑖, and 𝑥𝑖−1(𝑡) represents the outputs of the
receding subsystems that serve as inputs to subsystem 𝑖. To model the
ependencies, the input vector 𝑢𝑖(𝑡) for subsystem 𝑖 will also include its
wn inputs:

𝑖(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑢𝑖,1(𝑡)
𝑢𝑖,2(𝑡)
⋮

𝑢𝑖,𝑚𝑖
(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

here 𝑢𝑖,𝑗 (𝑡) is the 𝑗th input to subsystem 𝑖. The overall model for the
ntire nonlinear MIMO system, considering the dependencies between
ubsystems, can be obtained by connecting the equations of each
ubsystem. Specifically, the outputs of each subsystem become part of
he inputs for the subsequent one. Hence, the model can be represented
n vector form as:

̇ = 𝐹 (𝑥, 𝑢) (2)

here 𝑥 = [𝑥1,… , 𝑥𝑛]𝑇 and 𝑢 = [𝑢1,… , 𝑢𝑚]𝑇 . This generalized model
aptures the nonlinear interactions and dependencies between subsys-
ems in a MIMO system, allowing for flexibility in representing a wide
ange of nonlinear dynamic systems. The functions 𝑓𝑖 would be tailored
o the specific dynamics of each subsystem in the context of the overall
nterconnected system. 𝐹 = [𝑓1,… , 𝑓𝑛]𝑇 is assumed to be sufficiently

mooth vector functions in its domain.

Chemical Engineering Research and Design 205 (2024) 1–12M.S. Alhajeri et al.

b
i
w

𝑥

Fig. 1. A schematic of a recurrent neural network.
2.3. Stabilizability assumption

With respect to stability, it is assumed that there exists a stabilizing
feedback control law of the type 𝑢 = 𝛷(𝑥) ∈ 𝑈 , whose goal is to
guarantee exponential stability of the origin of the nominal system of
Eq. (2) in closed loop. Specifically, there exists a control Lyapunov
function of class 1, represented as 𝑉 (𝑥), such that, for all 𝑥 inside
an open neighborhood 𝐷 around the origin, the following inequalities
hold:

𝑐1|𝑥|
2 ≤ 𝑉 (𝑥) ≤ 𝑐2|𝑥|

2, (3a)

𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥,𝛷(𝑥)) ≤ −𝑐3|𝑥|
2, (3b)

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

|

|

|

|

≤ 𝑐4|𝑥| (3c)

where 𝑐1, 𝑐2, 𝑐3, 𝑐4 are all positive real numbers. The controller 𝛷(𝑥) can
e constructed in the form of the universal Sontag control law proposed
n Lin and Sontag (1991). First, we can designate a region associated
ith the stabilizing controller 𝑢 = 𝛷(𝑥) ∈ 𝑈 where the time-derivative

of 𝑉 occurs to be negative (i.e., Eq. (3b) holds), according to Wu et al.
(2019). Then, given 𝜌 > 0 and 𝛺𝜌 = {𝑥 ∈ R𝑛

|𝑉 (𝑥) ≤ 𝜌}, the closed-loop
stability region 𝛺𝜌 is found to be a level set of 𝑉 (𝑥) within the area 𝐷.

2.4. Recurrent neural network (RNN)

A recurrent neural network (RNN) is a type of machine learning
models that is well-suited for approximating dynamical systems due to
its inherent ability to capture temporal dependencies and sequential
patterns within data sequences based on its architecture allowing for
previous information to influence current and future outputs. Specifi-
cally, the RNN is able to retain the memory of the prior states because
to the recursive activity in the hidden layer neurons, which helps with
time-series dataset approximation. Using process operational data, the
RNN model employed in this work for modeling the nonlinear system
of Eq. (2) can be expressed as follows:

̇̄ = 𝐹𝑛𝑛(�̄�, 𝑢) ∶= 𝐴�̄� + 𝛩𝑇 𝑦 (4)

where the manipulated input vector is 𝑢 = [𝑢1,… , 𝑢𝑚], and the state
vector of the RNN is represented by �̄� = [�̄� ,… , �̄�]. The vector 𝑦 is
3

1 𝑛
expressed as [𝑦1,… , 𝑦𝑛, 𝑦𝑛 + 1,… , 𝑦𝑛+𝑚] as it is a vector of both �̄� and
𝑢. In 𝐑𝑛+𝑚, 𝑦 = [𝜎(�̄�1),… , 𝜎(�̄�𝑛), 𝑢1,… , 𝑢𝑚]. The nonlinear activation
function (e.g., a hyperbolic tangent function) utilized in the hidden
layers is denoted by the notation 𝜎(⋅). 𝐴 = diag[−𝑎1,… ,−𝑎𝑛] is a
diagonal and negative coefficient matrix, where 𝑎𝑖 > 0 such that each
state �̄� is stable in the terms of bounded-input bounded-state stability.
𝛩 = [𝜃1,… , 𝜃𝑛] ∈ 𝐑(𝑛+𝑚)×𝑛 represents a matrix containing associated
weights (i.e., 𝜃) to be optimized throughout the neural network training
process. Each vector 𝜃𝑖 = 𝑏𝑖[𝑤𝑖1,… , 𝑤𝑖(𝑛+𝑚)] is an element of 𝛩 where 𝑏𝑖
is a constant, and 𝑤𝑖𝑗 denotes the weight on the linkage that connects
the 𝑗th input to the 𝑖th neuron where 𝑗 = 1,… , (𝑛 + 𝑚) and 𝑖 = 1,… , 𝑛
(see Fig. 1).

Subsequently, the RNN is trained following a standard learning
procedure as discussed in Wu et al. (2019) and Alhajeri et al. (2022).
The datasets for training, validation and testing are generated from
extensive open-loop simulations of the process model under sufficient
variation of initial conditions and control actions. In particular, the
continuous-time system of Eq. (2) is numerically integrated using the
explicit Euler method with an appropriately small integration time
step ℎ𝑐 , and the control actions 𝑢 are implemented in a sample-and-
hold fashion, i.e., 𝑢(𝑡) = 𝑢(𝑡𝑘), ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), where 𝑡𝑘+1 ∶= 𝑡𝑘 + 𝛥,
and 𝛥 denotes sampling period. RNNs are known for their ability to
capture nonlinear dynamic behavior from time-series data (Park and
Sandberg, 1991; Chen and Chen, 1995). Furthermore, RNNs can be
trained using all or some of the integration step data points (i.e., data at
each integration time step ℎ𝑐) within each sampling period to capture
the state evolution. Finally, the RNN model is required to achieve a
sufficiently small modeling error 𝜈 (i.e., |𝜈| = |𝐹 (𝑥, 𝑢) − 𝐹𝑛𝑛(�̄�, 𝑢)| ≤
𝛾|𝑥| ≤ 𝜈min, where 𝛾, 𝜈min > 0) during the model training process, to
ensure that it can accurately represent process dynamics within the
considered operating region.

