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a b s t r a c t

In this work, we propose a conceptual framework for integrating dynamic economic optimization and

model predictive control (MPC) for optimal operation of nonlinear process systems. First, we introduce

the proposed two-layer integrated framework. The upper layer, consisting of an economic MPC (EMPC)

system that receives state feedback and time-dependent economic information, computes economic-

ally optimal time-varying operating trajectories for the process by optimizing a time-dependent

economic cost function over a finite prediction horizon subject to a nonlinear dynamic process model.

The lower feedback control layer may utilize conventional MPC schemes or even classical control to

compute feedback control actions that force the process state to track the time-varying operating

trajectories computed by the upper layer EMPC. Such a framework takes advantage of the EMPC ability

to compute optimal process time-varying operating policies using a dynamic process model instead of a

steady-state model, and the incorporation of suitable constraints on the EMPC allows calculating

operating process state trajectories that can be tracked by the control layer. Second, we prove practical

closed-loop stability including an explicit characterization of the closed-loop stability region. Finally,

we demonstrate through extensive simulations using a chemical process model that the proposed

framework can both (1) achieve stability and (2) lead to improved economic closed-loop performance

compared to real-time optimization (RTO) systems using steady-state models.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Economic optimization of chemical processes has traditionally
been addressed through a two-layered architecture. In the upper
layer, real-time optimization (RTO) carries out economic process
optimization by computing optimal process operation set-points
using steady-state process models. These set-points are used by
the feedback control systems in the lower layer, typically
designed via model predictive control (MPC) methods, to force
the process to operate on these steady-states (Backx, Bosgra, &
Marquardt, 2000; Marlin & Hrymak, 1997). MPC has been widely
adopted in the chemical process industry because of its ability to
optimally control multiple-input multiple-output nonlinear sys-
tems by solving an on-line optimization problem subject to input
and state constraints (Garcı́a, Prett, & Morari, 1989; Mayne,
Rawlings, Rao, & Scokaert, 2000) and minimizes a typically
quadratic performance index along a finite prediction horizon.
The main disadvantage of this traditional two-layer approach to

economic process optimization with RTO and MPC is that RTO
does not account for process dynamics or guarantee that the
computed set-points are reachable (Rawlings, Bonné, Jørgensen,
Venkat, & Jørgensen, 2008). In recent years, numerous calls for the
development of the so-called ‘‘smart manufacturing paradigm’’
have led to several attempts to integrate MPC and economic
optimization of chemical processes to deal with variable demand,
changing energy prices, variable feedstock, and product transi-
tions (Adetola & Guay, 2010; Backx et al., 2000; Tvrzská de
Gouvêa & Odloak, 1998; Engell, 2007; Kadam & Marquardt,
2007; Rawlings & Amrit, 2009; Zanin, Tvrzská de Gouvêa, &
Odloak, 2002).

Early attempts on integrating MPC and economic optimization
have primarily focused on two strategies: (1) integrating steady-
state optimization directly in the MPC as in Tvrzská de Gouvêa
and Odloak (1998), Zanin et al. (2002), and Yousfi and Tournier
(1991) and (2) a two-layer approach similar to traditional control
architectures with RTO and MPC that incorporates a dynamic
process model in place of a steady-state model in the upper layer
called dynamic real-time optimization (D-RTO) (Kadam &
Marquardt, 2007; Kadam et al., 2003; Würth, Hannemann, &
Marquardt, 2009, 2011; Würth, Rawlings, & Marquardt, 2009;
Zhu, Hong, & Wang, 2004). In recent work, the MPC has been

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/conengprac

Control Engineering Practice

0967-0661/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.conengprac.2013.02.016

n Corresponding author at: Department of Chemical and Biomolecular Engineering,

University of California, Los Angeles, CA 90095, USA. Tel.: þ1 310 794 1015;

fax: þ1 310 206 4107.

E-mail address: pdc@seas.ucla.edu (P.D. Christofides).

Control Engineering Practice 22 (2014) 242–251



Author's personal copy

extended to solve optimization problems with general economic
cost functions replacing the convectional quadratic cost of the
standard MPC. This combines dynamic economic process optimi-
zation and feedback control into one layer. Several economic MPC
(EMPC) schemes have been proposed (see Amrit, Rawlings, &
Angeli, 2011; Chen, Heidarinejad, Liu, & Christofides, 2012; Diehl,
Amrit, & Rawlings, 2011; Heidarinejad, Liu, & Christofides, 2012a,
2012b; Hovgaard, Larsen, Edlund, & Jørgensen, 2012; Huang,
Harinath, & Biegler, 2011; Ma, Qin, Salsbury, & Xu, 2012;
Rawlings & Amrit, 2009 and the references therein). In
Heidarinejad et al. (2012a), general methods were proposed to
design an EMPC using Lyapunov-based techniques capable of
optimizing closed-loop performance with respect to general
economic considerations for nonlinear systems. Moreover, this
approach allows for an explicit characterization of the set of
initial conditions whereby closed-loop stability and feasibility of
the EMPC optimization problem are guaranteed.

While the proposed EMPC approaches have demonstrated
closed-loop economic performance improvement, these
approaches treat dynamic economic process optimization and
control in a one layer approach. This shift from the traditional two
layer control paradigm to a one layer framework requires a
complete redesign of the existing control architectures. Addition-
ally, considering that EMPC must use a sufficiently large predic-
tion horizon to adequately account for a time-varying economic
cost, the EMPC optimization problem may not be solved fast
enough to control a process in real-time. While many D-RTO
structures have been proposed throughout the literature (for
example, Kadam & Marquardt, 2007; Würth et al., 2011; Zhu
et al., 2004), many of the two-layered D-RTO and MPC systems
proposed are characterized by a lack of rigorous theoretical
treatment including the constraints required on the upper level
dynamic economic optimization problem to guarantee that the
computed optimal time-varying reference state trajectories can
be tracked by the lower process control layer as well as an explicit
characterization of the set of initial conditions whereby closed-
loop stability and feasibility are guaranteed in the lower layer.

