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a b s t r a c t

In this work, we develop an economic model predictive control scheme for a class of nonlinear systems
with bounded process andmeasurement noise. In order to achieve fast convergence of the state estimates
to the actual system state as well as the robustness of the observer to measurement and process noise,
a deterministic (high-gain) observer is first applied for a small time period with continuous output
measurements to drive the estimation error to a small value; after this initial small time period, a
robust moving horizon estimation scheme is used on-line to provide more accurate and smoother state
estimates. In the design of the robust moving horizon estimation scheme, the deterministic observer is
used to calculate reference estimates and confidence regions that contain the actual system state. Within
the confidence regions, the moving horizon estimation scheme is allowed to optimize its estimates.
The output feedback economic model predictive controller is designed via Lyapunov techniques based
on state estimates provided by the deterministic observer and the moving horizon estimation scheme.
The stability of the closed-loop system is analyzed rigorously and conditions that ensure the closed-
loop stability are derived. Extensive simulations based on a chemical process example illustrate the
effectiveness of the proposed approach.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, significant efforts have been devoted to the
development of economic model predictive control (EMPC) de-
signs due to the pursuit of higher process operation efficiency (e.g.,
[1–5]). EMPC is different from the traditional two-layer real-time
optimization structure and addresses economic objectives directly
within the framework ofmodel predictive control (MPC) by replac-
ing the conventional MPC quadratic cost function with a general
economic cost function (which is not quadratic in general). There-
fore, EMPCmay, in general, lead to time-varying process operation
policies instead of steady-state operation.

Various results of EMPC have been developed. In [6], a design
that combines steady-state optimization and a linearMPCwas pro-
posed. In [2], an EMPC scheme for nonlinear systems that requires
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the closed-loop system state settles to a steady-state at the end of
the prediction horizon was developed. The application of EMPC to
cyclic processes as well as a closed-loop stability analysis was dis-
cussed in [3]. In [4], a two-mode Lyapunov-based EMPC (LEMPC)
design for nonlinear systems was developed. The LEMPC is capa-
ble of handling asynchronous and delayed measurements and can
be implemented in a distributed fashion [7]. All of the above men-
tioned EMPC schemes were developed under the assumption of
state feedback. However, this assumption may not hold in many
applications. In order to address this issue, in [8], an output feed-
back EMPC was proposed based on a high-gain observer [9,10].
However, in [8], process disturbances and measurement noise
were not taken into account explicitly. When measurement noise
is present, the performance of a high-gain observer may decrease
significantly due to its sensitivity to measurement noise [11].

In order to improve the robustness of the high-gain observer to
modelmismatch and uncertaintieswhile reducing its sensitivity to
measurement noise significantly, in thiswork,wepropose a robust
moving horizon estimation (RMHE) based output feedback EMPC
design. The idea of RMHE was initially developed in [12] which
integrates deterministic observer techniques and optimization-
based estimation techniques in a unified framework. Specifically,
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in the RMHE, an auxiliary deterministic nonlinear observer that
is able to asymptotically track the nominal system state is taken
advantage of to calculate a confidence region. In the calculation of
the confidence region, bounded process and measurement noise
are taken into account. The RMHE is only allowed to optimize its
state estimates within the confidence region. By this approach, it
was proved that the RMHE gives bounded estimation error in the
case of bounded process noise. It was also shown to compensate
for the error in the arrival cost approximation and could be used
together with different arrival cost approximation techniques to
further improve the state estimate. The RMHE has been applied to
the design of a robust output feedback Lyapunov-based MPC [13]
and has also been extended to estimate the state of large-scale
systems in a distributed manner [14].

In the present work, we consider EMPC of nonlinear systems
with bounded process andmeasurement noise. In order to achieve
fast convergence of the state estimates to the actual system state
(thus an effective separation principle between the observer and
controller designs) and the robustness of the system to process
and measurement noise, a deterministic (high-gain) observer is
first applied for a small time period with continuous output
measurements to drive the estimation error to a small value; after
this initial small time period, a RMHE based on the deterministic
observer is used on-line to providemore accurate and smooth state
estimates. In the design of the RMHE, the deterministic observer is
used to calculate the reference estimate and the confidence region
for the state estimate. The output feedback EMPC is designed via
the LEMPC technique based on state estimates provided by the
deterministic observer and the RMHE. The stability of the closed-
loop system is rigorously analyzed, and conditions that ensure
the closed-loop stability are derived. Extensive simulations based
on a chemical process example illustrate the effectiveness of the
proposed approach.

2. Preliminaries

2.1. Notation

The operator |·| denotes the Euclidean norm of a scalar or a vec-
tor while | · |2Q indicates the square of theweighted Euclidean norm
of a vector, defined as |x|2Q = xTQx where Q is a positive definite
square matrix. A function f (x) is said to be locally Lipschitz with
respect to its argument x if there exists a positive constant Lxf such
that |f (x′) − f (x′′)| ≤ Lxf |x

′
− x′′| for all x′ and x′′ in a given region

of x and Lxf is the associated Lipschitz constant. A continuous func-
tion α : [0, a)→ [0,∞) is said to belong to class K if it is strictly
increasing and satisfies α(0) = 0. A function β(r, s) is said to be
a class KL function if for each fixed s, β(r, s) belongs to class K
with respect to r , and for each fixed r , it is decreasing with respect
to s, and β(r, s) → 0 as s → ∞. The symbol diag([v]) denotes a
diagonal matrix whose diagonal elements are the elements of vec-
tor v. The symbol ‘\’ denotes set subtraction such that A \ B :=
{x ∈ A, x ∉ B}. Finally, xT denotes the transpose of the vector x.

