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 a b s t r a c t

Control Lyapunov-barrier functions (CLBF) have been effectively employed in model predictive control (MPC) 
to ensure both closed-loop stability and operational safety in input-constrained nonlinear systems. In this work, 
we propose a novel CLBF-MPC framework that leverages physics-informed partially-connected recurrent neural 
network (PCRNN) models to enhance prediction accuracy by incorporating a priori process structural knowledge. 
The PCRNN architecture, designed based on known process interconnections, enables improved approximation 
of nonlinear dynamics which, when incorporated into a CLBF-MPC, allows for improved process operational 
safety by avoidance of unsafe regions in the state-space that would normally be encountered under regular 
MPC operation. The effectiveness of the proposed PCRNN-based CLBF-MPC is demonstrated through application 
to a chemical process example, where it achieves superior predictive performance and successfully maintains 
system safety by fully avoiding the bounded unsafe region, unlike the fully-connected black-box RNN model 
when incorporated into the same CLBF-MPC.

1.  Introduction

Ensuring safety within the chemical process industry is critical, given 
the profound impact that unsafe operations can have on both human 
lives and the environment. During the early years of the twenty-first cen-
tury, three major chemical incidents in the United States alone led to ex-
tensive financial losses, numerous injuries, and tragic fatalities (Sanders, 
2015). These severe events underscore the urgent need to develop novel 
methods for enhancing operational safety (Incidents, 2016). While de-
signing inherently safer processes at the outset is one approach, refining 
the design of process control systems remains vital for ensuring day-to-
day operational safety (Crowl and Louvar, 2011).

Model predictive control (MPC) has become a cornerstone in the con-
trol of industrial chemical plants because of its ability to handle com-
plex, multi-input multi-output systems while optimizing process perfor-
mance (Rawlings and Mayne, 2009). In particular, Lyapunov-based MPC 
formulations (Mhaskar et al., 2006; Muñoz de la Peña and Christofides, 
2008) provide guarantees on system stabilizability and feasibility by ex-
plicitly characterizing the region of attraction (often called the stability 
region) using an appropriately-designed Lyapunov-based control law.
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Over the last two decades, a novel approach known as control 
Lyapunov-barrier function (CLBF)-based control has emerged to simul-
taneously address both stability and safety concerns (Tee et al., 2009; 
Niu and Zhao, 2013; Jankovic, 2017). By integrating a control Lyapunov 
function (CLF) with a control barrier function (CBF)—through meth-
ods such as a weighted average (Romdlony and Jayawardhana, 2016) 
or a quadratic programming strategy (Ames et al., 2014)—CLBFs are 
capable of characterizing unsafe regions in the state-space. However, 
because CBFs describe unsafe regions as open and bounded sets rather 
than as direct state constraints, conventional MPC schemes may struggle 
to adequately address safety requirements expressed through CBFs. To 
address merging of CBFs into MPC frameworks to flexibly define unsafe 
regions while ensuring the system remains in safe operating zones, Wu 
et al. (2019) proposed a CLBF-MPC formulation that integrated a CLBF 
with MPC, which was able to provide recursive feasibility, guaranteed 
process safety, closed-loop stability even in the presence of input limi-
tations, and persistent avoidance of unsafe regions in the state space as 
the CLBF-MPC drove the state to the setpoint.

Recent advancements in machine learning (ML) have paved the 
way for significant enhancements in MPC strategies. By incorporating
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data-driven models, machine learning algorithms can capture complex 
nonlinear dynamics when trained with large data sets, thereby enhanc-
ing prediction accuracy and overall control performance. The litera-
ture covering the use of ML in control systems spans a broad range 
but, for dynamical systems, is primarily comprised of recurrent neu-
ral networks (RNNs) and its variants as well as, more recently, trans-
formers for sequence-to-sequence predictions. A recent survey of ML-
based MPC can be found in Ren et al. (2022). While the basic case of 
RNN-based MPC has been studied in-depth, there is a growing inter-
est, especially over the last decade, in more physics-based neural net-
work modeling due to the promising improvements in model perfor-
mance when ML methods are incorporated with known physical laws. 
For example, partially-connected RNNs that incorporate knowledge of 
the process structure in the network structure were found to outper-
form fully-connected RNNs that neglected domain knowledge in Alha-
jeri et al. (2022a), with a rigorous mathematical proof based on sta-
tistical machine learning conducted in Alhajeri et al. (2023). Further-
more, process structural knowledge-based transfer learning to improve 
the RNN model training in large systems that can be split into sub-
systems was shown in Alhajeri et al. (2024). Shah et al. (2022) pre-
sented a hybrid deep neural network by integrating a kinetics model 
for an industrial-scale fermentation process, experimentally validating 
model predictions and showing that time-varying parameter dependen-
cies can be accurately captured with significantly fewer parameters 
than a strictly data-driven model. Their hybrid model reduced the root 
mean squared error (MSE) of product, substrate and biomass concen-
tration predictions by over 25% relative to the kinetic model alone, 
and yielded a relative error of less than 10% on validation datasets for 
key states across multiple operating conditions. Silva et al. (2021) de-
veloped a hybrid modeling approach combining first-principles exergy 
analysis with machine learning to predict chemical exergy of biological 
molecules, demonstrating improved accuracy and interpretability rel-
ative to purely empirical or purely mechanistic models. Their method 
achieved an 𝑅2 of approximately 0.98 and average absolute error below 
0.6 MJ/kg when estimating specific chemical exergy across a diverse 
set of biomolecules. Xiao and Wu (2023) proposed a physics-informed 
transfer learning framework in which pretrained subsystem RNNs were 
embedded into a larger RNN model for the full process network, and 
process-structure and first-principles knowledge were enforced to im-
prove prediction accuracy under limited data. The proposed transfer 
learning-based RNN models achieved testing errors of 2.014 × 10−5 for 
the first CSTR and 1.25 × 10−5 for the second CSTR, while also signif-
icantly reducing the computation time required for characterizing the 
stability region using the TL model compared to conventional full search 
methods. While the previous works have demonstrated improved per-
formance of physics-informed RNNs when incorporated into MPC under 
normal as well as noisy conditions and to chemical/biological systems, 
to the best of our knowledge, the case of process safety and incorpo-
ration of physics-informed machine learning models in CLBF-MPC has 
not been studied. In this work, we present a novel CLBF-MPC approach 
using a physics-informed partially-connected RNN (PCRNN) as the pro-
cess model in MPC and demonstrate the effectiveness of the CLBF-MPC 
at preventing the states from entering the unsafe region when using the
PCRNN.

The remainder of this paper is structured as follows: Section 2 details 
the class of systems under consideration, RNN models, the stabilizabil-
ity assumption, and introduces the concepts of the unsafe region char-
acterization and barrier functions. In Section 3, we described physics-
informed RNN models, while the incorporation of the PCRNN into the 
CLBF-MPC is presented in Section 4. Finally, Section 5 presents a nonlin-
ear chemical process example that demonstrates the practical applicabil-
ity of the proposed PCRNN-based CLBF-MPC controller, with Section 6 
summarizing the conclusions.