Accounting for these considerations, we design, in the present
work, a two-layered dynamic economic optimization and control
framework. In the upper layer, an EMPC is designed to compute
economically optimal time-varying state trajectories in an on-line
fashion using real-time measurements. In the lower layer, a LMPC
system is used to force the system to track the economically
optimal state trajectories taking advantage of its stability and
robustness properties (see Christofides & El-Farra, 2005; Mhaskar,
El-Farra, & Christofides, 2005, 2006; Muñoz de la Peña &
Christofides, 2008). Lyapunov techniques are used to characterize,
a priori, the set of initial conditions starting from where feasibility
and closed-loop stability are guaranteed. Through rigorous theo-
retical treatment, we prove practical closed-loop stability of the
proposed integrated dynamic economic optimization and control
framework. We demonstrate through extensive simulations using
a CSTR chemical process model with a time-dependent economic
cost function that such an integrated control paradigm can both
(1) render the closed-loop time-varying state evolution in a
bounded region and (2) perform economically better than tradi-
tional RTO systems using steady-state models.

2. Preliminaries

2.1. Notation

The operator 9 � 9 is used to denote the Euclidean norm of a
vector and 9 � 9Q denotes the weighted Euclidean norm of a vector
(i.e., 9x9Q ¼ xTQx). A continuous function a : ½0,aÞ-½0,1Þ belongs

to class K if it is strictly increasing and satisfies að0Þ ¼ 0. We use
OrðxEÞ to denote the set OrðxEÞ :¼ feARnx 9Vðe,xEÞrrðxEÞg for a fixed
xEAG. The symbol diagðvÞ denotes a square diagonal matrix with
diagonal elements equal to the vector v and the symbol

proj
G

ðxÞ

denotes the projection of x onto the set G.

2.2. Class of process models

In this work, we consider the class of nonlinear systems
described by the following state-space model:

_xðtÞ ¼ f ðxðtÞ,uðtÞ,wðtÞÞ ð1Þ
where xðtÞARnx is the state vector, uðtÞAU �Rnu is the manipu-
lated input vector, wðtÞARnw is the disturbance vector. The inputs
are restricted to be in a nonempty convex set defined as
U :¼ fuARnu 99ui9rumax

i , i¼ 1, . . . ,nug. We assume that f is locally
Lipschitz on Rnx � Rnu � Rnw and the disturbance vector is
bounded

9wðtÞ9ry ð2Þ
where y40.

We propose a dynamic economic optimization and control
framework to force the system of Eq. (1) to track slowly time-
varying operating policies. The slowly time-varying trajectory
vector is denoted as xEðtÞAG�Rnx , where G is a compact (closed
and bounded) set and the rate of change of the reference
trajectory is bounded by

9 _xEðtÞ9rgE ð3Þ
We define the deviation between the actual state trajectory x(t)
and the slowly-varying reference trajectory xE(t) as

eðtÞ ¼ xðtÞ�xEðtÞ ð4Þ
with its dynamics described by

_eðtÞ ¼ f ðxðtÞ,uðtÞ,wðtÞÞ� _xEðtÞ
¼ f ðeðtÞþxEðtÞ,uðtÞ,wðtÞÞ� _xEðtÞ
:¼ gðeðtÞ,xEðtÞ, _xEðtÞ,uðtÞ,wðtÞÞ ð5Þ

We assume that the system of Eq. (5) has a continuously
differentiable, isolated equilibrium for each fixed xEAG (i.e., there
exists a uE for a fixed xE to make e¼0 the equilibrium of Eq. (5))

gð0,xE,0,uE,0Þ ¼ 0 ð6Þ

Remark 1. The assumption that the system of Eq. (1) has an
equilibrium for every fixed xEAG is a necessary assumption to
guarantee that the reference trajectory can be tracked. While this
assumption does require the system to have enough degrees of
freedom (e.g., one manipulated input for each time-varying state
to track), a system with many states most likely will not include
all states in the economic cost. In this case, only a few states
would be forced to track reference trajectories. If we remove this
assumption and the system is driven away from perfectly tracking
the slowly-varying trajectory xE(t), due to a disturbance for
example, no guarantee can be made that the system will ever
be driven back to the slowly-varying reference trajectory.

2.3. Stability assumption

We need to make certain assumptions about the system of
Eq. (5) to guarantee that the slowly-varying state trajectory xE(t)
can be tracked. For each fixed xEAG, we assume that there exists a
Lyapunov-based controller hðeðtÞ,xEÞ that makes the origin e¼0 of
the nonlinear system given by Eq. (5) without uncertainty
(wðtÞ � 0) asymptotically stable under continuous implementation.
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This assumption is essentially equivalent to the assumption that
the nominal system of Eq. (1) is stabilizable at each xEAG (i.e., G is
an equilibrium manifold). Using converse theorems (Khalil, 2002;
Lin, Sontag, & Wang, 1996; Massera, 1956; Mhaskar et al., 2005),
this assumption implies that for each fixed xEAG there exists class
K functions aið�Þ, i¼1, 2, 3, 4, 5 and a continuously differentiable
Lyapunov function Vðe,xEÞ satisfying
a1ð9e9ÞrVðe,xEÞra2ð9e9Þ, ð7Þ

@V

@e
gðe,xE,0,hðe,xEÞ,0Þr�a3ð9e9Þ, ð8Þ

@V

@e

����
����ra4ð9e9Þ, ð9Þ

@V

@xE

����
����ra5ð9e9Þ, ð10Þ

hðe,xEÞAU, ð11Þ
for all eADsDRnx , where Ds is an open neighborhood of the origin.
While the Lyapunov function constraints of Eqs. (7)–(9) are similar
to the constraints typically used for standard Lyapunov functions,
the constraint of Eq. (10) is needed to account for the time-varying
reference trajectory xE(t). We denote the region Orn as the inter-
section of stability regions OrðxEÞ of the closed-loop system under
the Lyapunov-based controller hðe,xEÞ for each fixed equilibrium
xEAG. Note that explicit stabilizing control laws that provide
explicitly defined stability regions OrðxEÞ for the closed-loop system
have been developed using Lyapunov techniques for various
classes of nonlinear systems (see Christofides & El-Farra, 2005;
El-Farra & Christofides, 2003; Kokotović & Arcak, 2001; Lin &
Sontag, 1990).