2.2. System description

We consider nonlinear systems described by the following
state-space model:

ẋ(t) = f (x(t))+ g(x(t))u(t)+ l(x(t))w(t)
y(t) = h(x)+ v(t) (1)

where x ∈ Rn denotes the state vector, u ∈ Rp denotes the control
(manipulated) input vector, w ∈ Rm denotes the disturbance vec-
tor, y ∈ Rq denotes the measured output vector and v ∈ Rq is the
measurement noise vector. The control input vector is restricted
to be in a nonempty convex set U ⊆ Rp such that U := {u ∈ Rp
:

|u| ≤ umax
}where umax is the magnitude of the input constraint. It

is assumed that the noise vectors are bounded such as w ∈ W and
v ∈ V where

W := {w ∈ Rm
: |w| ≤ θw, θw > 0}

V := {v ∈ R : |v| ≤ θv, θv > 0}

with θw and θv being known positive real numbers. Moreover, it
is assumed that the output measurement vector y of the system is
continuously available at all times. It is further assumed that f , g , l
and h are sufficiently smooth functions and f (0) = 0 and h(0) = 0.

Remark 1. The model of Eq. (1) describes a large number of
processes arising in the context of the chemical process industry.
For example, onemay express themodel of the benzene alkylation
process network considered in [7] in this form.

2.3. Stabilizability and observability assumptions

It is assumed that there exists a state feedback controller u =
k(x) that renders the origin of the nominal systemof Eq. (1) (i.e., the
system of Eq. (1) with w(t) ≡ 0) asymptotically stable while satis-
fying the input constraint for all the states x inside a given compact
set containing the origin. This assumption implies that there exist
class K functions αi(·), i = 1, 2, 3, 4 and a continuously differen-
tiable Lyapunov function V (x) for the closed-loop nominal system,
that satisfy the following inequalities [15,16] :

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V (x)

∂x
(f (x)+ g(x)k(x)) ≤ −α3(|x|)∂V (x)

∂x

 ≤ α4(|x|)

(2)

and k(x) ∈ U for all x ∈ D ⊆ Rn where D is an open neighbor-
hood of the origin. We denote the level set of V (x), Ωρ ⊆ D, as the
stability region of the closed-loop systemunder the controller k(x).

It is also assumed that there exists a deterministic observer that
takes the following general form:

ż(t) = F(ϵ, z, y) (3)

where z is the observer state which is an estimate of the state of
system of Eq. (1), y is the output measurement vector and ϵ is a
positive parameter. This observer together with the state feedback
controller u = k(x) form an output feedback controller: ż =
F(ϵ, z, y), u = k(z) which satisfies the following assumptions:

(1) there exist positive constants θ∗w , θ∗v such that for each pair
{θw, θv}with θw ≤ θ∗w , θv ≤ θ∗v , there exist 0 < ρ1 < ρ, em0 >
0, ϵ∗L > 0, ϵ∗U > 0 such that if x(t0) ∈ Ωρ1 , |z(t0)− x(t0)| ≤ em0
and ϵ ∈ (ϵ∗L , ϵ

∗

U), the trajectories of the closed-loop system are
bounded in Ωρ for all t ≥ t0;

(2) and there exists e∗m > 0 such that for each em ≥ e∗m, there exists
tb such that |z(t)− x(t)| ≤ em for all t ≥ tb(ϵ).

Note that a type of observer that satisfies the above assumptions
is a high-gain observer [11]. From an estimate error convergence
speed point of view, it is desirable to pick the observer parameter
ϵ as small as possible; however, when the parameter ϵ is too small
(i.e., the observer gain is too large), it will make the observer very
sensitive to measurement noise. In the observer assumptions, a
key idea is to pick the gain ϵ in a way that balances the estimate
error convergence speed to zero and the effect of the noise. In the
remainder of this work, the estimate given by the observer F will
be denoted as z.
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Remark 2. It is important to point out the difference between the
positive constants θ∗w and θ∗v and the bounds θw and θv . Specifically,
the positive constants θ∗w and θ∗v correspond to theoretical bounds
on the noise such that the closed-loop system under the output
feedback controller: ż = F(ϵ, z, y), u = k(z) is maintained in Ωρ .
The constants θ∗w and θ∗v depend on the stability properties of a
given system under the output feedback controller. On the other
hand, the bounds θw and θv correspond to the actual bound on the
process and measurement noise for a given (open-loop) system.

2.4. Robust MHE

In order to take advantage of the tunable convergence speed
of the observer presented in the previous subsection while
significantly reducing its sensitivity to measurement noise, an
RMHE scheme developed in [12] will be adopted in this work.

The RMHE is evaluated at time instants {tk≥0}with tk = t0+k∆,
k = 0, 1, . . . where t0 is the initial time. In the RMHE scheme,
the deterministic observer F will be used to calculate a reference
state estimate at each sampling time based on continuous output
measurements. Based on the reference state estimate, the RMHE
determines a confidence region for the actual system state; within
the confidence region, the RMHE optimizes the state estimate
based on a sequence of previous output measurements, system
model and bounds information of the process and measurement
noise. Specifically, the robust MHE scheme at time instant tk is
formulated as follows:

min
x̃(tk−Ne ),...,x̃(tk)

k−1
i=k−Ne

|w(ti)|2Q−1m
+

k
i=k−Ne

|v(ti)|2R−1m
+ V̂T (tk−Ne) (4a)

s.t. ˙̃x(t) = f (x̃(t))+ g(x̃(t))u(t)+ l(x̃(t))w(ti),
t ∈ [ti, ti+1] (4b)

v(ti) = y(ti)− h(x̃(ti)) (4c)

w(ti) ∈ W, v(ti) ∈ V, x̃(t) ∈ Ωρ (4d)

|x̃(tk)− z(tk)| ≤ κ|y(tk)− h(z(tk))| (4e)

where Ne is the estimation horizon, Qm and Rm are the estimated
covariance matrices of w and v respectively, V̂T (tk−Ne) denotes the
arrival cost which summarizes past information up to tk−Ne , x̃ is
the predicted state x in the above optimization problem, y(ti) is
the output measurement at ti, z(tk) is an estimate given by the
observer F based on continuous measurements of y, and κ is a
positive constant which is a design parameter.

