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. Introduction

Optimal operation and control of dynamic systems and pro-
esses has been a subject of significant research for many years.
mportant early results on optimal control of dynamic systems
nclude optimal control based on the Hamilton–Jacobi–Bellman
quation [16], Pontryagin’s maximum principle [135], and the lin-
ar quadratic regulator [84]. Within the context of the chemical
rocess industries, room for improvement in process operations
ill always exist given that it is unlikely for any process to oper-

te at the true or theoretically global optimal operating conditions
or any substantial length of time. One methodology for improving
rocess performance is to employ the solution of optimal con-
rol problems (OCPs) on-line. In other words, control actions for
he manipulated inputs of a process are computed by formulat-
ng and solving a dynamic optimization problem on-line that takes
dvantage of a dynamic process model while accounting for pro-
ess constraints. With the available computing power of modern
omputers, solving complex dynamic optimization problems (e.g.,

arge-scale, nonlinear, and non-convex optimization problems) on-
ine is becoming an increasingly viable option to use as a control
cheme to improve the steady-state and dynamic performance of
rocess operations.

∗ Corresponding author at: Department of Chemical and Biomolecular Engineer-
ng, University of California, Los Angeles, CA 90095-1592, USA. Tel.: +1 310 794 1015;
ax:  +1 310 206-4107.

E-mail address: pdc@seas.ucla.edu (P.D. Christofides).

ttp://dx.doi.org/10.1016/j.jprocont.2014.03.010
959-1524/© 2014 Elsevier Ltd. All rights reserved.
The process performance of a chemical process refers to the
process economics of process operations and encapsulates many
objectives: profitability, efficiency, variability, capacity, sustaina-
bility, etc. As a result of continuously changing process economics
(e.g., variable feedstock, changing energy prices, etc.), process oper-
ation objectives and strategies need to be frequently updated to
account for these changes. Traditionally, economic optimization
and control of chemical processes has been addressed in a multi-
layer hierarchical architecture (e.g., [106]) which is depicted in
Fig. 1. In the upper-layer called real-time optimization (RTO), a
metric usually defining the operating profit or operating cost is
optimized with respect to up-to-date, steady-state process mod-
els to compute optimal process set-points (or steady-states). The
set-points are used by the lower-layer feedback process control
systems (i.e., supervisory control and regulatory control layers) to
steer the process to operate at these set-points using the manipu-
lated inputs to the process (e.g., control valves, heating jackets, etc.).
In addition to the previously stated objective, process control also
must work to reject disturbances and ideally, guide the trajectory
of the process dynamics along an optimal path.

The supervisory control layer of Fig. 1 consists of advanced con-
trol algorithms that are used to account for process constraints, cou-
pling of process variables, and processing units. In the supervisory
control layer, model predictive control (MPC) (e.g., [116,109,140]),

a control strategy based on optimal control concepts, has been
widely implemented in the chemical process industry. MPC  uses a
dynamic model of the process in the optimization problem to pre-
dict the future evolution of the process over a finite-time horizon to
determine the optimal input trajectory with respect to a specified
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erformance index. Furthermore, MPC  can account for the pro-
ess constraints and multi-variable interactions in the optimization
roblem. Thus, it has the ability to optimally control constrained
ultiple-input multiple-output nonlinear systems. The conven-

ional formulations of MPC  use a quadratic performance index,
hich is essentially a measure of the predicted deviation of the

rror of the states and inputs from their corresponding steady-state
alues, to force the process to the (economically) optimal steady-
tate. The regulatory control layer includes mostly single-input
ingle-output control loops like proportional-integral-derivative
PID) control loops that work to implement the computed control
ctions by the supervisory control layer.

The overall control architecture of Fig. 1 invokes intuitive
ime-scale separation arguments between the various layers. For
nstance, RTO is executed at a rate of hours-days, while the regu-
atory control layer computes control actions for the process at a
ate of seconds-minutes (e.g., [11,147]). Though this paradigm has
een successful, we are witnessing the growing need for dynamic
arket-driven operations which include more efficient and nimble

rocess operation [7,81,150,36]. To enable next-generation opera-
ions, novel control methodologies capable of handling dynamic
ptimization of process operations must be proposed and investi-
ated. In other words, there is a need to develop theory, algorithms,
nd implementation strategies to tightly integrate the layers of
ig. 1. The benefits of such work may  be transformative to process
perations and usher in a new era of dynamic (off steady-state)
rocess operations.

To this end, it is important to point out that while steady-
tate operation is typically adopted in chemical process industries,
teady-state operation may  not necessarily be the economically
est operation strategy. The chemical process control literature

s rich with both experimental and simulated chemical processes
hat demonstrate performance improvement with dynamic pro-
ess operation (see [41,94,13,151,149,158,159,131,133,132,153,
3,97,126,24,105,152], and the numerous references therein for
esults in this direction). In particular, periodic operation of chemi-
al reactors has been perhaps the most commonly studied example
e.g., [151]). Periodic control strategies have also been developed
or several applications (for instance, [97,126,23,149,133]). Several
echniques have been proposed to help identify systems where

erformance improvement is achieved through periodic operation
hich mostly include frequency response techniques and the appli-

ation of the maximum principle [41,9,21,8,66,158].

ig. 1. The traditional paradigm employed in the chemical process industries for
rocess optimization and control.
ntrol 24 (2014) 1156–1178 1157

In an attempt to integrate economic process optimization and
process control as well as realize the possible process performance
improvement achieved by consistently dynamic, transient, or time-
varying operation (i.e., not forcing the process to operate at a
pre-specified steady-state), economic MPC  (EMPC) has been pro-
posed which incorporates a general cost function or performance
index (i.e., objective function) in its formulation [72,56,141]. The
cost function may  be a direct or indirect reflection of the process
economics. However, a by-product of this modification is that EMPC
may  operate a system in a possibly time-varying fashion to opti-
mize the process economics (i.e., may  not operate the system at a
specified steady-state or target). The rigorous design of EMPC sys-
tems that operate large-scale processes in a dynamically optimal
fashion while maintaining stability (safe operation) of the closed-
loop process system is challenging as traditional notions of stability
(e.g., asymptotic stability of a steady-state) may not apply to the
closed-loop system under EMPC. It is important to point out that
the use of OCPs with an economic cost function is not a new con-
cept. In fact, MPC  with an economic cost is not new either (e.g., one
such EMPC framework was presented in [72]). However, closed-
loop stability and performance under EMPC has only recently been
considered and proved for various EMPC formulations.

This article attempts to organize the recent theoretical develop-
ments on EMPC. Further explanation of the theory is given where
possible in an attempt to make the theory tractable and accessible
to even a beginning graduate student working in the area of pro-
cess control. The remainder of the paper is organized as follows.
In the next section, the preliminaries are presented which include
the notation used throughout this work, the class of nonlinear pro-
cess systems considered, as well as a more thorough description of
real-time optimization and model predictive control. The subsec-
tions on RTO and MPC  are not meant to be comprehensive, but
rather, are presented to provide some historical background on
the challenges addressed in this area. The third section examines
closed-loop stability under EMPC and outlines the various types of
constraints and modifications to the objective function that have
been presented to guarantee some notion of closed-loop stability.
The fourth section discusses closed-loop performance under EMPC.
Various EMPC formulations are subsequently applied to a chemi-
cal process example in the fifth section. An overall discussion and
analysis is provided in the sixth section which attempts to provide
our perspective on the current status of EMPC. Lastly, the review
concludes with a discussion of future research directions.

2. Preliminaries

2.1. Notation

The operator | · | is used to denote the Euclidean norm of a vec-
tor, while the operator | · |2Q is used to denote a square of a weighted
Euclidean norm of a vector where Q is a positive definite matrix
(i.e., |x|2Q = xT Qx). The symbol S(�) denotes the family of piece-
wise constant functions with period �.  A continuous function  ̨ : [0,
a) → [0, ∞)  belongs to class K if it is strictly increasing and satisfies
˛(0) = 0 and belongs to class K∞ if a =∞ and  ̨ is radially unbounded.
A continuous, scalar-valued function,  ̌ : R

nx → R  is positive defi-
nite with respect to xs if ˇ(xs) = 0 and ˇ(x) > 0 for all x ∈ R

nx \ {xs}.
The symbol ˝� denotes a level set of a scalar function V(·) (i.e.,
˝� = {x ∈ R

nx |V(x) ≤ �}). The set operators ⊕ and � denote the
following set operations:
A  ⊕ B = {c = a + b|a ∈ A, b ∈ B}
A  � B = {c|{c} ⊕ B ⊆ A}

or in other words, A  ⊕ B is a set with elements constructed from
the addition of any element of the set A  with any element of the
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et B and A  � B is a set where the addition of any element of the set
 � B with any element of the set B forms a set that is a subset of
r is equal to the set A.

.2. Classes of process systems

Throughout this tutorial review, unless otherwise noted, the
lass of process systems typically encountered within the chem-
cal process industries is considered which are continuous-time
ystems. Owing to the complex reaction mechanisms and ther-
odynamic relationships that govern the underlying physics

f chemical processes, most process systems are inherently
onlinear. Mathematically stated, the class of continuous-time,
ime-invariant nonlinear systems described by the following state-
pace form is considered:

˙ (t) = f (x(t), u(t), w(t)) (1)

here x ∈ X  ⊆ R
nx is the state vector, u ∈ U  ⊂ R

nu is the manipu-
ated input vector, w ∈ W ⊂ R

nw is the disturbance vector and the
otation ẋ denotes the time derivative of the state. The set X  denotes
he set of admissible states. The input vector is bounded in the set
f the available control energy U  where U  = {u ∈ R

nu |umin,i ≤ ui ≤
max,i, i = 1, 2, . . .,  nu}. The disturbance vector includes unknown
xternal forcing of the system, modeling errors, and other forms of
ncertainty and is bounded in the following set: W = {w ∈ R

nu ||w| ≤
, � > 0}.

In addition to continuous-time nonlinear systems, other models
ave been considered for the design of EMPC systems. Specifically,
any EMPC schemes have been developed for systems described

y a discrete-time nonlinear model, possibly obtained from the dis-
retization of a nonlinear continuous-time model of the form of
q. (1). The discrete-time system analogous to the continuous-time
ystem of Eq. (1) is given by the nonlinear time-invariant difference
quation:

(k + 1) = fd(x(k), u(k), w(k)) (2)

ith x ∈ X  ⊆ R
nx , u ∈ U  ⊂ R

nu , and w ∈ W ⊂ R
nw where k is used

o denote the current time step and the notation fd(·) is used
o distinguish the discrete-time nonlinear state-transition map
nd the continuous-time nonlinear vector field denoted by f(·). In
ther cases, linear systems are considered. A linear process model
ay  arise from the linearization of Eq. (1) around an operating

teady-state or when a linear model can provide sufficient accuracy
escribing the evolution of the process system. The continuous-
ime linear (time-invariant) model is given by

˙ (t) = Ax(t) + Bu(t) (3)

here A and B are nx × nx and nx × nu matrices, respectively.
A state measurement of the process state is assumed to be avail-

ble at synchronous time instants given by the sequence {�k≥0}
here �k = �0 + k� and � is the sampling period. The kth time

tep of the discrete-time model (Eq. (2)) corresponds to the samp-
ing time instance �k of the continuous-time model. To distinguish
etween continuous time and the discrete sampling time, the nota-
ion t is used for continuous time and the symbols �k and k are used
or the discrete sampling time instances for the continuous-time

odel and the discrete-time model, respectively. Output feedback
nd asynchronous sampling are discussed in Sections 7.1 and 7.3.
or the remainder of the manuscript, the predictive controllers
escribed below will take advantage of the (open-loop) solution to

he nominal model (w(t) ≡ 0) of Eq. (1) or (2) for a given piecewise
onstant input trajectory u(t). This state trajectory or solution to the
nitial value problem of Eq. (1) with w(t) ≡ 0 for a given initial con-
ition and input trajectory is defined as the open-loop predicted
tate trajectory which is denoted as x̃(t) and can be obtained by
ntrol 24 (2014) 1156–1178

recursively solving the process model. If the vector field f(·) is a
continuously differentiable function of its arguments, the existence
and uniqueness of this trajectory is guaranteed for all times when
this trajectory is proved to remain within a compact set (e.g., [87]).

For the process systems of interest, a continuous function of the
form le : R

nx × R
nu → R  is used as a measure of the instantaneous

process operating cost (or profit). As the function le(x, u) is a direct
or indirect reflection of the (instantaneous) process economics it is
typically referred to as the economic cost function, economic cost
functional, or economic stage cost (here, le(·) will be referred to as
the economic cost function in subsequent sections). A wide range
of economic costs have been considered such as the net instan-
taneous operating profit (i.e., the instantaneous profit minus the
instantaneous cost) as well as more traditional chemical engineer-
ing performance metrics like production rates of desired products,
desired product selectivity, and product yield. Given the general-
ity of the classes of the systems encompassed by Eqs. (1) and (2),
further assumptions are placed on the class of systems and are
stated in the subsequent sections as the topics that require these
assumptions are introduced.

The (economically) optimal steady-state is defined to be the
minimizer of the following optimization problem:

minimize
xs,us

le(xs, us) (4a)

subject to f (xs, us, 0) = 0 (4b)

g(xs, us) ≤ 0 (4c)

ge(xs, us) ≤ 0 (4d)

where g : R
nx × R

nu → R
np denotes the process constraints which

may  include input and state constraints as well as mixed input
and state constraints and ge : R

nx × R
nu → R

ne denotes economic
constraints like constraints to achieve desired production rates
to meet customer demand, product specifications and quality,
and feedstock availability to name a few. The optimal solution
of Eq. (4) is denoted x∗

s and u∗
s . Without loss of generality, the

optimal steady-state is assumed to be unique and the origin of
Eq. (1) (i.e., f (x∗

s , u∗
s , 0) = f (0,  0, 0) = 0) and similarly, fd(x∗

s , u∗
s , 0) =

fd(0,  0, 0) = 0 for the system of Eq. (2).

Remark 1. The state x is assumed to be in the set X  ⊆ R
nx (i.e., X

may  be a subset of or equal to R
nx ). The case that X  is the entire R

nx

corresponds to the case when no state constraints are considered.
However, the input u is assumed to belong to a set U  ⊂ R

nu . The
assumption that U  is only a subset of R

nu is because of the physical
limitations of control actuators. Lastly, the disturbance is assumed
to be bounded in a subset of R

nw (i.e., W ⊂ R
nw ) owing to the fact

that closed-loop stability under a particular control structure in
the presence of disturbances is typically proved for a sufficiently
small bounded disturbance. In general, it is difficult to prove closed-
loop stability of the closed-loop system of Eq. (1) in the presence of
possibly unbounded disturbances.

