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ABSTRACT: A framework for performance monitoring of economic model predictive control (EMPC) systems is presented
which includes the computation of an acceptable operating region, which is a well-defined region in state-space, for EMPC
systems to operate a process in a time-varying fashion to optimize process economics while meeting input constraints and
stabilizability requirements. To capture the interplay between sources of common cause variance caused by various sources like
sensor noise, imperfect actuator operation, and model inaccuracy, a residual variable taken to be the difference of actual real-time
economic cost and the predicted (expected) economic cost is defined. Utilizing exponentially weighted moving average
(EWMA) and historical closed-loop process data, an upper control limit and a lower control limit are established which defines
normal operation (i.e., operation with common cause variation). The limits are utilized to monitor the performance of EMPC by
comparing real-time process operation data under EMPC and the corresponding regions of acceptable EMPC operation
computed in the normal operation dynamic data generation step. The proposed monitoring framework is demonstrated and
evaluated using a chemical process example.

■ INTRODUCTION
Economic model predictive control (EMPC), which utilizes a
process economics-based, typically nonquadratic, cost function,
has recently been proposed to dynamically optimize economic
process performance in the context of feedback control.1−13

The early work on EMPC primarily focused on addressing
unreachable set points generated by traditional steady-state
process economic optimization referred to as real-time
optimization (RTO). Specifically, the use of an economic
cost function in the formulation of MPC was proposed to
replace steady-state or target optimization which converts an
unreachable set point computed by RTO into a reachable
steady-state.1 Numerous technical and stability details of EMPC
have subsequently been studied including: addressing changing
economic criterion by formulating EMPC with terminal
constraint to enforce the predicted state to converge to an
admissible steady-state set by the end of the prediction horizon,2

proposing an EMPC formulated with a terminal region constraint
based on a terminal state (point constraint) and adding a terminal
cost in the cost function,3 establishing a suitable Lyapunov function
for EMPC formulated with terminal constraint by imposing a
strong duality assumption,4 proving Lyapunov stability of EMPC
for cyclic processes,5 proposing an EMPC, referred to as Lyapunov-
based EMPC (LEMPC), designed utilizing Lyapunov-based
techniques,6 using a generalized terminal constraint for use with
EMPC where the terminal constraint is allowed to be an
optimization decision variable in the EMPC optimization problem,9

studying EMPC formulated without a terminal constraint by
utilizing a turnpike property and controllability properties to prove
convergence to a neighborhood of the optimal steady-state,10 and
presenting an adaptive EMPC for uncertain nonlinear systems.11

Dissipativity of the closed-loop (nominal) system under EMPC was
proved to be a sufficient condition for optimal operation at the
economically optimal steady-state12 and was subsequently extended
to show, under mild additional assumptions, to be a necessary

condition for steady-state operation to the optimal operating
policy.13 However, in the most general sense, EMPC optimizes
process economic performance by dynamic regulation. Specifi-
cally, when the process economics are time-varying, when certain
economics-based constraints are imposed (e.g., the amount of
raw materials that can be fed to the process over an operating
window is constrained), or if time-varying disturbances are
significant such that maintaining the process in a small
neighborhood of the optimal steady-state is difficult, a time-
varying (transient) operating policy is likely to be economically
optimal. LEMPC, one such EMPC that operate process systems
in a time-varying fashion, has been demonstrated to yield
improved closed-loop economic performance over steady-state
operation for several chemical process examples.6−8 An open
fundamental (yet motivated by practical application consider-
ations) challenge to time-varying operation under EMPC is
introducing online methods that can assess and monitor the
performance of EMPC schemes.
Existing results on monitoring of model predictive control