Remark 1. The modeling error, denoted as 𝜈, varies across different
inputs and states, and it is not a constant. However, constraining the
operation to the stability region 𝛺𝜌 ensures that both inputs and states
remain bounded. Consequently, training the RNN model using datasets
generated within 𝛺𝜌 allows the modeling error to be upper bounded by
a sufficiently small positive value 𝜈min for all states within the stability
region (Golowich et al., 2018; Wu et al., 2022; Alhajeri et al., 2023).

Chemical Engineering Research and Design 205 (2024) 1–12M.S. Alhajeri et al.

2

3

(
t
I
f
t
m
i
s
W
t
a
n
R
l

m
o
o
d
a
b
d
e
r
s
A
i

T
m
s
t
t
i
o
−
t
a
c

𝐹

3. Leveraging prior knowledge

3.1. Transfer learning: Use of structure and weights

Transfer learning is a technique used in deep learning to take
advantage of the knowledge learned in trained reference models to
train similar models. According to Bozinovski (2020), the basis of
this method roots back to a report published in the 70 s, which
was then researched and developed further for numerous applications
afterwards (Tan et al., 2018).

In neural network training, weight initialization is a significant
factor in determining a neural network’s performance, instigating a
breadth of literature in this domain in recent years (Narkhede et al.,
2022). Initializing the weights and bias of a new model with the trained
weights and bias of a reference model can be one effective way to reuse
the prior knowledge (Yosinski et al., 2014). This method requires the
input dimension, output dimension and network structure of the new
model to be exactly the same as the reference model. The real-world ap-
plication of the aforementioned weight initialization method in the area
of chemical processes can take a variety of forms, such as the case when
the catalyst in a chemical reactor is changed, either due to reduced
activity or replacement with a new type of catalyst entirely. As only
the activation energy of reaction changes, with no other change in state
variables and controlled variables, the input and output dimensions of
the network remain exactly the same as the model trained with the data
generated with the old catalyst in use. Nevertheless, when the number
of state variables and/or controlled variables change in the modeling
process, extraction and modifications of the weights of the pre-trained
model is required to transfer the knowledge of the reference model to
the other model. One approach to solve this problem is to create a new
model by adding fully connected layer before the input layer and after
the output layer of reference model to adapt the change of dimension of
input and output dimensions. To preserve the prior knowledge saved in
reference model, the middle reference model part of the new model is
set to be non-trainable, only train the two fully connected layers. After
that, the middle reference model part is reset to trainable to fine tuning
the result model. Since preserving prior knowledge is still essential in
the fine tuning step, the learning rate should be set to an extremely
low value to prevent losing of knowledge. While a low learning rate
may generally decelerate the model training process, the re-training of
the model for subsequent subsystems occurs with significantly smaller
data sets. As a result, each epoch takes a significantly shorter time, and
the overall transfer learning model training occurs within a reasonable
time even with the low value of the learning rate. The commonly used
value is 10−5 according to Keras Tutorial Documents (Gulli and Pal,
017).

.2. Weight-sharing RNN: Efficient use of data and training method

In transfer learning, neural network trained from a large dataset
ex: MNIST) is used to fit a smaller (more specific) dataset by freezing
he early layer weights and only fine-tuning the latter layer weights.
n the proposed weight-sharing RNN (WS-RNN), the weights are not
rozen and are optimized normally during backpropagation. Rather
han reusing model structure and parameters, the WS-RNN changes the
odel structure to more efficiently use the existing datasets. Specif-

cally, the WS-RNN excels at modeling a system with multiple similar
ubsystems compared to traditional RNNs. The main motivation behind
S-RNN is that we hope to leverage all subsystems’ known similarities

o improve the learning of complex dynamics. Instead of training sep-
rate neural network models for each subsystem, a generalized neural
etwork model is trained for the overall system. In the proposed WS-
NN, we change the input and output layers of the neural network to

everage multiple subsystem states (𝑥1, 𝑥2, . . . , 𝑥𝑛) and inputs (𝑢1, 𝑢2,
+ + +
4

. . . , 𝑢𝑛) so that it can predict future subsystem states (𝑥1 , 𝑥2 , . . . , 𝑥𝑛).
This formulation is similar to the approach of using a regular RNN
that models the system as a whole as both neural networks will take
all states, 𝑋 = [𝑥1,… , 𝑥𝑛], and manipulated inputs, 𝑈 = [𝑢1,… , 𝑢𝑚], as

odel inputs and the future system states, �̄� = (𝑥+1 , 𝑥+2 , . . . , 𝑥+𝑛), as
utputs at 𝑡 = 𝑡𝑘 + 𝛥. A problem associated with this type of input–
utput formulation is that, in many cases, there might not be enough
ata and, in certain scenarios, not all subsystems will have the same
mount of data. When there is an insufficiency or imbalance of data
etween subsystems, this type of neural network model can only use
ata up to the subsystem with the least amount of data. In addition,
ach subsystem’s data also must be from the same experiment and
ecorded at the same time as all other subsystems to ensure the data
ampling is consistent, otherwise causing further data usage limitations.
s a result, it is critical to address this issue by establishing input

ndependence across the subsystems.
In the proposed weight-sharing RNN, which will be referred to as

L-RNN, we attempt to alleviate these problems through the use of a
asking technique by hiding certain inputs and outputs for different

ubsystems, and thus creating independence. In other words, while
he input and output shapes for the TL-RNN are constant, during
raining and inference, each subsystem is trained and evaluated using
ndependent datasets with masks. Specifically, the inputs and outputs
f the TL-RNN will be masked with out-of-bound values (i.e., generally
1 if using data scaled from 0 to 1, or −∞ otherwise). Correspondingly,

he loss function also needs to be altered appropriately so that states
ssigned with the masked values are skipped during the loss function
alculation as shown in Eq. (5) below:

𝑙𝑜𝑠𝑠(�̄�𝑡, �̄�𝑝) =

{

�̄�2𝑡 − �̄�2𝑝 �̄�𝑡 ≠ mask_val
0 �̄�𝑡 = mask_val

(5)

where 𝐹𝑙𝑜𝑠𝑠 is the loss function for each sample, while �̄�𝑡 and �̄�𝑝 are the
true and the predicted output, respectively. The loss function is changed
in a way so that masked states do not affect the gradient optimization
during training. As the contribution of the masked data points to the
loss function or accuracy metric is zeroed, the masking value itself does
not have any impact on the training or accuracy metrics. The mask
value is simply chosen in a manner that allows the masked data points
to be easily filtered out of the training data set based on the valid range
of the variable(s). The input layer is where all inputs will be fed into
the model. In particular, the masked inputs will also be assigned values
that are outside of the range; as a result, the weights associated with the
masked inputs will be forced to be extremely small to maintain validity
of the output of the layer for forward propagation, causing the training
to focus on the unmasked inputs. These changes to the input, output,
and loss function will allow the TL-RNN to recognize which subsystem
it is predicting through the mask placements.