Once the optimization problem of Eq. (4) is solved, an optimal
trajectory of the system state, x̃∗(tk−N), . . . , x̃∗(tk), is obtained. The
optimal estimate of the current system state is denoted:

x̂∗(tk) = x̃∗(tk). (5)

Note that in the optimization problem of Eq. (4), w and v are
assumed to be piece-wise constant variables with sampling time
∆ to ensure that (4) is a finite dimensional optimization problem.

In the optimization problem of Eq. (4), z(tk) is a reference
estimate calculated by the observer F . Based on the reference
estimate and the current output measurement (i.e., y(tk)), a
confidence region that contains the actual system state is
constructed (i.e., κ|y(tk) − h(z(tk))|). The estimate of the current
state provided by the RMHE is only allowed to be optimized
within the confidence region. This approach ensures that the RMHE
inherits the robustness of the observer F and gives estimates with
bounded errors.

Remark 3. In order to account for the effect of historical data out-
side the estimation window, an arrival cost which summarizes the
information of those data is included in the cost function of anMHE
optimization problem. The arrival cost plays an important role in
the performance and stability of an MHE scheme. Different meth-
ods have been developed to approximate the arrival cost including
Kalman filtering and smoothing techniques for linear systems [17],
extended Kalman filtering for nonlinear systems [18], and particle
filters for constrained systems [19].

3. Output feedback LEMPC

The proposed design of the output feedback LEMPC for nonlin-
ear systems is presented in this section. Without loss of generality,
it is assumed that the LEMPC is evaluated at time instants {tk≥0}
with sampling time∆ as used in the RMHE. In the proposed LEMPC
design, we will take advantage of both the fast convergence rate of
the observer F and the robustness of the RMHE to measurement
noise.

3.1. Implementation strategy

In the proposed approach, the observer F is applied for a short
period at the initial time to drive the estimate of the observer to a
small neighborhood of the actual system state; once the estimate
has converged to a small neighborhood of the actual system state,
the RMHE takes over the estimation task and provides smoother
and optimal estimate to the LEMPC. Without loss of generality,
we assume that tb is a multiple integer of the sampling time
∆. Specifically, in the first b sampling periods, the observer F
is applied with continuously output measurements and provides
state estimates to the LEMPC at every sampling time; that is, from
t0 to tb with b ≥ 1, the observer F is evaluated continuously
and provides state estimates to the LEMPC at time instants ti with
i = 0, . . . , b − 1. Starting from tb, the RMHE is activated. The
RMHE is evaluated and provides an optimal estimate of the system
state to the LEMPC at every sampling time. The LEMPC evaluates
its optimal input trajectory based on either the estimates provided
by the observer F or the estimates from the RMHE.

The two-mode operation scheme in [4] is adopted in the design
of the proposed LEMPC. Specifically, we assume that from the time
t0 up to a specific time ts, the LEMPC operates in the first operation
mode to maximize the economic cost function while maintaining
the closed-loop system state in the stability region Ωρ . In this
operation mode, in order to account for the uncertainties in state
estimates andprocess noise, a regionΩρe withρe < ρ is used. If the
estimated current state is in the region Ωρe , the LEMPCmaximizes
the cost function within the region Ωρe ; if the estimated current
state is in the region Ωρ \ Ωρe , the LEMPC first drives the system
state to the region Ωρe and then maximizes the cost function
within Ωρe . After time ts, the LEMPC operates in the second
operation mode and calculates the inputs in a way that the state of
the closed-loop system is driven to a neighborhood of the desired
steady-state. The above described implementation strategy of the
proposed output feedback LEMPC can be summarized as follows:

Algorithm 1. Output feedback LEMPC implementation algorithm

1. Initialize the observer F with z(t0) and run the observer F
continuously based on the output measurements y.

2. At a sampling time tk, if tk < tb, go to Step 2.1; otherwise, go to
Step 2.2.
2.1. The LEMPC gets a sample of the estimated system state

z(tk) at tk from the observer F , and go to Step 3.
2.2. Based on the estimate z(tk) provided by the observer F

and output measurements at the current and previous Ne
sampling instants (i.e., y(ti) with i = k − Ne, . . . , k),
the RMHE calculates the optimal state estimate x̂∗(tk). The
estimate x̂∗(tk) is sent to the LEMPC.
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3. If tk < ts and if z(tk) ∈ Ωρe (or if x̂
∗(tk) ∈ Ωρe ), go to Step 3.1.

Otherwise, go to Step 3.2.
3.1. Based on z(tk) or x̂∗(tk), the LEMPC calculates its input

trajectory to maximize the economic cost function within
Ωρe . The first value of the input trajectory is applied to the
system. Go to Step 4.

3.2. Based on z(tk) or x̂∗(tk), the LEMPC calculates its input
trajectory to drive the system state towards the origin. The
first value of the input trajectory is applied to the system.

4. Go to Step 2 (k←− k+ 1).

In the remainder,wewill use x̂ to denote the state estimate used
in the LEMPC. Specifically, x̂ at time tk is defined as follows:

x̂(tk) =

z(tk), if tk < tb
x̂∗(tk), if tk ≥ tb.

(6)

Remark 4. In the implementation Algorithm 1 as well as in the
RMHE design of Eq. (4), the observer F provides state estimate to
the RMHE at every sampling time and is evaluated independently
from the RMHE. In order to improve the quality of the estimates
provided by the observer F , the state of the observer F may be set
to the estimate of the RMHE at every sampling time since the esti-
mates obtained from the RMHE are expected to be more accurate.
That is, at Step 2.2, the estimate x̂∗(tk) is also sent to the observer
F and the observer F resets its state to z(tk) = x̂∗(tk).