(MPC) deal with operation at steady-state and are based on the
use of historical fault-free operation data to construct state-
space regions of acceptable operation around the desired
operating steady-state.14−20 The traditional method of mon-
itoring of MPC takes in historical data of high dimension and
projects the data to a lower dimension through the application
of principle component analysis (PCA) or partial least-squares
(PLS). The squared prediction error (SPE) and/or Hotelling’s
T2 statistic are used to establish a region of acceptable operation
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and to perform online and off-line process monitoring.15 These
regions account for common cause variance present in the
process and the control system due to model inaccuracy, sensor
noise, and actuator imperfect operation. However, the regions of
acceptable process operation are computed in the context of
steady-state operation and may not be suitable to be used to infer
acceptable control system performance when the control system
operates the process in an inherently time-varying fashion to
optimize the economic performance as EMPC does. Further-
more, while some of these methods have been extended to
monitoring of nonstationary and time-varying processes,21 a more
convenient and more economics-oriented approach to monitoring
EMPC systems may be to take advantage of the economic cost
function since it is considered to be a direct measure of the real-
time process economics (operational cost and/or profit).
Motivated by this issue, we present a framework for the

computation of acceptable operating regions for LEMPC
systems that operate the process in a time-varying fashion
within a well-defined region of the state-space. To this end, it is
critical to capture the interplay between sources of common
cause variance in the process and dynamic process operation.
Therefore, given a well-defined region in the state-space of the
process where time-varying operation is allowed to take place
to optimize economics, to satisfy input constraints and to meet
stabilizability requirements, several closed-loop simulations of
normal operation with common cause variation are carried out
to collect process dynamic operation data. Utilizing the
nominal process model, the expected (predicted) economic
cost value at each sampling period is computed and compared
with the actual economic cost value. The difference between
the two economic cost values defines the residual which is
subsequently used in establishing acceptable operation limits by
computing the exponentially weighted moving average
(EWMA) of the residual. These regions are utilized to monitor
the performance of LEMPC by comparing real-time process
operation data under LEMPC and the corresponding regions of
acceptable LEMPC operation computed in the fault-free,
dynamic data generation step. The proposed framework is
developed and evaluated using a chemical process example.

■ PRELIMINARIES
Notation. The notation |·| denotes the Euclidean norm of a

vector. The symbol Ωρ denotes a level set of a function V:
Rnx → R (i.e., Ωρ = {x ∈ Rnx | V(x) ≤ ρ}). A function α: [0,a)→
[0,∞) is said to belong to class if it is strictly increasing and
α(0) = 0.
Class of Systems. The class of dynamical systems

considered is the class of nonlinear systems that have the
following state-space form:

̇ =x t f x t u t w t( ) ( ( ), ( ), ( )) (1)

where x ∈ Rnx is the state vector, u ∈ U ⊂ Rnu is the input
vector, and w ∈ W ⊂ Rnw is the disturbance vector. The sets
that bound the inputs and disturbance vectors are assumed to
have the following form:
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The vector field f is assumed to be a locally Lipschitz vector
field of its arguments, and the origin is assumed to be the
equilibrium (i.e., f(0, 0, 0) = 0). State measurements are assumed
to be available synchronously at time instances tk = t0 + kΔ, k = 0,

1, .... To describe the real-time economics (e.g., operating profit or
cost) of the system of eq 1, a scalar valued function of form:
le(x(t), u(t)) is assumed.

Lyapunov-Based Controller. Central in the development
of a Lyapunov-based EMPC (LEMPC) scheme for the system
of eq 1 is the development of an invariant set whereby the
closed-loop state remains bounded. A stabilizability assumption
is required for the system of eq 1 for the construction of such a
set. Namely, the existence of a Lyapunov-based controller h(x) is
assumed that renders the origin of the closed-loop system of eq 1
asymptotically stable with the inputs continuously computed by
the Lyapunov-based controller (i.e., u = h(x)). Using converse
theorems,22,23 this assumption implies the existence of a Lyapunov
function for the system of eq 1 which satisfies the inequalities:
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for x ∈ D where D is an open neighborhood of the origin and
αi(·), and i = 1, 2, 3 are class functions. Utilizing the controller
h(x), a level set of the Lyapunov function Ωρ ⊂ D can be
computed where the Lyapunov function is decreasing along the
state trajectory. The region Ωρ, referred to as the stability region, is
an invariant set for the system of eq 1 under the controller h(x)
(see, for example, ref 24 for the details of this point).