2.  Preliminaries

2.1.  Notations

Throughout this manuscript, the notation | ⋅ | represents the Eu-
clidean norm of a vector. The notation 𝐿𝑓ℎ(𝑥) =

𝜕ℎ(𝑥)
𝜕𝑥 𝑓 (𝑥) denotes the 

standard Lie derivative. For set subtraction, “− ” is used, i.e., 𝐴 − 𝐵 =
{𝑥 ∈ ℝ𝑛

|𝑥 ∈ 𝐴, 𝑥 ∉ 𝐵}. A function 𝑓 (𝑥) is of class 1 if it is continuously 
differentiable. For given positive real numbers 𝛿 and 𝜖, 𝛿(𝜖) ∶= {𝑥 ∈
ℝ𝑛

||𝑥 − 𝜖| < 𝛿} is an open ball around 𝜖 with radius of 𝛿.

2.2.  Class of systems

We consider a class of multi-input multi-output (MIMO) nonlinear 
continuous-time systems represented by the following state-space form: 
𝑥̇ = 𝐹 (𝑥, 𝑢) ∶= 𝑓 (𝑥) + 𝑔(𝑥)𝑢 (1)

where the state vector of the system is 𝑥 = [𝑥1, ..., 𝑥𝑛]⊤ ∈ ℝ𝑛, and the 
manipulated input vector is 𝑢 = [𝑢1, ..., 𝑢𝑚]⊤ ∈ ℝ𝑚. 𝐹 (𝑥, 𝑢) represents a 
nonlinear vector function of 𝑥 and 𝑢 which is assumed to be sufficiently 
smooth. The constraints on control inputs are given by 𝑢 ∈ 𝑈 ∶= {𝑢𝑖min ≤
𝑢𝑖 ≤ 𝑢𝑖max}. The functions 𝑓 (⋅) and 𝑔(⋅) are nonlinear vector and matrix 
functions of dimensions 𝑛 × 1 and 𝑛 × 𝑚, respectively.

2.3.  Stabilizability assumption

For closed-loop stability considerations, we assume that there exists 
a positive definite control Lyapunov function 𝑉  for the system of Eq. (1) 
that satisfies the small control property (i.e., for every 𝜖 > 0,∃ 𝛿 > 0, s.t. 
∀𝑥 ∈ 𝛿(0) , ∃ 𝑢 that satisfies |𝑢| < 𝜖 and 𝐿𝑓𝑉 (𝑥) + 𝐿𝑔𝑉 (𝑥)𝑢 < 0, (Sontag, 
1989)) and the following condition holds :
𝐿𝑓𝑉 (𝑥) < 0,∀𝑥 ∈ 𝑧 ∈ ℝ𝑛 − {0}|𝐿𝑔𝑉 (𝑧) = 0

The CLF assumption indicates that there is a stabilizing feedback 
control law Φ(𝑥) ∈ 𝑈 for the system of Eq. (1) that ensures the origin of 
the closed-loop system is asymptotically stable for all 𝑥 within a neigh-
borhood of the origin, meaning that Eq. (1) holds when 𝑢 = Φ(𝑥) ∈ 𝑈 . 
A common example in practice of such a feedback control law is the 
Sontag law (Lin and Sontag, 1991). Using the Lyapunov-based control 
law Φ(𝑥), one defines the set 𝜙𝑢 as all states 𝑥 ∈ ℝ𝑛 for which the time-
derivative of 𝑉 (𝑥) is strictly negative when the input is 𝑢 = Φ(𝑥) ∈ 𝑈 , 
thereby ensuring a decreasing “energy” under the constrained input
law.

This set can be written as 𝜙𝑢 = {𝑥 ∈ ℝ𝑛
|𝑉̇ < 0, 𝑢 = Φ(𝑥) ∈ 𝑈} which 

identifies those states where the Lyapunov condition holds under the 
admissible control. By then introducing the subset Ω𝑏 as the level set 
of 𝑉 (𝑥) contained within 𝜙𝑢, namely Ω𝑏 ∶= {𝑥 ∈ 𝜙𝑢|𝑉 (𝑥) ≤ 𝑏, 𝑏 > 0} so 
that Ω𝑏 collects all states in 𝜙𝑢 whose Lyapunov value does not exceed 
a positive threshold, using standard results on Lyapunov sublevel sets, 
any such bounded level set is forward-invariant, i.e., if 𝑥(0) lies in Ω𝑏, 
then under the dynamics with 𝑢 = Φ(𝑥), the trajectory cannot exit Ω𝑏 for 
all 𝑡 ≥ 0. Therefore, for every initial condition 𝑥0 ∈ Ω𝑏, the state 𝑥 of the 
nominal system under 𝑢 = Φ(𝑥) ∈ 𝑈 remains in the forward-invariant 
region Ω𝑏 for all 𝑡 ≥ 0, guaranteeing both stability and adherence to the 
input constraints.

2.4.  Recurrent neural network

As mentioned in the introduction, RNN models illustrated in Fig. 1 
are suitable for modeling time-series data. The recursive action in the 
hidden layer neurons allows the RNN to hold the memory of the previous 
states, such that it can adequately approximate a time-series dataset. In 
this work, an RNN model is used to approximate the nonlinear system 
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Fig. 1. A schematic of a recurrent neural network.

of Eq. (1) using process operational data and can be represented as: 

̇̄𝑥 = 𝐹𝑟𝑛𝑛(𝑥̄, 𝑢) ∶= 𝐴𝑥̄ + Θ⊤ 𝑦 (2)

where 𝑥̄ = [𝑥̄1, ..., 𝑥̄𝑛] is the state vector of the RNN, and the manipu-
lated input vector is 𝑢 = [𝑢1, ..., 𝑢𝑚]. As a vector of both 𝑥̄ and 𝑢, the vec-
tor 𝑦 is defined as [𝑦1, ..., 𝑦𝑛, 𝑦𝑛+1, ..., 𝑦𝑚+𝑛] = [𝜎(𝑥̄1), ..., 𝜎(𝑥̄𝑛), 𝑢1, ..., 𝑢𝑚] ∈
ℝ𝑛+𝑚. The notation 𝜎(⋅) represents a nonlinear activation function, such 
as the hyperbolic tangent function, used in the hidden layer(s). 𝐴 =
diag[−𝑎1, ...,−𝑎𝑛] is a diagonal matrix with negative coefficients (𝑎𝑖 > 0) 
such that each state 𝑥̄ is stable in terms of bounded-input bounded-state 
stability. The notation Θ = [𝜃1, ..., 𝜃𝑛] ∈ ℝ(𝑛+𝑚)×𝑛 denotes a matrix con-
taining associated weights to be optimized during the neural network 
training process. Therefore, the vector 𝜃𝑖 = 𝑏𝑖[𝑤𝑖1, ..., 𝑤𝑖(𝑛+𝑚)] is an ele-
ment of Θ where 𝑏𝑖 is a constant, and 𝑤𝑖𝑗 stands for the weight on the 
connection from the 𝑗th input to the 𝑖th neuron where 𝑗 = 1, ..., (𝑛 + 𝑚)
and 𝑖 = 1,… , 𝑛.