3.2. LEMPC design

The LEMPC is evaluated every sampling time to obtain the
future input trajectories based on estimated state x̂(tk) provided by
the observer F or the RMHE. Specifically, the optimization problem
of the LEMPC is formulated as follows:

max
u∈S(∆)

 tk+N

tk
L(x̃(τ ), u(τ ))dτ (7a)

s.t. ˙̃x(τ ) = f (x̃(τ ))+ g(x̃(τ ))u(τ ) (7b)
u(τ ) ∈ U, τ ∈ [tk, tk+N) (7c)

x̃(tk) = x̂(tk) (7d)

V (x̃(t)) ≤ ρe, ∀t ∈ [tk, tk+N), if tk ≤ ts and V (x̂(tk)) ≤ ρe (7e)
∂V (x̂(tk))

∂x
g(x̂(tk))u(0) ≤

∂V (x̂(tk))
∂x

g(x̂(tk))k(x̂(tk)),

if tk > ts or ρe < V (x̂(tk)) ≤ ρ (7f)

where N is the control prediction horizon, L(·, ·) is the general
economic cost function that is maximized, x̃ is the predicted
trajectory of the system with control inputs calculated by this
LEMPC and S(∆) is the family of piecewise continuous functions
with period ∆. Constraint (7b) is the nominal system model used
to predict the future evolution of the system subject to input
constraint (7c). Constraint (7e) is active only for operation mode
1 which requires that the economic cost is maximized within the
region defined by Ωρe . Constraint (7f) is active for operation mode
2 as well as operation mode 1 when the estimated system state is
out of Ωρe . This constraint forces the LEMPC to generate control
actions that drive the closed-loop system state towards the origin.
The optimal solution to this optimization problem is denoted by
u∗(t|tk), which is defined for t ∈ [tk, tk+N). The manipulated input
of the LEMPC is defined as follows:

u(t) = u∗(t|tk), ∀t ∈ [tk, tk+1). (8)
3.3. Stability analysis

The stability of LEMPC of Eq. (7) based on state estimates
obtained following Eq. (6) is analyzed in this subsection. A set
of sufficient conditions is derived under which the closed-loop
system state trajectory is ensured to be maintained in the region
Ωρ and ultimately bounded in an invariant set.

In the remainder of this subsection, we first present two
propositions and then summarize the main results in a theorem.
Proposition 1 characterizes the continuity property of the Lya-
punov function V . Proposition 2 characterizes the effects of
bounded state estimation error and process noise.

Proposition 1 (C.f. [20]). Consider the Lyapunov function V (·) of
system of Eq. (1). There exists a quadratic function fV (·) such that

V (x) ≤ V (x̂)+ fV (|x− x̂|) (9)

for all x, x̂ ∈ Ωρ with

fV (s) = α4(α
−1
1 (ρ))s+Mvs2 (10)

where Mv is a positive constant.

Proposition 2. Consider the systems

ẋa(t) = f (xa)+ g(xa)u(t)+ l(xa)w(t)
ẋb(t) = f (xb)+ g(xb)u(t)

(11)

with initial states |xa(t0)−xb(t0)| ≤ δx. There exists a function fW (·, ·)
such that

|xa(t)− xb(t)| ≤ fW (δx, t − t0) (12)

for all xa(t), xb(t) ∈ Ωρ and u ∈ U, w ∈ W with:

fW (s, τ ) =


s+

Mlθw

Lf + Lgumax


e(Lf+Lgumax)τ

−
Mlθw

Lf + Lgumax
(13)

where Lf , Lg , Ml are positive constants associated with functions
f , g, l.

Proof. Define ex = xa − xb. The time derivative of ex is given by:

ėx(t) = f (xa)+ g(xa)u(t)+ l(xa)w(t)− f (xb)− g(xb)u(t). (14)

By continuity and the smooth property assumed for f , g , there exist
positive constants Lf , Lg such that:

|ėx(t)| ≤ Lf |ex(t)| + Lgu(t)|ex(t)| + |l(xa)w(t)|. (15)

By the boundedness of xa and the smooth property assumed for l as
well as the boundedness of u and w, there exist positive constants
Ml such that:

|ėx(t)| ≤ (Lf + Lgumax)|ex(t)| +Mlθw. (16)

Integrating the above inequality and taking into account that
|ex(t0)| ≤ δx, it is obtained that:

|ex(t)| ≤


δx +
Mlθw

Lf + Lgumax


e(Lf+Lgumax)(t−t0) −

Mlθw

Lf + Lgumax
.

(17)

This proves Proposition 2. �

Theorem 1 summarizes the stability properties of the output
feedback LEMPC. The stability of the closed-loop system is based
on the observer F and controller k pair with F implemented con-
tinuously and k implemented in a sample-and-hold fashion.
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Theorem 1. Consider system of Eq. (1) in closed loop under LEMPC
of Eq. (7)with state estimates determined following Eq. (6) based on an
observer and controller pair satisfying the assumptions in Section 2.3.
Let θw ≤ θ∗w , θv ≤ θ∗v , ϵ ∈ (ϵ∗L , ϵ

∗

U) and |z(t0) − x(t0)| ≤ em0. Also,
let ϵw > 0, ∆ > 0 and ρ > ρ1 > ρe > ρ∗ > ρs > 0 and κ ≥ 0
satisfy the following conditions:

ρe ≤ ρ −max{fV (fW (δx, ∆))+ fV (δx),

M max{∆, tb}α4(α
−1
1 (ρ))}, (18)

−α3(α
−1
2 (ρs))+


LfV + LgVu

max


× (M∆+ δx)+M l
V θw ≤ −ϵw/∆ (19)

where δx = (κLh + 1)em + κθv , L
f
V , L

g
V are Lipschitz constants

associated with ∂V
∂x f and ∂V

∂x g, respectively, M is a constant that
bounds the time derivative of x (i.e., |ẋ| ≤ M) and M l

V is a constant
that bounds

 ∂V
∂x l

 for x ∈ Ωρ . If x(t0) ∈ Ωρe , then x(t) ∈ Ωρ for all
t ≥ t0 and is ultimately bounded in an invariant set.