Lyapunov-Based Economic Model Predictive Control.
In a previous work,6 an EMPC, referred to as Lyapunov-based
EMPC (LEMPC), was designed by taking advantage of the
explicit Lyapunov-based controller, h(x). LEMPC is used to
compute optimal control actions for the nonlinear system of eq 1
with respect to the economic cost le(x, u). Since it is not assumed
that the economic cost takes its optimal value at steady-state,
LEMPC may operate the system in a time-varying fashion. As
pointed out above, the stability region Ωρ is used in the
formulation of the LEMPC to maintain the closed-loop state
trajectory. LEMPC is given by the following optimization
problem:
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where Δ is the sampling period, S(Δ) is the family of piecewise
constant functions with period Δ, x ̃ denotes the predicted state
evolution with the nominal model (w(t) ≡ 0) of eq 3b initialized
by eq 3c which is obtained through a state feedback
measurement. The input constraint (eq 3d) is used to compute
an input trajectory that is within the available input bounds. The
two Lyapunov-based constraints of eqs 3e and 3f are used to
maintain the closed-loop state inside Ωρ. If the current state is
within a predefined subset of the stability region (i.e., Ωρe ⊂ Ωρ),
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LEMPC may dictate a time-varying operation while maintaining
the predicted state within Ωρe which is enforced through
constraint of eq 3e. This defines mode 1 operation of LEMPC. If
the current state is outside the subset of the stability region,
LEMPC operates in mode 2 and the constraint of eq 3f is active
so that LEMPC computes a control action that decreases the
Lyapunov function by at least the rate of that the Lyapunov-
based control would if it was implemented in a sample-and-hold
fashion over tk to tk+1. The detailed analysis of the stability
properties of this control scheme can be found in ref 6.
Remark 1. The subset of the stability region Ωρe ⊂ Ωρ accounts

for common cause variation which is incorporated in the bounded
vector w(t) (e.g., small modeling uncertainty, sensor noise, and
nonideal actuator operation). In practice, w(t) is unknown. The
important property of Ωρe is that it is chosen to be sufficiently small

such that if the state starts within Ωρe and the predicted state
x ̃(tk+1) ∈ Ωρ under LEMPC, then x(tk+1) ∈ Ωρ. If the state starts
within Ωρ\Ωρe , then x(tk+1) ∈ Ωρ. Thus, Ωρ is also the stability
region of the closed-loop system under the LEMPC of eq 3 (i.e., an
invariant set where the state is maintained).

■ MONITORING OF ECONOMIC MODEL PREDICTIVE
CONTROL SYSTEMS

The development and formulation of a monitoring scheme for
EMPC systems is demonstrated through application on a
nonisothermal continuous stirred tank reactor (CSTR) under
LEMPC. While the monitoring methods is presented with the
CSTR example under LEMPC, it can be generalized to any system
of form described by eq 1, and the monitoring may be applied to
other EMPC designs that lead to time-varying process operation.
Description of a Chemical Process Example. Consider a

continuously stirred tank reactor (CSTR) where the contents of
the reactor are assumed to be well-mixed meaning the reactor
temperature T and reactant concentration CA are spatially
uniform. A second-order, endothermic reaction takes place in
the chemical reactor that converts the reactant A to the product B.
Since the reactor is nonisothermal and the reaction is
endothermic, a jacket is used to supply heat to the reactor with
heat rate Q. Applying first-principles and standard modeling
assumptions, a dynamic model describing the evolution of the
reactor temperature, T, and concentration of A, CA in the reactor
is obtained and is given by the following ordinary differential
equations (ODEs):

= − − −C
t
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where the definition and values of the process parameters are
given in Table 1. The two states of the CSTR are the temperature
and the concentration of A (i.e., x = [CA T]), and the two inputs
of the CSTR are the inlet concentration of A and the heat rate
supplied to the reactor (i.e., u = [CA0 Q]) with available control
energy: u1 ∈ [0.5, 7.5] kmol m−3 and u2 ∈ [0.0, 2.0 × 105] kJ h−1.
The control objective is to maximize the operation profit of

the CSTR process through dynamic operation which is
considered to be directly proportional to the amount of B
produced minus the energy consumption:

− −−p k C p Q Qe ( )E RT
1 0

/
A

2
2 s (6)

where p1 > 0 and p2 > 0 are weighting factors corresponding to
the profit generated from the production of B and the energy
price. As demonstrated throughout the literature, periodic
switching of the inlet reactant concentration can lead to
improved time-averaged production rates over feeding in a
constant concentration of A (e.g., ref 25). The reactor is
assumed to be nominally operated at Qs which is taken to be
the median heat rate supplied to the reactor in the set of
available control energy. If the LEMPC computes control
inputs that supply less heat to the reactor than Qs, it credits
operation profit for using less heat. Depending on the value of
the weights p1 and p2, LEMPC will compute one of two input
trajectories for Q if eq 6 was to be used as the cost function in
LEMPC: (1) periodic switching between the Qmax and Qmin
when CA0 = CA0,max and CA0 = CA0,min, respectively, or (2) the
heat rate would be constant at its maximum or minimum value
owing to the linear dependence of the heat rate on the
economic cost. The first input behavior results when both
terms are significant. When CA0 = CA0,max, the reaction rate
increases and the first term dominates the cost function for
some p1 and p2. To further increase the reaction rate, it is also
desirable to heat the reactor as much as possible to increase the
temperature. When CA0 = CA0,min, the reaction rate decreases so
the second term becomes the dominant term so the heat rate
decreases to its minimum value. The second input behavior
results when one of the term always dominates over the other
term.
In this example, the case where p1 and p2 are both significant

is considered. However, as a result of the periodic switching of
Q, the reactor may be operated over a large temperature range.
Instead, a quadratic term that penalizes the deviation of the
temperature from the median value is added to the pure
process economics to define the economic cost function that
LEMPC maximizes and is given by the following function:

= − −

− −

−l x t u t p k C p Q Q

p T T
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e
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A
2

2 s
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where p1, p2, and p3 (p3 > 0) are weighting factors chosen such
that each term is significant (i.e., cover comparable order of
magnitudes), and the quadratic term is least significant. From
an economics perspective, a constant time-averaged amount of
the reactant material A is available to be fed to the CSTR and is
described by the constraint:

∫ τ τ =
t

FC FC
1

( ) d
t

f 0
A0 A0s

f

(8)

which the LEMPC enforces over a period, tf and is chosen to be
1 h (i.e., the period tf = 1.0 h).

Table 1. Parameter Notation and Values

notation/value description

F = 5.0 m3 h−1 inlet flow rate
T0 = 330 K inlet temperature
V = 1.0 m3 reactor volume
ΔH = 6.55 × 103 kJ kmol−1 heat of reaction
k0 = 13.93 m3 kmol−1 h−1 pre-exponential factor
E = 5.0 × 103 kJ kmol−1 activation energy
Cp = 0.231 kJ kg−1 K−1 heat capacity
R = 8.314 kJ kmol−1 K−1 gas constant
ρL = 1000 kg m−3 liquid density
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The economic weights pi are chosen to be p1 = 10, p2 = 1.62 ×
10−4, and p3 = 0.03. Maximizing the operating profit (eq 6) over
the steady-state CSTR model (i.e., the right-hand sides of eqs 4
and 5 set equal to zero) subject to the constraint of eq 8, the
economically optimal steady-state is computed and is open-loop
asymptotically stable: CAs* = 2.35 kmol m−3, Ts* = 341.5 K, CA0s* =
5.0 kmol m−3, Qs* = 1.0 × 105 kJ h−1. Deviation variables are
used to express the inputs: u1 = CA0 − CA0* and u2 = Q − Qs*. To
characterize the stability region Ωρ, a Lyapunov-based controller
is designed with u1 = h1(x) = 1.0 kmol m−3 and u2 = h2(x) =
−500(T − 341.5) (i.e., a proportional control based on the
temperature with a gain of 500). A quadratic Lyapunov function
(i.e., V(x) = xTPx) with

=
−

−
⎡
⎣⎢

⎤
⎦⎥P

230 5.5
5.5 0.55 (9)

is considered and the level sets that are used for the stability
regions are ρe = 900 and ρ = 1200.
In the simulation results below, explicit Euler method is used

to numerically integrate the ODEs of eqs 4 and 5 with a fixed
integration step size of h = 0.001 h. Bounded Gaussian white
noise is added to the right-hand side of the ODEs of eqs 4 and
5 to model the sources of common cause variation. The
bounded noise variables have a zero mean, standard deviation
of σCA