2.3. Real-time optimization

The traditional method for optimization of chemical processes
is real-time optimization (RTO) (e.g., [59,106,148,56,35]). Typically,
RTO is executed with a much larger sampling period than the super-
visory control layer (e.g., MPC  layer); that is, RTO may  be computed
on the order of hours-days and the supervisory control layer may
be computed on the order of minutes-hours [106,56,150]. Although

RTO is responsible for process optimization as its name suggests,
it covers more responsibilities than just optimization in industrial
applications. These responsibilities can be summarized in a four-
step algorithm. First, the RTO system analyzes process data to detect
if the system has reached steady-state. When steady-state has been
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etected, data validation and reconciliation is completed followed
y model parameter estimation and model updating using vari-
us techniques to update the steady-state process model. After the
odel has been updated, optimization, of the form of Eq. (4), is com-

leted. Lastly, a decision maker decides whether to implement the
ew operating conditions (i.e., send the computed steady-state to
he process control layer which forces the process operation to the
ewly computed steady-state). While RTO has become an impor-
ant information system in chemical process industries, RTO has
hree main drawbacks. A complete discussion of the issues arising
n the context of RTO is not within the scope of the present paper,
ut rather a brief summary of these issues is provided below.

Since optimizing over an accurate process model is important
or RTO to yield good performance, RTO has traditionally used

ore complex nonlinear steady-state models than the supervisory
ontrol layer [60,61]. In the lower feedback control layers, linear
odels are often used which may  be derived from a number of

echniques like a linearization of a nonlinear first-principles model
round the desired operating steady-state or via model identifi-
ation techniques (e.g., [20]). The discrepancies between the two
odels may  result in a computed operating point by the RTO layer

hat is unreachable by the feedback control layer often leading to
n offset between the actual operating steady-state and the desired
perating steady-state. Also, optimization (or re-optimization) is
ompleted after steady-state of the process is detected. Since the
rocess is inherently dynamic and possibly under the influence of
ime-varying disturbances, waiting for the process to reach steady-
tate may  delay the computation of the new optimal operating
ondition. Thus, re-optimization may  be completed only infre-
uently, thereby adversely affecting the process performance. One
olution to this problem is to solve the optimization problem more
requently (e.g., [148]), but this may  lead to stability issues of the
losed-loop system [56].

At a more fundamental level, many have questioned whether
teady-state operation is the best operating strategy owing to
ime-varying process economics and inherent characteristics of
onlinear process systems [7,81]. As such, researchers have
xplored using dynamic models instead of steady-state pro-
ess models in the optimization step of RTO, and the resulting
ystem is typically referred to as dynamic RTO (D-RTO) (e.g.,
72,83,107,82,161,176,81,167,169,168]. Dynamic RTO has a simi-
ar structure to that of EMPC, in that both optimization problems
hat characterize these systems are typically dynamic optimization
roblems that work to minimize an economic objective subject to a
ynamic process model. The main differences between D-RTO and
MPC are D-RTO is not typically used directly for feedback control,
ut rather it is used in the RTO layer of the hierarchical structure of
ig. 1 above with the process control layers (i.e., supervisory control
nd regulatory control layers). Furthermore, only limited work has
een done on a theoretical treatment of closed-loop stability with
-RTO. On the other hand, EMPC is typically implemented for feed-
ack control, its dynamic model is typically implicitly or explicitly
ssumed to be consistent with the model of the optimization layer
e.g., RTO) and its formulation is tailored to account for closed-loop
tability (see below).

.4. Model predictive control

Model predictive control (MPC), also referred to as receding
orizon control, is an on-line optimization-based control tech-
ique that optimizes a performance index or cost function over
 prediction (control) horizon by taking advantage of a dynamic
ominal process model (i.e., Eq. (1) with w(t) ≡ 0) while account-

ng for process constraints (e.g., [62,116,109,140,137,26]). The main
bjective of conventional or tracking MPC  is to steer the system
o and maintain operation thereafter at the economically optimal
ntrol 24 (2014) 1156–1178 1159

steady-state or the economically optimal trajectory computed in
an upper-layer optimization problem like the optimization prob-
lem of Eq. (4) (e.g., RTO or D-RTO). To manage the trade-off between
the speed of response of the closed-loop system and the amount of
control energy required to generate the response, MPC  is typically
formulated with a quadratic objective function which penalizes
the deviations of the state and inputs from their corresponding
optimal steady-state values over the prediction horizon. Specifi-
cally, MPC  is given by the following dynamic optimization problem
(recall the assumption that the origin of the system of Eq. (1) is the
economically optimal steady-state):

minimize
u∈S(�)

∫ �N

0

(
|x̃(t)|2Qc

+ |u(t)|2Rc

)
dt (5a)

subject to ˙̃x(t) = f (x̃(t), u(t), 0) (5b)

x̃(0) = x(�k) (5c)

g(x̃(t), u(t)) ≤ 0, ∀t ∈ [0,  �N) (5d)

where the positive definite matrices Qc > 0 and Rc > 0 are tuning
matrices that manage the trade-off between the speed of response
and the cost of control action. The state trajectory x̃(t) is the pre-
dicted evolution of the state using the nominal dynamic model
(w(t) ≡ 0) of Eq. (1) under the piecewise constant input profile com-
puted by the MPC. The initial conditions on the dynamic model
are given in Eq. (5c) which are obtained at each sampling period
through a measurement of the current state. The constraints of Eq.
(5d) are the process constraints imposed on the computed input
profile (e.g., input and state constraints) which are typically point-
wise constraints, so the constraints of Eq. (5d) are usually written
as:

g(x̃(�j), u(�j)) ≤ 0 (6)

for j = 0, 1, . . .,  N. When the prediction horizon N is finite, it is well-
known that the MPC  scheme of Eq. (5) may  not be stabilizing (e.g.,
[109]). Various constraints and variations to the cost function may
be made to guarantee stability of the closed-loop system when N is
finite (see, for example, [109], and the references therein).

To address the drawbacks of the two-layer RTO and MPC  hier-
archical control structure, much of recent research has focused
on a tighter integration of RTO and MPC. Specifically, to han-
dle unreachable set-points, an intermediate layer called the
(steady-state) target optimization layer may be introduced that
converts the optimal steady-state computed in the RTO layer
to a reachable set-point for the feedback control layer (e.g.,
[117,22,172,125,137,171,93,160]). This concept is also referred
to as two-stage MPC  because of its components. Specifically, a
quadratic program (QP) or linear program (LP) is used to convert the
unreachable desired steady-state into a reachable target and then,
an MPC  of the form of Eq. (5) forces the closed-loop state to the
reachable target. Target optimization or the first stage of the two-
stage MPC  also allows for more frequent optimization since it is
typically executed at the same rate as the MPC. Within this context,
most of the research on this topic has focused on MPC  with a linear
model (i.e., using the model of Eq. (3) for the constraint of Eq.(5b)).

Another option is to completely integrate economic optimiza-
tion of process operations and MPC  into the same algorithm. Early
research (and still on-going) on this topic has focused on combin-
ing steady-state economic optimization and linear MPC  (i.e., MPC
formulated with the linear model of Eq. (3)) into one optimiza-
tion problem. Specifically, MPC  schemes that integrate steady-state

optimization use a cost function of the form:

LMPC/RTO(x(t), u(t)) =
∫ �N

0

(
|x(t)|2Qc

+ |u(t)|2Rc

)
dt + le(x(�N), us)

(7)
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hich has both a quadratic (tracking) component and an economic
ost component in the cost function. These MPC  schemes have the
ollowing general formulation:

inimize
u∈S(�),us

LMPC/RTO(x̃(t), u(t)) (8a)

ubject to ˙̃x(t) = f (x̃(t), u(t), 0) (8b)

˜(0) = x(�k) (8c)

 (x̃(�N), us) = 0, us ∈ U (8d)

(x̃(t), u(t)) ≤ 0, ∀t ∈ [0,  �N) (8e)

here the decision variables of the optimization problem include
oth the input trajectory over the prediction horizon and the
teady-state input us. The constraint of Eq. (8d) enforces that the
redicted state trajectory x̃(t) converges to an admissible steady-
tate. The remaining constraints and notation are similar to the
PC  of Eq. (5). Work in this direction has primarily been appli-

ation driven (e.g., [127,37,173]) with more general frameworks
resented in [15,157,3].

. Economic model predictive control schemes

The quadratic cost of conventional MPC  (Eq. (5a)) allows for
unable closed-loop response. However, it may  not be an ade-
uate representation of managing real-time process operation with
espect to the process economic performance. A positive deviation
rom the target may  represent a profit, while a negative devia-
ion from the target may  represent a loss (or vice versa) [150].
or example, consider an input that supplies heat energy to a
eactor (e.g., a steam jacket). Supplying more steam to the jacket
han the target is more costly in terms of the energy consumption
f the reactor, while supplying less steam consumes less energy.
wing to this drawback of using a quadratic cost function in the
PC, the main three drawbacks of RTO, and the calls to unify

rocess economic optimization and process control, the idea of
sing the economic cost function le(·) directly in an MPC scheme
as proposed (e.g., [56,141]). The resulting MPC  scheme is called

conomic MPC  (EMPC). Since EMPC accounts directly for process
conomics which is aligned with the core ideas of next-generation
anufacturing (e.g., Smart Manufacturing [31,36], market-driven
anufacturing [7], and real-time energy management [150]), its

opularity amongst researchers has significantly increased within
he last few years.

Broadly, economic model predictive control can be character-
zed by the following optimization problem:

inimize
u∈S(�)

∫ �N

0

le(x̃(t), u(t)) dt (9a)

ubject to ˙̃x(t) = f (x̃(t), u(t), 0) (9b)

˜(0) = x(�k) (9c)

(x̃(t), u(t)) ≤ 0, ∀ t ∈ [0,  �N) (9d)

here the decision variable to the optimization problem is the
nput trajectory over the prediction horizon. The objective function
f Eq. (9a) is the process economic cost function (e.g., operating
ost) that the EMPC optimizes through dynamic operation of the
rocess. A dynamic model, typically the nominal process model,

s used as a constraint (Eq. (9b)) and is initialized through a state

easurement obtained at a sampling instance (Eq. (9c)). The con-

traint of Eq. (9d) represents process constraints (e.g., input and
tate constraints) which are implemented as in Eq. (6). In addition
o the constraints of Eqs. (9b)–(9d), economics-based constraints
e.g., the raw material that may  be fed to a process over a period of
ntrol 24 (2014) 1156–1178

operation may  be fixed) are often added. The general formulation
is given by:

ge(x̃(t), u(t)) ≤ 0 (10)

for all t ∈ [0, �N). With slight abuse of notation, the constraints
of Eq. (10) are not necessarily equivalent to the economics-based
constraints of Eq. (4d), in that they may also incorporate integral,
summation, and average constraints. The constraints of Eq. (10)
may  play an important role in the solution of the optimization prob-
lem of Eq. (9) especially when no upper-layer optimization is used
to account for these constraints and when the optimal operating
strategy dictated by Eq. (9) leads to dynamic (transient) operation
(i.e., not steady-state). In either case, the enforcement of these con-
straints in the EMPC is needed to ensure that these constraints are
satisfied over the entire length of process operation.

The implementation strategy of the EMPC of Eq. (9) is identical
to the conventional MPC  of Eq. (5). Specifically, EMPC is solved in
a receding horizon fashion. At a sampling instance �k, the EMPC
receives a state measurement of the current process state which is
used to initialize the EMPC. An optimal piecewise input trajectory,
according to the optimization problem of Eq. (9), is computed over
the prediction horizon corresponding to the time t ∈ [�k, �k+N) in
real-time. The optimal input trajectory computed at a given samp-
ling instance is denoted as u*(t|�k). The first control action, denoted
as u*(0|�k) is sent to the control actuators to be implemented over
the sampling period from �k to �k+1. At the next sampling period,
the EMPC is re-solved. The resulting input profile computed by the
EMPC that is applied to the system of Eq. (1) is denoted as u*(t) and
is given by

u∗(t) = u∗(0|�k), for t ∈ [�k, �k+1), k = 0, 1, . . ..  (11)

In the general context (i.e., for the general system of Eq. (1)
or (2)), there are three main issues to consider and address with
respect to the optimal control problem of the EMPC. First is the issue
of feasibility of the optimization problem. Specifically, one must
carefully consider the conditions that guarantee that the EMPC is
both initially feasible for a given initial condition x(�0) and recur-
sively feasible at each subsequent sampling period. Assuming that
one can show recursive feasibly, it is important to consider the
stability or type of stability the closed-loop system will exhibit
under the EMPC. Recall, no explicit assumption is placed on the
economic cost to be positive definite with respect to a steady-state
and thus, the EMPC may  dictate a time-varying operating policy.
Finally, one should consider the closed-loop performance under the
EMPC. Even though the EMPC optimizes the process economics, it
does so over a finite-time prediction or control horizon. Thus, over
long periods of operation, no guarantees, in general, can be made on
closed-loop performance under EMPC. For provable results on fea-
sibility, closed-loop stability, and closed-loop performance under
EMPC, additional assumptions must be placed on the closed-loop
system and typically, the addition of stability and/or performance
constraints are added to the formulation of the EMPC. These areas
are discussed in depth in the subsequent sections.

Several application-oriented formulations of the EMPC of Eq.
(9) have been presented in the literature where an appropriate
cost function and constraints (not of the explicit form discussed
below) have been formulated after an in-depth knowledge of
the application has been gained. The additional elements added
to the EMPC formulation are tailored for the particular applica-
tion to allow for desirable stability, operation, and performance
properties. These properties are typically demonstrated and evalu-

ated through simulation [56,74,76,75,80,104,1,73]. For theoretical
works that consider EMPC of the form of Eq. (9) (without stability
constraints), only a limited amount of work has been completed
including [64]. The main advantage of these types of formulations
is that no additional constraints must be added or precomputed. As
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e will see below, the stability constraints are typically obtained
rom a steady-state optimization problem of the form of Eq. (4).
herefore, the EMPC of Eq. (9) will have less constraints than the
nes discussed below and no steady-state optimization problem is
equired to be solved. The main disadvantage of the EMPC of Eq.
9) is that, at present, stability and performance cannot be guaran-
eed in general unless a sufficiently long prediction horizon is used
nd other controllability assumptions and turnpike conditions are
atisfied [64].