While each subsystem is trained using independent datasets, the
training of the weights themselves is not independent as all subsystems
share the same weights within the TL-RNN. As the TL-RNN weights are
optimized using one subsystem’s data, these weights will also affect
the prediction of all other subsystems. An advantage of dynamically
sharing weights is that the shared components between subsystems
can be learned easier because the initial model, trained with a large
dataset, can already capture these dynamics and will not need sig-
nificant retraining even when the model is generalized to the larger
system. Furthermore, all subsystems’ data contribute to the training of
this shared aspect and will only improve the model further when newer,
smaller datasets are added. For example, if two reactors share the same
underlying reaction mechanism despite having different hardware spec-
ifications (size, input flow rates), the TL-RNN can learn this complex
reaction through the data from both reactors. Conversely, if the two
subsystems differ significantly in their underlying mechanisms, then
this weight sharing property of the TL-RNN will result in performance
deterioration rather than improvement.

Chemical Engineering Research and Design 205 (2024) 1–12M.S. Alhajeri et al.

T
s
a
𝑥
𝑥
o
t
o
t

Fig. 2. Masking procedure of WS-RNN training data set for a system comprising of 𝑛 = 3 subsystems with 3 variables (2 states and 1 manipulated input) per subsystem. Variables
in gray are masked.
R
c
s
e
i
k
s
w
b
d
a
d
e
c
i
m
a
f
o
t

4

L
m
M

s

w
t
s
i
𝑉

Remark 2. It is important to note that, as the number of subsystems
𝑛 increases, the number of layers and number of neurons within each
recurrent unit also need to increase to compensate for the increased
system complexity. While theoretically, as 𝑛 becomes very large, the
WS-RNN will not suffer deteriorating model performance, in practice,
longer training times and memory consumption requirements must be
considered before increasing 𝑛.

The WS-RNN training procedure for a system of 𝑛 subsystems con-
sists of 𝑛 training phases. In the 𝑖th subsystem’s training phase, the
inputs of the downstream subsystems, i.e., (𝑖 + 1)th, (𝑖 + 2)th, . . . , 𝑛th

are masked. Additionally, the outputs of all other subsystems, i.e., 1st,
2nd, . . . , (𝑖 − 1)th, (𝑖 + 1)th, . . . , 𝑛th are also masked. In this manner,
two advantages are expected: (1) only upstream subsystems’ inputs are
allowed to affect the 𝑖th subsystem’s output, better representing the
physics and (2) by masking upstream subsystems’ outputs, the model
only captures the dependencies between the inputs and specifically the
𝑖th subsystem’s outputs at the respective training phase.

To illustrate the WS-RNN training, consider a system comprising of
3 subsystems (𝑛 = 3) with an original data set represented as 𝐷𝑆. The
development of a TL-RNN model for the described system is as follows:

1. Mask all inputs and outputs of subsystems 2 → 3 in the training
data set to create a new data set denoted as 𝐷𝑆𝑀1

, where 𝐷𝑆𝑀𝑖
denotes all inputs of subsystems 𝑖 + 1 and above as well as all
outputs other than that of subsystem 𝑖 being masked.

2. Develop a conventional RNN model with the dataset 𝐷𝑆𝑀1
.

3. For subsystem 2, mask all inputs of subsystem 3 and all outputs
of subsystems 1 and 3 in the training data set to create a new
data set denoted as 𝐷𝑆𝑀2

.
4. Retrain the developed RNN model of Step 2 following Pseu-

docodes below.
5. For subsystem 3 (i.e., 𝑛th), mask the outputs of subsystems 1 and

2 to create a data set 𝐷𝑆𝑀3
to retrain the model developed in

Step 4.

he above training procedure is depicted in Fig. 2 for a system with 3
ubsystems, where each subsystem is characterized by 2 state variables
nd 1 input variable. Specifically, subsystem 1 consists of states 𝑥1 and
2 and manipulated input variable 𝑢1, subsystem 2 consists of states
3 and 𝑥4 and manipulated input variable 𝑢2, and subsystem 3 consists
f states 𝑥5 and 𝑥6 and manipulated input variable 𝑢3. The RNN model
akes as input the 6 state variables and 3 manipulated inputs for a total
f 9 variables to predict the 6 state variables in the future, which are
5

he RNN model output variables. u
emark 3. The knowledge transferred between models are (a) the
ore dynamics of the process as well as (b) interconnectivity between
ubsystems within the overall system. Specifically, the reactions within
ach reactor do not change and the dynamics are captured by the
nitial model built using a large data set from the first reactor. This
nowledge is transferred in the proposed weight-sharing approach
ince the initial model is only fine-tuned in subsequent training phases
ith low values of the learning rate. With respect to interconnectivity
etween subsystems, the fact that upstream processes and tasks affect
ownstream ones but not vice versa is enforced at every training phase
nd the knowledge of how the state prediction of each subsystem is
ependent on its inputs is transferred between training phases. For
xample, in Fig. 2, the effects of 𝑥1, 𝑥2, 𝑢1 on 𝑥+1 and 𝑥+2 are already
aptured in the initial RNN model and transferred to the second model
n the training of subsystem 2. Since state predictions 𝑥+1 and 𝑥+2 are
asked in training phase 2, the effects of 𝑥1, 𝑥2, 𝑢1 on only 𝑥+3 and 𝑥+4

re captured in the second training phase. Similarly, the in the third and
inal training phase, the knowledge of the first 6 variables’ dependence
n the first four states’ predictions that has already been captured is
ransferred.

. Neural network-based model predictive control (MPC)

This section describes the integration of an RNN model into a
yapunov-based model predictive controller (LMPC), with the RNN
odel providing state predictions for the cost function estimation. The
PC optimization problem is formulated as follows:

 = min
𝑢∈𝑆(𝛥)∫

𝑡𝑘+𝐻𝑃

𝑡𝑘
𝐿(�̃�(𝑡), 𝑢(𝑡)) d𝑡 (6a)

.t. ̇̃𝑥(𝑡) = 𝐹𝑛𝑛(�̃�(𝑡), 𝑢(𝑡)) (6b)

�̃�(𝑡𝑘) = 𝑥(𝑡𝑘) (6c)

𝑢(𝑡) ∈ 𝑈, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝐻𝑃
) (6d)

�̇� (𝑥(𝑡𝑘), 𝑢) ≤ �̇� (𝑥(𝑡𝑘), 𝛷(𝑥(𝑡𝑘))), if 𝑥(𝑡𝑘) ∈ 𝛺𝜌 −𝛺𝜌𝑛𝑛 (6e)