= 0.70 kmol m−3 and σT = 6.0 K and bounds of wb,CA
=

2.25 kmol m−3 and wb,T = 20.0 K, respectively. The LEMPC
uses a sampling period of Δ = 0.02 h and a shrinking horizon that
covers each hour of operation. For example, at the beginning of
each one hour operating window, the LEMPC is initialized with a
prediction horizon N = 50. At each subsequent sampling period,
the prediction horizon is decreased by one. For the remainder,
nominal operation will refer to operation without the presence of
process noise (i.e., w(t) ≡ 0), and normal operation will refer to
operation with the added noise terms described above which is
used to model the common cause variation. To solve the
nonlinear program of eq 3, the software package Ipopt26 is used.
Remark 2. Regarding the selection of the inlet concentration of

the reactant material to the reactor as an input to the CSTR, local
or lower tier control (e.g., proportional−integral control) could be
used to achieve a desired inlet feed concentration of the reactant
material requested by the LEMPC. Specif ically, one particular
process design where manipulating the inlet concentration of the
reactant material could be to have a pure solvent stream combine
with a pure reactant stream with f low valves on each stream in
closed-loop with lower tier control to achieve the desired (constant)
inlet volumentric f low rate and inlet feed concentration of the
reactant material.
Design of Monitoring Filter and Residuals. Since the

scalar-valued economic cost function of eq 7 is assumed to
describe the economics of the CSTR, the economic cost
function is a convenient choice as performance metric to use in
the design of a monitoring scheme that assesses the
performance of the LEMPC scheme of eq 3. However, one
assumption that is not placed on le(x, u) is that it attains its
optimum at the optimal steady-state le(xs*, us*) (i.e., other state
and input pairs that do not satisfy the steady-state equation may
satisfy le(x, u) > le(xs*, us*)). As a result, the LEMPC operates
the CSTR in a completely dynamic manner to achieve better
instantaneous cost values over the steady-state cost. Since these
points are transient states, the system may also instantaneously
pass through points where le(x,u) < le(xs*, us*). Therefore, when
considering the closed-loop economic performance of systems

under LEMPC, the time-averaged economic performance is
considered. From a monitoring stand-point, the instantaneous
economic cost under normal operation (i.e., with common
cause variance) exhibits variation with time for two reasons: (1)
the system operates in a time-varying fashion and (2) the
common cause variation. Figure 1 displays the time-varying
evolution of the closed-loop trajectories and instantaneous

economic cost (le(x, u)) with time for the closed-loop CSTR
under LEMPC; while Figure 2 is the distribution of instantaneous
economic cost values. From Figure 2, the distribution of the
instantaneous cost is a bimodal distribution for the CSTR under
LEMPC owing to the time-varying operation. Another problem
with using the economic cost directly as the monitoring variable is
that it is autocorrelated with time as shown in Figure 3.
To define a monitoring variable that is not autocorrelated and

has a normal distribution (which is demonstrated below), a
residual variable is defined to assess the performance of LEMPC
systems which is similar to our previous work14 and is defined as

= − ̃r t l x t u t l x t u t( ) ( ( ), ( )) ( ( ), ( ))l k e k k e k ke (10)

where x(tk) is the actual state at tk and x ̃(tk) is the predicted state
at tk. The predicted state at time tk, which is used in the evaluation
of the predicted economic cost, is computed by solving the
nominal model (w(t) ≡ 0) of eq 1 initialized with the previously
obtained state measurement x(tk−1) with the control action
u*(tk−1) computed from the LEMPC at the previous sampling
period applied in a sample-and-hold fashion. To account for past
data which is important because the LEMPC operates systems in a
time-varying fashion, exponentially weighted moving average
(EWMA) is used as the monitoring statistic which captures
smaller drifts in system and provides some protection against
occasional spikes.27 The exponentially weighted moving average
(EWMA) is defined as