By continuity, the local Lipschitz property assumed for the
vector field f and taking into account that the manipulated inputs
ui, i¼1, 2, y, nu are bounded in nonempty convex sets, there
exists a positive constant such that

9f ðx,u,wÞ9rMx ð12Þ
for all ðx�xEÞAOrn, xEAG, uAU, and wAW . This can be extended
to the deviation system of Eq. (5) given that the rate of change of
xE is bounded

9gðx�xE,xE, _xE,u,wÞ9rM ð13Þ
for all ðx�xEÞAOrn, xEAG, uAU, and wAW . In addition, by the
continuous differentiable property of the Lyapunov function
Vðe,xEÞ and the Lipschitz property assumed for the vector field f,
there exist positive constants Lw, Le, L0w, L

0
e, L

0
E, L

00
E such that

9gðe,xE, _xE,u,wÞ�gðe0,xE, _xE,u,0Þ9rLw9w9þLe9e�e09, ð14Þ

@Vðe,xEÞ
@e

gðe,xE, _xE,u,wÞ� @Vðe0,x0EÞ
@e

gðe0,x0E, _x 0E,u,0Þ
����

����
rL0w9w9þL0e9e�e09þL0E9xE�x0E9þL00E9 _xE� _x 0E9 ð15Þ

for all e, e0AOrn, xE, x0EAG, uAU, wAW , 9 _xE9rgE, and 9 _x 0E9rgE.

Remark 2. For broad classes of nonlinear systems arising in the
context of chemical process control applications, quadratic Lya-
punov functions using state deviation variables (i.e., VðxÞ ¼
ðxðtÞ�xsÞTPðxðtÞ�xsÞ) have been widely used and have been
demonstrated to yield very good estimates of closed-loop stability
regions (see Christofides & El-Farra, 2005 and the references

therein). In this work, we extend the quadratic Lyapunov function
to the case where instead of a fixed equilibrium xs a time-varying
reference trajectory xE(t) is used (i.e., VðeðtÞ,xEðtÞÞ ¼ eðtÞPeðtÞ,
where eðtÞ ¼ xðtÞ�xEðtÞ). See the ‘‘Application to a chemical pro-
cess example’’ section for an example.

Remark 3. Since the Lyapunov function is a function of the
deviation variable e(t) and the time-varying state trajectory
xE(t), we must consider the stability region for each fixed xEAG
with a given Lyapunov-based controller. The set Orn is the set
whereby feasibility to drive the system with the Lyapunov-based
controller to any xEAG from any deviation e(t) starting inside Orn
is guaranteed. This set can be estimated in the following way:
first, the set G is chosen. Second, the stability regions OrðxEÞ for a
sufficiently large number of xE in the set G are estimated. These
stability regions OrðxEÞ can be estimated as the level sets (ideally
the largest) of Vðe,xEÞ for a fixed xEAG, where _V ðe,xEÞo0 with the
Lyapunov-based controller hðe,xEÞ. Lastly, we can construct the
stability region Orn as the intersection of these stability regions.

3. Proposed two-layer control framework

In this section, we introduce the proposed two-layered control
framework and prove stability and robustness properties of the
closed-loop system.

3.1. Implementation strategy

Economic model predictive control (EMPC) is a process control
technique that addresses economic process optimization while
accounting for process dynamics. Unlike steady-state economic
process optimization, the operating policy computed by the EMPC
without a terminal constraint is time-varying. For general time-
varying operation, the prediction horizon must be sufficiently
large to generate time-varying operating policies that are eco-
nomically better than steady-state operation (Grüne, 2011).
However, the computational time and complexity of such an
optimization problem (thousands of decisions variables for large-
scale systems) may make it difficult to use EMPC in an on-line
fashion to calculate optimal control actions in real-time. To address
this issue of computational demand, we propose solving the EMPC
optimization problem at the beginning of each operating period in
an on-line fashion using real-time state measurements and then,
use a conventional MPC to force the process states to follow the
economically optimal trajectories for one operating period. The
operating period t0 is chosen based on the time scale of the process
dynamics. While in the lower layer any MPC tracking controller
could be used, we implement a Lyapunov-based MPC (LMPC)
chosen for its unique stability and robustness properties (see
Christofides & El-Farra, 2005; Mhaskar et al., 2005, 2006; Muñoz
de la Peña & Christofides, 2008). The proposed two layer control
framework is shown in Fig. 1.

The implementation strategy is as follows: at the beginning of
the operating period tk, the upper layer EMPC with sampling
period DE and prediction horizon NE receives state feedback from
the process and computes the economically optimal state trajec-
tory of the system by solving an optimization problem. The
prediction horizon of the EMPC is chosen to be sufficiently large
to cover the operating period and the transition to the next
operating period (i.e., tkþNE

�tk4t0 þDN where DN is the predic-
tion horizon of the LMPC). From the optimal control inputs
computed by the EMPC, the economically optimal process state
trajectory is computed from tk to tkþt0 þND by recursively
solving the nominal system model of Eq. (1) (wðtÞ � 0). Between
tk and tkþt0, the lower layer LMPC works to force the closed-loop
process state to track these time-varying trajectories. The
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addition ND is required because as the end of the operating period
approaches, the prediction horizon of the LMPC will extend into
the next operating period. Therefore, the LMPC requires a refer-
ence trajectory that covers the entire operating period plus the
prediction horizon of the LMPC.

The implementation strategy of the proposed dynamic economic
optimization and control framework can be summarized as follows:

1. At tk, the EMPC receives the system state xðtkÞ from the sensors
and projects the current state xðtkÞ onto the set G.

2. The EMPC computes the economically optimal state trajectory
xnEðtÞ for tA ½tk,tkþNE

Þ.
3. From tk to tkþt0 (one operating period), the LMPC works to

track the economically optimal state trajectory for
tA ½tk,tkþt0Þ.