Proof. In this proof, we consider t ∈ [t0,max{∆, tb}) and t ≥
max{∆, tb} separately and prove that if the conditions stated in
Theorem 1 are satisfied, the boundedness of the closed-loop state
is ensured. Specifically, the proof consists of three parts. In Part I,
we prove that the closed-loop state trajectory is contained in Ωρ

for t ∈ [t0,max{∆, tb}); in Part II, we prove that the boundedness
of the closed-loop state trajectory under the first operation mode
of the LEMPC for t ≥ max{∆, tb} when the initial state is within
Ωρe ; and in Part III, we prove that the closed-loop state trajectory
is bounded for the first operation mode when the initial state is
within Ωρ \ Ωρe and is ultimately bounded in an invariant set for
the second operation mode for t ≥ max{∆, tb}.

Part I: First, we consider the case that t ∈ [t0,max{∆, tb}). The
closed-loop system state can be described as follows:

ẋ(t) = f (x(t))+ g(x(t))u(t)+ l(x(t))w(t) (20)

with u(t) determined by the LEMPC with x̂ = z. The Lyapunov
function of the state trajectory can be evaluated as follows:

V (x(t)) = V (x(t0))+
 t

t0
V̇ (x(t))dτ = V (x(t0))

+

 t

t0

∂V (x(τ ))

∂x
ẋ(τ )dτ . (21)

Using condition of Eq. (2) and the boundedness of ẋ in the region
of interest, if x(t0) ∈ Ωρe ⊂ Ωρ1 ⊂ Ωρ , it can be written for all
t ∈ [t0,max{∆, tb}) that:

V (x(t)) ≤ ρe +M max{∆, tb}α4(α
−1
1 (ρ)) (22)

with M a positive constant which bounds ẋ in Ωρ (i.e., |ẋ| ≤ M). If
ρe is defined as in Theorem 1 (Eq. (18)), then

V (x(t)) < ρ, ∀t ∈ [t0,max{∆, tb}). (23)

Part II: In this part, we consider the case that t ≥ max{∆, tb}.
In this case, we have that |x(t) − z(t)| ≤ em. We consider that
the LEMPC is operated in the first operation mode and focus on
the evolution of the state trajectory from tk to tk+1. Moreover, we
consider x̃(tk) = x̂(tk) ∈ Ωρe . In this case, the LEMPC will optimize
the economic cost while keeping x̃(t) within Ωρe . We prove that if
x̃(tk) ∈ Ωρe , then x(tk+1) ∈ Ωρ and x̂(tk+1) ∈ Ωρ .

From tk to tk+1, the worst case scenario is as shown in Fig. 1. At
time tk, the estimate of the state x̂(tk) = x̃(tk) is on the boundary
of Ωρe while the actual system state is outside of Ωρe and on the
boundary of another set Ωρ2 due to uncertainty in x̂. The LEMPC
will keep x̃(t) insideΩρe from tk to tk+1. However, due to the initial
Fig. 1. Worst case scenario of the evolution of x̃ and x from tk to tk+1 in the first
operation mode.

error in x̃(tk) and the presence of process noise, the actual system
state x(tk+1) may diverge to a point (on the boundary of Ωρ2 in
Fig. 1) that is further away of Ωρe . The distance between x̃(tk+1)
and x(tk+1), however, is bounded. Specifically, from Proposition 2,
it can be obtained that:

|x̃(tk+1)− x(tk+1)| ≤ fW (|x̂(tk)− x(tk)|, ∆). (24)

Recall that when t ≥ tb, all the estimates are provided by the
RMHE. From the design of the RMHE, it can be written that:

|x̂(tk)− z(tk)| ≤ κ|y(tk)− h(z(tk))|. (25)

Using the relation that |x̂− x| ≤ |x̂− z|+ |z− x|, it can be obtained
that:

|x̂(tk)− x(tk)| ≤ κ|y(tk)− h(z(tk))| + |z(tk)− x(tk)|. (26)

Noticing that |z(tk)−x(tk)| ≤ em and |y(tk)−h(z(tk))| = |h(x(tk))+
v(tk) − h(z(tk))|, and using the Lipschitz property of h, the
boundedness of v, the following inequality can be written:

|x̂(tk)− x(tk)| ≤ (κLh + 1)em + κθv. (27)

From Eqs. (24) to (27), it can be obtained that:

|x̃(tk+1)− x(tk+1)| ≤ fW ((κLh + 1)em + κθv, ∆). (28)

This implies that if x̃ is maintained in Ωρe , the actual system state
x is ensured to be within the set Ωρ2 with ρ2 = ρe + fV (fW ((κLh +
1)em + κθv, ∆)) which can be obtained from Proposition 1.

Taking into account Eq. (27) again for t = tk+1, the estimate of
x obtained at tk+1 could be outside the region Ωρ2 but the distance
is bounded as follows:

|x̂(tk+1)− x(tk+1)| ≤ (κLh + 1)em + κθv. (29)

In order to ensure that x̂(tk+1) is within Ωρ which is required for
the feasibility of the LEMPC of Eq. (7), the following inequality
should be satisfied:

ρ ≥ ρe + fV (fW ((κLh + 1)em + κθv, ∆))

+ fV ((κLh + 1)em + κθv) (30)

which implies that ρe should be picked to satisfy the following
condition:

ρe ≤ ρ − fV (fW ((κLh + 1)em + κθv, ∆))

− fV ((κLh + 1)em + κθv). (31)

If ρe is defined as in Theorem 1 (Eq. (18)), the above condition is
satisfied.