𝑉 (�̃�(𝑡)) ≤ 𝜌𝑛𝑛, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝐻𝑃
), if 𝑥(𝑡𝑘) ∈ 𝛺𝜌𝑛𝑛 (6f)

here the predicted state trajectory is donated by �̃�. 𝑆(𝛥) represents
he set of constant piecewise functions with period 𝛥. For this MPC
cheme, the prediction horizon is denoted by 𝐻𝑃 . The function �̇� (𝑥, 𝑢)
n Eq. (6e) represents the time-derivative of the Lyapunov function

(i.e., 𝜕𝑉 (𝑥)
𝜕𝑥 𝐹𝑛𝑛(𝑥, 𝑢)). The optimal input series 𝑢∗(𝑡) is computed by

the LMPC across the given prediction horizon 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝐻𝑃
). The

system is instructed to implement the first optimal input 𝑢∗(𝑡𝑘) for the
pcoming sampling period, after which, the LMPC receives the new

Chemical Engineering Research and Design 205 (2024) 1–12M.S. Alhajeri et al.

w
E
o
E
I
v
w

E

Pseudocode 1: Transfer-learning based RNN model construction
via weight-sharing

Load the Model
{

Pre-trained model=load.model(‘RNN model’)
}
Training Data
{

New training data=load(‘𝐷𝑆𝑀𝑖
’)

}
Create new RNN model with the same architecture as the
pre-trained model

{
input layer:

layer class: Input
units: (number of input features in vector 𝑢)
input shape: (number of data points in the input data

sequence, number of input features in vector 𝑢)
connected to: hidden layer

hidden layer:
layer class: Long Short-term Memory
units: (Number of inputs) × (Number of outputs)
return sequences: true
activation function: hyperbolic tangent function (tanh)
recurrent activation function: sigmoid
recurrent initializer: orthogonal
use bias: true
connected to: output layer

output layer:
layer class: Dense
units: number of output
activation function: linear
output shape: (number of data points in the output data

sequence, number of outputs in vector 𝑥)
}

Weights sharing
{

New model weights= get.weights(‘Pre-trained model’)
}

state measurements and uses them to solve the control optimization
problem once more during the subsequent sampling period. Moreover,
the objective of the MPC optimization problem is to minimize 𝐿(�̃�, 𝑢),

hich is the time integral of the cost function, as represented in
q. (6a), over the prediction horizon 𝐻𝑃 , while fulfilling the constraints
f Eqs. (6b)–(6f). The first constraint of Eq. (6b) is the RNN model of
q. (4) that is utilized to predict the evolution of the closed-loop state.
n Eq. (6b), 𝑥(𝑡𝑘) is used as the initial condition of the RNN model state
ector �̃�. As for the inputs, their constraints are represented by Eq. (6d),
hich are applied throughout the entire prediction horizon.

To maintain closed-loop stability, the contractive constraint of
q. (6e) is activated when 𝑥(𝑡𝑘) ∈ 𝛺𝜌 − 𝛺𝜌𝑛𝑛 , i.e., when the state is

not yet within the final desired level set 𝛺𝜌𝑛𝑛 . This constraint forces the
Lyapunov function of the closed-loop states to decrease under the LMPC
and, as a result, the actual state will approach the origin in finite time,
eventually entering 𝛺𝜌𝑛𝑛 . Once the state 𝑥(𝑡𝑘) enters the desired region
𝛺𝜌𝑛𝑛 , then the predicted closed-loop state will be maintained within
this region for the entire prediction horizon as per Eq. (6f). The work
of Wu et al. (2019) demonstrated that, when using RNN-based LMPC
6

to control a nonlinear system as that of Eq. (2), the closed-loop state is
Pseudocode 2: Transfer-learning based RNN model training
Model compile
{

optimizer: Adam (other optimizers: RMSprop, SGD, etc.)
loss function: mean squared error (other metrics can be

utilized)
}

Early stop
{

monitor: validation loss
early stop condition: 1 × 10−8

}

Split of data set 𝐷𝑆𝑀𝑖
{

𝑥𝑡, 𝑦𝑡, 𝑥𝑣, 𝑦𝑣=train_test_split(𝐷𝑆𝑀𝑖
, split_ratio=0.8)

}

Model fit using 𝐷𝑆𝑀𝑖
data set

{
training:(𝑥𝑡, 𝑦𝑡) :

𝑥𝑡: python list (input training set for
input layer)
𝑦𝑡: python list (output training set for
output layer)

batch size: 32 (defaults value)
epochs: 50 (user choice, other numbers can be used)
validation:(𝑥𝑣, 𝑦𝑣) :

𝑥𝑣: python list (input validation set for
input layer)

𝑦𝑣: python list (output validation set for
output layer)

callbacks: early stop
}

guaranteed to be bounded within the stability region 𝛺𝜌 for all times,
and ultimately will converge to a small neighborhood around the origin
under the assumption that the modeling error 𝜈 is sufficiently small.

Remark 4. A state observer can be used to estimate the unmeasured
states from the measured ones in the event that 𝑥1,… , 𝑥𝑛 are not
entirely available via sensors. Two distinct machine learning-based
state estimators were created in an earlier work (Alhajeri et al., 2021)
within the framework of ML-based LMPC for nonlinear systems. It
was demonstrated that all state trajectories starting from different
initial conditions converged to the steady-state under the LMPC, with
accurate state estimates being obtained by both the hybrid-model based
estimator and the ML-based estimator.

5. Application to chemical process example

In this section, we use a chemical process example to evaluate
the proposed weight-shared RNN-based LMPC. Firstly, we develop a
dynamic model for a chemical process using first-principles modeling
principles. Subsequently, a time-series dataset of the process operation
is collected to train and test the RNN models via extensive open-loop
simulations of the first-principles model. Finally, open- and closed-loop
simulations under the RNN-model based LMPC are carried out and the
results discussed.

Chemical Engineering Research and Design 205 (2024) 1–12M.S. Alhajeri et al.
Fig. 3. Two continuous-stirred tank reactors in series.