4. Go to Step 1, tk :¼ tkþt0.

Remark 4. This control framework is an intermediate approach
between existing steady-state operation and one-layer EMPC
frameworks that have recently been introduced in the literature.
The proposed one-layer EMPCs replace both RTO and the MPC
process control layers. With this proposed control framework, any
existing MPC systems could be used to track the economically
optimal trajectory instead of LMPC.

Remark 5. The operating period t0 can be chosen based on the
frequency that the process economic information is updated (i.e.,
energy price, product demand, or product transitions). This
operating period is strictly for the purpose of formulating a
finite-dimensional optimization problem and should not be
considered as a finite operating time as in batch processes since
many chemical processes operate continuously for long operating
times.

3.2. Dynamic economic optimization and control framework

formulation

The upper layer EMPC optimization problem of the proposed
dynamic economic optimization and control framework for the

system of Eq. (1) is as follows:

minimize
uE A SðDEÞ

Z tkþNE

tk

Lð ~xEðtÞ,uEðtÞ,tÞ dt

subject to _~xEðtÞ ¼ f ð ~xEðtÞ,uEðtÞ,0Þ,
uEðtÞAU,

~xEðtkÞ ¼ proj
G

ðxðtkÞÞ,

9 _~xEðtÞ9rgE, 8tA ½tk,tkþNE
Þ,

~xEðtÞAG, 8tA ½tk,tkþNE
Þ, ð16Þ

where SðDEÞ is the family of piece-wise constant functions with
sampling period DE, NE is the prediction horizon of the EMPC,
Lð ~xEðtÞ,uEðtÞ,tÞ is the time-dependent economic measure which
defines the cost function, the state ~xE is the predicted trajectory of
the system with manipulated input uE(t) computed by the EMPC
and xðtkÞ is the state measurement obtained at time tk. The
optimal solution to this optimization problem, denoted by
un
Eðt9tkÞ, is defined for tA ½tk,tkþNE

Þ. In the optimization problem
of Eq. (16), the first constraint is the nominal model of the system
used to predict the future evolution of the process state under
sample-and-hold implementation of the EMPC input. The second
constraint defines the control energy available to all manipulated
inputs. The third constraint defines the initial condition of the
optimization problem which is the measurement of the process
state at tk projected onto the set G. The fourth constraint limits
the rate of change of the economically optimal state trajectory.
The fifth constraint ensures that the state evolution is maintained
in the region G:

The last two constraints of the optimization problem of Eq.
(16) are used to guarantee closed-loop stability under this
integrated framework and to ensure that the lower layer can
force the system to track the state trajectory xnEðtÞ. This is a
departure from other types of two-layer dynamic economic
optimization architectures such as dynamic real-time optimiza-
tion (D-RTO). The constraint on the rate of change of the
economically optimal trajectory does pose a restriction on the
feasible set of the optimization problem of Eq. (16) and thus, can
affect closed-loop economic performance of the control frame-
work. However, a system that requires a large rate of change on
the trajectory xE(t) to achieve closed-loop economic performance
that is better than steady-state may be undesirable for many
applications based on practical considerations like excessive
strain on control actuators as well as the difficulty of forcing the
system to track a rapidly changing operating trajectory in the
presence of disturbances.

At the lower process control level, we use LMPC to force the
process state to track the economically optimal state trajectory
xnEðtÞ obtained by recursively solving the nominal model of Eq. (1)
with manipulated input un

EðtÞ applied in a sample-and-hold
fashion for tA ½tk,tkþt0 þDNÞ, where tk is the beginning of the
operating period, t0 is the operating period, and DN is the
prediction horizon of the LMPC. We assume that the LMPC
recomputes new manipulated inputs synchronously every D and
denote the sampling times of the LMPC as tj ¼ tkþ jD,
j¼ 0,1, . . . ,t0=D. We define the system of Eq. (1) in terms of the
deviation from the economically optimal state trajectory

eðtÞ ¼ xðtÞ�xnEðtÞ ð17Þ
The LMPC at tj is formulated as

minimize
uA SðDÞ

Z tjþN

tj

ð9 ~eðtÞ9Qc
þ9uðtÞ�un

EðtÞ9Rc
Þ dt

subject to _~e ðtÞ ¼ gð~eðtÞ,xnEðtÞ, _xn

EðtÞ,uðtÞ,0Þ,
uðtÞAU,

~eðtjÞ ¼ xðtjÞ�xnEðtjÞ,

Fig. 1. A block diagram of the proposed dynamic economic optimization and

control framework.
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@VðeðtjÞ,xnEðtjÞÞ
@e

gðeðtjÞ,xnEðtjÞ, _xn

EðtjÞ,uðtjÞ,0Þ

r @VðeðtjÞ,xnEðtjÞÞ
@e

gðeðtjÞ,xnEðtjÞ, _xn

EðtjÞ,hðeðtjÞ,xEðtjÞÞ,0Þ ð18Þ

where SðDÞ is the family of piece-wise constant functions with
sampling period D, N is the prediction horizon of the LMPC, ~eðtÞ is
the predicted deviation between the state trajectory predicted by
the nominal model with manipulated input u(t) computed by the
LMPC and the economically optimal state trajectory xnEðtÞ. The
optimal solution of the optimization problem of Eq. (18) is
denoted by unðt9tjÞ defined for tA ½tj,tjþNÞ. In the optimization
problem of Eq. (18), the first constraint is the nominal deviation
system of Eq. (5). The second constraint defines the control
energy available to all manipulated inputs. The third constraint
is the initial condition on the optimization problem. The last
constraint ensures that the Lyapunov function of the closed-loop
system with LMPC decreases by at least the rate achieved by the
Lyapunov-based controller hðe,xEÞ when it is implemented in a
sample-and-hold fashion.