In the remaining subsections, EMPC formulations with provable
losed-loop stability properties are discussed. Closed-loop perfor-
ance under the various EMPC formulations will be discussed in

he subsequent sections. The EMPC formulations are given using
he continuous-time nominal model (w(t) ≡ 0) of Eq. (1) except for
he EMPC with a terminal constraint. It is straightforward to cast
hese formulations with the discrete-time nominal model of Eq. (2).

emark 2. It is important to point out that in addition to the
MPC schemes discussed below a few EMPC schemes have been
esigned for explicitly handling noise and uncertainty. In [2,67]
daptive EMPC schemes were proposed for handling uncertainties
nd in [39], an EMPC was presented utilizing stochastic optimiza-
ion techniques.

.1. Infinite-horizon economic model predictive control

To address closed-loop stability, one may  consider employing
n infinite horizon in the EMPC of Eq. (9). In other words, let N tend
o infinity (similarly, let �N tend to infinity) in the objective function
f Eq. (9a). This is perhaps a more appropriate prediction horizon
ecause chemical processes are continuously operated over long
eriods of time (practically infinite time). At least intuitively, one
ay  be able to guarantee, if a solution is returned, that the state of

he system is maintained in the set of admissible states X. Then, sta-
ility in the sense of boundedness of the closed-loop state may  be
uaranteed. Theoretically, one could guarantee that the operating
olicy dictated by the infinite-horizon EMPC is the economically
ptimal one by the principle of optimality. However, it is difficult
o solve a general optimization problem with an infinite number of
ecision variables. Since optimal control problems such as Eq. (9)
ith N→ ∞ often arise in the context of economics, it is impor-

ant to point out that many ideas for solving various classes of
hese problems have been proposed, and schemes for obtaining
n approximate solution to the optimization problem have been
evised especially when the open-loop predicted state trajectory
isplays a turnpike property [28,27,89] which corresponds to the
ase in process operations when steady-state operation is likely the
ptimal operating strategy (see Section 4 for an illustration of the
urnpike property).

Several works on infinite-horizon EMPC have been presented
169,79,38,77,112,113,130,170]. In [169,170], a few methods were
iven for solving the infinite-horizon EMPC with an economic cost
hat maximizes a discounted profit function. In other words, the
MPC is formulated with an objective function:

e(x(t), u(t)) = −
∫ ∞

0

e−�t le(x(t), u(t)) dt (12)

here � > 0 is the discount factor used to account for the present
alue of money. Specifically, a time transformation was  introduced
o convert the infinite-time interval to a finite-time interval. The
ime transformation introduces a singularity which is handled

y imposing a boundary condition at the final time. An adap-
ive temporal discretization scheme was then employed to solve
he optimization problem. In [79], a discount factor similar to
q. (12) was used in the economic cost. Nominal stability of
he economically-optimal cyclic steady-state was  proved when
ntrol 24 (2014) 1156–1178 1161

certain assumptions on the economic cost function were satisfied.
This methodology was extended to robust stability of the cyclic
steady-state (i.e., input-to-state stability with respect to a bounded
disturbance) [77] where no discount factor was used in the eco-
nomic cost function. In [77], this approach was demonstrated by
approximating the infinite horizon with a long finite-time hori-
zon which is a typical approach to implement an infinite-horizon
optimal control formulation. In [38], an auxiliary control law was
used to formulate the infinite-horizon problem with a finite num-
ber of decision variables corresponding to a finite-time horizon
and approximating the infinite-horizon tail through the auxiliary
control law. It was shown that the resulting EMPC asymptotically
stabilizes the economically optimal steady-state when a strong
duality assumption is satisfied [38]. Along the same lines as [38],
the infinite-horizon EMPC problem was  divided into a finite-time
horizon and an infinite-horizon tail in [112,113,130]. Of particu-
lar interest to the various applications studied in these works was
time-varying economic prices. To deal with the infinite-horizon
time, an unconstrained infinite-time tail was analytically solved
for. An economic linear optimal control policy was  proposed which
statistically constrained the unconstrained problem and its value
was added to the finite-time horizon EMPC problem as a terminal
cost [130].

3.2. Economic model predictive control with terminal constraints

Given the difficulty of solving an infinite-horizon EMPC for
general cost functions of the form le(x, u) and for a general nonlin-
ear system, a finite-time prediction horizon approach is typically
adopted. The objective function that the EMPC minimizes is

Le(x(t), u(t)) =
∫ �N

0

le(x(t), u(t)) dt (13)

where �N = N� and N< ∞ is the finite-time prediction horizon. To
better approximate the infinite-horizon solution and to ensure
robustness of the control solution to disturbances and instabilities,
the finite-horizon EMPC is implemented with a receding horizon;
that is, the EMPC optimization problem is solved at every sampling
instance �k to compute a control action to be applied in a sample-
and-hold fashion (i.e., zeroth-order hold) over the sampling period
from �k to �k+1. At the next sampling instance �k+1, the (finite-
horizon) EMPC is computed by rolling the horizon one sampling
period forward.

Much of the recent theoretical work on EMPC investigates the
extension of conventional or tracking MPC  (Eq. (5)) stabilizing
elements to EMPC such as adding a terminal constraint and/or
terminal cost (e.g., see, for instance, [109] for more details on
the use of terminal constraint and cost). Numerous EMPC formu-
lations and theoretical developments which include a terminal
constraint and/or terminal cost have been proposed and studied
[143,141,58,4,38,79,95,6,119,42,96,142,5,57,63,73,120–122,12,
166,174]. This class of EMPC schemes has the following general
formulation which is given with a discrete-time model as most of
the work on this type of EMPC has been done for discrete-time
systems:

minimize
u(0),u(1),···,u(N−1)

N−1∑
j=0

le(x̃(j), u(j)) + Vf (x̃(N)) (14a)

subject to x̃(j + 1) = fd(x̃(j), u(j), 0) (14b)
x̃(0) = x(k) (14c)

x̃(N) ∈ Xf (14d)

(x̃(j), u(j)) ∈ Z,  ∀ j ∈ I0:N−1 (14e)
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here Z ⊆ X  × U  is a compact, time-invariant set that includes the
rocess constraints like input and state constraints and I0:N−1 is
he set of integers ranging from 0 to N − 1. At a sampling instance k
orresponding to the time �k in continuous-time, the EMPC of Eq.
14) receives a measurement of the current state (Eq. (14c)) and
ptimizes the economic cost of Eq. (14a) with respect to the pro-
ess dynamics (Eq. (14b)) and process constraints (Eq. (14e)). For
tability and performance (the latter will be discussed in Section 4
elow), a terminal constraint is added (Eq. (14d)). If the terminal
onstraint is a point-wise constraint x̃(�N) ∈ Xf = {x∗

s }, the terminal
ost, denoted as Vf (x̃(�N)), is often dropped as it is not required for
tability and performance guarantees (refer to Section 4 for details
f the latter point). When a terminal region constraint is used, that
s, Xf is some compact set containing x∗

s in its interior, the terminal
ost is often used.

With respect to provable closed-loop stability under the EMPC of
q. (14), an assumption must be placed on the controllability or sta-
ilizability properties of the system of Eq. (2) (or similarly, Eq. (1)).
efore the assumption can be stated, a few definitions are required.
irst, a feasible input solution and the optimal input solution to the
MPC of Eq. (14) at time step k are denoted as u(0|k), u(1|k), . . .,
(N − 1|k) and u*(0|k), u*(1|k), . . .,  u*(N − 1|k), respectively. The set
f admissible initial states and inputs is the set

N = {(x(0), u(0), u(1), . . .,  u(N − 1))|x̃(j + 1) = fd(x̃(j), u(j), 0), x̃(0)

=  x(0), x̃(N) ∈ Xf , (x̃(j), u(j)) ∈ Z, ∀ j ∈ I0:N−1} (15)

here u(j) = u(j|0). The set ZN clearly depends on the prediction
orizon length for both a point-wise terminal constraint and a ter-
inal region constraint. The set of admissible initial states, denoted

s XN , is the projection of ZN onto X. It is important to note that it
s difficult to explicitly characterize the sets ZN and XN in general.
he following assumption is placed on the type of discrete systems
onsidered which bounds the amount of control energy required
o force an initial state in XN to x∗

s . The assumption of weak con-
rollability ensures a non-empty feasible set for a sufficiently long
rediction horizon.

ssumption 1. [Weak controllability] For the system of Eq. (2),
here exists a feasible input trajectory u(0), u(1), . . .,  u(N − 1) for
ach x(0) ∈ XN and there exists a K∞ function �(·) such that

N−1

j=0

|u(j) − u∗
s | ≤ �(|x(0) − x∗

s |). (16)

Recursive feasibility of the EMPC of Eq. (14) is guaranteed for
he nominally operated system (Eq. (2) with w(k) ≡ 0 and when
ssumption 1 is satisfied) for any initial state x(0) ∈ XN . The closed-

oop state trajectory under the EMPC of Eq. (14) will remain
ounded under nominal operation (w(t) ≡ 0) if the economic cost

e(·) and the state transition mapping fd(·) are continuous on Z

recall that Z is a compact set), x∗
s is contained in the interior of

N , and Assumption 1 holds. In other words, x ∈ XN for all k ≥ 0
hen x(0) ∈ XN (XN is a forward invariant set). This form of sta-

ility is much different than the forms of stability typically shown
or the closed-loop system under conventional MPC  (e.g., nominal
symptotic stability when applying the discrete control sequence
o the discrete-time system of Eq. (2) or practical stability when
pplying the discrete control sequence to the continuous-time sys-
em of Eq. (1)). In other words, the EMPC of Eq. (14) will lead to
ynamic, transient, or time-varying operation in general which is
epicted in Fig. 2. This type of stability property has been demon-

trated in numerous applications to be an important property of
MPC leading to closed-loop economic performance improvement
ver traditional control methodologies (e.g., tracking MPC).

Still, it is important to understand under what conditions the
MPC of Eq. (14) will render the economically optimal steady-state
Fig. 2. A state-space illustration of the state trajectory under the EMPC of Eq. (14)
with a point-wise terminal constraint over several sampling periods. The solid line
is  the closed-loop state trajectory and the dotted line is the open-loop predicted
trajectory x̃(t)  computed at each sampling period.

x* asymptotically stable for the closed-loop system of Eq. (2) [6,4].
One method is to make additional assumptions regarding the
nonlinear system which extends the notion of dissipativity [6]
(first presented for continuous-time systems [165] and extended
to discrete-time systems [25]).

Definition 1. [Dissipativity [25,6]] A closed-loop system is dissi-
pative with respect to a supply rate s : X  × U  → R  if there exists a
function � : X  → R  such that

�(fd(x, u)) − �(x) ≤ s(x, u) (17)

for all (x, u) ∈ Z ⊆ X  × U. If there exists a positive definite function
 ̌ : X  → R≥0 such that

�(fd(x, u)) − �(x) ≤ −ˇ(x) + s(x, u) (18)

then the system is strictly dissipative.

Assumption 2. [Dissipativity of the Closed-loop System under
EMPC [6]] The closed-loop system of Eq. (2) under the EMPC of
Eq. (14) is strictly dissipative with a supply rate given by:

s(x, u) = le(x, u) − le(x∗
s , u∗

s ). (19)

When Assumptions 1 and 2 are satisfied for the closed-loop
system under the EMPC of Eq. (14), the steady-state x∗

s is asymp-
totically stable for any initial condition x(0) ∈ XN . A stronger
assumption than dissipativity that has been used to derive a Lya-
punov function for the closed-loop system under the EMPC of Eq.
(14) is strong duality (i.e., strong duality implies dissipativity [6]).

Assumption 3. [Strong Duality of the Steady-State Problem [38]]
There exists a �s so that (x∗

s , u∗
s ) is the unique minimizer of

minimize
x,u

le(x, u) + [x − fd(x, u)]T �s

subject to (x, u) ∈ Z

(20)

and there exists a function ˆ̌ of class K∞ such that the rotated
economic cost L(x, u) satisfies:

L(x, u)≥ ˆ̌ (|x − x∗
s |) (21)

where the rotated cost is defined as

L(x, u) := le(x, u) + [x − fd(x, u)]T �s − le(x∗
s , u∗

s ). (22)

It was shown in [38] that the rotated cost of Eq. (22) is a Lya-

punov function for the closed-loop system under the EMPC of Eq.
(14) formulated with a point-wise terminal constraint when the
closed-loop system satisfies Assumptions 1 and 3.

Within the context of economics-based constraints, one class
of constraints that are of interest within the context of EMPC are
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verage constraints. Reflecting back on the traditional paradigm for
conomic optimization of chemical processes with RTO, the com-
uted operating conditions satisfy the economic constraints (Eq.
4d)) asymptotically since the closed-loop system is asymptotically
orced to the operating conditions. Within the context of EMPC
hich may  not force the system to operate at the economically

ptimal steady-state, it may  be important to enforce economics-
ased constraints directly in the EMPC. For example, constrain the
MPC solution such that the time-averaged raw material amount
s fixed. One notion of economics-based average constraints is to
onstruct constraints that asymptotically satisfy an average, as is
he case in the traditional operation paradigm.