The RNN is subsequently trained using a conventional learning ap-
proach previously outlined in Alhajeri et al. (2021). The datasets for 
training, validation, and testing are created through extensive open-loop 
simulations of the process model, ensuring sufficient variation in initial 
conditions and control actions. Specifically, the continuous-time sys-
tem described by Eq. (1) is numerically integrated via the explicit Euler 
method using a suitably small integration step size ℎ𝑐 , while the control 
inputs 𝑢 are applied in a sample-and-hold manner, meaning 𝑢(𝑡) = 𝑢(𝑡𝑘)
for all 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), where 𝑡𝑘+1 ∶= 𝑡𝑘 + Δ and Δ is the sampling period. 
Given that RNNs are known for their strong ability to approximate non-
linear dynamical behavior from time-series data (Park and Sandberg, 
1991; Chen and Chen, 1995), the RNN model can be trained using either 
all or a subset of the data points generated at each integration step ℎ𝑐
within a sampling interval to accurately learn the system’s state evolu-
tion. Moreover, it is essential that the RNN model achieves a sufficiently 
low modeling error 𝜈 during training, where |𝜈| = |𝐹 (𝑥, 𝑢) − 𝐹𝑟𝑛𝑛(𝑥̄, 𝑢)| ≤
𝛾|𝑥| ≤ 𝜈min with positive constants 𝛾 and 𝜈min, to ensure that it reliably 
represents the process dynamics within the defined operating region.

Remark 1. The modeling error 𝜈 is not constant across all possible states 
and inputs. However, by restricting operation to the stability region Ω𝜌, 
which is compact, both states and inputs remain bounded. Therefore, 
training the RNN on data sampled from Ω𝜌 ensures that the modeling 
error 𝜈 can be uniformly upper bounded by a sufficiently small positive 
constant 𝜈min across this region. 

2.5.  Characterization of unsafe regions

We assume the existence of a set 𝐷𝑢𝑠 ⊂ ℝ𝑛 representing states where 
it is unsafe for the system of Eq. (1) to operate, and a safe region 
0 ∶= {𝑥 ∈ ℝ𝑛 −𝐷𝑢𝑠} such that 0 ∩𝐷𝑢𝑠 = ∅ and 0 ⊂ 0, within which 
both closed-loop stability and operational safety can be simultaneously 
ensured. These are formalized as follows:

Definition 1  (Wu et al. (2019), Wu and Christofides (2019)). Consider 
the system described in Eq. (1) with input constraints 𝑢 ∈ 𝑈 . If there 
exists a control law 𝑢 = Φ(𝑥) ∈ 𝑈 such that for any initial condition 
𝑥(𝑡0) = 𝑥0 ∈ 0, the trajectory 𝑥(𝑡) remains within 0 for all 𝑡 ≥ 0, and 
the origin of the closed-loop system of Eq. (1) can be rendered asymp-
totically stable, then the control law Φ(𝑥) is said to maintain the system 
state within a safe and stable region 0 at all times. 

The unsafe region 𝐷𝑢𝑠 is identified through safety analysis based ei-
ther on first-principles process models or on operational data. According 
to Wu and Christofides (2019), there are two general classes of unsafe 
regions: (1) bounded unsafe sets, which are commonly encountered in 
fields such as motion planning for robotics and autonomous vehicles; 
and (2) unbounded unsafe sets, which are prevalent in chemical pro-
cess systems, e.g., operating conditions where a reactor’s temperature 
exceeds a critical threshold, signaling unsafe operation.

This work focuses on the first case, i.e. bounded unsafe regions. A 
predictive controller based on control Lyapunov-barrier functions CLBF 
and machine learning models is developed to guarantee that the closed-
loop state can be steered toward the steady state while avoiding entry 
into the unsafe region.

2.6.  Barrier function

The concept of control Lyapunov-barrier functions (CLBFs) has been 
employed in the works of Romdlony and Jayawardhana (2016) and Wu 
et al. (2019) to develop stabilizing controllers that enforce the state of 
nonlinear systems, such as the one described in Eq. (1), to move toward 
the origin while ensuring avoidance of unsafe regions within the state-
space. These CLBFs integrate the stabilizing properties of CLFs with the 
safety-enforcing characteristics of CBFs, resulting in a unified frame-
work that facilitates both objectives. In the context of systems modeled 
by recurrent neural networks (RNNs), as represented by Eq. (2), and 
subject to input constraints, constrained CLBFs are defined as follows to 
ensure that the control inputs remain within permissible bounds while 
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achieving the desired stability and safety objectives: 
𝑊𝑐 (𝑥) ≥ 𝜌,∀𝑥 ∈ 𝐷𝑢𝑠 ⊂ 𝜙𝑢𝑐 (3a)

𝐿𝑓𝑊𝑐 (𝑥) < 0,∀𝑥 ∈
{

𝑧 ∈ 𝜙𝑢𝑐 −
(

𝐷𝑢𝑠 ∪ {0} ∪ 𝑒
)

∣ 𝐿𝑔̂𝑊𝑐 (𝑧) = 0
}

(3b)

𝜌 ∶=
{

𝑥 ∈ 𝜙𝑢𝑐 ∣ 𝑊𝑐 (𝑥) ≤ 𝜌
}

≠ ∅ (3c)

𝜙𝑢𝑐 − (𝐷𝑢𝑠 ∪𝜌) ∩𝐷𝑢𝑠 = ∅ (3d)

where 𝜌 ∈ ℝ, and 𝑒 ∶=
{

𝑥 ∈ 𝜙𝑢𝑐 − ( ∪ {0}) ∣ 𝜕𝑊𝑐 (𝑥)∕𝜕𝑥 = 0
} is a set of 

states for the RNN model of Eq. (2) where 𝐿𝑓𝑊𝑐 (𝑥) = 0 (for 𝑥 ≠ 0) due to 
𝜕𝑊𝑐 (𝑥)∕𝜕𝑥 = 0. 𝑓 and 𝑔̂ are from the RNN model in the form of Eq. (2). 
The methodology for constructing the constrained CLBF as presented in 
Eq. (3) is detailed in the works of Romdlony and Jayawardhana (2016) 
and Wu et al. (2019). In this approach, a CLF and a CBF are indepen-
dently designed and subsequently combined through a weighted aver-
age to form the CLBF. It is assumed that there exists a feedback control 
law 𝑢 = Φ𝑛𝑛(𝑥) ∈ 𝑈 that ensures exponential stability of the origin within 
an open neighborhood 𝜙𝑢𝑐 , which contains the origin. This assumption 
pertains to the RNN system described in Eq. (2), which also conforms 
to the structure outlined in Eq. (2). Under this assumption, there exists 
a continuously differentiable (1) constrained CLBF 𝑊𝑐 (𝑥) that attains 
its minimum at the origin and satisfies the following inequalities for all 
𝑥 ∈ 𝜙𝑢𝑐 : 
𝑐1|𝑥|

2 ≤ 𝑊𝑐 (𝑥) − 𝜌𝑜 ≤ 𝑐2|𝑥|
2, (4a)