λ λ= + − −r t r t r t( ) ( ) (1 ) ( )k l k kE E 1e (11)

Figure 1. Closed-loop trajectories and instantaneous economic cost of
the CSTR under LEMPC.
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where λ is a parameter describing the how much past data enters
into the calculation and rE(t0) = rle(t0). The upper control limit
(UCL) and lower control limit (LCL) or the thresholds of
EWMA under normal operation is

λ
λ

= ̅ ± −
r LsUCL/LCL

2 (12)

where r ̅ and s are mean and standard deviation based on historical
operation data of the closed-loop system (i.e., normal operation
with common cause variation). The parameter L is chosen to be 3
to represent the typical six sigma processing limit. As another way
to protect against Type I error (i.e., false alarms), the EWMA must
exceed the LCL or UCL for a sufficiently long window determined
through historical data. This window is defined as Δtp.
Monitoring Algorithm. The implementation strategy of the

performance monitoring of LEMPC systems is summarized below:

1. At tk, a measurement of the state x(tk) is received.
2. If V(x(tk)) ≤ ρe, go to step 2.1. Else, go to step 2.2.

2.1. The LEMPC operates in mode 1 whereby it
dynamically operates the system to maximize the
economic cost, go to step 3.

2.2. The LEMPC operates in mode 2 to steer the

state into the region Ωρe, go to step 3.
3. The EWMA rE(tk) of the residual rle(tk) defined in

eq 10 is computed. If rE(tk) > LCL or rE(tk) > UCL, go to
step 4. Else, go to step 5.

4. If the EWMA has exceeded the LCL or the UCL for a
period of time greater than Δtp, the closed-loop
performance is deemed to be poor.

5. Wait until the next sampling period. Go to step 1;
k → k + 1.

Remark 3. This monitoring algorithm can be expanded further
if the performance is deemed to be poor. Specif ically, in the example
below, a process parameter change is considered as the source for
the closed-loop performance degradation under LEMPC. Therefore,
once the monitoring algorithm deems the LEMPC is not
functioning correctly, the monitoring scheme could trigger an online
or of f-line model update.

Phase I: Normal Operation. In the first set of simulations,
several closed-loop simulations of the CSTR under LEMPC
over 10 h is completed to compute the average r ̅ and standard
deviation s of the residual under normal operation and to
determine parameter values λ and Δtp. Since the short-term
economic cost under LEMPC can be influenced by the effect of
the initial condition, each of the simulations are initialized at
various points equally distributed in the region Ωρe to account
for this source of variability. The operation length of 10 h was
chosen such that the closed-loop economic performance does
not significantly depend on the effect of the initial condition.
The metric that assesses the overall real-time economic
performance is the total (sum) economic cost and is given by

∑= Δ
=

J l x t u t
1

10
( ( ), ( ))

k
e k kE

0

499

(13)

The total economic cost function of the ten simulations is
provided in Table 2 along with average and standard deviation

of rle(t) over each simulation. From this set of training data, the
average and standard deviation of the residual were determined
to be r ̅ = −0.034 and s = 8.989, respectively. Additionally, as a
baseline comparison on the economic performance with
LEMPC, starting from the steady-state and maintaining
operation at the steady-state thereafter under nominal
operation has a total economic cost of 136.2; while, initializing

Figure 2. Histogram of the instantaneous closed-loop economic cost
of the CSTR under LEMPC.

Figure 3. Sample autocorrelation of the instantaneous economic cost
reveals the economic cost is clearly autocorrelated.

Table 2. Results of Several 10 h Simulations of the CSTR
under LEMPC and under Normal Operation (i.e., with
Common Cause Variation)

sim JE avg rle(t) std rle(t)