One method for handling asymptotic average constraints [6] is
o define an auxiliary variable as follows (the method is summa-
ized below since it is applied in Section 5; the interested reader is
eferred to [6] for a complete discussion of this method):

(k) = h(x(k), u(k)) (23)

here h : Z → R
ny is continuous on Z and y contains all the average

onstraints that should be asymptotically satisfied. The average of
 is∑n

i=0y(k)

n + 1
(24)

wing to the fact that h is continuous on the compact set Z,  the
verage as n tends to infinity is finite. However, taking the limit
f Eq. (24) as n tends to infinity may  be meaningless because it
ay  not be properly defined (i.e., have a unique value). Instead, the

ollowing is used for the definition of the asymptotic average in [6]:

v[y] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y ∈ R
ny |∃tn → ∞,  lim

n→∞

tn∑
k=0

y(k)

tn + 1
= y

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(25)

hich deals with the fact that the asymptotic average might be a
et of numbers. Also, the asymptotic average of y is a non-empty
et. The (set) constraint on the asymptotic average of y is denoted
s Y  which is assumed to be a closed and convex set. Furthermore,
t is assumed that

(xs, us) ∈ Y. (26)

t every sampling period, the following constraint is imposed in
he optimization problem of Eq. (14):

N−1

j=0

h(x̃(j), u(j)) ∈ Yk (27)

here

k = Y00 ⊕ (k + N)Y  �
N−1∑
j=0

h(x̃(j), u∗(j)) (28)

nd Y00 is an arbitrary compact set containing h(xs, us) in its inte-
ior. The constraint of Eq. (27) ensures that the asymptotic average
onstraint is satisfied for the nominal closed-loop system of Eq.
2) under the EMPC of Eq. (14) formulated with a point-wise ter-

inal constraint (i.e., Xf = {x∗
s } and Vf(·) ≡0). This was  shown in

6]. Asymptotic average constraints were extended to EMPC with

 terminal region and terminal cost in [123]. Furthermore, a gen-
ral method for enforcing transient average constraints by adding
N + T − 1)ny additional constraints to the EMPC where T is the
umber of sampling periods that the average constraint must be
atisfied was presented in [121].
ntrol 24 (2014) 1156–1178 1163

Other works on EMPC of the form of Eq. (14) address vari-
ous issues. In [143,141], the use of unreachable set-points in the
cost function of a tracking MPC  (i.e., with a quadratic cost) was
discussed, and a demonstration of the approach was provided.
The demonstration showed better closed-loop performance of a
tracking MPC  formulated with unreachable set-points compared
to using a tracking MPC  formulated with reachable targets gen-
erated from (steady-state) target optimization (see above for a
discussion of target optimization). In [58], an EMPC was formu-
lated for changing economic criterion using a terminal cost and a
point-wise terminal constraint of the form: x̃(N) = x̃(N + 1). This
type of terminal constraint essentially forces the open-loop pre-
dicted state trajectory x̃ to converge to an equilibrium manifold
instead of a single equilibrium point. EMPC with a terminal region
constraint and terminal cost was introduced and analyzed in [4].
A Lyapunov stability analysis was  given in [79] for EMPC with a
terminal constraint based on optimal cyclic steady-states. In [6],
asymptotic average performance, the optimality of steady-state
operation, periodic terminal constraints, and asymptotic average
constraints were presented and analyzed. In [119], it was shown
that the dissipativity property is robust to small changes in the con-
straint set. In [5], direct methods were employed to formulate the
EMPC problem as a large-scale nonlinear program (NLP) and solve
it with an interior point nonlinear solver [163,19] with automatic
differentiation [164]. The idea of enforcing a generalized termi-
nal constraint in EMPC (i.e., enforce the predicted state trajectory
to converge to an equilibrium manifold) was explored further in
[57,120]. In [57], a MPC  (or EMPC) scheme was proposed and it was
shown that with the proposed MPC  (or EMPC) algorithm the control
solution converges to that of an MPC  (or EMPC) algorithm with a
terminal constraint chosen to be the economically optimal steady-
state. This idea was  further extended with a self-tuning terminal
cost which may  lead to improved closed-loop performance com-
pared to a fixed terminal weight [120]. In [122], a Lyapunov stability
analysis of asymptotically average constrained EMPC was given and
the necessity of dissipativity for optimal steady-state operation was
discussed. A Lyapunov function was  derived for EMPC formulated
with a periodic terminal constraint in [174]. In [166], a two-layer
control scheme was  proposed that featured an EMPC in the upper
layer and a fast hybrid neighboring-extremal controller in the lower
layer for nonlinear hybrid systems.

3.3. Economic model predictive control with Lyapunov-based
constraints

Another method for designing an EMPC with provable sta-
bility properties is to formulate Lyapunov-based constraints
by taking advantage of an explicit stabilizing controller (i.e.,
the explicit controller is used as an auxiliary controller). The
resulting EMPC is the so-called Lyapunov-based EMPC (LEMPC)
[68,29,69,54,70,71,50,49,162,51–53,55,91,90,92]. Before the for-
mulation of LEMPC is given, the main assumptions are stated. The
vector field f of the nonlinear system of Eq. (1) is assumed to be a
locally Lipschitz vector function on R

nx × R
nu × R

nw . Like the EMPC
with a terminal constraint, a notion of controllability and/or stabi-
lizability of the system of Eq. (1) must be imposed. The following
assumption is essentially a stabilizability assumption for the sys-
tem of Eq. (1) and is comparable to assuming the (A, B) pair is
stabilizable for the linear system of Eq. (3) (i.e., the (A, B) pair is sta-
bilizable if all its uncontrollable modes are stable or in other words,
the eigenvalues of the uncontrollable modes are in the left-half of

the complex plane).

Assumption 4. [Existence of a Lyapunov-based Controller] There
exists a Lyapunov-based controller k(x) which renders the origin
of the nominal closed-loop system of Eq. (1) under continuous
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(accomplished by adding convex or quadratic terms, e.g., [6]).
The LEMPC has unique feasibility and stability properties com-

pared to EMPC formulated with a terminal constraint. The set ˝�

is a characterizable set in state-space and is an estimate of the
164 M. Ellis et al. / Journal of Pro

mplementation of k(x) asymptotically stable with u = k(x) ∈ U for
ll x ∈ D ⊆ R

nx where D is an open neighborhood of the origin.

Using converse theorems [108,99,87], Assumption 4 implies the
xistence of a continuously differentiable Lyapunov function V(x)
or the nominal closed-loop system of Eq. (1) under the continuous
mplementation of the controller k(x) that satisfies the following
nequalities:

1(|x|) ≤ V(x) ≤ ˛2(|x|) (29a)

∂V(x)
∂x

f (x, k(x)) ≤ −˛3(|x|) (29b)

∂V(x)
∂x

∣∣∣∣ ≤ ˛4(|x|) (29c)

or all x ∈ D where ˛i(·), i = 1, 2, 3, 4 are class K functions. The region
� ⊆ D is the (estimated) stability region of the closed-loop sys-

em under the Lyapunov-based controller and is taken to be a level
et of the Lyapunov function where the time-derivative of the Lya-
unov function is negative along the closed-loop state trajectory.
everal control laws that satisfy Assumption 4 have been devel-
ped for various classes of nonlinear systems including control laws
hat provide explicit characterization of the region of attraction for
he closed-loop system under the controller k(x) which accounts
or input constraints (see, for example, [32,48,88,100,156] and the
eferences therein for results in this direction). Applying the con-
roller k(x) in a sample-and-hold fashion with a sufficiently small
ampling period will ensure practical stability of the origin of the
losed-loop system (i.e., k(x) is applied as an emulation controller);
ee, for instance, [128,65,118,85,129] and the references therein
or results and analysis of sampled-data systems. Practical stabil-
ty means convergence to a small neighborhood of the origin for
ufficiently large time.

Much like the design methodology of EMPC with terminal con-
traint/cost, LEMPC takes advantage of design techniques originally
eveloped for Lyapunov-based MPC  (LMPC) which is an MPC  tech-
ique which uses a quadratic cost (e.g., [114,115,118,33]). Utilizing
he stability region ˝� under the explicit (auxiliary) controller k(x),
EMPC is a two-mode control strategy and its formulation is given
y the following optimization problem:

inimize
u∈S(�)

Le(x̃(t), u(t)) (30a)

ubject to ˙̃x(t) = f (x̃(t), u(t), 0) (30b)

˜(0) = x(�k) (30c)

(t) ∈ U, ∀ t ∈ [0,  �N) (30d)

V(x̃(t)) ≤ �e, ∀ t ∈ [0,  �N)

if  V(x(�k)) < �e and t < ts

(30e)

∂V

∂x
f (x(�k), u(�k), 0) ≤ ∂V

∂x
f (x(�k), k(x(�k)), 0)

if V(x(�k))≥�e or t≥ts

(30f)

here ts is a switching time of the controller which is discussed
elow and the other notation is similar to that of Eq. (9).

In the optimization problem of Eq. (30a), the objective func-
ion (Eq. (30a)) is the integral of the economic cost function (Eq.
13)) over the prediction horizon. The model of Eq. (30b) is used
o predict the future evolution of the process system over the pre-
iction horizon and is initialized through a state measurement at

he current sampling period (Eq. (30c)). The input constraint of
q. (30d) bounds the computed piecewise constant input trajec-
ory to be in the set of available control actions. The remaining
yapunov-based constraints distinguish the two modes of opera-
ion of the LEMPC. Namely, the Lyapunov-based constraints of Eq.
ntrol 24 (2014) 1156–1178

(30e) and Eq. (30f) define mode 1 and mode 2 operation of the
LEMPC, respectively. Under mode 1 operation, the trajectory x̃(t)
may  dynamically evolve in a bounded set ˝�e ⊂ ˝� . The size of
˝�e depends on the stability properties of the system, the samp-
ling period, and the bound on the disturbance and has the property
such that if a disturbance forces the state outside of ˝�e over the
sampling period, the state will be maintained in ˝� . This may  be
mathematically summarized through the following: if x(�k) ∈ ˝�e ,
then x(�k+1) ∈ ˝� . Under mode 2 operation, the constraint of Eq.
(30f) enforces that the time-derivative of the Lyapunov function
under the LEMPC be less than the time-derivative of the Lyapunov
function under the Lyapunov-based controller k(x). Through this
constraint, the Lyapunov function under LEMPC is guaranteed to
decrease over the sampling period �k to �k+1 for any state x(tk) ∈ ˝�

(thus, x(tk+1) ∈ ˝�). Under mode 2 operation of the LEMPC, the Lya-
punov function is guaranteed to decrease until the state trajectory
converges to a small neighborhood of the origin as a result of the
closed-loop stability properties of the controller k(x). The mode 2
constraint is enforced to either steer the state to the set ˝�e or to
enforce convergence to the origin (i.e., x∗

s ). An example illustration
of the possible evolution under the two  modes of operation of the
LEMPC is shown in Fig. 3.

Mode 1 is active when x(�k) ∈ ˝�e and �k < ts, while mode 2 is
active when x(�k) /∈ ˝�e or �k ≥ ts. The switching time ts warrants
more explanation. The LEMPC scheme may  dictate a dynamic oper-
ating policy. Therefore, continuous forcing of the system through
the control actuators may  be required to dictate this type of oper-
ation. Therefore, the switching time may  be chosen to manage the
trade-off between dynamically optimal operation and excess con-
trol actuator usage. The two extremes, ts = 0 and ts =∞, correspond
to the case when it is desirable to enforce convergence to the ori-
gin and to the case when time-varying operation is desirable for
the entire length of operation. Notice that the economic cost does
not need to be modified to enforce convergence to the origin. On
the other hand, the cost function is typically modified to achieve
guaranteed convergence to the origin under EMPC with a terminal
constraint so that the closed-loop system satisfies Assumption 2
Fig. 3. An illustration of the state trajectory under the two-mode LEMPC of Eq. (30a).
The state trajectory under mode 1 operation of the LEMPC is the solid trajectory,
while the dashed trajectory is under mode 2 operation of the LEMPC.
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tability region and feasible set. For any state x ∈ ˝� , the state is
uaranteed to be maintained in ˝� for all times for sufficiently
mall disturbances and a sufficiently small sampling period (˝� is
orward invariant). Furthermore, the set ˝� does not depend on
he choice of prediction horizon length. Regarding feasibility of Eq.
30a), the optimization problem is recursively feasible because the
nput trajectory obtained from the Lyapunov-based controller is a
easible solution to the optimization problem regardless of whether

 ∈ ˝� or x /∈ ˝� . However, stability in the sense of convergence to
� (and then, boundedness in ˝�) cannot be guaranteed for any

 /∈ ˝� because the time-derivative of the Lyapunov function under
he Lyapunov-based controller may  be positive. The set where con-
ergence to ˝� under the LEMPC is guaranteed (i.e., the region in
tate-space where the time-derivative of the Lyapunov function is
egative under the controller k(x)) is denoted as ˚u and ˝� ⊆ ˚u.
hus, ˝� is also an estimate of the feasible set. The detailed anal-
sis of the stability properties of this control scheme can be found
n [68].

Regarding imposing state constraints within LEMPC, one can
xtend the concepts from LMPC (e.g., [115]) for imposing state
onstraints in LEMPC. Specifically, define the set ˚u as the set
n state-space that includes all the states where V̇ < 0 under the
ontroller k(x). Consider the case where ˚u ⊆ X. This means that
ny initial state starting in the region X  \ ˚u will satisfy the state
onstraint. However, the time-derivative of the Lyapunov function
ay  be positive and thus, it may  not be possible to stabilize the

losed-loop system starting from this initial condition. The stabil-
ty region used in the formulation of the LEMPC for this case is

� = ˝x,u = {x ∈ R
nx | V(x) ≤ �x,u} where �x,u is the largest num-

er for which ˝x,u ⊆ ˚u. On the other hand, consider the case where
 ⊂ ˚u. This case is depicted in Fig. 4. For any initial state starting
utside X, the state constraint will be violated from the outset. Also,
or any initial state in the set X, it is not possible, in general, to guar-
ntee that the set X  is forward invariant because there may exist

 stabilizing state trajectory (i.e., a trajectory where V̇(x) < 0) that
oes outside of the set X  before it enters back into the set to con-
erge to the origin. For this case, the determination must be made
hether the state constraints are hard constraints (i.e., cannot be

iolated) or soft constraints (i.e., may  be violated for some periods
f time). For the case with hard constraints, define the set ˝� as
� = ˝x,u = {x ∈ R

nx |V(x) ≤ �x,u} where �x,u is the largest number

or which ˝x,u ⊆ X. For the case where the state constraints may  be
reated as soft constraints (i.e., may  be violated over certain periods
f time), one can extend the switching constraints of [115] in the
ormulation of the LEMPC, since ˚u cannot be computed in practice.
nstead, the set ˝u = {x ∈ R

nx |V(x) ≤ �u}) where �u is the largest

Fig. 4. An illustration of the various state-space sets described for enforcing state c
ntrol 24 (2014) 1156–1178 1165

number for which V̇ < 0 (under the controller k(x) which accounts
for the input constraint only) may  be used. An illustration of the set
definitions is provided in Fig. 4. Furthermore, the sets ˝x,u and ˝u

in Fig. 4 are computed for the example used in Section 5.
Other theoretical developments on LEMPC include designing a

state-estimation-based LEMPC using high-gain observers and mov-
ing horizon estimation [69,55], formulating an LEMPC scheme for
switched systems [71], utilizing LEMPC or Lyapunov-based design
concepts to design two-layer control structures featuring EMPC or
LEMPC [50,51], designing a composite controller with LEMPC for
nonlinear singularly perturbed systems [54], accounting for time-
varying pricing in the economic cost function [49], and integrating
preventive control actuator maintenance, process economics, and
process control into a unified framework with LEMPC [92]. In all
the cases, a stability analysis was  provided for the system of Eq. (1)
with bounded disturbances. Additionally, the LEMPC techniques
were applied to parabolic PDE systems along with model reduction
techniques [91,90].