Reactants 𝐴 and 𝐵 are used as raw materials in the production
process of the desired chemical 𝐷, as shown in Fig. 3. This process
involves two successive non-isothermal, well-mixed continuous stirred
tank reactors (CSTR) with a second-order, exothermic, irreversible
primary reaction and two side reactions. The mechanism of these three
reactions is described in Eq. (7) below:

𝐴 + 𝐵 → 𝐷 (main) (7a)

𝐴 +𝐷 → 𝑈𝐷 (7b)

𝐵 + 𝑈𝐷 → 2 𝐷 (7c)

By applying the tools of mass and energy balances, the first-principles
models for the CSTRs can be developed. Specifically, the dynamic
model of the first CSTR is represented by the following ODEs:
d𝐶𝐴1

d𝑡
=

𝐹1𝐶𝐴𝑜1 − 𝐹𝑜𝑢𝑡1𝐶𝐴1

𝑉1
− 𝑟1 − 𝑟2 (8a)

d𝐶𝐵1

d𝑡
=

𝐹1𝐶𝐵𝑜1 − 𝐹𝑜𝑢𝑡1𝐶𝐵1

𝑉1
− 𝑟1 − 𝑟3 (8b)

d𝐶𝐷1

d𝑡
=

−𝐹𝑜𝑢𝑡1𝐶𝐷1

𝑉1
+ 𝑟1 − 𝑟2 + 2𝑟3 (8c)

d𝐶𝑈𝐷1

d𝑡
=

−𝐹𝑜𝑢𝑡1𝐶𝑈𝐷1

𝑉1
+ 𝑟2 − 𝑟3 (8d)

d𝑇1
d𝑡

=
(𝑇01𝐹1 − 𝑇1𝐹𝑜𝑢𝑡1)

𝑉1
+

3
∑

𝑗=1

−𝛥𝐻𝑗

𝜌1𝐶𝑝
𝑟𝑗 +

𝑄1
𝜌1𝐶𝑝𝑉1

(8e)

while the dynamic model of the second reactor is given by the ODEs
below:
d𝐶𝐴2

d𝑡
=

𝐹2𝐶𝐴𝑜2 + 𝐹𝑜𝑢𝑡1𝐶𝐴1
− 𝐹𝑜𝑢𝑡2𝐶𝐴2

𝑉2
− 𝑟1 − 𝑟2 (9a)

d𝐶𝐵2

d𝑡
=

𝐹2𝐶𝐵𝑜2 + 𝐹𝑜𝑢𝑡1𝐶𝐵1
− 𝐹𝑜𝑢𝑡2𝐶𝐵2

𝑉2
− 𝑟1 − 𝑟3 (9b)

d𝐶𝐷2

d𝑡
=

𝐹𝑜𝑢𝑡1𝐶𝐷1
− 𝐹𝑜𝑢𝑡2𝐶𝐷2

𝑉2
+ 𝑟1 − 𝑟2 + 2𝑟3 (9c)

d𝐶𝑈𝐷2

d𝑡
=

𝐹𝑜𝑢𝑡1𝐶𝑈𝐷1
− 𝐹𝑜𝑢𝑡2𝐶𝑈𝐷2

𝑉2
+ 𝑟2 − 𝑟3 (9d)

d𝑇2
d𝑡

=
(𝑇02𝐹2 + 𝑇1𝐹𝑜𝑢𝑡1 − 𝑇2𝐹𝑜𝑢𝑡2)

𝑉2
+

3
∑

𝑗=1

−𝛥𝐻𝑗

𝜌2𝐶𝑝
𝑟𝑗 +

𝑄2
𝜌2𝐶𝑝𝑉2

(9e)

where the reaction rates are functions of concentrations and temper-
ature, and can be computed via the functions below, with 𝑖 = 1, 2:
7

Table 1
Parameter and steady-state values for the CSTRs.
𝑇1𝑜 = 350 K 𝑇1𝑠 = 310.523 K
𝑇2𝑜 = 350 K 𝑇2𝑠 = 430.542 K
𝐶𝐴1

= 4.2455 kmol∕m3 𝐶𝐴2
= 0.3254 kmol∕m3

𝐶𝐴𝑜
= 4 kmol∕m3 𝐶𝐵𝑜

= 5 kmol∕m3

𝐶𝐵1
= 5.3532 kmol∕m3 𝐶𝐵2

= 1.3841 kmol∕m3

𝐶𝐷1
= 0.1854 kmol∕m3 𝐶𝐷2

= 3.8744 kmol∕m3

𝐶𝑈𝐷1
= 9.1426 × 10−7 kmol∕m3 𝐶𝑈𝐷2

= 0.0058 kmol∕m3

𝑘1 = 1.528 × 106 m3∕kmol∕s 𝐹1 = 43.2 m3∕h
𝑘2 = 2.778 × 106 m3∕kmol∕s 𝐹2 = 91.079 m3∕h
𝑘3 = 0.4167 m3∕kmol∕s 𝑄1 s = 911.455 kJ∕s
𝐸1 = 71160 kJ∕kmol 𝑄2 s = 6835.270 kJ∕s
𝐸2 = 83680 kJ∕kmol 𝑇2𝑜 = 300 K
𝐸3 = 62760 kJ∕kmol 𝑉1 = 60 m3

𝐶𝑝 = 2.411 kj∕kg∕K 𝑉2 = 60 m3

𝑅 = 8.314 kJ∕(kmol K) 𝛥𝐻1 = −1.04 × 106 kJ∕kmol
𝜌1 = 683.7 kg∕m3 𝛥𝐻2 = −1.02 × 106 kJ∕kmol
𝜌2 = 607.5040 kg∕m3 𝛥𝐻3 = −5.05 × 102 kJ∕kmol

𝑟1 = 𝑘1𝑒
− 𝐸1

𝑅𝑇𝑖 𝐶𝐴𝑖
𝐶𝐵𝑖

(10a)

𝑟2 = 𝑘2𝑒
− 𝐸2

𝑅𝑇𝑖 𝐶𝐷𝑖
𝐶𝐴𝑖

(10b)

𝑟3 = 𝑘3𝑒
− 𝐸3

𝑅𝑇𝑖 𝐶𝑈𝐷𝑖
𝐶𝐵𝑖

(10c)

𝐹𝑖 and 𝐹𝑜𝑢𝑡𝑖 represent the inlet and outlet flow rates, respectively, of
stream 𝑖 (where 𝑖 = 1, 2) of the system. Furthermore, the notations
𝑇𝑖, and 𝑄𝑖 represent the reactor temperature, and the heat supply
rate, respectively, of the 𝑖th reactor. For the reactants and products
concentrations, we use the notation 𝐶𝑙𝑖 , where 𝑙 = 𝐴,𝐵,𝐷,𝑈𝐷. The
subscript ‘‘𝑜’’ is used to indicate the initial state of the process variables.
𝑉𝑖 is the volume of the reacting liquid, which has a density of 𝜌 and a
heat capacity of 𝐶𝑝 that are constant for both reactors. 𝑅 is the ideal
gas constant. 𝛥𝐻𝑗 , 𝑘𝑗 , and 𝐸𝑗 denote the 𝑗th reaction’s enthalpy, pre-
exponential constant, and activation energy, respectively, and these
parameters are unchanged for both reactors. Process parameter values
are listed in 1.

The manipulated inputs for this process are the heat supply rate to
both reactors (i.e., 𝑄1 and 𝑄2), which are represented in deviation form
from their steady-state values as 𝑢1 = 𝑄1−𝑄1𝑠 and 𝑢2 = 𝑄2−𝑄2𝑠. The up-
per and lower bounds on the inputs are [𝑈max, 𝑈min] = [5,−5]×105 kJ∕h,
respectively. Also the ten states are represented in deviation fashion
from their steady-state values, such that the origin is the equilibrium
point of the state-space representation of the underlying system.