Part III: Next, we consider the case that x̂(tk) = x̃(tk) ∈ Ωρ \Ωρe
in the first operation mode or tk ≥ ts (i.e., the second operation
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mode). In this case, constraint (7f) will be active. The time
derivative of the Lyapunov function can be evaluated as follows:

V̇ (x(t)) =
∂V (x(t))

∂x
(f (x(t))+ g(x(t))u(tk)+ l(x(t))w(t)) (32)

for t ∈ [tk, tk+1). Adding and subtracting the term ∂V (x̂(tk))
∂x (f (x̂(tk))+

g(x̂(tk))u(tk)) to/from the above equation and considering con-
straint (7f) as well as condition (2), it is obtained that:

V̇ (x(t)) ≤ −α3(|x̂(tk)|)+
∂V (x(t))

∂x
(f (x(t))+ g(x(t))u(tk)

+ l(x(t))w(t))−
∂V (x̂(tk))

∂x
(f (x̂(tk))+ g(x̂(tk))u(tk)). (33)

By the smooth properties of V , f , g and l, the boundedness of x, u
and w, there exist positive constants LfV , L

g
V , M

l
V such that:

V̇ (x(t)) ≤ −α3(|x(tk)|)+

LfV + LgVu

max


× |x(t)− x̂(tk)| +M l
V θw (34)

for all x ∈ Ωρ . Noticing that |x(t)− x̂(tk)| ≤ |x(t)−x(tk)|+|x(tk)−
x̂(tk)|, it is obtained that:

|x(t)− x̂(tk)| ≤ |x(t)− x(tk)| + (κLh + 1)em + κθv. (35)
By the continuity and smoothness properties of f , g , l and the
boundedness of x, u and w, there exists positive constant M such
that |ẋ| ≤ M . From the above inequalities, it can be obtained that:

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs))+


LfV + LgVu

max


× (M∆+ (κLh + 1)em + κθv)+M l
V θw (36)

for all x ∈ Ωρ \Ωρs . If condition (19) is satisfied, it can be obtained
from Eq. (36) that:
V (x(tk+1)) ≤ V (x(tk))− ϵw. (37)
This means that V (x) decreases in the first operation mode if
x̃(tk) = x̂(tk) is outside of Ωρe . This implies that x̂(tk) will eventu-
ally enterΩρe . This also implies that in the second operationmode,
V (x) decreases every sampling time and x will eventually enter
Ωρs . Once x ∈ Ωρs ⊂ Ωρ∗ , it will remain in Ωρ∗ because of the
definition of ρ∗. This proves Theorem 1. �

Remark 5. Part I of Theorem 1 essentially treats the input as a
disturbance. Given that the input and the noise are bounded, a
bound is derived for how large the Lyapunov functionmay increase
over time tb (which is small). This follows from the fact that the
initial estimation error of the deterministic observer and actual
state are both bounded in a region containing the origin.

Remark 6. Parts II and III prove that if the current state x(tk) ∈ Ωρ

and if the current estimate x̂(tk) ∈ Ωρ , the actual state and the
estimated state at the next sampling period are also within Ωρ .
Since Part II considers mode 1 operation of the LEMPC (i.e., may
dictate time-varying operation), the worst case scenario is con-
sidered (Fig. 1). Part III considers mode 2 operation of the LEMPC
(i.e., convergence of the state to a small neighborhood of the
origin). While the theoretical developments and corresponding
bounding inequalities contained in this section are conservative,
they do provide valuable insight and guidelines for selecting the
parameters of the state feedback controller k(x), the deterministic
observer, the RMHE, and the output feedback LEMPC such that the
closed-loop system of Eq. (1) under the output feedback LEMPC of
Eq. (7) is stable with bounded process and measurement noise.

Remark 7. One could potentially apply the RMHE for t0 to tb in-
stead of using the deterministic observer. However, it is difficult
to prove closed-loop stability for this case owing to the fact that
the estimation error may not have decayed to a small value over
this time period with the RMHE (i.e., it is difficult to show that the
RMHE satisfies the observability assumptions of Section 2.3).
Table 1
Parameter values.

Symbol Description Value

F Inlet flow rate 5.0 m3 h−1
T0 Inlet temperature 300 K
V Reactor volume 1.0 m3

Qs Heat rate supplied to the reactor 1.73× 105 kJ h−1

∆H Heat of reaction 1.16× 104 kJ kmol−1

k0 Pre-exponential factor 13.93 h−1

E Activation energy 5.0× 103 kJ kmol−1

Cp Heat capacity 0.231 kJ kg−1 K−1

R Gas constant 8.314 kJ kmol−1 K−1

ρL Liquid density 1000 kg m3

CAs Steady-state reactant concentration 2.44 kmol m−3
Ts Steady-state temperature 321.95 K
CA0s Steady-state inlet reactant

concentration
5.0 kmol m−3

4. Application to a chemical process example

Consider a well-mixed, non-isothermal continuous stirred tank
reactor (CSTR) where a second-order reaction of the form A → B
takes place. The species B is the desired product. Since the reaction
is endothermic and irreversible, thermal energy is supplied to the
reactor through a heating jacket at a constant heat rate Qs. The
feedstock consists of the reactant A in an inert solvent and does not
contain any of the product B. The feedstock volumetric flow rate F
and temperature T0 are constant; while, the inlet concentration CA0
can be manipulated. Due to the constant volumetric flow rate and
the assumption that the liquid in the reactor has a constant density
ρL, the liquid volume V in the CSTR is constant. Applying first
principles and other standard modeling assumptions, a dynamic
model of the CSTR can be derived and is given by the following
ODEs:

dCA

dt
=

F
V

(CA0 − CA)− k0e−E/RTC2
A (38a)

dT
dt
=

F
V

(T0 − T )−
∆Hk0
ρLCp

e−E/RTC2
A +

Qs

ρLCpV
(38b)

where CA and T denote the reactant concentration and tempera-
ture in the reactor, respectively, Cp denotes the heat capacity of
the liquid in the CSTR, and ∆H , k0, and E denote the enthalpy, pre-
exponential factor and activation energy of the reaction, respec-
tively. The process parameters are given in Table 1. The two states
are CA and T which are denoted as x1 and x2, respectively, the input
u is the inlet reactant concentration (i.e., u = CA0) and the output
measurement y is the reactor temperature which is measured con-
tinuously. For the input u, the available actuation is given by the
following convex set: U = {u(t) ∈ R | 0.5 kmol m−3 ≤ u(t) ≤
7.5 kmol m−3}.