Remark 3. General methods for constructing Lyapunov func-
tions for nonlinear systems with constraints (e.g., state and input
constraints) remain an open research topic. The construction of
Lyapunov functions for unconstrained nonlinear systems may be
accomplished by exploiting the system structure like the use of
quadratic Lyapunov functions for feedback linearizable systems
and the use of back-stepping techniques. Some methods exist for
the design of Lyapunov functions for nonlinear systems with con-
straints which include techniques based on Zubov’s method [46]
and based on the sum of squares decomposition [134]. In practice,
quadratic Lyapunov functions have been widely used and have
yielded good estimates of the closed-loop stability regions (e.g.,
[32]). While the resulting estimates do not necessarily capture the
entire domain of attraction, it is possible to obtain improved esti-
mates of the domain of the attraction by using, for example, a family
of quadratic Lyapunov functions (e.g., [32,49]).

4. Closed-loop economic performance under EMPC

The economic performance of the closed-loop system under
EMPC is typically measured with the total economic cost index

defined by:

Je :=
∫ tf

t0

le(x(t), u∗(t)) dt (31)

onstraints with LEMPC. The case when X  ⊂ ˚u is depicted in this illustration.
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r the average economic cost index defined by:

e := 1
tf − t0

∫ tf

t0

le(x(t), u∗(t)) dt (32)

here x(t) is the actual closed-loop state trajectory under the input
rofile u*(t) computed by EMPC (i.e., x(t) is the solution of Eq. (1)
ith the input profile u*(t) and a given realization of the process
isturbances w(t) over the time t0 to tf). While the EMPC works
o optimize the process economics, closed-loop performance has
een the subject of much recent research on EMPC. To the casual
bserver, it may  seem like applying EMPC to a system will result
n improved closed-loop economic performance over traditional
ontrol methodologies (e.g., tracking MPC). Unfortunately, this is
ot the case in general. To better illustrate this, consider the simple
xample below.

xample 1. Consider the scalar system described by

˙ (t) = x(t) + u(t) (33)

here the input is bounded by −10 ≤ u(t) ≤ 10 and the economic
ost for the system is

e(x, u) = 2(u  + 10) + (x − 2)2. (34)

he optimal steady-state and steady-state input are x∗
s = 3.0 and

∗
s = −3.0 which correspond to a steady-state economic cost of

e(x∗
s , u∗

s ) = 15.0. If one formulates an EMPC using the general form
f Eq. (9) for the system of Eq. (33), the resulting EMPC would have
he following formulation:

minimize
u∈S(�)

∫ �N

0

[
2(u(t) + 10) + (x̃(t) − 2)2] dt

subject to ˙̃x(t) = x̃(t) + u(t), x̃(0) = x(�k),

−10 ≤ u(t) ≤ 10,  ∀ t ∈ [0,  �N)

(35)

here the notation is consistent with the notation used in Eq. (9).
he EMPC is applied to the scalar system with a sampling period of

 = 0.05 and two  different prediction horizons (N = 5 and N = 100)
re considered for a length of operation of t = 5.0. The system is
nitialized at x(0) = 1.0 and the closed-loop trajectories are given

n Fig. 5 over the time period t = 0 to t = 0.5 to better illustrate the
ifference in the transient operation between the two  cases.

From the closed-loop trajectories (Fig. 5), the closed-loop sys-
em under EMPC with the prediction horizons N = 5 and N = 100
esponds differently which is reflected in the total economic cost

ig. 5. Closed-loop trajectories of the system of Eq. (33) under the EMPC of Eq. (35).
ntrol 24 (2014) 1156–1178

(defined in Eq. (31)). Under the two  cases, the total economic costs
are 29.0 (N = 5) and 15.8 (N = 100), respectively; the performance
with the horizon N = 5 is 84% worse than with N = 100. For the
given system and economic cost, steady-state operation is likely the
optimal operating strategy. The steady-state to which the closed-
loop state under the EMPC with N = 5 converges has an economic
cost of 30.0, which is worse than that of the economically optimal
steady-state which has an economic cost of 15.0. For this initial
condition, any controller that stabilizes around the economically
optimal steady-state would at least asymptotically outperform the
EMPC with a prediction horizon of N = 5 from an economic perspec-
tive. Furthermore, if we apply the EMPC to the system with various
prediction horizons, performance improvement with increasing
prediction horizon is observed (Table 1).

The closed-loop trajectory of the system under EMPC may  seem
unexpected or even undesirable. However, the EMPC with N = 5
is performing exactly as it should according to the dynamic opti-
mization problem of Eq. (35). The reason for this behavior is best
explained by observing the open-loop predicted trajectories of the
system under EMPC; that is, the state trajectory under the input
trajectory computed by the EMPC at one sampling period. The
open-loop predicted trajectories for N = 5 and N = 100 are given in
Fig. 6. Comparing the total economic cost over the open-loop pre-
dicted trajectory from t = 0 to t = 0.25, the total economic costs are
5.47 with N = 5 and 32.27 with N = 100. While the actions taken by
the EMPC with N = 5 are better near-term (over the time period
from t = 0 to t = 0.25) compared to the actions taken by the EMPC
with N = 100, these actions are not optimal over a larger horizon.
This type of behavior has been observed in many applications (e.g.,
[64,130]) and was described as myopic behavior in [130] which was
originally a term used in the scheduling literature to describe the
solution of a scheduling problem derived from an optimal control
problem that exhibited similar behavior [98].

Another point to be observed from the open-loop predicted tra-
jectory of Fig. 6b is the three distinct segments of the open-loop
predicted trajectory. The first segment from t = 0 to approximately
t = 0.5 is the process transients (i.e., the effect of the initial con-
dition). From approximately t = 0.5 to t = 4.5, the state trajectory
converges to a neighborhood of the optimal steady-state. In the
last segment, the state trajectory is driven away from the optimal
steady-state to achieve an improvement in the economic cost. This
property is referred to as a turnpike property [27,40,110,111] since
the state passes through the optimal steady-state until it finally
moves away to achieve further economic benefit (like a vehicle get-
ting on and then, off a turnpike or highway). The turnpike property
is a common property amongst many optimal control problems and
dynamic optimization problems. Unsurprisingly, this property has
been found to be a useful property in the context of EMPC [64,141].

In Example 1, steady-state operation is likely the optimal oper-
ation strategy for the system and the economic cost (in fact, it
will be shown below that it is). Aligned with current practice,

one may  consider adding and tuning quadratic terms to the eco-
nomic cost function or additional stabilizing constraints to the
EMPC in an attempt to achieve stabilization at the economically
optimal steady-state. In this case, one potentially helpful tuning
methodology is to observe and understand the open-loop predicted

Table 1
Total economic cost Je with the prediction horizon N.

N Je N Je

1 61928.67 10 15.94
2  361.49 20 15.85
3  70.45 50 15.85
4  41.27 100 15.85
5  28.98
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ig. 6. The open-loop predicted trajectories x̃(t) (solid lines) under the optimal inp
b)  N = 100 (dashed lines are the optimal steady-state and corresponding input).

rajectory of the system under its optimal input solution when
uning the stage cost (i.e., the economic cost plus the additional
erms) or assessing what constraints should be added to the EMPC
o improve performance.

From a theoretical perspective, currently two  methodologies
xist for closed-loop performance guarantees under EMPC: (1) to
mploy a sufficiently large horizon [64] and (2) the application of a
erminal constraint. The former methodology allows for (approxi-

ate) closed-loop performance guarantees for both transient and
nfinite-time operation intervals with respect to the economically
ptimal steady-state (see [64] for a complete discussion of these
oints). For the latter methodology, the type of closed-loop perfor-
ance guarantee that may  be made depends on the type of terminal

onstraint used (see Sections 4.1–4.2). The use of a sufficiently
arge horizon is clearly evident in the above example (Table 1).
wo methods for constructing a terminal constraint are described
elow, but it is important to emphasize these results on closed-loop
erformance only work under nominal operation. Closed-loop per-
ormance under EMPC in the presence of disturbances is an open
ssue.

.1. Terminal constraint or cost

One approach for closed-loop performance improvement under
MPC is to consider how to approximate the economic cost that is
ot covered in the prediction horizon (i.e., over the time interval
�k, ∞)). To do this, a point-wise terminal constraint based on the
conomically optimal steady-state Xf = {x∗

s } may  be used. At any
ampling time k (using discrete time), the EMPC is solved under
he constraint that the predicted state at the end of the horizon
onverges to the economically optimal steady-state x̃(N) = x∗

s . If
he input trajectory computed at k was applied in closed-loop over
he next N sampling periods, the actual closed-loop state would
onverge to x∗

s at time step k + N where it could be maintained there-
fter under nominal conditions. Therefore, the average closed-loop
conomic performance under EMPC formulated with the econom-
cally optimal steady-state is guaranteed to be no worse than the
conomically optimal steady-state over a sufficiently long oper-
ting time because over any N time steps, it is possible to force
he system to x∗

s where it can be maintained thereafter (thus,
ssentially canceling out the effect of the transients). Of course,
his does not imply that the EMPC formulated with a point-wise
erminal constraint will compute control actions that force the

losed-loop state to the steady-state over time (recall the discus-
ion on stability for EMPC formulated with a terminal constraint
bove). This result on the average closed-loop economic perfor-
ance under EMPC can be mathematically stated as follows: at

he next sampling instance k + 1, the EMPC is re-solved. The input
ectory computed by the EMPC of Eq. (35) with a prediction horizon of (a) N = 5 and

solution ufeas = {u∗(1|k), u∗(2|k), . . .u∗(N − 1|k), u∗
s }, where u*(j|k)

denotes the jth input along the prediction horizon computed at
time step k, is a feasible solution to the optimization problem at
k + 1. If there exists any better input solution with respect to the
economic cost, the EMPC would return that input solution. How-
ever, using the feasible solution ufeas, the difference in objective
function values of the EMPC over two consecutive time steps can
be bounded by:

N−1∑
j=0

le(x(j|k + 1),  u∗(j|k + 1)) −
N−1∑
j=0

le(x(j|k), u∗(j|k))

≤ le(x∗
s , u∗

s ) − le(x(k), u∗(j|k)). (36)

Using Eq. (36), it was shown in [6] that for nominal operation the
asymptotic average performance under EMPC formulated with a
point-wise terminal constraint is bounded above by the econom-
ically optimal steady-state where the asymptotic average is given
by (defined in discrete time):

lim sup
T→∞

∑T
k=0le(x(k), u(k))

T + 1
≤ le(x∗

s , u∗
s ). (37)

Asymptotic average performance (Eq. (37)) under EMPC compared
to the economically optimal steady-state has been extended to
EMPC with a terminal region constraint and terminal cost in [4]
and to EMPC with a generalized terminal constraint [57,120].

Another important result in the context of performance of EMPC
with a terminal constraint is that when the closed-loop system
under the EMPC with a point-wise terminal constraint is dissipa-
tive with supply function s(x, u) = le(x, u) − le(x∗

s , u∗
s ), steady-state

operation is the economically optimal operating strategy [6] (i.e.,
no other type of operation will give better average economic cost).
Dissipativity also comes close to being a necessary condition for
economically optimal steady-state operation [122]. Unfortunately,
for large-scale systems dissipativity is hard to verify in general.

Since the strong duality condition (Assumption 3) implies dissi-
pativity, it can be shown that steady-state operation of the system
of Eq. (33) with the economic cost of Eq. (34) is the economically
optimal operating strategy.

Example 2. For the example system of Eq. (33) under the EMPC

of Eq. (35), the assumption of strong duality (Assumption 3) can be
analytically verified. The state at the next sampling period x(�k+1)
is

x(�k+1) = e�x(�k) + (e� − 1)u(�k) (38)
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and CA0,avg. is an average amount of reactant which is taken to
be the median value CA0,avg = 4.0 kmol m−3. This fixes the optimal
inlet concentration steady-state value to C∗

A0 = CA0,avg. Both cases
where the operating period tavg is chosen to be finite and infinite
are considered below.

Table 2
Process parameters of the CSTR.

Symbol Description Value

F Feedstock flow rate 5.0 m3 h−1

T0 Feedstock temperature 300 K
VR Reactor fluid volume 1.0 m3

E Activation energy 5.0 × 104 kJ kmol−1
168 M. Ellis et al. / Journal of Pro

pplying the definition of the rotated economic cost (Eq. (22))
ields:

(x, u) : = le(x(�k), u(�k)) + �T
s (x(�k) − x(�k+1)) = 2u(�k)

+ 20 + (x(�k) − 2)2 + �s(x(�k) + u(�k))(1 − e�) (39)

he function L(·) is convex and the multiplier �s and unique steady-
tate minimizer of L(x, u) are

s = −2
1 − e�

, x∗(�k) = x∗
s = 3 (40)

he property of Eq. (21) is satisfied since L(x, u)≥15 = l(x∗
s , u∗

s ) for
ny x ∈ R  and u ∈ U. Therefore, this satisfies the strong duality of
he steady-state optimization problem which implies that steady-
peration at (x∗

s , u∗
s ) is the optimal operating strategy.

emark 4. Methods exist for approximating the cost-to-go (the
conomic cost over the time interval [�k+N, ∞)) such as estimating
his through an infinite-horizon economic linear optimal control
roblem as in [38,130]. The cost-to-go was added to an EMPC for-
ulated without a terminal constraint in [38,130]. The approach

emonstrated improved closed-loop performance over an EMPC
ithout adding the approximated cost-to-go.

.2. Performance constraints based on auxiliary controllers

As another way to formulate a terminal constraint for closed-
oop performance guarantees under EMPC, one may  consider how
o construct a constraint which accounts for the closed-loop per-
ormance over a finite operating window [70,53]. Namely, one may
se an auxiliary stabilizing controller to compute both its input pro-
le and open-loop predicted state trajectory over some operating
indow. Then, send the terminal state of the computed state tra-

ectory (i.e., the state at the end of the operating window with the
uxiliary controller) to the EMPC as a terminal constraint. Utilizing a
hrinking prediction horizon, the EMPC computes the economically
ptimal path to the terminal state. With this EMPC algorithm, the
losed-loop economic performance under EMPC is at least as good
s the closed-loop economic performance under the auxiliary stabi-
izing controller on both the finite-time and infinite-time intervals
53]. Another idea is to compute the total control energy used by
he auxiliary stabilizing controller and enforce that the EMPC com-
utes an input trajectory that uses no more control energy than
he auxiliary controller input profile over the operating window
70]. This may  be particularly important when the economic cost
unction does not penalize the use of control energy.