𝜕𝑊𝑐 (𝑥)
𝜕𝑥

𝐹𝑛𝑛(𝑥,Φ𝑛𝑛(𝑥)) ≤ −𝑐3|𝑥|2,∀𝑥 ∈ 𝜙𝑢𝑐 − 𝐵𝛿(𝑥𝑒) (4b)

|

|

|

|

𝜕𝑊𝑐 (𝑥)
𝜕𝑥

|

|

|

|

≤ 𝑐4|𝑥| (4c)

where 𝑐𝑗 (⋅) for 𝑗 = 1, 2, 3, 4 are positive real constants. The function 𝑊𝑐 (𝑥)
attains its global minimum at the origin, i.e., 𝑊𝑐 (0) = 𝜌𝑜, within the do-
main 𝜙𝑢𝑐 . The notation 𝛿(𝑥𝑒) denotes a small neighborhood around 
the point 𝑥𝑒 ∈ 𝑒. The function 𝐹𝑛𝑛(𝑥, 𝑢) represents the RNN model of 
Eq. (2). Furthermore, assuming the continuity and smoothness of the 
functions 𝑓 , 𝑔, and ℎ in the nonlinear system described by Eq. (1), there 
exist positive constants 𝑀 , 𝐿𝑥, 𝐿𝑤, 𝐿𝑥̄, and 𝐿𝑤̄ such that the following 
inequalities hold for all 𝑥, 𝑥̄ ∈ Ω𝜌, and 𝑢 ∈ 𝑈 : 
|𝐹 (𝑥, 𝑢)| ≤ 𝑀 (5a)

|𝐹 (𝑥, 𝑢) − 𝐹 (𝑥′, 𝑢)| ≤ 𝐿𝑥|𝑥 − 𝑥′| (5b)
|

|

|

|

|

𝜕𝑊𝑐 (𝑥)
𝜕𝑥

𝐹 (𝑥, 𝑢) −
𝜕𝑊𝑐 (𝑥′)

𝜕𝑥
𝐹 (𝑥′, 𝑢)

|

|

|

|

|

≤ 𝐿
′
𝑥|𝑥 − 𝑥′| (5c)

The following theorem is established to demonstrate that, in the pres-
ence of an unsafe region 𝐷𝑢𝑠, closed-loop stability and operational safety 
are achieved simultaneously for the RNN system of Eq. (2) under the 
CLBF-based controller.

Theorem 1. Assume the existence of a constrained control Lyapunov-
barrier function (CLBF), 𝑊𝑐 (𝑥) ∶ ℝ𝑛 → ℝ, that attains its minimum at the 
origin and satisfies the conditions outlined in Eq. (3) for the RNN model 
described by Eq. (2). The control law 𝑢 = Φ𝑛𝑛(𝑥) ∈ 𝑈 , which meets the cri-
teria specified in Eq. (5), ensures that the closed-loop state remains within 
the safe set 0 and avoids the unsafe region 𝐷𝑢𝑠 for all time instances, given 
any initial condition 𝑥0 ∈ 0 −𝐷𝑢𝑠. Furthermore, when dealing with an un-
bounded unsafe region, the origin can be rendered exponentially stable under 
the control law 𝑢 = Φ𝑛𝑛(𝑥) ∈ 𝑈 for all 𝑥0 ∈ 0. 
Proof.  As affirmed in Wu and Christofides (2019), in scenarios involv-
ing unbounded unsafe regions, the origin, representing the steady-state 
of the nonlinear system described by Eq. (1), serves as the unique sta-
tionary point within the state-space. Consequently, under the control 
law 𝑢 = Φ𝑛𝑛(𝑥) ∈ 𝑈 , both closed-loop stability and process operational 
safety can be readily ensured. The detailed proof pertaining to un-
bounded unsafe regions aligns closely with the methodologies presented 
in Theorems 1 and 2 of Wu and Christofides (2019) and is therefore 
omitted here. ∎

3.  Partially-connected recurrent neural network (PCRNN) models

From a modeling standpoint, even state-of-the-art black-box ML 
models (such as dense fully-connected RNNs) have shown only limited 
success in scientific fields (Karpatne et al., 2017), largely because they 
require large datasets, often produce outputs inconsistent with physical 
laws, and struggle to generalize to ranges outside of the training data. 
To address this, researchers are increasingly exploring the integration 
of scientific knowledge with ML models, recognizing that neither pure 
machine learning nor purely theoretical models alone may suffice for 
complex applications (e.g. Alber et al., 2019; Baker et al., 2019; Rai 
and Sahu, 2020). In physics-based ML approaches, domain expertise in-
forms areas like feature engineering and model refinement, distinguish-
ing them from conventional ML practices. Although the idea of merg-
ing science and ML is gaining popularity only recently (Karpatne et al., 
2017), significant prior work exists across various disciplines, includ-
ing earth sciences (Reichstein et al., 2019), climatology (Krasnopolsky 
and Fox-Rabinovitz, 2006; O’Gorman and Dwyer, 2018), material dis-
covery (Cang et al., 2018; Schleder et al., 2019), quantum chemistry 
(Chakraborty et al., 2014; Schütt et al., 2017), biological sciences (Yaz-
dani et al., 2020), and hydrology (Xu and Valocchi, 2015). Early suc-
cesses in simple case studies have been promising, raising hopes that 
this paradigm can accelerate scientific progress and contribute to tack-
ling global challenges in areas such as the environment (Faghmous and 
Kumar, 2014), healthcare (Wang et al., 2020a), and food and nutrition 
security (Jia et al., 2019).

In the field of process systems engineering, traditional methodologies 
for approximating solutions have predominantly relied on physics-based 
numerical techniques. These methods employ numerical differentiation 
and integration to solve systems of differential equations that encap-
sulate established physical laws across spatial and temporal domains 
(Butcher, 1996; Sagaut et al., 2013; Houska et al., 2012). An alternative 
approach involves the development of simplified models that approx-
imate system dynamics, such as the Euler equations for gas dynamics 
and the Reynolds-averaged Navier-Stokes equations for turbulent flows 
(Chaouat, 2017; Tompson et al., 2017). However, constructing such sim-
plified models that accurately represent complex phenomena poses sig-
nificant challenges. Moreover, these models often capture only a subset 
of the dynamics inherent in real-world processes, potentially leading to 
discrepancies between the model predictions and the actual system be-
havior. Recent advancements have demonstrated that machine learning 
(ML) models can generate realistic predictions and significantly expedite 
the simulation of complex dynamics, outperforming traditional numeri-
cal solvers in various applications ranging from turbulence modeling to 
chemical reaction processes (Wang et al., 2020b; Kochkov et al., 2021; 
Luo et al., 2022). Despite these promising developments, ML models are 
inherently data-driven and often lack embedded physical constraints, 
which can result in predictions that violate fundamental physical princi-
ples. Consequently, accurately modeling complex dynamical systems in 
scientific applications cannot be effectively achieved through ML mod-
els or physics-based theories in isolation. Integrating machine learning 
techniques with conventional physics-based methodologies offers a syn-
ergistic approach, leveraging the strengths of both to enhance model 
accuracy and reliability.

The exploration of structured system modeling is motivated by 
several considerations. Unlike systems characterized by structured lo-
cal connectivity, fully-connected systems require long-range connec-
tions and exhibit slower communication times between neurons. Real-
world problems often exhibit local correlations, and constructing net-
works with organized neighborhoods is more efficient and memory-
conserving than developing fully-connected networks (Canning and 
Gardner, 1988). Typically, when developing a dynamic model for a gen-
eral nonlinear process, a neural network that utilizes all available pro-
cess inputs to predict the desired output is preferred. Constructing a 
fully connected, black-box dynamic model for these processes is rela-
tively straightforward using open-source machine learning tools; such 
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Fig. 2. Structure of (a) standard fully-connected and (b) partially-connected 
RNN.

a model endeavors to capture any potential relationships between each 
input and each output of the underlying process. As illustrated in Fig. 2, 
the general structure of a fully-connected RNN comprises at least three 
layers: an input layer, hidden layers, and an output layer. Consequently, 
fully-connected RNN models are often the optimal choice for modeling 
processes where no prior knowledge is available.