The control objective is to manipulate the inlet reactant
concentration CA0 in an economically optimalmanner tomaximize
the reaction rate. To accomplish this objective, an LEMPC scheme
(i.e., mode 1 of the scheme detailed in [4,8]) is formulated with the
following economic cost function:

L(x, u) = k0e−E/Rx2x21 . (39)

The input trajectory that maximizes this cost dictates feeding the
maximum allowablematerial to the reactor for all times. However,
feeding the maximum amount of material to the reactor for all
times may not be practical from an economic perspective. Instead,
we consider the economically optimal time-varying distribution of
a fixed amount of reactant material to the reactor that maximizes
the reaction rate. Given that the inlet flow rate is constant, the
constraint added to the formulation of the LEMPC scheme that
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Fig. 2. The evolution of the closed-loop CSTR with the RMHE scheme used to compute an estimate of the state from the noisy output measurement y and with the LEMPC
scheme used to compute the control action from the state estimate provided by the RMHE shown in state-space (left plot) and as a function of time (right plots). The solid
line is the actual state trajectory x(t); while, the dashed line is the estimated state x̂(t).
limits the available amount of reactant material has the following
integral form:

1
tf

 tf

t0
CA0(τ ) dτ = CA0s (40)

which imposes the time-averaged reactant material A be equal to
CA0s over a finite operating window tf and thus, the time-averaged
reactant material usage is CA0s over the entire length of operation
which could be a large multiple of tf . There is only one feasible
steady-state in the operating range of interest that satisfies the
reactant material constraint of Eq. (40). Therefore, the open-loop
asymptotically stable steady-state denoted as xs is (trivially) the
economically optimal steady-state and is given in Table 1. Using
the economic cost function of Eq. (39), the dynamic model of Eq.
(38), the constraints on control action, and the reactant material
constraint of Eq. (40), we formulate an LEMPC scheme which is
given by the following optimization problem:

maximize
u∈S(∆)

 tf

tk


k0e−E/Rx̃2(τ )x̃21(τ )


dτ

subject to ˙̃x(t) = f (x̃(t), u(t), 0)

x̃(tk) = x̂(tk)
0.5 ≤ u(t) ≤ 7.5, ∀ t ∈ [tk, tf )

1
tf

 tk

t0
u∗(τ ) dτ +

 tf

tk
u(τ ) dτ


= 5.0

x̃(t)TPx̃(t) ≤ ρ

(41)

where the sampling period∆ = 0.01h, the positive definitematrix
in the quadratic Lyapunov function is P = diag([110.11, 0.12])
and the bound on the Lyapunov function ρ = 800 (i.e., value of
level set in which process operation is constrained by the EMPC).
Since the integral material constraint is enforced of over a finite
operating window tf = 1 h, the LEMPC of Eq. (41) is formulated
with a shrinking horizon: Nk = 100 − k (k is reset to zero at the
beginning of each operatingwindow). The optimization problemof
Eq. (41) is initialized through a state estimate obtained at sampling
time tk.

To estimate the process state from the noisy temperature
measurements, the RMHE scheme is used. The weighting matrices
of the RMHE are given byQe = diag([σ 2

w1
σ 2

w2
]) and Re = σ 2

v where
σ denotes the standard deviation of the process or measurement
noise. The design parameter of the RMHE is κ = 0.4, the sampling
period is the same as the LEMPC (i.e., ∆e = 0.01 h), and the
estimation horizon of the RMHE is Ne = 15. The robust constraint
of the RMHE is based on a high-gain observer as in [8]. For the first
15 sampling periods, the high-gain observer is used to provide the
LEMPCwith a state estimate. At each subsequent sampling periods,
the LEMPC is initialized using the state estimate from the RMHE.
To solve the optimization problems of the LEMPC and the RMHE
at each sampling period, the open-source software Ipopt [21] was
used. The process model of Eq. (38) is numerically simulated using
an explicit Euler integration method with integration step hc =

10−3 h. To simulate the process and measurement noise, new
random numbers are generated and applied over each integration
step. The process noise is assumed to enter the system additively
to the right-hand side of the ODEs of Eq. (38). The randomnumbers
are generated from a zero-mean, bounded Gaussian distribution.

Square bounds of wmax = [20.0 50.0] and vmax = 20.0 (i.e.,
w1 ∈ [−20.0, 20.0]) are used to bound the process and measure-
ment noise, respectively, and the standard deviation of the noise
terms are σw = [7.0 20.0] and σv = 7.0, respectively. The CSTR
is initialized at xT0 = [2.44 kmol m−3 320.0 K] (i.e., the economi-
cally optimal steady-state). The evolution of the closed-loop CSTR
under the RMHE and LEMPC is shown in Fig. 2. Initially, the esti-
mated concentration is significantly affected by the measurement
noise which is expected since the estimate comes from the high-
gain observer. After the RMHE is activated, the estimated state tra-
jectories are nearly overlapping with the actual state trajectories.
Furthermore, the LEMPC computes a periodic-like input profile to
optimize the process economics over the 1 h period of operation.