. Evaluation of EMPC using a chemical process example

In this section, various EMPC formulations are demonstrated.
pecifically, applications of the various EMPC schemes to a chem-
cal process example are considered in this section. The specific
hemical process example has been chosen because the under-
tanding of its dynamic evolution is tractable to most engineers
amiliar with chemical processes. This section is not meant to apply
ll available EMPC formulations/algorithms presented in the litera-
ure to a chemical process example, but rather, to discuss how one
an design an EMPC of the form of Eq. (9) for a specific application
y taking advantage of several of the theoretical developments of
MPC presented in the literature.
.1. CSTR description

Consider a non-isothermal continuously stirred tank reactor
CSTR) where an elementary, exothermic second-order reaction
akes place that converts the reactant A to the desired product B. The
ntrol 24 (2014) 1156–1178

reactant is fed to the reactor through a feedstock stream with con-
centration CA0, flow rate F, and temperature T0. The CSTR contents
are assumed to have a uniform temperature and composition, and
the CSTR is assumed to have a constant liquid hold-up. A jacket
provides/removes heat to/from the reactor at rate Q. Applying first
principles and standard modeling assumptions (e.g., constant fluid
density and heat capacity, Arrhenius rate dependence of the reac-
tion rate on temperature, etc.), the following system of ordinary
differential equations (ODEs) is derived that describes the evolution
of the CSTR reactant concentration and temperature:

dCA

dt
= F

VR
(CA0 − CA) − k0e−E/RT C2

A (41a)

dT

dt
= F

VR
(T0 − T) − 	Hk0

�RCp
e−E/RT C2

A + Q

�RCpVR
(41b)

where CA denotes the concentration of A in the reactor, T denotes
the temperature of the reactor contents, and the remaining nota-
tion definitions and process parameter values are given in Table 2.
The CSTR has two manipulated inputs: the inlet concentration of
A with available control energy u1 = CA0 ∈ [0.5, 7.5] kmol m−3 and
the heat rate supplied to the reactor u2 = Q with available control
energy Q ∈ [−50.0, 50.0] MJ  h−1.

The process economics are assumed to be adequately described
by the production rate of the desired product. Therefore, the control
objective of the CSTR is to maximize the production rate of the
desired product while maintaining safe operation of the process
(i.e., boundedness of the state). The instantaneous economic cost
function to accomplish this objective is:

le(x, u) = k0e−E/RT C2
A (42)

which describes the operating profit and thus, is maximized in the
EMPC formulations below. Two  traditional strategies to increase
the production rate are (1) to increase the temperature of the reac-
tor contents and (2) to increase the concentration of A by feeding
more A. In the example, the greatest steady-state reaction rate
occurs at CAs = 0.143 kmol m−3 and Ts = 711.1 K corresponding to the
steady-state inputs CA0s = 7.5 kmol m−3 and Qs = 50.0 MJ  h−1 with
steady-state reaction rate le(xs, us) = 36.8 kmol m−3 h−1 (the units
on the reaction rate are dropped in the remainder). However, from
a practical perspective, it may  not be desirable to operate at such
a high temperature and/or operate at a steady-state that uses the
maximum available control energy. To address this, consider a con-
straint on the time-average reactant material of the form:

1
tavg

∫ tavg

0

CA0(t) dt = CA0,avg (43)

where tavg is the time over which to enforce the material constraint
k0 Pre-exponential rate factor 8.46 × 106 m3 kmol−1 h−1

	H Reaction enthalpy change −1.16 × 104 kJ kmol−1

Cp Heat capacity 0.231 kJ kg−1 K−1

�R Density 1000 kg m−3

R Gas constant 8.314 kJ kmol−1 K−1
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In the simulations below, the open-source interior point nonlin-
ar optimization solver Ipopt [163,19] was used to solve the EMPC
roblems at every sampling instance. To numerically integrate the
DEs of Eq. (41) forward in time, the explicit Euler method was
sed with an integration time step of 0.001 h. The sampling period
f the EMPC schemes presented below is � = 0.01 h.

.2. Closed-loop performance under EMPC

In the first set of simulations, closed-loop economic perfor-
ance under EMPC is considered where two different EMPC

chemes are formulated and applied to the nominally operated
STR (w(t) ≡ 0). The EMPC is allowed to operate the CSTR in a large
perating envelope, and no state constraints are imposed. Explicit
onsiderations of the practicality of the operating policy dictated
y the EMPC (e.g., consideration of state constraints) is left to the
ubsequent subsection which discusses closed-loop stability under
MPC (Section 5.3). However, to provide some limit to the operat-
ng range of the CSTR the available control energy for the heat rate
nput to the CSTR is restricted to Q ∈ [0.0, 20.0] MJ  h−1. This restric-
ion limits the temperature range over which the EMPC operates
he CSTR because the optimal operating strategy is to provide the
pper limit heat rate to the CSTR for all time to make the reaction
ate as large as possible (as discussed above). Therefore, the eco-
omically optimal steady-state is defined as C∗

As = 0.719 kmol m−3

nd T∗
s = 481.4 K with corresponding optimal steady-state inputs

f C∗
A0s = 4.0 kmol m−3 and Q ∗

s = 20.0 MJ  h−1 and with a steady-
tate production rate of le(x∗

s , u∗
s ) = 16.4.

Recall that the time-averaged amount of material fed to the CSTR
s fixed. One method to ensure that the average constraint of Eq.
43) is satisfied over the entire length of operation is to construct

 constraint that ensures that the constraint is satisfied over each
onsecutive operating period tavg. This may  be accomplished by
sing a simple inventory balance accounting for the total amount
f input energy available over each operating period compared to
he total amount of input energy already used in the operating
eriod. The main advantages of enforcing the average constraint

n this fashion are that (1) only a limited number of constraints are
equired to be added to the EMPC, and (2) it ensures that the aver-
ge constraint is satisfied on both the finite-time and infinite-time
ntervals. The enforcement of the constraint is carried out as fol-
ows: if the prediction horizon covers the entire operating period,
hen the average constraint can be enforced directly; that is, impose
he following constraint in the optimization problem of the EMPC:

�

�M

M−1∑
i=0

u(�i) = uavg (44)

here �M is the operating period length that the average input con-
traint is imposed (i.e., M = �M/� is the number of sampling periods
n the operating period) and uavg is the average input constraint
alue. The integral of Eq. (43) has been converted to a sum in Eq.
44) because the input trajectory is piecewise constant. If the pre-
iction horizon does not cover the entire operating period, then the

emaining part of the operating period not covered in the predic-
ion horizon must be accounted for in the constraints. Namely, at a
ampling period �k ∈ [�0, �M), the following must be satisfied:

uavg −
min{k+N, M−1}∑

j=k

u(�j) −
k−1∑
i=0

u∗(�i) ≤ max{M − N − k, 0}umax,

(45a)
ntrol 24 (2014) 1156–1178 1169

Muavg −
min{k+N, M−1}∑

j=k

u(�j) −
k−1∑
i=0

u∗(�i)≥ max{M − N − k, 0}umin.

(45b)

Together these constraints ensure that the average constraint of
Eq. (44) is satisfied. Specifically, Eq. (45) means that the difference
between the total available input energy (Muavg) and the total input
energy used from the beginning of the operating period through
the end of the prediction horizon must be equal to or less/greater
than the total input energy if the maximum/minimum allowable
input was applied over the remaining part of the operating period
from �k+N to �M. If the prediction horizon extends over multiple
consecutive operating periods, a combination of the constraints of
Eq. (44) and (45) can be employed. For example, if the prediction
horizon extends over two operating periods, the constraint to be
enforced at a sampling instance, �k, becomes:

M−1∑
i=k

u(�i) +
k−1∑
i=0

u∗(�i) = Muavg, (46a)

Muavg −
min{k+N, 2M−1}∑

j=M

u(�j) ≤ max{2M − N − k, 0}umax, (46b)

Muavg −
min{k+N, 2M−1}∑

j=M

u(�j)≥ max{2M − N − k, 0}umin. (46c)

For simplicity of notation, k is reset (i.e., k = 0 at the sampling period
�M) at the beginning of each operating period.

The following EMPC is applied to the CSTR system:

maximize
u∈S(�)

∫ �N

0

k0e−E/RT̃(t)C̃2
A(t)dt (47a)

subject to ˙̃CA(t) = F

V
(u1(t) − C̃A(t)) − k0e−E/RT̃(t)C̃2

A(t) (47b)

˙̃T(t) = F

V
(T0 − T̃(t)) − 	Hk0

�Cp
e−E/RT̃(t)C̃2

A(t) + u2(t)
�CpV

(47c)

C̃A(0) = CA(�k), T̃(0) = T(�k) (47d)

u(t) ∈ U, ∀ t ∈ [0,  �N) (47e)

M−k−1∑
j=0

u1(�j) +
k−1∑
i=0

u∗
1(�i) = Mu1,avg (47f)

Mu1,avg −
N∑

j=M−k

u1(�j) ≤ max{2M − N − k, 0}u1,max (47g)

Mu1,avg −
N∑

j=M−k

u1(�j)≥ max{2M − N − k, 0}u1,min (47h)

where the notation used is similar to the previous EMPC formu-
lations. We note that the EMPC of Eq. (47) resets its initial time
to zero at each sampling period (i.e., the real-time horizon �k to
�k+N corresponds to the prediction horizon from 0 to �N in the
controller). Therefore, the time indices of the constraints of Eq.
(47f)–(47h) are shifted to account for this point. The closed-loop
simulation results are shown in Figs. 7 and 8 for the initial con-

dition CA(0) = 2.0 kmol m−3 and T(0) = 425.0 K, an operating period
of 100 sampling periods (i.e., M = 100 and �M = 1.0 h) and predic-
tion horizon N = 10. The closed-loop state trajectories converge to a
limit cycle over several periods of operation (Fig. 8). The closed-loop
performance of the system under the EMPC of Eq. (47) is evaluated
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Table 3
Closed-loop performance over 50 h of operation under the EMPC with a terminal
constraint and the constraint of Eq. (48) with various prediction horizon lengths.

N JE

10 16.76
20 17.03

k+N∑
j=k

u(�j) ≤ Numax + (k + N)uavg −
k−1∑
j=0

u∗(�j) (48b)
ig. 7. Closed-loop trajectories of the CSTR over 10 h of operation under the EMPC
ith  the operating period average input constraints.

sing the average economic cost index of Eq. (32). Over the first
perating period under the EMPC of Eq. (47), the average economic
ost is 19.95, while the average economic cost over one hour start-
ng from the same initial condition and under a constant input of
∗
s is 17.46 (operation under EMPC has 14.25% better performance).
ver the 50.0 h length of operation, the average economic cost
nder the EMPC is 12.68, while under the constant steady-state

nput value it is 16.43. The average closed-loop economic perfor-
ance under EMPC is 22.78% worse than the performance under

he constant input u∗
s . It is important to emphasize that several

hemical process examples under EMPC formulated without the
se of a point-wise terminal constraint and without a terminal cost
ave demonstrated improved economic closed-loop performance
ver traditional control methods (e.g., [71,51]).

One solution to guarantee performance improvement over

teady-state operation for long term (infinite-time) operation is
o add a terminal constraint based on the economically optimal
teady-state or the open-loop predicted trajectory under an auxil-
ary controller which was described in Section 4 above. Therefore,

ig. 8. The closed-loop state trajectory in state-space of the CSTR over 10 h of oper-
tion under the EMPC with the operating period average input constraints.
30 17.05
40 17.09
50 17.14

a terminal (point-wise) constraint based on the economically opti-
mal  steady-state is added to the EMPC. However, the average input
constraint must be carefully constructed. Applying constraints of
the form of Eq. (46) will likely cause the EMPC, formulated with
a terminal constraint, to become infeasible owing to the fact that
the input constraint may  become tight near the end of the operat-
ing window. The terminal constraint may  no longer be a reachable
steady-state with the remaining control energy and thus, increas-
ing the prediction horizon may not resolve this issue for this type of
average constraint. For instance, initializing the CSTR with the ini-
tial condition CA(0) = 2.0 kmol m−3 and T(0) = 425.0 K, the EMPC of
Eq. (47) with the terminal constraint x̃(�N) = x∗

s becomes infeasible
at 0.78 h. One method to resolve this issue is to handle the average
constraint asymptotically [6].

One type of constraint to enforce such that the input aver-
age constraint is asymptotically satisfied is the constraint of Eq.
(27) (presented in [6]). Formulating constraints of this form which
ensure that the average input constraint is asymptotically satisfied
for the CSTR example yields the following constraints:

k+N∑
j=k

u(�j)≥Numin + (k + N)uavg −
k−1∑
j=0

u∗(�j) (48a)
Fig. 9. The average of CA0 computed by the EMPC with a terminal constraint, a
prediction horizon length of N = 20 and the asymptotic average input constraints
(solid trajectory). The desired average, u1,avg is the dashed line.
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ig. 10. The closed-loop trajectories of the CSTR over 50 h of operation under the
MPC with a terminal constraint, a prediction horizon length of N = 20 and the
symptotic average input constraints.

hich replace the average constraints of Eq. (47f)–(47h) in the
MPC of Eq. (47). Also, the terminal constraint x̃(�N) = x∗

s is added
o the EMPC. The resulting EMPC is applied to the CSTR. The
losed-loop performance is given in Table 3 for the initial condition
A(0) = 2.0 kmol m−3 and T(0) = 425.0 K and for several prediction
orizon lengths. Overall, a similar trend in performance with
rediction horizon length is observed in Table 3 as the one observed

n Example 1.
The average CA0 value with time for the input trajectory com-

uted by the EMPC with a prediction horizon of N = 20 is given
n Fig. 9 which demonstrates that the average constraint on CA0
s asymptotically satisfied. The closed-loop trajectories under the
MPC with a terminal constraint are shown in Figs. 10 and 11 for

 = 20 and Figs. 12 and 13 for N = 50. From the closed-loop trajec-

ories of the CSTR under the EMPC with N = 20 (Fig. 10), a periodic
perating policy is dictated by the EMPC; a more complex periodic-
ike operating policy is observed with N = 50 (Fig. 12). Owing to the
nforcement of the terminal constraint, the EMPC with a terminal

ig. 11. The closed-loop state trajectory in state-space of the CSTR over 50 h of
peration under the EMPC with a terminal constraint, a prediction horizon length
f N = 20 and the asymptotic average input constraints.
Fig. 12. The closed-loop trajectories of the CSTR over 50 h of operation under the
EMPC with a terminal constraint, a prediction horizon length of N = 50 and the
asymptotic average input constraints.

constraint operates the CSTR in a much smaller operating range
compared to the CSTR under the EMPC of Eq. (47) (Fig. 7). Interest-
ingly, however, operation over a much larger operating region as
is the case under the EMPC of Eq. (47) (with N = 10) does not yield
better closed-loop economic performance compared to operating
in a smaller region as is the case under the EMPC with a terminal
constraint and with N = 10. Specifically, the average reaction rate
over the 50.0 h simulation is 16.76 with the EMPC with a terminal
constraint and with N = 10. This is 1.93% better than steady-state
operation (constant input u∗

s ) and 31.07% better than the EMPC
without the terminal constraint.