The manipulated inputs of the proposed control design from
time tj to tjþ1 are defined as follows:

uðtÞ ¼ unðt9tjÞ, 8tA ½tj,tjþ1Þ ð19Þ

Remark 6. The third constraint of Eq. (16) may be any projection
that projects the current state xðtkÞ onto a near (ideally the
nearest) state xEðtkÞ in the set G. In some cases, when the
sampling periods of the upper and lower layers and the bounded
disturbance are sufficiently small, it may also be sufficient to use
in Eq. (16) the predicted state ~xEðtkÞ derived from the solution of
the optimization problem of Eq. (16) that was previously solved
for the preceding operating period.

Remark 7. Because the lower-layer LMPC is based on an explicit
Lyapunov-based controller, the LMPC inherits the stability and
robustness properties of this explicit controller. This point has
been demonstrated many times in our previous work (see, for
instance, Muñoz de la Peña & Christofides, 2008 for a thorough
discussion of this point).

3.3. Stability analysis

In this subsection, we present the stability properties of the
proposed two-layer control framework with the EMPC at the
upper layer and the LMPC at the lower layer for the system of Eq.
(1). The following proposition proves that the EMPC is a feasible
optimization problem and the optimal state trajectory xnEðtÞ is
always embedded in the set G when ðxðtkÞ�xEðtkÞÞAOrn.

Proposition 1. Consider the nominal system of Eq. (1) along the

prediction horizon under the EMPC design of Eq. (16). Since

xEðtkÞAG, then the optimization problem of Eq. (16) is feasible and

the optimal state trajectory ~xn

EðtÞ computed by applying the optimal

manipulated control input un
EðtÞ defined for tA ½tk,tkþNE

Þ in a sample-

and-hold fashion is always embedded in the set G.

Proof. When the EMPC optimization problem of Eq. (16) is solved
with an initial condition satisfying xEðtkÞAG (this is guaranteed
through the projection procedure), the feasibility of the optimiza-
tion problem follows because maintaining operation at the initial
condition along the predicted horizon (i.e., ~xEðtÞ ¼ projGðxðtkÞÞ for
tA ½tk,tkþNE

Þ) is a feasible solution to the optimization problem as
it satisfies all the constraints. Furthermore, the state trajectory
~xn

EðtÞ is always bounded in the set G guaranteed through formula-
tion of the optimization problem. &

Theorem 1 provides sufficient conditions such that the LMPC
can track the economically optimal trajectory xnEðtÞ with an
ultimate bound on the deviation of Eerror.

Theorem 1. Consider the system of Eq. (1) in closed-loop under the

tracking LMPC of Eq. (18) based on a controller hðe,xEÞ that satisfies
the conditions of Eqs. (7)–(11). Let Eerror40, m40, Ew40, D40,
DE40, NZ1, NEZ1, gE40 satisfy

9 _xn

EðtÞ9rgEo
ŷa3ðEerrorÞ

2L00Eþa4ða�1
1 ðrnÞÞþa5ða�1

1 ðrnÞþMDÞ , ð20Þ

m¼ a�1
3

ð2L00Eþa4ða�1
1 ðrnÞÞþa5ða�1

1 ðrnÞþMDÞÞgE
ŷ

� �
oEerror, ð21Þ

�ð1�ŷÞa3ðmÞþL0wyþL0eMDþL0EgEDEr�Ew=D ð22Þ

for some ŷ with 0o ŷo1. If ðxðt0Þ�xEðt0ÞÞAOrn, then the deviation

state e(t) of the closed-loop system is always bounded in Orn and the

actual closed-loop state trajectory x(t) is always bounded. Further-

more, after some finite time, the deviation between the actual system

trajectory of Eq. (1) and that of the economically optimal trajectory

xnEðtÞ is ultimately bounded by

9eðtÞ9rEerror ð23Þ

for tA ½tk,tkþt0Þ.

Proof. The proof consists of two parts. We first prove that the
LMPC optimization problem of Eq. (18) is feasible for all states
ðx�xEÞAOrn. Subsequently, we prove that the deviation between
the actual system evolution and the economically optimal trajec-
tory we wish to track is always bounded in Orn and the deviation
system evolution eðtÞ ¼ xðtÞ�xEðtÞ is ultimately bounded in BEerror .

Part 1: When the deviation between the actual system trajectory
and the economically optimal trajectory eðtÞ ¼ xðtÞ�xnEðtÞ is
maintained in Orn (which will be proved in Part 2), the
feasibility of the LMPC of Eq. (18) follows because the
input trajectories u(t) such that uðtÞ ¼ hðeðtÞ,xnEðtÞÞ,
8tA ½tj,tjþNÞ are feasible solutions to the optimization
problem of Eq. (18) since such trajectories satisfy the
input and the Lyapunov function constraints of Eq. (18).
This is guaranteed by the closed-loop stability property of
the Lyapunov-based controller.

Part 2: We consider the deviation between the actual system
trajectory x(t) and the economically optimal trajectory
xnEðtÞ which we define as eðtÞ ¼ xðtÞ�xnEðtÞ. At t0, the EMPC
recomputes a new optimal trajectory xnEðtÞ for the LMPC to
track for one operating period from t0 to t0þt0. We define
two sets BEerror ¼ f9eðtÞ9rEerrorg and Bm ¼ f9eðtÞ9rmg, where
m is defined in Eq. (21) and Bm � BEerror . For a fixed xEAG,
the set BEerror ¼ feðtÞAOrn,xEAG99xðtÞ�xE9rEerrorg. We
show that if the deviation between the actual system
trajectory and the economically optimal trajectory is in
the set Orn\Bm and the conditions of Eqs. (20) and (21) are
satisfied, the Lyapunov function computed along the
trajectory of the closed-loop system of Eq. (5) under LMPC
will decrease. After some finite time, the deviation will
converge to the set Bm. Furthermore, we show that the
deviation e(t) is ultimately bounded in the ball BEerror .