Standard RNNs typically do not incorporate domain-specific knowl-
edge during model development and generally employ fully-connected 
layers to capture input-output relationships using the provided train-
ing dataset. However, it has been demonstrated in Wu et al. (2020) 
that a priori process structural knowledge can be utilized to enhance 
an RNN’s performance by employing a partially-connected architecture. 
Fig. 2 illustrates the distinction between fully-connected and partially-
connected RNNs, from which it can be observed that certain connec-
tions between neurons are removed in a partially-connected structure to 
better align with the underlying input-output relationships based on a 
priori process structural knowledge. Partially-connected RNNs are suit-
able for modeling multi-unit processes where upstream units influence 
downstream units, but not vice versa. For instance, consider the non-
linear system described by Eq. (1), where the input vector 𝑢1 affects 
only the state 𝑥1, while both 𝑢1 and 𝑢2 influence the state 𝑥2. In this 
system, 𝑥 = [𝑥1 ∈ ℝ𝑛𝑥1 , 𝑥2 ∈ ℝ𝑛𝑥2 ] and 𝑢 = [𝑢1 ∈ ℝ𝑛𝑢1 , 𝑢2 ∈ ℝ𝑛𝑢2 ] ∈ ℝ𝑛𝑢

with 𝑛𝑢1 + 𝑛𝑢2 = 𝑛𝑢 and 𝑛𝑥1 + 𝑛𝑥2 = 𝑛𝑥. Wu et al. (2020) demonstrated 
that by employing a partially-connected architecture, the number of 
weight parameters can be significantly reduced to achieve the desired 
model accuracy compared to a fully-connected RNN model. Addition-
ally, in Alhajeri et al. (2022b), an Aspen simulation study of two CSTRs 
in-series was conducted to show that the MPC using partially-connected 
RNN models achieved improved closed-loop performances with reduced 
computational time. Nevertheless, to the best of our knowledge, investi-
gation into the impact of physics-informed recurrent neural networks in 
the design of safety-critical control systems, where an inaccurate model 
may result in control actions that drive the state to unsafe conditions, 
remains an open area of research and motivate our consideration of in-
corporating such models into MPC.

Remark 2. Attention-based sequence models are promising for com-
plex, long-horizon time dependencies. Recent process systems engineer-
ing (PSE) studies have demonstrated the viability of time-series trans-
formers (TSTs) for process modeling and hybrid (physics-based mod-
eling coupled with ML models) modeling in batch crystallization and 
related tasks, reporting improved accuracy and interpretability com-
pared to conventional recurrent/convolutional NNs. Examples include 
Sitapure and Sang-Il Kwon (2023) on TSTs for process modeling and con-
trol, and a first-of-a-kind hybrid TST framework for batch crystallization 

that achieved strong normalized MSE and 𝑅2 performance (Sitapure and 
Kwon, 2023). These results suggest that attention mechanisms could be 
either considered as an alternative to PCRNN models when FCRNN is 
insufficient or could even be incorporated into our framework for fur-
ther improvement if/where necessary for more complex systems where 
PCRNN does not perform adequately. 

Remark 3. When data is limited, deep learning models risk overfit-
ting and poor extrapolation. In such settings, depending on the range 
of operation covered in the data set, a more viable approach can be to 
use simpler model formulations with fewer parameters to fit, such as, 
for dynamical systems, sparse identification (SINDy) or autoregressive 
(e.g., NARMAX) type models. These methods can leverage low-order 
structure and yield identifiable models with a user-defined level of non-
linearity and time-lag. Secondly, if a similar process with a large data 
set can be obtained, a transfer learning approach can adapt a neural 
network model from the large data set to the new process with limited 
data and possibly generalize accurately. Finally, simpler hybrid models 
where some first-principles equations are used and the ML model is used 
only on the residuals could also be considered. 

4.  RNN-based model predictive control

In this section, we integrate an RNN model into a CLBF-based model 
predictive control (CLBF-MPC) framework. Specifically, the PCRNN 
serves as the predictive model for state predictions required for solv-
ing the following optimization problem: 

 = min
𝑢∈𝑆(Δ)∫

𝑡𝑘+𝑃

𝑡𝑘
𝐿(𝑥̃(𝑡), 𝑢(𝑡)) d𝑡 (6a)

s.t. ̇̃𝑥(𝑡) = 𝐹𝑟𝑛𝑛(𝑥̃(𝑡), 𝑢(𝑡)) (6b)

𝑥̃(𝑡𝑘) = 𝑥(𝑡𝑘) (6c)

𝑢(𝑡) ∈ 𝑈, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑃 ) (6d)
̇̂𝑊
(

𝑥(𝑡𝑘), 𝑢(𝑡𝑘)
)

≤ ̇̂𝑊
(

𝑥(𝑡𝑘),Φ𝑛𝑛(𝑥(𝑡𝑘))
)

 if 𝑥(𝑡𝑘) ∉ 𝛿(𝑥𝑒) and 𝑊̂ (𝑥(𝑡𝑘)) > 𝜌min (6e)

𝑊̂ (𝑥̃(𝑡)) ≤ 𝜌min,∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑃 ),  if 𝑊̂ (𝑥(𝑡𝑘)) ≤ 𝜌min (6f)

𝑊̂ (𝑥̃(𝑡)) < 𝑊̂ (𝑥(𝑡𝑘)),∀𝑡 ∈ (𝑡𝑘, 𝑡𝑘+𝑃 ) if 𝑥(𝑡𝑘) ∈ 𝛿(𝑥𝑒) (6g)

where the predicted state trajectory is denoted as 𝑥̃. 𝑆(Δ) represents 
the set of constant piecewise functions with period Δ, and the predic-
tion horizon is 𝑃 . The objective function in Eq. (6a) is expressed as 
the integral of 𝐿(𝑥̃(𝑡), 𝑢(𝑡)) = 𝑥̃⊤𝑄𝑥̃ + 𝑢⊤𝑅𝑢 over the prediction horizon, 
where 𝑄 and 𝑅 are positive definite weighting matrices. This formu-
lation ensures that the objective function attains its minimum at the 
origin. The predicted state trajectory 𝑥̃(𝑡) used to compute 𝐿(𝑥̃(𝑡), 𝑢(𝑡))
is obtained from the RNN model of Eq. (2) and the initial condi-
tion provided by the current state measurement, represented by 𝐹𝑟𝑛𝑛
in Eq. (6b) and 𝑥(𝑡𝑘) in Eq. (6c), respectively. Eq. (6d) imposes con-
straints on the input vector along the predicted trajectory. The con-
straints in Eqs. (6e)–(6g) guarantee closed-loop stability and safety, 
where 𝑊̇𝑐 =

𝜕𝑊𝑐 (𝑥)
𝜕𝑥 (𝑓 (𝑥) + 𝑔(𝑥)𝑢). Specifically, when 𝑥(𝑡𝑘) ∉ 𝛿(𝑥𝑒) and 

𝑊̂ (𝑥(𝑡𝑘)) > 𝜌min, the constraint in Eq. (6e) enforces a decrease in 𝑊̂ (𝑥̃)
at a rate at least equal to that achieved by the CLBF-based controller 
𝑢 = Φ𝑛𝑛(𝑥) ∈ 𝑈 . If 𝑊̂ (𝑥(𝑡𝑘)) ≤ 𝜌min, Eq. (6f) ensures that the closed-loop 
state trajectory remains inside the level set 𝜌min

 throughout the predic-
tion horizon. When 𝑥(𝑡𝑘) ∈ 𝛿(𝑥𝑒), Eq. (6g) is activated to reduce 𝑊̂ (𝑥)
over the following sampling period, ensuring that the state escapes the 
saddle point within a finite number of steps. The first control action 
𝑢∗(𝑡𝑘) from the optimized input trajectory 𝑢∗(𝑡) is applied in a sample-
and-hold fashion during the next sampling period. Subsequently, the 
horizon shifts forward by one sampling period, and the optimization 
problem of Eq. (6) is resolved again by the MPC at every new measure-
ment update (i.e., every Δ).
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Fig. 3. Two continuous-stirred tank reactors in series.