From the simulations of the CSTR under the EMPC with the
terminal constraint, the computed CA0 profile is approximately a

periodic profile. From these simulations, the period of the periodic
switching policy dictated by EMPC may  be approximated. On aver-
age, the EMPC with a terminal constraint switches between CA0,max
and CA0,min approximately every 10 sampling periods and thus,
the optimal period of switching is approximated as 20 sampling

Fig. 13. The closed-loop state trajectory in state-space of the CSTR over 50 h of
operation under the EMPC with a terminal constraint, a prediction horizon length
of  N = 50 and the asymptotic average input constraints.
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� = 1.4 (see [68] for more details regarding the controller design). A
quadratic Lyapunov function is considered of the form V(x) = xT Px
172 M. Ellis et al. / Journal of Pro

eriods. Utilizing the computed optimal period consisting of 20
ampling periods, we revisit the EMPC of Eq. (47) which uses an
verage input constraint enforced over operating windows of size
M.

Consider the EMPC of Eq. (47) where the operating period is
ow 20 sampling periods (M = 20) and the prediction horizon is

 = 20. The EMPC is applied to the CSTR with two initial conditions:
T
0,1 = [2.0 425.0] and xT

0,2 = [1.0 490.0]. The closed-loop per-
ormances under the EMPC of Eq. (47) (with M = 20 and N = 20) for
hese two initial conditions are 16.95 and 16.94, respectively, while
he closed-loop performances under the EMPC with a terminal con-
traint, the asymptotic average constraint of Eq. (48), and N = 20 are
7.03 and 16.99 for these two initial conditions, respectively. The
ifferences in performance between the two EMPC schemes are
.48% for the first initial condition and 0.29% for the second, with
he EMPC with a terminal constraint having the better performance
n each case. However, recall that this comparison does not amount
o comparing two equivalent scenarios. Since the EMPC under the
symptotic average constraint only needs to asymptotically satisfy
he average constraint, it may  use more (or less) input energy over
he finite-time (transient) interval. In fact, for this example, the
MPC with the terminal constraint and asymptotic average con-
traint uses an average of 4.01 kmol m−3 for both initial conditions
hich is slightly more than the EMPC with operating period average

onstraints. This analysis suggests that it may  be useful, when using
n operating period average input constraint, to construct and solve

 dynamic optimization problem to determine the optimal period
�M) to enforce the operating period average input constraint since
he closed-loop performance under EMPC with an average con-
traint enforced over operating periods may  be dependent on the
hoice of operating period length.

.3. Stability under EMPC

In the previous section, closed-loop performance was studied
omparing the closed-loop performance of the CSTR under EMPC
ormulated with a terminal constraint and under an EMPC with-
ut a terminal constraint. For this particular example, closed-loop
conomic performance of the EMPC without a terminal constraint
nd an average input constraint formulated for successive operat-
ng windows and an EMPC formulated with a terminal constraint
nd asymptotic average input constraint yield similar closed-
oop performance (for an appropriately chosen operating period
M of the first EMPC). Furthermore, both cases demonstrated a
losed-loop economic performance improvement under dynamic
peration compared to steady-state operation. In the previous
tudy, strictly nominal operation was considered (i.e., operation
nder no plant-model mismatch, no disturbances, and no other
ncertainty). Practically speaking, it is never possible to achieve
ominal operation. Furthermore, work in the direction of closed-

oop performance under actual operation (e.g., in the presence
f process noise, external forcing and unmeasured disturbances,
ommunication disruptions between components of the control
rchitecture, etc.) remains an open research topic.

In this section, operation under process noise and plant-model
ismatch is considered. As argued in [4,141], the use of a (ter-
inal) region is superior to the point-wise terminal constraint.
rguing for or against this point for EMPC is not within the scope
f this work, but instead, the discussion proceeds using this
oint to motivate the use of an EMPC with a region constraint

nstead of a point-wise terminal constraint for operation in the

resence of process noise. Specifically, an LEMPC is chosen to be
ormulated and applied to the CSTR model due to several of its
nique properties compared to EMPC with a terminal region and
erminal cost (e.g., the EMPC presented in [4]). With LEMPC, a
egion constraint can be constructed without the need to add a
ntrol 24 (2014) 1156–1178

terminal penalty to the economic cost while still having provable
stability guarantees in the presence of bounded disturbances (i.e.,
boundedness of the closed-loop state in the region). The region
constraint, ˝� , is characterized with an explicit stabilizing con-
troller, k(x), and therefore, is an estimate of the region of attraction
for the system under the input constraints. Furthermore, different
Lyapunov-based constraints can be formulated to achieve multiple
objectives which will be discussed and demonstrated below.

Before the auxiliary explicit stabilizing controller can be
designed for the LEMPC, the control objective for the CSTR is mod-
ified. Since the economic cost does not penalize the use of control
energy, the optimal operating strategy is to operate at the max-
imum allowable heat rate supplied to the reactor. However, this
may lead to a large temperature operating range (Fig. 8) which
may  be impractical or undesirable. Therefore, consider a modified
control objective for more practical closed-loop operation of the
CSTR under EMPC. The modified control objective is to maximize
the reaction rate while feeding a time-averaged fixed amount of
the reactant A to the process and while forcing and maintaining
operation to/at a pre-specified set-point temperature. Additionally,
the temperature of the reactor contents must be maintained below
the maximum allowable temperature T(t) ≤ Tmax = 470.0 K, which is
treated as a hard constraint and thus, X  = {x ∈ R

2|x2 ≤ 470.0}. The
optimal steady-state, in this case, is obtained from the need to sat-
isfy the new control objective and therefore, is not directly derived
from an optimization problem. Specifically, the heat rate input is
allowed to take values in its full set of available control energy
(Q ∈ [−50.0, 50.0] MJ  h−1) and the optimal steady-state inputs are
set as follows: C∗

A0 = CA0,avg = 4.0 kmol m−3 and Q ∗
s is the average

available heat rate which is Q ∗
s = 0 MJ  h−1. The reasoning for the

latter choice is to have an equal amount of positive and negative
control energy. The steady-state in the operating range of interest
corresponding to steady-state input values of C∗

A0 = 4.0 kmol m−3

and Q ∗
s = 0 MJ  h−1 is C∗

As = 1.18 kmol m−3 and T∗
s = 440.9 K and is

open-loop asymptotically stable.
A stabilizing state feedback controller k(x) is designed for the

CSTR with respect to the optimal steady-state. The first input CA0
in the stabilizing controller is fixed to the average inlet concen-
tration to satisfy the average input constraint. The second input
Q is designed via feedback linearization with a controller gain of
Fig. 14. Two closed-loop state trajectories under the LEMPC in state-space.
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Table 4
Average economic cost over several simulations under the LEMPC, the Lyapunov-
based controller applied in a sample-and-hold fashion, and the economically
optimal input u∗

s . For the case denoted with a “*”, the system under the constant input
u∗

s settled at a steady-state different from the economically optimal steady-state.

JE under LEMPC JE under k(x) JE under u∗
s

14.17 14.10 14.09
14.18 14.11 14.09
14.17 14.10 14.08
14.17 14.09 14.06
14.18 14.10 14.10
14.17 14.09 14.08
14.18 14.09 14.10
14.18 14.08 14.08
14.19 14.08 14.10
14.18 14.07 14.07
14.18 14.11 14.11
M. Ellis et al. / Journal of Pro

here x is the deviation of the states from their corresponding
teady-state values and P is the following positive definite matrix:

 =
[

250 5

5 0.2

]
. (49)

he stability region of the CSTR under the controller k(x) is char-
cterized with a level set of the Lyapunov function where the
ime-derivative of the Lyapunov function along the closed-loop
tate trajectories is negative and is denoted as ˝u = {x ∈ R

2|V(x) ≤
u} where �u = 138. However, X  ⊂ ˝u which is shown in Fig. 14 and
hus, we define the set ˝� where � = 84.76 to account for the state
onstraint. Bounded Gaussian process noise is added to the CSTR
ith a standard deviation of 
 = [0.3 5.0]T and bound � = [1.0 20.0]T.

pecifically, a new noise vector is generated and applied additively
o the right-hand side of the ODEs of Eq. (41) over the sampling
eriod (� = 0.01 h) and the bounds are given for each element of
he noise vector (|wi| ≤ �i for i = 1, 2). Through extensive closed-
oop simulations of the CSTR under the controller k(x) and under
he LEMPC (described below) and with many realizations of the
rocess noise, the set ˝�e , a set where time-varying operation is
llowed while boundedness in ˝� is maintained, was  determined
o be �e = 59.325.

The first differential equation of Eq. (41) (CA) is input-to-
tate-stable (ISS) with respect to T. Therefore, a contractive
yapunov-based constraint can be applied to the LEMPC to ensure
hat the temperature converges to a neighborhood of the opti-

al  steady-state temperature value. Namely, we define: VT (�k) :=
T(�k) − T∗

s )2. The LEMPC formulation is the same as Eq. (47) (mod-
fied as noted above to account for noise) with the following added
onstraints:

(t) ≤ Tmax (50a)

(x̃(t)) ≤ �e ∀ t ∈ [0,  �N) (50b)

∂VT (�k)
∂T

f2(x̃(0), u(0), 0) ≤ ∂VT (�k)
∂T

f2(x̃(0), k(x̃(0)), 0) (50c)

here f2(·) is the right-hand side of the second ODE of Eq. (47). The
STR was initialized at many states distributed throughout state-
pace including some cases where the initial state is outside ˝u.
he LEMPC described above was applied to the CSTR with an oper-
ting period over which to enforce the average input constraint of

 = 20 and a prediction horizon of N = 20. Several simulations of
0.0 h length of operation were completed. In all cases, the LEMPC
as able to force the system to ˝� and maintain operation inside
� without violating the state constraint. The closed-loop state

rajectories over the first 1.0 h are shown in Fig. 14 for one initial
ondition starting inside ˝� and one starting outside ˝u. More-
ver, the CSTR was simulated with the same realization of the
rocess noise and same initial condition under the controller k(x)
pplied in a sample-and-hold fashion and under a constant input
qual to the steady-state input. The average economic cost over
ach of these simulations is reported in Table 4. From these results,
n average of 0.6% closed-loop performance benefit was  observed
ith the LEMPC over the controller k(x) and the constant input u∗

s .
t is important to note that for one of the simulations that was ini-
ialized outside ˝u the CSTR under the constant input u∗

s settled
n an offsetting steady-state which is denoted with an asterisk in
able 4.
. Discussion of current status of EMPC

In this section, we reflect on the current status of EMPC devel-
pments as well as unify some of the results on EMPC to compare
nd contrast the various approaches.
14.18 14.08 14.07
14.17 14.06 0.36*
14.19 14.06 14.10

6.1. RTO and EMPC

Throughout the EMPC literature, EMPC has been widely
reported as a method that merges process economic optimization
and process control. Indeed, it does have this property. However,
among all the current theoretical work on EMPC, only the work
of Grüne [64] does not employ the use of a precomputed steady-
state or periodic operating trajectory as a terminal constraint or
stability region. Notice that the EMPC schemes of Eq. (14) and (30),
each with provable stability properties, use precomputed infor-
mation as constraints in the EMPC formulation. This information
must come from some higher level information technology sys-
tem. Moreover, a wide variety of assumed a priori knowledge exists
amongst the various EMPC schemes. Some EMPC schemes only
require the economically optimal steady-state (e.g., EMPC with
a terminal constraint), while others require much more knowl-
edge like the optimal cyclical (perhaps periodic) operating strategy
[79] and sufficient understanding of the behavior of the future
economic pricing to model it appropriately [130]. Given the avail-
ability of inexpensive computation, EMPC should take advantage
of any available information (like information provided by RTO)
to improve the closed-loop performance. Furthermore, EMPC does
not replace all the tasks completed by the RTO layer (e.g., data vali-
dation and reconciliation and model updating). Thus, it is important
to keep in mind that EMPC does not entirely replace RTO.

Remark 5. While EMPC may  not completely replace RTO, it is
important to understand that this does not imply that one should
not apply EMPC. Using EMPC will yield different closed-loop oper-
ating trajectories compared to using (frequent) RTO (i.e., RTO that
is executed more frequently than that of traditional RTO systems)
with a traditional control structure (e.g., tracking MPC). This is
because the RTO layer typically uses a steady-state process model,
while the EMPC uses a dynamic process model. If Dynamic RTO (D-
RTO) is used (i.e., RTO with a dynamic process model), it would be
expected that the closed-loop economic performance under EMPC
is better than that with D-RTO since D-RTO is typically executed at a
slower frequency than EMPC. If D-RTO is executed at the same rate
as EMPC, then D-RTO, in this case, is essentially (one-layer) EMPC
(see Section 7.2 for more discussion on this point).