The average reaction rate over this 1 h period of operation is
13.59 kmol m−3. If, instead, the CSTR was maintained at the eco-
nomically optimal steady-state (x0) without process and measure-
ment noise (nominal operation), the average reaction rate over
this 1 h operation would be 12.80 kmol m−3. This is a 6.2% im-
provement in the economic cost of the closed-loop system under
RMHE/LEMPC with process and measurement noise over nominal
steady-state operation.We note that the economic performance of
the closed-loop system under LEMPC with full state feedback and
nominal operation over 1 h operation is 13.60 kmol m−3 which is
a 6.3% economic performance improvement. To assess the estima-
tion performance of the RMHE, another simulation is performed
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Fig. 3. The evolution of the closed-loop CSTR with the high-gain observer of [8] used to compute an estimate of the state from the noisy output measurement y and with
the LEMPC scheme used to compute the control input from the state estimate provided by the high-gain observer shown in state-space (left plot) and as a function of time
(right plots). The solid line is the actual state trajectory x(t); while, the dashed line is the estimated state x̂(t).
with the same realization of the process and measurement noise
and with the high-gain observer presented in [8]. The evolution of
the closed-loop CSTR under the high-gain observer and LEMPC is
shown in Fig. 3. Not only does the noise impact the estimates pro-
vided by the high-gain observer in this case, but also, it impacts
the computed input profile (Fig. 3(b)). Comparing Figs. 2 and 3,
the RMHE is able to provide estimates of the state within a small
neighborhood of the actual process states; while, the high-gain
observer is not able to estimate the concentration as well as the
RMHE. Furthermore, since the RMHE provides better (smoother)
estimates of the states, the operation of the closed-loop systemun-
der RMHE/LEMPC is smoother which can be observed in the input
trajectories.

Several additional closed-loop simulationswith various bounds
and standard deviations on the process and measurement noise
and initial conditions are performed to further assess the
estimation performance of RMHE compared to the one of the high-
gain observer of [8]. An estimation performance index which is
defined as

J =
99
k=0

x̂(tk)− x(tk)
2
S (42)

is used to assess the estimation performance where the matrix S is
a positive definite weightingmatrix given by S = diag([50 1]). The
matrix S has been chosen to account for the different numerical
ranges of the concentration and temperature. In addition to the
assessment on the estimation performance, the total economic
performance index over the length of the simulation is defined as

Je =
1
99

100
k=0

k0e−E/RT (tk)C2
A (tk) (43)

which is the time-averaged reaction rate over the simulation. From
the results displayed in Table 2, the RMHE consistently provides
significantly better estimates of the state than the high-gain ob-
server which demonstrates the robustness of the RMHE to process
and measurement noise. However, the estimation performance
does not translate into a significant closed-loop average eco-
nomic performance improvement of the closed-loop system with
RMHE/LEMPC over the closed-loop system with the high-gain ob-
server and LEMPC. This relationship is due to the fact that the
closed-loop average economic performance over one operation pe-
Table 2
Estimation performance comparison of the closed-loop CSTR with various bounds
and standard deviation of the disturbances and noise and initial conditions under
the high-gain observer and LEMPC and under the RMHE and LEMPC (ordered
below by increasing bounds and standard deviation). The J column refers to the
performance index of Eq. (42), the ‘‘SSE of CA ’’ column denotes the sum of squared
errors of the concentration CA estimation, and the Je column refers to the economic
performance index of Eq. (43).

High-gain observer RMHE
J SSE of CA Je J SSE of CA Je

1 310.5 4.450 13.04 104.0 1.277 13.04
2 528.5 7.781 14.19 310.1 4.169 14.19
3 271.6 3.669 13.47 88.1 0.440 13.47
4 506.4 7.066 13.06 181.9 1.476 13.07
5 583.2 8.097 14.20 354.4 3.888 14.20
6 482.1 6.397 13.48 137.7 0.372 13.48
7 592.4 7.821 13.09 257.1 1.734 13.09
8 572.8 8.519 14.23 252.6 3.425 14.23
9 616.4 8.579 13.51 168.6 1.126 13.52
10 992.0 13.700 13.00 429.9 4.355 13.08
11 1079.8 14.871 14.14 888.7 12.076 14.21
12 1012.5 14.304 13.42 552.0 5.817 13.43
13 1643.6 22.606 13.02 665.3 3.523 12.99
14 1758.5 23.396 14.24 771.2 5.492 14.27
15 1591.0 21.740 13.51 561.5 1.717 13.55

riod is not strongly dependent on the initial condition of the LEMPC
optimization problem (i.e., x̂(tk)) for this particular example. In
other words, providing the LEMPC with an estimate of the actual
state anywhere in a neighborhood around the actual state will re-
turn the optimal input trajectory that leads to nearly the same
economic cost for the closed-loop systems. For systems that are
more sensitive to the estimate of the current state, it is expected
that there would also be improved closed-loop economic perfor-
mance with RMHE/LEMPC in addition to improved estimation per-
formance.

5. Conclusions

In this work, we considered the design of an output feedback
EMPC for a class of nonlinear systems with bounded process and
measurement noise. In order to achieve fast convergence of the
state estimate to the actual system state as well as the robustness
of the estimator to measurement and process noise, a high-gain
observer and a RMHE scheme were used to estimate the system
states. In particular, the high-gain observer was first applied for
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a small time period with continuous output measurements to
drive the estimation error to a small value. Once the estimation
error had converged to a small neighborhood of the origin, the
RMHE was activated to provide more accurate and smoother state
estimates. In the design of the RMHE, the high-gain observer was
used to provide reference estimates based on which confidence
regions were calculated. The RMHE was only allowed to optimize
the estimates within the confidence regions. The output feedback
EMPC was designed via Lyapunov techniques based on state
estimates provided by the high-gain observer and the RMHE.
The application of the proposed design to a chemical reactor
demonstrated the applicability and effectiveness of the proposed
approach and its ability to deal with measurement noise.
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