5.  Application to a chemical process

In this section, we present a chemical process example to as-
sess the effectiveness of the proposed physics-informed PCRNN-based
CLBF-MPC framework. We consider a process with two CSTRs in series, 
where information flows from CSTR 1 to CSTR 2 but not in the reverse 
direction. This motivates the use of a partially connected RNN (PCRNN) 
because the upstream-to-downstream structure of the two-CSTRs-in-
series process can cause model deterioration when a conventional RNN 
is used Alhajeri et al. (2022b). Enforcing the known structured sparsity 
in the RNN as in a PCRNN reduces erroneous cross-couplings and im-
proves model fidelity, especially at the same dataset size (Alhajeri et al., 
2023). The study begins with the development of a dynamic model for 
the two-CSTRs-in-series chemical process based on first principles. A 
time-series dataset is then generated through extensive open-loop sim-
ulations of the first-principles model to train and test the RNN models. 
Finally, closed-loop simulations are conducted using the FP- and RNN-
based MPC and CLBF-MPC, and the results are analyzed and discussed.

The two-CSTRs-in-series system consists of two sequential non-
isothermal continuous stirred tank reactors (CSTRs) with ideal mixing, 
as depicted in Fig. 3. Each reactor hosts an irreversible second-order 
exothermic reaction where raw material A is converted to product B 
(i.e., 𝐴 → 𝐵). The feed flow rate to each reactor, denoted 𝐹𝑖,0, contains 
only chemical A with initial concentration and temperature 𝐶𝐴,𝑖,0 and 
𝑇𝑖,0, respectively, where 𝑖 = 1, 2 corresponds to the reactor index. Each 
reactor is equipped with a heating jacket that supplies or removes heat 
at a rate 𝑄𝑖. The dynamic model governing the two CSTRs is derived 
from material and energy balance equations and expressed as a set of 
ordinary differential equations (ODEs): 

d𝐶𝐴,1

d𝑡
=

𝐹1,0

𝑉1

(

𝐶𝐴,1,0 − 𝐶𝐴,1
)

− 𝑘0e
−𝐸
𝑅𝑇1 𝐶2

𝐴,1 (7a)

d𝑇1
d𝑡

=
𝐹1,0

𝑉1

(

𝑇1,0 − 𝑇1
)

+ −Δ𝐻
𝜌𝐶𝑝

𝑘0e
−𝐸
𝑅𝑇1 𝐶2

𝐴,1 +
𝑄1

𝜌𝐶𝑝𝑉1
(7b)

d𝐶𝐴,2

d𝑡
=

𝐹1,0

𝑉2
𝐶𝐴,1 +

𝐹2,0

𝑉2
𝐶𝐴,2,0 −

𝐹1,0 + 𝐹2,0

𝑉2
𝐶𝐴,2 − 𝑘0e

−𝐸
𝑅𝑇2 𝐶2

𝐴,2 (7c)

d𝑇2
d𝑡

=
𝐹2,0

𝑉2
𝑇2,0 +

𝐹1,0

𝑉2
𝑇1 −

𝐹1,0 + 𝐹2,0

𝑉2
𝑇2 +

−Δ𝐻
𝜌𝐶𝑝

𝑘0e
−𝐸
𝑅𝑇2 𝐶2

𝐴,2 +
𝑄2

𝜌𝐶𝑝𝑉2
(7d)

The variables 𝐶𝐴,𝑖, 𝑇𝑖, and 𝑄𝑖 denote the concentration of reactant 
A, the reactor temperature, and the heating (supply) rate, respectively, 
within the 𝑖th reactor. The inlet stream’s concentration of A, feed flow 
rate, and temperature are denoted by 𝐶𝐴,𝑖,0, 𝐹1,0, and 𝑇1,0, respectively. 
The volume of reacting liquid in each reactor, 𝑉𝑖, has a constant density 
𝜌 and heat capacity 𝐶𝑝 for both reactors. The parameters Δ𝐻 , 𝑘0, 𝑅, 
and 𝐸 represent the reaction enthalpy, pre-exponential factor, ideal gas 

Table 1 
Parameter and steady-state values for the CSTRs.
𝐶𝐴,1𝑠 = 1.95 kmol∕m3 𝑇1𝑠 = 402K
𝐶𝐴,1,0𝑠 = 4 kmol∕m3 𝑇2𝑠 = 402K
𝐶𝐴,2𝑠 = 1.95 kmol∕m3 𝑄1𝑠 = 0.0 kJ∕h
𝐶𝐴,2,0𝑠 = 4 kmol∕m3 𝑄2𝑠 = 0.0 kJ∕h
𝑇1,0 = 300K 𝑇2,0 = 300K
𝐹1,0 = 5m3∕h 𝐹2,0 = 5m3∕h
𝑉1 = 1m3 𝑉2 = 1m3

𝑘0 = 8.46 × 106 m3∕(kmol h) 𝐸 = 5 × 104 kJ∕kmol
𝑅 = 8.314 kJ∕(kmolK) Δ𝐻 = −1.15 × 104 kJ∕kmol
𝜌 = 1000 kg∕m3 𝐶𝑝 = 0.231 kJ∕(kgK)

constant, and activation energy, respectively, and are the same for both 
reactors. The process parameter values are summarized in Table 1.

The manipulated inputs in this process are, for both reactors, the inlet 
concentration of A and the heat supply rate, expressed as deviations 
from their steady-state values, i.e., 𝑢1 = 𝐶𝐴,1,0 − 𝐶𝐴,1,0𝑠, 𝑢2 = 𝑄1 −𝑄1𝑠, 
𝑢3 = 𝐶𝐴,2,0 − 𝐶𝐴,2,0𝑠, and 𝑢4 = 𝑄2 −𝑄2𝑠. The physical input bounds are 
given by ±3.5 kmol∕m3

and ±5 × 105 kJ/h for the concentration and heat rate, respectively. 
The states are also expressed as deviations from their steady-state val-
ues, such that [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝐶𝐴,1 − 𝐶𝐴,1𝑠, 𝑇1 − 𝑇1𝑠, 𝐶𝐴,2 − 𝐶𝐴,2𝑠, 𝑇2 −
𝑇2𝑠], making the origin the equilibrium point of the system’s state-space 
representation.

5.1.  Data generation and RNN models development

Large data sets are essential for developing machine-learning-based 
models, and generally, larger data sets lead to more accurate models 
(Wu et al., 2022), assuming the data is independent and identically 
distributed. Such large data sets can be sourced from industries, pi-
lot plants, laboratories, and computer simulations. However, industrial 
data is typically not publicly accessible, while data collection from pi-
lot plants and laboratory experiments is both costly and time-intensive. 
Therefore, in this work, extensive open-loop simulations of the first-
principles model of Eq. (7) are employed to generate the required data 
set.