1 140.2 0.455 9.032
2 139.6 −0.345 9.173
3 139.0 −0.277 8.903
4 139.9 −0.537 8.664
5 140.9 0.501 8.616
6 141.5 0.058 8.660
7 141.2 −0.170 8.505
8 140.3 0.309 9.375
9 140.0 0.069 9.593
10 138.0 −0.404 9.366
avg JE̅ = 140.0 r ̅ = −0.034 s = 8.989
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the CSTR at the steady-state and the closed-loop system under
LEMPC and nominal operation the CSTR achieves a total
economic cost of 140.3, a 3% improvement.
Figures 4 and 5 display the distribution and sample auto-

correlation, respectively, of the residual variable rle(t) for one of

the 10 h simulations of the CSTR under LEMPC. From these
figures, the residual variable rle(t) is approximately normally
distributed and is not significantly autocorrelated with time.
While the behavior of the common cause variation is modeled
as bounded Gaussian noise, it is important to point out that the
noise affects the monitoring variable nonlinearly. However, the
residual variable still approximates a normal distribution. This is
not unexpected. In fact, it would be expected that expressing
the noise as a linear (or nonlinear in this case) combination of
several random variables with varying probability distributions,
the overall behavior of the cumulative variable will be Gaussian
for the closed-loop system (see, for example, ref 28). If the
residual variable is not normally distributed, the monitoring
procedure may still be applied owing to the robustness of
EWMA to non-normality of the data.17

To test the proposed monitoring method, another simulation
of normal operation is completed where the monitoring

scheme is verified and assessed for false alarms. The EWMA
parameter and window are chosen to be λ = 0.05 and Δtp =
0.04, h = 2.4 min (i.e., two sampling periods) based on the
training data set as to not give any false alarms. Also, λ has been
chosen as to be the smallest value in the suggested range of
0.05 ≤ λ ≤ 0.217 to place a large weight on previous data in the
computation of the EWMA and, thus, detect small shifts in the
residual. Figure 6 displays the EWMA of the residual for ten

hours of normal operation of the CSTR under LEMPC. The
EWMA is maintained with in the LCL and the UCL except for
one sampling instance. However, it does not exceed the
threshold for two consecutive sampling periods (Δtp), so the
performance of the LEMPC scheme over the course of the 10 h
is deemed to be within the acceptable limits.

Remark 4. Systematic bias in the training data (e.g., plant−
model parameter mismatch) may lead to a nonzero mean of the
residual variable. For this case, ideally the model could be
updated to remove this systematic bias in the training data. If
this is not possible, it may still be possible to successfully apply
the proposed monitoring scheme using the nonzero mean by
carefully tuning monitoring parameters λ and Δtp. However, if
the bias is significant such that the autocorrelation of the
residual becomes significant, the number of false alarms may
increase. For this case, one may need to fit an appropriate time-
series model and/or use an EWMA procedure for correlated
data (see, for example, ref 17).

Phase II: Monitoring of Real-Time Performance under
EMPC. To test the performance monitoring scheme, a step
change in the rate constant k0 is considered which can happen
in practice owing to catalyst deactivation. At t = 3.4 h, the rate
constant decreases from 13.93 to 10.00 m3 kmol−1 h−1. If the
EWMA of the residual is within the bounds established through
normal operation data the monitor returns “Within Thresholds”. If
the EWMA of the residual is outside the bounds for at least Δtp,
the monitoring system returns “Exceeds Thresholds” to denote
the residual is outside the threshold for normal operation.
Visually inspecting the closed-loop trajectories (Figure 7) of the
CSTR under LEMPC after a step change in k0, some noticeable
differences occur in the closed-loop trajectories after 3.4 h;
however, it is difficult to determine if these differences are
associated with a problem. If, instead, the EWMA control chart
for the residuals is inspected (Figure 8), it shows that the
EWMA of the residuals is clearly outside the threshold and the
monitoring system detects poor performance of the LEMPC
at 3.58 h.
Owing to the inherent dynamic operation under LEMPC,

not all model parameter changes may result in performance
degradation since the LEMPC may be able to compensate for
the parameter change and/or the economic cost may not be
sensitive to this model parameter. This is perhaps one of the
most significant difference between traditional control system

Figure 4. Distribution of the residual variable rle(t) of the CSTR under
LEMPC over 10 h of operation.

Figure 5. Sample autocorrelation of the residual variable rle(t) shows
that the residual variable is not significantly autocorrelated.

Figure 6. EWMA of the residual with time over a 10 h simulation of
the CSTR under LEMPC and under normal operation.