At sampling time tjA ½t0,t0þt0Þ of the LMPC, we assume

eðtjÞAOrn\Bm. The derivative of the Lyapunov function along the
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deviation system trajectory of Eq. (5) at tj is

_V ðeðtjÞ,xEðtjÞÞ ¼
@VðeðtjÞ,xEðtjÞÞ

@e
_eðtjÞþ

@VðeðtjÞ,xEðtjÞÞ
@xE

_xEðtjÞ ð24Þ

Substituting _eðtjÞ ¼ _xðtjÞ� _xEðtjÞ into Eq. (24) and accounting for the

Lyapunov-based constraint of Eq. (18), Eq. (24) can be bounded by

_V ðeðtjÞ,xEðtjÞÞ ¼
@VðeðtjÞ,xEðtjÞÞ

@e
ð _xðtjÞ� _xEðtjÞÞ

þ @VðeðtjÞ,xEðtjÞÞ
@xE

_xEðtjÞ

r @VðeðtjÞ,xEðtjÞÞ
@e

gðeðtjÞ,xEðtjÞ,0,hðeðtjÞ,xEðtjÞÞ,0Þ

� @VðeðtjÞ,xEðtjÞÞ
@e

_xEðtjÞþ
@VðeðtjÞ,xEðtjÞÞ

@xE
_xEðtjÞ ð25Þ

Taking into account Eq. (8), Eq. (25) yields

_V ðeðtjÞ,xEðtjÞÞr�a3ð9eðtjÞ9Þ�
@VðeðtjÞ,xEðtjÞÞ

@e
_xEðtjÞ

þ @VðeðtjÞ,xEðtjÞÞ
@xE

_xEðtjÞ ð26Þ

The derivative of the Lyapunov function along the deviation and

economically optimal state trajectories for tA ½tj,tjþDÞ is given by

_V ðeðtÞ,xEðtÞÞ ¼
@VðeðtÞ,xEðtÞÞ

@e
_eðtÞþ @VðeðtÞ,xEðtÞÞ

@xE
_xEðtÞ ð27Þ

Adding and subtracting _V ðeðtjÞ,xEðtjÞÞ of Eq. (24) to/from the

right-hand side of Eq. (27) and using the bound of Eq. (26), we

have

_V ðeðtÞ,xEðtÞÞr�a3ð9eðtjÞ9Þþ
@VðeðtÞ,xEðtÞÞ

@e
_eðtÞ

� @VðeðtjÞ,xEðtjÞÞ
@e

_eðtjÞþ
@VðeðtÞ,xEðtÞÞ

@xE
_xEðtÞ

� @VðeðtjÞ,xEðtjÞÞ
@e

_xEðtjÞ ð28Þ

From the Lyapunov function constraints of Eqs. (9) and (10), the

bound on _xE, and the Lipschitz property of Eq. (15), Eq. (28)

become

_V ðeðtÞ,xEðtÞÞr�a3ð9eðtjÞ9ÞþL0w9wðtÞ9þL0e9eðtÞ�eðtjÞ9
þL0E9xEðtÞ�xEðtjÞ9þL00E9 _xEðtÞ� _xEðtjÞ9
þa4ð9eðtjÞ9ÞgEþa5ð9eðtÞ9ÞgE ð29Þ

Taking into account Eqs. (13) and (3) and the continuity of e(t)

and xE(t), the following bounds can be written for all tA ½tj,tjþ1Þ
9eðtÞ�eðtjÞ9rMD ð30Þ

9xEðtÞ�xEðtjÞ9rgEDE ð31Þ

From Eq. (30), a bound on 9eðtÞ9 can obtain

9eðtÞ9r9eðtjÞ9þMD ð32Þ

Applying Eqs. (30) and (31), the bound on the disturbance

9wðtÞ9ry, and the bound on _xE to Eq. (29) yields

_V ðeðtÞ,xEðtÞÞr�a3ð9eðtjÞ9ÞþL0wyþL0eMDþL0EgEDEþ2L00EgE
þa4ð9eðtjÞ9ÞgEþa5ð9eðtÞ9ÞgE ð33Þ

Accounting for the fact that eðtjÞAOrn\Bm and the bound of Eq.

(32), the following bound can be written

_V ðeðtÞ,xEðtÞÞr�a3ðmÞþL0wyþL0eMDþL0EgEDE

þð2L00Eþa4ða�1
1 ðrnÞÞþa5ða�1

1 ðrnÞþMDÞÞgE ð34Þ

If Eq. (20) is satisfied, then there exists a gE such that the

following holds:

_V ðeðtÞ,xEðtÞÞr�ð1�ŷÞa3ðmÞþL0wyþL0eMDþL0EgEDE ð35Þ

for some positive ŷo1. If the condition of Eq. (22) is satisfied,

then there exists Ew40 such that the following inequality holds

for eðtjÞAOrn\Bm.

_V ðeðtÞ,xEðtÞÞr�Ew=D, 8tA ½tj,tjþ1Þ ð36Þ

Integrating this bound on tA ½tj,tjþ1Þ, we obtain that

Vðeðtjþ1Þ,xEðtjþ1ÞÞrVðeðtjÞ,xEðtjÞÞ�Ew ð37Þ

VðeðtÞ,xEðtÞÞrVðeðtjÞ,xEðtjÞÞ, 8tA ½tj,tjþ1Þ ð38Þ

for all eðtjÞAOrn\Bm. Using the above inequalities recursively, it

can be proved that if eðtjÞAOrn\Bm, the deviation between the

actual state trajectory and the economic optimal trajectory

converges to Bm in a finite number of sampling times without

going outside the set Orn. Since the deviation state e(t) is always

embedded in the set Orn and from Proposition 1, xE(t) is always

embedded in the set G, the boundedness of the actual system

state trajectory x(t) follows because Orn and G are compact sets.