For numerically integrating the ODEs, the explicit Euler method with 
an integration time step of ℎ𝑐 = 5 × 10−4 h is used. The integration is 
carried out over one sampling period Δ under various initial conditions, 
totaling 3000 different combinations. MATLAB is utilized to generate 
a data set of size 𝑚𝑑𝑎𝑡𝑎. This data set is divided into two matrices: an 
output matrix containing 𝑥1 through 𝑥4 at time 𝑡 = 𝑡𝑘 + Δ, and an input 
matrix containing 𝑢1, 𝑢2 and 𝑥1 through 𝑥4 at time 𝑡 = 𝑡𝑘.

Subsequently, two RNN models are built using the generated data 
and the Keras library. Each model consists of two hidden layers, each 
containing 30 neurons, with the hyperbolic tangent function (i.e., 
tanh(𝑥)) serving as the activation function for all layers except the in-
put and output layers. The output layer uses a linear activation func-
tion to ensure all real values are possible to be mapped to. In the 
fully-connected RNN, connections between layers remain unchanged, 
whereas, in the partially-connected RNN, inputs are directed to differ-
ent layers in a way that mirrors the physical structure of the underlying 
process. The partially-connected RNN model follows the algorithm de-
tailed in Alhajeri et al. (2022b).

Using the input data from the previous sampling interval, the state 
evolution over the next 0.01h (equivalent to one sampling time Δ) is 
forecasted. The Adam optimizer, which combines RMSprop with gradi-
ent descent incorporating momentum, is employed instead of standard 
gradient descent. Furthermore, five-fold cross-validation is performed 
on the RNN models to ensure robustness, with models selected based on 
the lowest validation MSE.

To assess the model accuracy, open-loop simulations of the two mod-
els under varying input conditions from known initial conditions are 
conducted, and the MSE is then calculated and tabulated in Table 2. 
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Table 2 
Open-loop prediction results (MSE).
    State  Modeling architecture
  FCRNN  PCRNN  
 𝑥1  0.0065  0.0011  
 𝑥2  125.4551  52.2929 
 𝑥3  0.0134  0.0031  
 𝑥4  156.3076  15.1736 

It can be observed that the PCRNN modeling error is low enough for 
control purposes and, in particular, the ratio of the FCRNN MSE to 
the PCRNN MSE for 𝑥1, 𝑥2, 𝑥3, and 𝑥4 are 6.0, 2.4, 4.3, and 10.3, re-
spectively. Since all ratios exceed 1, these results demonstrate that the 
PCRNN consistently provides superior prediction accuracy compared to 
the FCRNN.

5.2.  Closed-loop simulations

In this section, we conduct closed-loop simulations of an FCRRN- and 
a PCRNN-based LMPC with and without the inclusion of a barrier func-
tion. These simulations are designed to highlight the role of the barrier 
function in ensuring safe operating dynamics as well as the importance 
of model accuracy within the CLBF-MPC. To evaluate the controller’s 
performance, we simulate trajectories starting from two different initial 
conditions, demonstrating how the system behaves under both config-
urations. The barrier function is introduced as a safeguard to prevent 
the system from entering unsafe operating regions, ensuring that the 
dynamics remain within acceptable boundaries throughout the process.

The control objective is to maintain the two-CSTR system at the 
unstable equilibrium point (𝐶𝐴,𝑖𝑠, 𝑇𝑖𝑠) = (1.95 kmol∕m3, 402K) for 𝑖 = 1, 2
while ensuring avoidance of the bounded unsafe operating region in the 
state-space by manipulating the inlet concentrations 𝐶𝐴,𝑖,0 and heat in-
put rates 𝑄𝑖. Specifically, we aim to show that, under the CLBF-MPC of 
Eq. (6), starting from an initial state away from the origin, the closed-
loop system of Eq. (7) can successfully avoid a bounded unsafe region 𝑏
within the state-space as it approaches the origin, ultimately converging 
to a small neighborhood surrounding the origin.

The unsafe region 𝑏 is characterized as an ellipse in the state-space, 

𝑏 ∶=

{

𝑥 ∈ ℝ2
|

|

|

|

|

|

𝐹 (𝑥) =

(

𝑥1 + 0.92
)2

0.5
+

(

𝑥2 − 42
)2

500
< 0.06

}

(8)

for the first CSTR and similarly for the second CSTR but with 𝑥3 and 𝑥4
in place of 𝑥1 and 𝑥2, respectively. Following the CLBF construction ap-
proach outlined in Wu et al. (2019), Wu and Christofides (2019), we be-
gin by designing a control Lyapunov function in the standard quadratic 
form, defined as 𝑉 (𝑥) = 𝑥⊤𝑃𝑥, where 𝑃  is a positive definite matrix spec-
ified as follows:

𝑃 =
[

1060 22
22 0.52

]

(9)

Next, we define a set  that encloses the bounded unsafe region 𝑏 as 
 ∶= {𝑥 ∈ ℝ2 ∣ 𝐹 (𝑥) < 0.07}, and proceed to design the Control Barrier 
function 𝐵(𝑥) as follows:

𝐵(𝑥) =

⎧

⎪

⎨

⎪

⎩

e
𝐹 (𝑥)

𝐹 (𝑥)−0.07−e
−6
,  if 𝑥 ∈ 

−e−6,  if 𝑥 ∉ 
(10)

The control Lyapunov-barrier function 𝑊𝑐 (𝑥) = 𝑉 (𝑥) + 𝜇𝐵(𝑥) + 𝜈
is constructed with the following parameters: 𝜌 = 0, 𝑐1 = 0.1, 𝑐2 =
1061, 𝑐3 = max𝑥∈𝜕 |𝑥|2 = 2295, 𝑐4 = min𝑥∈𝜕 |𝑥|2 = 1370, 𝜈 = 𝜌𝑐 − 𝑐1𝑐4 =
−160, 𝜇 = 109. The definitions of the above parameters can be found in 
Wu et al. (2019), Wu and Christofides (2019). Finally, the stationary 
point of 𝑊𝑐 (𝑥), calculated by setting 𝜕𝑊𝑐 (𝑥)

𝜕𝑥  to 0, is found to be 
𝑥𝑒 = (−1.004, 47.48) and is ensured to be contained within 𝜌̂, where 
𝜌̂ = 500, to not affect closed-loop stability.

Fig. 4. Closed-loop state trajectories for the system of Eq. (7) under MPC with-
out the CLBF constraints using the FP model (solid lines) and PCRNN model 
(dotted lines), starting from the first initial condition, [−0.75,50,−0.55,52]. The 
gray ellipse is the set of bounded unsafe states 𝑏 in each reactor’s state-space.

Fig. 5. Closed-loop state trajectories for the system of Eq. (7) under the CLBF-
MPC using the FP model (solid lines) and PCRNN model (dotted lines), starting 
from the first initial condition, [−0.75,50,−0.55,52]. The gray ellipse is the set 
of bounded unsafe states 𝑏 in each reactor’s state-space.