6.2. Closed-loop operation under EMPC
From our experiences applying EMPC to various applications,
we have observed that the most closed-loop performance benefit
under EMPC occurs when EMPC dictates a time-varying operating
policy which may  range from a periodic or cyclical operating
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olicy to more complex non-periodic time-varying operation.
hen steady-state operation is the optimal operating strategy,

ne should carefully consider the applicability of EMPC. Specifi-
ally, when operating conditions or economic factors are updated
nfrequently and a system can be maintained near the optimal
teady-state (i.e., a sufficient time-scale separation exists between
he frequency of economic factors update and the time constants
f the process dynamics), it is unexpected that much benefit will
e observed under EMPC since the system spends little time in the
ransient phase relative to the total length of operation. For large-
cale systems optimally operated at steady-state, one must also
onsider the computational burden required to solve EMPC on-line
hich may  be significant. For instance, the application of EMPC

o a large-scale chemical process network used in the production
f vinyl acetate led to comparable closed-loop performance when
ompared to a well-tuned MPC  formulated with a quadratic cost,
s economically optimal steady-state operation was likely optimal
162]. However, the computation requirement of EMPC compared
o MPC  was considerably higher. If significant disturbances are
resent such that it is difficult to achieve operation near the steady-
tate (and steady-state operation is the optimal operating strategy),
ne may  consider using a local approximation of the nonlinear
odel (e.g., linear dynamic model) and a local approximation of

he economic cost when these approximations provide sufficient
ccuracy of the process dynamics and economic cost, respectively.
his may  convert the optimization to an easier problem (i.e., milder
onlinearities, possibly convert the optimization problem of EMPC
o a convex optimization problem which is readily solvable, etc.)
elping to ease the computational burden of EMPC, while achieving
ome possible closed-loop performance benefit.

.3. Economic assessment of EMPC

For the chemical process example presented in this work, a
% greater production rate was achieved under EMPC with nom-

nal operation than with steady-state operation, while only a 0.6%
reater production rate was achieved when process noise affected
he evolution of the process system. Whether it is an economi-
ally viable option to apply EMPC to this particular process largely
epends on how valuable the product is and what the production
ate currently being realized in practice under the current control
ethodology is. Therefore, a careful economic assessment would

eed to be completed when determining if the benefit of apply-
ng EMPC is worth the engineering, capital, and related investment
osts (see the survey paper [14] for approaches for carrying out
uch an evaluation).

. Future research directions

In this section, we discuss some topics for future research work
n the area of EMPC based on our experiences, observations, and

otivations. The topics reflect our own bias and the list is certainly
ot complete.

.1. State-estimation-based EMPC

Almost all of the proposed EMPC schemes rely on state feed-
ack. However, in practice, only measured output feedback may  be
vailable. Since there exists no separation principle for general non-
inear systems, it is hard to prove stability of the closed-loop system
nder a state-estimator or state-observer with a state feedback

ontroller. An approach within nonlinear systems for the design
f an output feedback controller is to use a high-gain observer with

 stabilizing state feedback controller. In this case, one can apply
ingular perturbation arguments to prove stability of the closed-
oop system [86,87]. In a previous work [69], the LEMPC design
ntrol 24 (2014) 1156–1178

was extended to the case of output feedback based on a high-gain
observer. While using high-gain observers may  allow for proving
closed-loop stability, it may  also be sensitive to measurement noise.

As another approach to output feedback EMPC, moving horizon
estimation (MHE) based on least squares techniques has become
a popular state estimation technique because of its ability to
handle nonlinear systems, account for the presence of distur-
bances, and account for constraints on decision variables leading to
improved estimation performance [124,138,139,78,144]. One par-
ticular formulation of MHE, robust MHE  (RMHE), has been proposed
in [101,175] which is based on an auxiliary nonlinear observer
that asymptotically tracks the nominal system state. The auxiliary
deterministic nonlinear observer is taken advantage of to calculate
a confidence region that contains the actual system state taking into
account bounded model uncertainties at every sampling time. The
region is then used to design a constraint on the state estimate in the
RMHE. The RMHE brings together deterministic and optimization-
based observer design techniques. It was  proved to give bounded
estimation error in the case of bounded model uncertainties. In [55],
an RMHE-based output feedback LEMPC was  presented and stabil-
ity in the presence of measurement and process noise was proved.
Future work in this direction should embark on considering the
rigorous design of other types of output feedback EMPC schemes.

7.2. Distributed EMPC, hierarchical EMPC, and distributed
economic optimization

In general, it has been pointed out that the computational bur-
den of EMPC over conventional MPC  may  be significantly higher
since EMPC may  use a general nonlinear, non-convex cost function
with a sufficiently long prediction horizon for good closed-loop per-
formance (e.g., [162]). In fact, the computational time required to
solve the EMPC may  be greater than the time available (i.e., greater
than the sampling period). Furthermore, it has been argued in [166]
that the use of a one-layer EMPC which fully combines the RTO and
supervisory (MPC) layers in Fig. 1 is undesirable within the context
of industrial application without the use of some additional safety
control layer. Three potentially attractive choices to handle com-
putational concerns include using distributed EMPC, hierarchical
EMPC, distributed optimization techniques, and/or any combina-
tion of these three approaches.

It  is clear in the context of MPC  of large-scale process networks
that distributed MPC  (DMPC) schemes may  significantly reduce the
on-line computational load of MPC  and thus, make MPC  a feasible
control methodology for large-scale, nonlinear process networks
(e.g., see, for instance, [145,103,102,34] and the references therein).
While early work in this direction in the context of distributed
EMPC (DEMPC) has shown promising results [29,42,95,96], more
work is necessary which includes work on the development of
novel DEMPC algorithms, rigorous theoretical stability analysis, and
introducing control loop decomposition methodologies for DEMPC.
One potentially interesting research direction is to define new con-
trol loop decomposition methods on the basis of process economics.
This idea has some similarities to the so-called self-optimizing
control methodology for control structure design for steady-state
operated processes [154,155,10,136]. However, it remains to be
seen how these methods can be extended to dynamically operated
systems.

Another alternative to using a single-layer EMPC system to com-
pute the control actions directly for the manipulated inputs, which
may be computationally taxing, is to use EMPC in a hierarchical

control structure which is also commonly referred to as Dynamic-
RTO [168,166]. Here, the idea is to maintain the current hierarchical
control structure (Fig. 1), but replace the RTO layer with essentially
an EMPC that computes an optimal operating trajectory. The opti-
mal  trajectory is sent to the lower control layers to steer the process
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ystem to operate along these trajectories. Similar to current RTO,
he upper-layer EMPC would recompute its operating trajectory
or the system infrequently to lower computational requirements
i.e., not every sampling period), and thus, a loss of economic per-
ormance may  be expected over single-layer EMPC. Furthermore,
tability analysis of the entire closed-loop hierarchical EMPC struc-
ure is in order although only limited work has been completed in
his direction (e.g., [50,51]). Future research in this direction should
nclude detailed stability analysis of the closed-loop structure and
ovel algorithms that work to minimize the performance loss of
ierarchical EMPC compared to single-layer EMPC.

Lastly, a continued desire within many fields that solve large-
cale, non-convex, nonlinear optimization problems is to continue
o push the boundaries of nonlinear optimization solver capabil-
ties and computational efficiency. Thus, it will be important to
ontinue research efforts in parallel and distributed computation
e.g., [18]) with a specific focus on distributed and parallel dynamic
ptimization methods for EMPC.

.3. Real-time calculation and network considerations

In practice, an optimization-based controller takes a finite
mount of time to solve which may  be significant or insignifi-
ant depending on the time constants of the process dynamics.
herefore, there is a (theoretical) maximum amount of time that
he nonlinear solver may  spend in computation and must return a
ontrol action by this maximum amount of time to ensure closed-
oop stability. Even if novel EMPC algorithms are presented that
educe the on-line computational load, it is still possible that the
onlinear optimization solver will not converge to a solution in
he time allotted. This may  happen, for instance, if a poor initial
uess is supplied to the solver. In this case, the solver will return

 suboptimal input solution and thus, this type of MPC  implemen-
ation is often referred to as suboptimal MPC  (e.g., [146]). Future
esearch should understand the stability properties of the input
olution computed by suboptimal EMPC. Furthermore, it may  also
e desirable to look at methods that efficiently store previous input
olutions in a database as data storage is becoming increasingly
nexpensive and take advantage of the database to provide the
olver with a potentially better initial guess.

Also of interest within the context of solving EMPC in real-time
s the fact that the components of the control architecture are con-
ected through wired and/or wireless communication connections.
ommunication delays between components may occur. Further-
ore, asynchronous measurements (i.e., asynchronous sampling)
ay  occur in certain practical applications. For example, species

oncentration may  be asynchronously measured. Therefore, EMPC
chemes that explicitly account for network considerations and
synchronous sampling are important practical challenges of
MPC. Within the context of conventional MPC, several results have
een obtained in this direction (e.g., [33]). It will be important to

everage these results and extend these results to EMPC.

.4. EMPC of distributed parameter and hybrid systems

Almost all of the work on control of distributed parameter sys-
ems modeled by PDEs has focused on steady-state stabilization
nd operation [30] especially in the context of predictive control
ormulated for PDE systems (e.g. [47,45,43,44]). To this end, only
ecently has some work been done on applying EMPC to PDE sys-
ems [91,90] which has primarily focused on the construction of

educed-order models for EMPC by applying Galerkin’s method
sing analytical or empirical eigenfunctions as basis functions. It

s important to note that using a high-order spatial discretization
f the PDE model to obtain a system of ODEs describing the tem-
oral evolution of the PDE system in an EMPC framework may
ntrol 24 (2014) 1156–1178 1175

result in a computationally-intractable optimization problem to
solve on-line. However, despite the demonstration of the computa-
tional benefits of using reduced-order models in the formulation of
EMPC [91,90], rigorous theoretical stability analysis of PDEs under
EMPC remains an open topic.

Another class of systems that remains an open research topic
within the context of EMPC is hybrid systems. Hybrid systems are
systems that are modeled with states that evolve on the continuous
time-scale as well as states that evolve on a discrete time-scale like
discrete events. Historically, hybrid systems have attracted much
attention within the control community (e.g., [17,32]). However,
EMPC schemes for hybrid systems have received very limited atten-
tion. Within chemical process control, hybrid systems arise due to,
for instance, grade changes in the desired product (i.e., changes in
product specifications), raw material changes, and variable energy
source pricing. Therefore, it is important to introduce EMPC meth-
ods with guaranteed stability properties that may be applied to
hybrid systems. Future research in the direction of distributed
parameter and hybrid systems may  include proposing novel EMPC
schemes for these classes of systems and deriving conditions under
which stability and improved closed-loop performance of the sys-
tem under EMPC may  be guaranteed.

7.5. EMPC with input/output models

As its name implies, EMPC requires the availability of a dynamic
model to compute its control actions. For the cases where the devel-
opment of a sufficiently accurate first-principles dynamic model is
not possible, system identification techniques may need to be used
to obtain an accurate empirical input/output model of the process
dynamics. In particular, nonlinear autoregressive moving average
with exogenous inputs (NARMAX) models may be one of many
types of nonlinear system identification techniques employed and
used to construct an empirical model [20]. Future research should
incorporate input/output models into the formulation of EMPC and
investigate the capabilities and limitations of applying these mod-
els in the context of EMPC.

7.6. EMPC and safety/robustness considerations

Operating in a continuously dynamic fashion, as EMPC may dic-
tate, may  have considerable safety implications both positive and
negative. On the positive side, a dynamically operated system may
offer some insight into the health of the components. For instance,
one common method for fault detection within steady-state opera-
tion is to excite the process (induce a transient phase) and observe
its response in an effort to detect and isolate faulty components.
Since a system under EMPC may  be under a constant “excited” state,
future research effort may  focus on harnessing this for fault detec-
tion, isolation, and control reconfiguration to handle various types
of process faults. A potential drawback within the context of safety
is that the operating policy dictated by the EMPC must be robust to
component failures. For example, the EMPC should compute oper-
ating trajectories that are safe with respect to potential component
failures. Furthermore, EMPC and process monitoring tools should
be developed and deployed to help assess the overall process safety.

While a few EMPC formulations with provable stability prop-
erties in the presence of disturbances have been proposed (e.g.,

[68,77,39,67]), more work in this direction is in order. Future work
on EMPC should strive to provide provable stability and perfor-
mance of EMPC in the presence of disturbances as well as present
novel EMPC algorithms and formulations that account for distur-
bances of known form and process noise with known statistics.
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[118] D. Muñoz de la Peña, P.D. Christofides, Lyapunov-based model predictive con-
trol  of nonlinear systems subject to data losses, IEEE Trans. Automat. Control
53 (2008) 2076–2089.

[119] M.A. Müller, F. Allgöwer, Robustness of steady-state optimality in economic
model predictive control, in: Proceedings of the 51st IEEE Conference on
Decision and Control, Maui, Hawaii, 2012, pp. 1011–1016.

[120] M.A. Müller, D. Angeli, F. Allgöwer, Economic model predictive control with

self-tuning terminal cost, Eur. J. Control 19 (2013) 408–416.

[121] M.A. Müller, D. Angeli, F. Allgöwer, Economic model predictive control with
transient average constraints, in: Proceedings of the 52nd IEEE Conference on
Decision and Control, Florence, Italy, 2013, pp. 5119–5124.

[122] M.A. Müller, D. Angeli, F. Allgöwer, On convergence of averagely con-
strained economic MPC  and necessity of dissipativity for optimal steady-state



1 cess Co
178 M. Ellis et al. / Journal of Pro

operation, in: Proceedings of the American Control Conference, Washington,
D.C., 2013, pp. 3147–3152.

[123] M.A. Müller, D. Angeli, F. Allgöwer, R. Amirt, J.B. Rawlings, Convergence in
economic model predictive control with average constraints. Automatica
(submitted for publication).

[124] K.R. Muske, J.B. Rawlings, J.H. Lee, Receding horizon recursive state estima-
tion, in: Proceedings of the American Control Conference, San Francisco, CA,
1993, pp. 900–904.

[125] K.R. Muske, Steady-state target optimization in linear model predictive
control, in: Proceedings of the American Control Conference, volume 6, Albu-
querque, NM,  1997, pp. 3597–3601.

[126] S. Natarajan, J.H. Lee, Repetitive model predictive control applied to a sim-
ulated moving bed chromatography system, Comput. Chem. Eng. 24 (2000)
1127–1133.

[127] R. Nath, Z. Alzein, On-line dynamic optimization of olefins plants, Comput.
Chem. Eng. 24 (2000) 533–538.
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[149] X. Shu, K. Rigopoulos, A. Ç inar, Vibrational control of an exothermic CSTR: pro-
ductivity improvement by multiple input oscillations, IEEE Trans. Automat.
Control 34 (1989) 193–196.

[150] J.J. Siirola, T.F. Edgar, Process energy systems: control, economic, and sus-
tainability objectives, Comput. Chem. Eng. 47 (2012) 134–144.

[151] P.L. Silveston, Periodic operation of chemical reactors - A review of the exper-
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