To summarize, we proved that if eðtjÞAOrn\Bm, then

Vðeðtjþ1Þ,xEðtjþ1ÞÞrVðeðtjÞ,xEðtjÞÞ ð39Þ

Furthermore, the deviation between the actual state trajectory

x(t) and the economic optimal trajectory xE(t) is ultimately

bounded by

9eðtÞ9rEerror ð40Þ

This statement holds because one can pick a sufficiently large

Eerror40 such that if the deviation comes out of the ball Bm, the

deviation is maintained within the ball BEerror given that the

amount that the deviation can increase over one sampling period

is bounded in Eq. (32) and once the deviation comes out of the

ball Bm the Lyapunov function decreases. &

Remark 8. We note that there are essentially four factors
influencing the rate of change of the Lyapunov function when
eðtjÞAOrn\Bm as observed in Eq. (34): the sampling period of the
EMPC and LMPC, the bound on the disturbance, and the bound on
the rate of change of the economically optimal trajectory. While
the bound on the disturbance is a property of the system, two of
the other properties can be used to achieve a desired level of
tracking for a fixed sampling period of the EMPC: the sampling
period of the lower level control loop and the rate of change of the
economically optimal tracking trajectory. This relationship is
governed by the positive parameter ŷo1.

Remark 9. Theorem 1 clarifies how the parameter gE arises and
why it is needed in the formulation of the EMPC of Eq. (16). We
note that gE depends on the stability properties and sampling
period of the lower level LMPC.

Remark 10. While no guarantee is made that the closed-loop
economic performance with the proposed two-layer framework is
better compared to using a steady-state model in the upper layer,
it may be the case that closed-loop performance is the same or
possibly better using a steady-state model in the upper layer
EMPC. In this case, the stability result presented here may still be
used as long as the conditions are satisfied (i.e., the rate of change
of the optimal steady-state varies sufficiently slow). See the
‘‘Application to a chemical process example’’ section for a case
where the proposed two-layer dynamic economic optimization
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and control framework does improve closed-loop economic
performance compared to steady-state operation.

Remark 11. We note that both optimization problems of Eqs. (16)
and (18) are continuous in time. Numerical methods are required to
solve these problems (both integrate the dynamic models and solve
the optimization problem). This will lead to discretization error and
possibly small constraint violations. In this work, we assume this
error is negligible or is sufficiently small such that it can be
considered a bounded disturbance. In the ‘‘Application to a chemical
process example’’ section, we use an integration step that has been
chosen to be significantly smaller than the sampling period of the
upper and lower layer such that this discretization error is negligible.

4. Application to a chemical process example

Consider a well-mixed, non-isothermal continuous stirred
tank reactor (CSTR) where an elementary reaction takes place of
the form A-B. The feed to the reactor consists of pure A at
volumetric flow rate F, temperature T0þDT0 and molar concen-
tration CA0þDCA0. A jacket around the reactor is used to provide/
remove heat to the reactor. The dynamic equations describing the
behavior of the system, obtained through material and energy
balances under standard modeling assumptions, are given as

dT

dt
¼ F

VR
ðT0þDT0�TÞ�DHk0

Rcp
e�E=RTCAþ

Q

RcpVR
ð41Þ

dCA

dt
¼ F

VR
ðCA0þDCA0�CAÞ�k0e

�E=RTCA ð42Þ

where CA is the concentration of the reactant A in the reactor, T is
the reactor temperature, Q is the rate of heat input/removal, VR is
the reactor volume, DH is the heat of the reaction, k0 and E are the
pre-exponential constant and activation energy of the reaction,
respectively, cp and R denote the heat capacity and the density of
the fluid in the reactor, respectively. The values of the process
parameters are shown in Table 1. The system states are
x¼ ½T CA�T and the manipulated inputs are the heat rate u1 ¼Q

with available control energy u1A ½�2� 105, 2� 105� kJ=h and
the inlet reactant concentration u2 ¼ CA0 with available control
energy u2A ½0:5,8� kmol=m3. The fluctuation in feed temperature
and reactant concentration is considered as a bounded distur-
bance: Gaussian white noise with zero mean, variances
sDT0

¼ 20 K2 and sDCA0
¼ 0:1 kmol2=m6, and bounds given by

9DT09r15 K and 9DCA09r1:0 kmol=m3. To simulate the reactor
feed disturbances, a new random number is generated and applied
over each sampling period.

The control objective is to force the system to track the
economically optimal time-varying operating trajectories com-
puted by the upper layer EMPC. We define the set as

G :¼ fxAR29340rx1r390 K,0:5rx2r3:0 kmol=m3g ð43Þ

In this example, the economic measure we consider penalizes
energy consumption, credits conversion of the reactant to the
product, and penalizes the deviation of temperature from 365 K
which acts like a safety factor to prevent the system from operating

on the boundary of G for long periods of time

LðxðtÞ,uðtÞ,tÞ ¼ A1ðtÞu2
1ðtÞ�A2ðtÞ

ðu2ðtÞ�x2ðtÞÞ
u2ðtÞ

þA3ðtÞðx1�365 KÞ2

ð44Þ
where A1, A2, and A3 are the potentially time-varying weighting
factors. We chose values of the economic weighting factors so all
terms in the economic cost are competitive. For this example, we
choose A1 and A3 to be time-varying and A2 ¼ 10 to be constant.
The time-varying weight A1ðtÞ is given by

A1ðtÞ ¼

1:0� 10�7, to1:0 h

5:0� 10�8, 1:0 hrto2:0 h

1:0� 10�8, 2:0 hrto3:0 h

5:0� 10�8, tZ3:0 h

8>>>><
>>>>:

used to model the time-varying energy cost and the time-varying
weight A3ðtÞ is given by

A3ðtÞ ¼

1:0� 10�2, to1:0 h

7:5� 10�3, 1:0 hrto2:0 h

5:0� 10�3, 2:0 hrto3:0 h

7:5� 10�3, tZ3:0 h

8>>>><
>>>>:

The rationale for varying A3 is as the energy cost decreases, we
penalize the deviation of the temperature less to allow the system
to operate closer to the boundary of G to take advantage of the
decreased energy cost. The EMPC is implemented with a sampling
period of DE ¼ 36 s and prediction horizon of NE ¼ 60. It recom-
putes a new optimal state trajectory at every 0.50 h. The prediction
horizon and operating period were chosen to account for the piece-
wise time-varying energy cost A1. Since the vector field of the
system of Eqs. (41) and (42) is Lipschitz and is input-affine, we use
the natural bound of the vector field to bound the rate of change of
the time-varying trajectory computed by the EMPC (i.e., gE of Eq.
(16) is equal toMx of Eq. (12)). In this two-state example, we define
the projection operator of Eq. (16) such that it projects the current
state xðtkÞ to the closest boundary of G if the current state is
outside the set G (e.g., if xðtkÞ ¼ ½400 K,2:0 kmol=m3�, then
projGðxðtkÞÞ ¼ ½390 K,2:0 kmol=m3�).