The state-space trajectories of the two CSTRs under MPC, starting 
from the first initial condition of 𝑥 = [−0.75, 50,−0.55, 52]⊤, without and 
with the barrier function are shown in Figs. 4 and 5, respectively, with 
their corresponding time-varying state and input trajectories (for the 
PCRNN) depicted in Figs. 6 and 7. It can be observed in Fig. 4 that, in 
absence of the barrier function, the state enters the unsafe region on its 
way to the origin. Since this occurs even with the first-principles (FP) 
model of Eq. (7) used as the predictive model for the MPC, this is not 
due to the modeling error of the PCRNN but the expected trajectory of 
the MPC for this initial condition without any safety considerations. In 
contrast, under the CLBF-MPC, the states of both CSTRs avoid the unsafe 
region using both the FP and PCRNN models, as seen in Fig. 5.

Furthermore, to highlight the advantages of the PCRNN-based CLBF-
MPC in achieving the required prediction accuracy and ensuring pro-
cess operational safety, an FCRNN model is developed using the same 
dataset as the PCRNN model. Specifically, the FCRNN utilizes all states 
𝑥1 through 𝑥4 and inputs 𝑢1 through 𝑢4 at time 𝑡𝑘−1 to forecast the 
states at time 𝑡𝑘. Simulations identical to the previous case are con-
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Fig. 6. Time-varying state and input trajectories for the system of Eq. (7) under 
MPC without the CLBF constraints using the PCRNN model, starting from the 
first initial condition, [–0.75, 50, –0.55, 52].

Fig. 7. Time-varying state and input trajectories for the system of Eq. (7) under 
the CLBF-MPC using the PCRNN model, starting from the first initial condition, 
[–0.75, 50, –0.55, 52].

ducted but from another initial condition, 𝑥 = [−1, 55,−1, 55]⊤, to as-
sess the generalizability of the CLBF-MPC, showcase the drawback of 
the FCRNN model, and stress-test the controller near the unsafe set
boundary. The state-space trajectories for both CSTRs under the MPC 
using the FP model, the FCRNN model, and the PCRNN model, without 
and with the barrier function, are shown in Figs. 8 and 9, respectively, 
with their corresponding time-varying state and input trajectories de-
picted (for the PCRNN) in Figs. 10 and 11. Once again, it is observed 
from Fig. 8 that the trajectory to the origin without safety constraints 
would pass through the unsafe region even under the FP-based MPC. 
However, under the CLBF-MPC using either the FP or PCRNN model, the 
states successfully avoid the unsafe region as seen in Fig. 9. In contrast, 
the states for CSTR 1 enters the unsafe region even under the CLBF-MPC 
using the FCRNN model, unlike the FP- and PCRNN-based CLBF-MPC. 
It is noted that the FCRNN-based CLBF-MPC can typically stabilize the 
nonlinear system within a neighborhood of the steady-state, assuming 
the modeling error is small in that region. However, in this particular ex-
ample, the CLBF-MPC utilizing an FCRNN model fails to ensure satisfac-
tory performance because, beyond achieving closed-loop stability, the 
control strategy must also guarantee process operational safety, which 
necessitates an even more accurate model, especially for this initial con-

Fig. 8. Closed-loop state trajectories for the system of Eq. (7) under MPC with-
out the CLBF constraints using the FP model (solid lines), FCRNN model (dashed 
lines), and PCRNN model (dotted lines), starting from the second initial condi-
tion, [–1, 55, –1, 55]. The gray ellipse is the set of bounded unsafe states 𝑏 in 
each reactor’s state-space.

Fig. 9. Closed-loop state trajectories for the system of Eq. (7) under the CLBF-
MPC using the FP model (solid lines), FCRNN model (dashed lines), and PCRNN 
model (dotted lines), starting from the second initial condition, [–1, 55, –1, 55]. 
The gray ellipse is the set of bounded unsafe states 𝑏 in each reactor’s state-
space.

dition as the controller has limited actions to take while avoiding the un-
safe set due to initialization in close proximity to its boundary. Feedback 
control relying on an inaccurate FCRNN model cannot assure that the 
system state will avoid entering unsafe regions at all times. Specifically, 
when there exists a significant model mismatch, the controller may pre-
dict the state to be outside unsafe regions, while in reality, the true 
state violates these safety boundaries within one sampling period. This 
limitation motivates the use of the PCRNN model that offers a closer 
approximation of the nonlinear system dynamics across the operating 
region, thereby providing more accurate predictions necessary for ef-
fective CLBF-MPC. Finally, to numerically confirm the above observa-
tions, Fig. 12 shows the magnitude of violation of the safety constraint, 
i.e., how far inside the unsafe region the state is, for both CSTRs, un-
der the FCRNN- and PCRNN-based CLBF-MPC. We quantify the barrier 
function constraint violation by evaluating the ellipse’s implicit level-set 
function, 

(

𝑥1+0.92
)2

0.5 +
(

𝑥2−42
)2

500 − 0.06, which is negative inside the unsafe 
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Fig. 10. Time-varying state and input trajectories for the system of Eq. (7) under 
MPC without the CLBF constraints using the PCRNN model, starting from the 
second initial condition, [–1, 55, –1, 55].

Fig. 11. Time-varying state and input trajectories for the system of Eq. (7) un-
der the CLBF-MPC using the PCRNN model, starting from the second initial 
condition, [–1, 55, –1, 55].

Fig. 12. Violation of the safety constraint measured in terms of depth of in-
trusion into the unsafe set 𝑏 for the FCRNN and PCRNN trajectories shown in 
Fig. 9.

region, and enforced to be zero otherwise (outside), i.e.,

Violation = min

{
(

𝑥1 + 0.92
)2

0.5
+

(

𝑥2 − 42
)2

500
− 0.06, 0

}

(11)

At each time instance along the CSTR trajectories, we compute the vi-
olation using Eq. (11), zero any positive values, and plot the resulting 
depth of intrusion into the ellipse, such that larger negative values corre-
spond to points farther inside the unsafe region. It can be confirmed from 
Fig. 12 that the trajectory of CSTR 1 under the FCRNN-based CLBF-MPC 
does indeed enter the unsafe region, while that under the PCRNN-based 
MPC always stays outside 𝑏.

The two case studies above demonstrate that a PCRNN model de-
veloped from extensive open-loop simulations to replace the CSTR pro-
cess described in Eq. (7) within the CLBF-MPC framework achieves the 
desired approximation accuracy and can guarantee that for any initial 
condition in the safe operating region, the closed-loop state of the sys-
tem of Eq. (7) remains within the safe operating region at all times and 
ultimately converges to a small neighborhood 𝜌min

 around the origin, 
while avoiding bounded unsafe regions in the state-space.

6.  Conclusion

In this study, a control Lyapunov-barrier function-based model 
predictive controller (CLBF-MPC) using physics-informed partially-
connected recurrent neural network (PCRNN) models was developed 
for nonlinear process systems. Assuming the modeling error between 
the PCRNN model and the actual nonlinear process is sufficiently small, 
it was shown that, in the presence of a bounded unsafe region, discon-
tinuous control actions can be employed in the vicinity of the saddle 
point to facilitate the system state’s escape from such points and pro-
gression toward the origin. The effectiveness of the proposed method 
was illustrated through a chemical process example involving bounded 
unsafe regions. Simulation results confirmed that the PCRNN-based 
CLBF-MPC achieved the desired predictive performance and success-
fully drove the system state to the origin while avoiding unsafe re-
gions in the state-space, while the fully-connected RNN model (with-
out physics-knowledge) caused the state to enter the unsafe operating 
region, demonstrating the need for accurate process models, incorporat-
ing information of physics if required, for safety-critical systems.
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