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie403462y | Ind. Eng. Chem. Res. 2014, 53, 15406−1541315411



monitoring and monitoring of EMPC systems. Generally,
traditional control systems are used to force processes to
operate at a steady-state (set-point) and to maintain operation
at the steady-state (set-point). The system may settle at an
offsetting steady-state when the model is subject to a constant
bias (e.g., constant model parameter error) particularly when
using model-based control. Under steady-state type operation,
offset is generally considered undesirable and may lead to
suboptimal operation. However, when operating in a dynamic
fashion, the effect of a constant bias may not be as detrimental
to closed-loop performance as in steady-state operation. Figures 9
and 10 demonstrate this point which show the closed-loop
trajectories and the EWMA of the residuals, respectively of a 10 h
closed-loop simulation of the CSTR under LEMPC with a step
decrease in the inlet temperature T0 from 330.0 to 300.0 K. The
parameter changes at t = 3.4 h. From the u2 trajectory, the
LEMPC increases the amount of heat rate supplied to the reactor
after the step change. Clearly, the LEMPC is able to compensate

for this change in this case. This behavior is confirmed in the
EWMA control chart. Namely, the EWMA does not exceed the
LCL until 5.36 h and even after it exceeds the LCL, the EWMA of
the residual does not continue to exceed the LCL.

■ CONCLUSIONS
In this work, performance monitoring of LEMPC systems was
considered. Since LEMPC systems operate systems in a time-
varying or dynamic fashion, a residual variable based on the
economic cost function was introduced to capture the sources
of common cause variance; while essentially eliminating the
variation caused by dynamic process operation. Several closed-
loop simulations were carried out to determine monitoring
parameters. Additional simulations were carried out under both
normal operation and under abnormal operation (i.e., model
parameter step changes) which showed the applicability of the
performance monitoring scheme for LEMPC systems. The
proposed monitoring framework and principles can be applied
to other EMPC schemes that lead to time-varying operation.

Figure 7. Closed-loop trajectories of the CSTR under LEMPC for a
step change in the model parameter k0 (i.e., the rate constant).

Figure 8. EWMA control chart for the residual variable along with the
performance monitoring output and the step change in k0.

Figure 9. Closed-loop trajectories of the CSTR under LEMPC for a
step change in the model parameter T0 (i.e., the inlet temperature).

Figure 10. EWMA control chart for the residual variable along with
the performance monitoring output and the step change in T0.
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Lecture Notes in Control and Information Sciences; Springer: Berlin
Heidelberg, 2009; Vol. 384; pp 119−138.
(2) Ferramosca, A.; Rawlings, J. B.; Limon, D.; Camacho, E. F.
Economic MPC for a changing economic criterion. Proceedings of the
49th IEEE Conference on Decision and Control (CDC); Alanta, GA,
USA, Dec 15−17, 2010; pp 6131−6136.
(3) Amrit, R.; Rawlings, J. B.; Angeli, D. Economic optimization
using model predictive control with a terminal cost. Ann. Rev. Control
2011, 35, 178−186.
(4) Diehl, M.; Amrit, R.; Rawlings, J. B. A Lyapunov function for
economic optimizing model predictive control. IEEE Trans. Automatic
Control 2011, 56, 703−707.
(5) Huang, R.; Harinath, E.; Biegler, L. T. Lyapunov stability of
economically oriented NMPC for cyclic processes. J. Process Control
2011, 21, 501−509.
(6) Heidarinejad, M.; Liu, J.; Christofides, P. D. Economic model
predictive control of nonlinear process systems using Lyapunov
techniques. AIChE J. 2012, 58, 855−870.
(7) Ellis, M.; Heidarinejad, M.; Christofides, P. D. Economic model
predictive control of nonlinear singularly perturbed systems. J. Process
Control 2013, 23, 743−754.
(8) Ellis, M.; Christofides, P. D. Optimal time-varying operation of
nonlinear process systems with economic model predictive control.
Ind. Eng. Chem. Res., in press (DOI: 10.1021/ie303537e).
(9) Fagiano, L.; Teel, A. R. Generalized terminal state constraint for
model predictive control. Automatica 2013, 49, 2622−2631.
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