5.1. Data generation and RNN models development and selection

It is well known that a large amount of data is required for the
development of neural network models. Furthermore, generally, if the
data is independent and identically distributed, the larger the size of
the data set, the more accurate the model can be (Sugiyama, 2015;
Wu et al., 2021). Hence, in this work, data was collected by simulating
the first-principles model of Eqs. (8)–(10) under different inputs while
recording all inputs and generated output values. Numerical integration
was used, specifically, Euler’s integration method with a small enough
integration step ℎ𝑐 to ensure stability and accuracy of the integration.

Using the machine learning library, Keras, the two RNN models are
constructed and trained regularly following Wu et al. (2019), where all
the process inputs and states at 𝑡 = 𝑡𝑘 are used as inputs for the model
to predict the process states at 𝑡 = 𝑡𝑘 + 𝛥.

For the TL-RNN, we developed different models based on different
portions of the training data set, as demonstrated in Fig. 4. Further-
more, each model was trained over two phases, where in phase one,
only the first CSTR’s input and five states are considered. This step is
done by masking the second CSTR’s states and input, 𝑥 − 𝑥 , and 𝑢 .
6 10 2

Chemical Engineering Research and Design 205 (2024) 1–12M.S. Alhajeri et al.

S
f
C
w
r
m
m

(
p

Fig. 4. TL-RNN model training schematic, where 𝑥𝑖 and 𝑢𝑖 at 𝑡 = 𝑡𝑘, and 𝑥𝑖+ is at 𝑡 = 𝑡𝑘 + 𝛥.
b
s
i
s

p
h
o
t

ubsequently, for phase two, the developed model was retrained but
or predicting the dynamics of the second reactor’s states, with the first
STR states and inputs masked. Technically, the weights of this model
ere basically transferred/shared from phase one to phase two, thus

esulting in a transferred knowledge model via weight-sharing. This
odel is anticipated to be able to predict the dynamics of both CSTRs
ore accurately than the conventional RNN model.

Following model development, the investigation of how data size
i.e., data availability) affects the accuracy of the TL-RNN model com-
ared to the C-RNN models is performed. We develop several models
8

o

ased on the two aforementioned methods using different training data
et sizes, and then test all of them on a designated data set that is not
ncluded in the training phase. Fig. 5 shows the overall testing mean
quared error (MSE) values for this study.

This comparison is essential in order to see how well each model
erforms on a set of unseen initial conditions. The total training dataset
as 1,000,000 initial conditions and we take different, random subsets
f the 1,000,000 data points to train the different models and evaluate
heir performance accordingly. Notably from Fig. 5, the TL-RNN model
utperforms the C-RNN at all data sizes. In addition, the difference

Chemical Engineering Research and Design 205 (2024) 1–12M.S. Alhajeri et al.
Fig. 5. Overall testing MSE results of both the TL-RNN and the C-RNN models based
on different training data sizes.

between the two models increases exponentially as the training data
size decreases, which aligns with our motivation of using data more
efficiently.

Next, we investigate the performance of predicting individual CSTR
states. During testing, we recorded the MSE values for each CSTR,
which are reported in Table 2. At larger data sizes, both models perform
relatively similar, which is as expected since there are enough data
points to capture the first CSTR’s input–output relationship. However,
as we decrease the data size, the C-RNN performs much worse than the
TL-RNN for predicting the first CSTR’s states. The reason for that result
roots to the fact that C-RNN model takes all the inputs and relate them
to all the outputs without relying on the existence of known physical
relations. This is more notable in the smaller data set scenarios.

Finally, for the second CSTR state predictions, the same procedure
was followed to find and tabulate the MSE values. As seen from Table 2,
TL-RNN always achieves a lower MSE than C-RNN, typically an order
of magnitude lower. This might be due to the fact that TL-RNN only
gives updates weight values to the relevant inputs to the neural network
based on the integrated physical knowledge (e.g., we know that 𝑥1−𝑥5,
and 𝑢1 do not affect the second CSTR’s states directly as only the
outputs, 𝑥+1 − 𝑥+5 , are relevant).

Remark 5. Although the proposed WS-RNN approach may seem
similar to the partially connected RNNs approach (Alhajeri et al.,
2022; Xu et al., 2021), in the WS-RNN, we are not using different
RNN structure or connections and weights, but instead we are sharing
weights by masking to achieve this desired accuracy via incorporating
the physical knowledge through the training data. Specifically, the
physical knowledge is incorporated into the data set and training rather
than network architecture.

5.2. Open-loop & closed-loop simulation results:

After developing both RNN models, we run an open-loop simulation
under random time varying inputs utilizing three models, the 2 RNN
models and the first-principles model, and depict the results in Fig. 6.
From the results, it can be noticed that both C-RNN and TL-RNN models
provide good agreement with the FP model, yet the TL-RNN model is
9

Table 2
Testing mean squared error for each reactor modeling by the two approaches.

Data size/model CSTR 1 CSTR 2

C-RNN TL-RNN C-RNN TL-RNN

10% 4.18 × 10−6 5.22 × 10−7 1.12 × 10−4 5.25 × 10−5

25% 3.40 × 10−6 2.2 × 10−7 5.74 × 10−5 4.87 × 10−6

50% 6.91 × 10−7 3.71 × 10−7 3.02 × 10−5 1.69 × 10−5

75% 4.31 × 10−7 2.58 × 10−7 2.13 × 10−5 6.41 × 10−6

99% 2.05 × 10−7 9.58 × 10−8 1.02 × 10−5 6.27 × 10−6

more accurate and its trajectory is closer to the trajectory of the true
process model.

Subsequently to the open-loop simulation, we implement the TL-
RNN model into the MPC scheme discussed in Section 4 and run
closed-loop simulations. The Lyapunov function 𝑉 is used in the form of
𝑉 = 𝑥𝑇 𝑃𝑥, where 𝑥 is the state matrix and 𝑃 is a positive definite matrix
tuned by trail-and-error in order to generate the largest stability region
under the feedback stabilizing controller. The LMPC objective function
is expressed in the form of 𝐿(𝑥, 𝑢) = 𝑥𝑇𝐐 𝑥+ 𝑢𝑇𝐑 𝑢, where 𝐐 and 𝐑 are
diagonal penalty matrices for the set-point error and control actions,
respectively. The two matrices need to be properly tuned because they
have a significant impact on the LMPC’s performance. The MPC tuning
recommendations given in Alhajeri and Soroush (2020) were followed.

Figs. 7–9 summarize the closed-loop simulation results based on
varying data availability, specifically 50%, 75%, and 99%, respec-
tively. In these closed-loop simulations, both RNN based LMPCs are
successfully able to achieve the main objective to drive the system to
the steady state and stabilize the system within a small neighborhood
around the origin. Fig. 7 shows the process dynamics under the three
LMPCs using only 50% of the available data set. The TL-RNN based
LMPC is clearly performing better in terms of its responsiveness, as
it responds more quickly and smoothly with notably less oscillation
compared to the C-RNN. From Figs. 8 and 9, as the data availability
increases to 75% and also up to 99% of total data set size, the two
RNN-based MPCs’ performance improved overall, which aligns with the
theoretical expectations. However, the C-RNN-based MPC is still having
noticeably oscillatory behavior and a slower response even when using
larger training data size, in contrast to the TL-RNN, which shows better
performance when using larger training data size.

During the closed-loop simulation session, the cost function 𝐿(𝑥, 𝑢)
values were recorded for each model under the different data fraction
scenarios. Fig. 10 shows how 𝐿 changes with data size. It is noticeable
that, with more data, the two RNN models tend to provide relatively
smaller and closer 𝐿 values. The importance of the TL-RNN model
is clear in the smaller data fractions, for example at 25%, where
the 𝐿 value associated with TL-RNN model is 15% smaller than that
associated with the C-RNN model. From these results, TL-RNN model
has shown to be more cost efficient in all scenarios and especially under
lower data availability.

6. Conclusion

In this work we investigated the utilization of transfer learning
in the framework of RNN-based MPC. The model accuracy of the
proposed TL-RNN and effect of data size were discussed. Open-loop
and closed-loop simulations under a model predictive controller were
carried out considering a process consisting of two CSTRs in series. The
results demonstrated improvement in model accuracy by using transfer
learning to develop the RNN model for a process with similar subsys-
tems, especially when dealing with small amount of data. Moreover,
closed-loop state trajectories under the TL-RNN-based MPC were in
close agreement with the first principles-based MPC trajectories with
overall smoother, faster, and less oscillatory responses than that under
the C-RNN-based MPC. Hence, for large-scale systems comprising of

similar subsystems, especially when the data set does not contain equal

Chemical Engineering Research and Design 205 (2024) 1–12

10

M.S. Alhajeri et al.

Fig. 6. Open-loop simulation results under random time-varying inputs, where the orange, blue, and green trajectories indicate the C-RNN, TL-RNN, and the FP models, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Closed-loop simulation with 50% of the data size.

Chemical Engineering Research and Design 205 (2024) 1–12

11

M.S. Alhajeri et al.

Fig. 8. Closed-loop simulation with 75% of the data size.

Fig. 9. Closed-loop simulation with 99% of the data size.

Fig. 10. Closed-loop cost function values based on data size and RNN modeling method.

Chemical Engineering Research and Design 205 (2024) 1–12M.S. Alhajeri et al.

a
r

D

c
i

A

p
w
i

R

A

A

A

A

A

B

B

B

C

C

F

G

G

G
G

proportions of data from the various subsystems, the proposed TL-RNN
methodology based on a priori process knowledge was shown to be

promising alternative to conventional RNNs that would be highly
estricted in its ability to use such a data set.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

Financial support from the National Science Foundation and the De-
artment of Energy is gratefully acknowledged. Mohammed S. Alhajeri
ould like to express his genuine appreciation to Kuwait University for

ts support.

eferences

lhajeri, M.S., Alnajdi, A., Abdullah, F., Christofides, P.D., 2023. On generalization
error of neural network models and its application to predictive control of nonlinear
processes. Chem. Eng. Res. Des. 189, 664–679.

lhajeri, M., Luo, J., Wu, Z., Albalawi, F., Christofides, P.D., 2022. Process structure-
based recurrent neural network modeling for predictive control: A comparative
study. Chem. Eng. Res. Des. 179, 77–89.

lhajeri, M., Soroush, M., 2020. Tuning guidelines for model-predictive control. Ind.
Eng. Chem. Res. 59 (10), 4177–4191.

lhajeri, M.S., Wu, Z., Rincon, D., Albalawi, F., Christofides, P.D., 2021. Machine-
learning-based state estimation and predictive control of nonlinear processes. Chem.
Eng. Res. Des. 167, 268–280.

mabilino, S., Pogány, P., Pickett, S.D., Green, D.V., 2020. Guidelines for recurrent
neural network transfer learning-based molecular generation of focused libraries.
J. Chem. Inf. Model. 60 (12), 5699–5713.

aier, L., Jöhren, F., Seebacher, S., 2019. Challenges in the deployment and operation
of machine learning in practice. In: Proceedings of the 27th European Conference
on Information Systems. ECIS, Stockholm & Uppsala, Sweden.

ozinovski, S., 2020. Reminder of the first paper on transfer learning in neural
networks, 1976. Informatica 44 (3).

riceno-Mena, L.A., Arges, C.G., Romagnoli, J.A., 2023. Machine learning-based surro-
gate models and transfer learning for derivative free optimization of HT-PEM fuel
cells. Comput. Chem. Eng. 171, 108159.

hen, T., Chen, H., 1995. Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical
systems. IEEE Trans. Neural Netw. 6 (4), 911–917.

huang, Y.-C., Chen, T., Yao, Y., Wong, D.S.H., 2018. Transfer learning for efficient
meta-modeling of process simulations. Chem. Eng. Res. Des. 138, 546–553.

ong, I.H., Li, T., Fong, S., Wong, R.K., Tallon-Ballesteros, A.J., 2020. Predicting
concentration levels of air pollutants by transfer learning and recurrent neural
network. Knowl.-Based Syst. 192, 105622.

hadami, A., Epureanu, B.I., 2022. Data-driven prediction in dynamical systems: recent
developments. Phil. Trans. R. Soc. A 380 (2229), 20210213.

olowich, N., Rakhlin, A., Shamir, O., 2018. Size-independent sample complexity of
neural networks. In: Conference on Learning Theory. PMLR, pp. 297–299.

ulli, A., Pal, S., 2017. Deep Learning with Keras. Packt Publishing Ltd.
upta, P., Malhotra, P., Narwariya, J., Vig, L., Shroff, G., 2020. Transfer learning for

clinical time series analysis using deep neural networks. J. Healthc. Inform. Res. 4
(2), 112–137.
12
Laptev, N., Yu, J., Rajagopal, R., 2018. Reconstruction and regression loss for time-
series transfer learning. In: Proceedings of the Special Interest Group on Knowledge
Discovery and Data Mining (SIGKDD) and the 4th Workshop on the Mining and
Learning from Time Series. MiLeTS, Vol. 20, London, UK.

Li, W., Gu, S., Zhang, X., Chen, T., 2020. Transfer learning for process fault diagnosis:
Knowledge transfer from simulation to physical processes. Comput. Chem. Eng.
139, 106904.

Lin, Y., Sontag, E.D., 1991. A universal formula for stabilization with bounded controls.
Systems Control Lett. 16 (6), 393–397.

Lindner, G., Shi, S., Vučetić, S., Mišković, S., 2022. Transfer learning for radioactive
particle tracking. Chem. Eng. Sci. 248, 117190.

Narkhede, M.V., Bartakke, P.P., Sutaone, M.S., 2022. A review on weight initialization
strategies for neural networks. Artif. Intell. Rev. 55 (1), 291–322.

Pan, Y., Wang, J., 2008. Two neural network approaches to model predictive control.
In: 2008 American Control Conference. IEEE, Seattle, WA, USA, pp. 1685–1690.

Park, J., Sandberg, I.W., 1991. Universal approximation using radial-basis-function
networks. Neural Comput. 3 (2), 246–257.

Ren, Y.M., Alhajeri, M.S., Luo, J., Chen, S., Abdullah, F., Wu, Z., Christofides, P.D.,
2022. A tutorial review of neural network modeling approaches for model
predictive control. Comput. Chem. Eng. 107956.

Rogers, A.W., Vega-Ramon, F., Yan, J., del Río-Chanona, E.A., Jing, K., Zhang, D.,
2022. A transfer learning approach for predictive modeling of bioprocesses using
small data. Biotechnol. Bioeng. 119 (2), 411–422.

Sugiyama, M., 2015. Introduction to Statistical Machine Learning. Morgan Kaufmann.
Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C., 2018. A survey on deep transfer

learning. In: Artificial Neural Networks and Machine Learning–ICANN 2018: 27th
International Conference on Artificial Neural Networks, Rhodes, Greece, October
4-7, 2018, Proceedings, Part III 27. Springer, pp. 270–279.

Wang, J., Zhang, W., Wu, H., Zhou, J., 2022. Improved bilayer convolution transfer
learning neural network for industrial fault detection. Can. J. Chem. Eng. 100 (8),
1814–1825.

Wong, W.C., Chee, E., Li, J., Wang, X., 2018. Recurrent neural network-based model
predictive control for continuous pharmaceutical manufacturing. Mathematics 6
(11), 242.

Wu, Z., Alnajdi, A., Gu, Q., Christofides, P.D., 2022. Statistical machine-learning-based
predictive control of uncertain nonlinear processes. AIChE J. 68, e17642.

Wu, Z., Rincon, D., Gu, Q., Christofides, P.D., 2021. Statistical machine learning in
model predictive control of nonlinear processes. Mathematics 9 (16), 1912.

Wu, Z., Tran, A., Rincon, D., Christofides, P.D., 2019. Machine learning-based predictive
control of nonlinear processes. Part I: theory. AIChE J. 65 (11), e16729.

Wu, H., Zhao, J., 2020. Fault detection and diagnosis based on transfer learning for
multimode chemical processes. Comput. Chem. Eng. 135, 106731.

Xiao, M., Hu, C., Wu, Z., 2023. Modeling and predictive control of nonlinear processes
using transfer learning method. AIChE J. 69 (7), e18076.

Xiao, M., Wu, Z., 2023. Modeling and control of a chemical process network using
physics-informed transfer learning. Ind. Eng. Chem. Res. 62 (42), 17216–17227.

Xu, J., Li, C., He, X., Huang, T., 2016. Recurrent neural network for solving model
predictive control problem in application of four-tank benchmark. Neurocomputing
190, 172–178.

Xu, Y., Xie, L., Dai, W., Zhang, X., Chen, X., Qi, G.-J., Xiong, H., Tian, Q.,
2021. Partially-connected neural architecture search for reduced computational
redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 43 (9), 2953–2970.

Yin, S., Kaynak, O., 2015. Big data for modern industry: Challenges and trends [point
of view]. Proc. IEEE 103 (2), 143–146.

Yosinski, J., Clune, J., Bengio, Y., Lipson, H., 2014. How transferable are features in
deep neural networks? Adv. Neural Inf. Process. Syst. 27.

Zarzycki, K., Ławryńczuk, M., 2021. LSTM and GRU neural networks as models of
dynamical processes used in predictive control: A comparison of models developed
for two chemical reactors. Sensors 21 (16), 5625.

Zheng, Y., Wang, X., Wu, Z., 2022. Machine learning modeling and predictive control
of the batch crystallization process. Ind. Eng. Chem. Res. 61, 5578–5592.

Zhou, Y., Jia, L., Zhang, Y., 2023. A transfer learning approach using improved copula
subspace division for multi-mode fault detection. Can. J. Chem. Eng. 101 (12),
7015–7030.

http://refhub.elsevier.com/S0263-8762(24)00163-1/sb1
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb1
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb1
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb1
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb1
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb2
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb2
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb2
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb2
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb2
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb3
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb3
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb3
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb4
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb4
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb4
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb4
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb4
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb5
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb5
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb5
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb5
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb5
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb6
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb6
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb6
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb6
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb6
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb7
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb7
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb7
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb8
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb8
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb8
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb8
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb8
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb9
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb9
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb9
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb9
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb9
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb10
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb10
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb10
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb11
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb11
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb11
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb11
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb11
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb12
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb12
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb12
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb13
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb13
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb13
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb14
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb15
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb15
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb15
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb15
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb15
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb16
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb16
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb16
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb16
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb16
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb16
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb16
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb17
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb17
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb17
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb17
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb17
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb18
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb18
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb18
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb19
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb19
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb19
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb20
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb20
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb20
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb21
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb21
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb21
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb22
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb22
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb22
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb23
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb23
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb23
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb23
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb23
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb24
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb24
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb24
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb24
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb24
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb25
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb26
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb26
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb26
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb26
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb26
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb26
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb26
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb27
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb27
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb27
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb27
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb27
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb28
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb28
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb28
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb28
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb28
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb29
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb29
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb29
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb30
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb30
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb30
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb31
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb31
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb31
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb32
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb32
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb32
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb33
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb33
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb33
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb34
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb34
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb34
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb35
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb35
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb35
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb35
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb35
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb36
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb36
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb36
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb36
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb36
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb37
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb37
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb37
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb38
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb38
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb38
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb39
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb39
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb39
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb39
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb39
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb40
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb40
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb40
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb41
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb41
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb41
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb41
http://refhub.elsevier.com/S0263-8762(24)00163-1/sb41

	Model predictive control of nonlinear processes using transfer learning-based recurrent neural networks
	Introduction
	Preliminaries
	Notation
	Class of Systems
	Stabilizability Assumption
	Recurrent Neural Network (RNN)

	Leveraging Prior Knowledge
	Transfer Learning: Use of Structure and Weights
	Weight-sharing RNN: Efficient Use of Data and Training Method

	Neural Network-based Model Predictive Control (MPC)
	Application to Chemical Process Example
	Data Generation and RNN Models Development and Selection
	Open-loop & Closed-loop Simulation results:

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