Remark 12. In practice, the energy weight as well as other time-
varying weights for other examples would come from higher level
information systems. Here, we assume that we know the weights a
priori, but this may not be possible for some applications. Instead,
we emphasize the importance of choosing the operating period that
the EMPC recomputes the optimal economic operating trajectories
such that it can account for the update frequency of these weights.

In the lower layer, a tracking LMPC is used to force the system
to follow the optimal time-varying reactant concentration trajec-
tory denoted xnEðtÞ computed from the EMPC. To design the LMPC,
we define the Lyapunov-based controller h(x) as two proportional
controllers given by

hðxÞ ¼
�K1ðx1ðtÞ�xnE,1ðtÞÞþus,1ðtÞ
�K2ðx2ðtÞ�xnE,2ðtÞÞþus,2ðtÞ

(
ð45Þ

where K1 ¼ 8000 and K2 ¼ 0:01 and us is the steady-state input
corresponding to the steady-state xnEðtÞ (i.e., the input vector that
makes the right-hand side of Eqs. (41) and (42) equal to zero with
the state vector xnE). We define a quadratic Lyapunov function of
form Vðe,xEÞ ¼ eTPe with

P¼ 10 1

1 100

� �
ð46Þ

is used. The LMPC is implemented with a sampling time D¼ 36 s,
prediction horizon N¼5, and weighting matrices of Qc ¼ P and

Table 1
Process parameters.

F 5.0 m3=h DH �1:2� 104 kJ/kmol

VR 1.0 m3 k0 3� 107 h�1

T0 300 K E 5� 104 kJ/kmol

CA0 4 kmol=m3 R 1000 kg=m3

R 8.314 kJ=kmol K cp 0.231 kJ/kg m3
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Rc ¼ diag½10�7 10�. The sampling time was chosen to be the same as
the EMPC so that the trajectory xnEðtÞ could be sent directly down from
the EMPC and did not need to be recomputed with the time
partitioning of the LMPC. While in this example we have chosen
the sampling times to be the same for both the LMPC and EMPC, this
is not necessary. The prediction horizon and weighting matrices were
chosen to achieve a close tracking of the optimal state trajectory.

With the given nonlinear system of Eqs. (41) and (42),
Lyapunov-based controller, and Lyapunov function the stability
regions of the closed-system with the Lyapunov-based controller
can be estimated for a sufficiently large number of fixed xEAG.
After this is completed, we take the intersection of all the stability
regions to estimate the closed-loop stability region Orn of the
system with the Lyapunov-based controller. In this example, Orn
is estimated to be rn ¼ 110. Through the Lyapunov-based

constraint on the LMPC of Eq. (18), the closed-loop system with
the proposed two-layer framework inherits this stability region
Orn .

To simulate the closed-loop system, explicit Euler method
with integration step 0.36 s was used to integrate the ODEs and
the open source interior point solver Ipopt (Wächter & Biegler,
2006) was used to solve the optimization problems. In a set of
closed-loop simulations, we first demonstrate the stability prop-
erties of the closed-loop system under the two-layer dynamic
economic optimization and control framework. Second, we
demonstrate the time-varying operation with the proposed two-
layer dynamic economic optimization and control framework.
Third, we compare the closed-loop economic performance of the
proposed framework compared to using a steady-state model in
the upper layer instead of a dynamic model.

a

b

Fig. 2. The closed-loop system states and inputs of Eqs. (41) and (42) with feed

disturbance and starting from 400 K and 0:1 kmol=m3 plotted (a) with time and

(b) in deviation state-space.

a

b

Fig. 3. The closed-loop system states and inputs of Eqs. (41) and (42) without feed

disturbance and starting from: (a) 400 K and 3:0 kmol=m3 and (b) 320 K and

3:0 kmol=m3.
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To demonstrate the closed-loop stability properties of the
proposed two-layer framework, we initialize the system at
x0 ¼ ½400 K,0:1 kmol=m3� which is outside of G, but inside the
stability region Orn. The projection operator of the upper layer
EMPC projects this initial state onto the state xE,0 ¼ ½390 K,
0:5 kmol=m3�AG to use as an initial condition to the optimization
problem of Eq. (16). The evolution of the closed-loop system with
the proposed two-layer framework and with the inlet tempera-
ture and reactant concentration disturbance added is plotted in
Fig. 2. From Fig. 2b, the deviation of the actual system state and
the economically optimal state are always maintained inside Orn
and become small after some finite time.

Two simulations of the closed-loop system without feed dis-
turbance are plotted in Fig. 3 with two different initial conditions to
demonstrate the time-varying operation with the proposed two-
layer dynamic economic optimization and process control frame-
work. The system state in Fig. 3(a) starts from the initial tempera-
ture 400 K and initial concentration 3:0 kmol=m3 and the system
state in Fig. 3(b) starts from initial temperature 320 K and initial
concentration 3:0 kmol=m3. Initially, the closed-loop evolution of
the two simulations are different. The simulation starting at the

larger temperature must remove heat while not supplying much
reactant material to the reactor to reduce the reactor temperature.
In contrast, the simulation that starts at the smaller temperature
must supply heat and reactant material to the reactor to increase the
reactor temperature. After a long enough operation of the reactor,
the effect of the initial condition diminishes and the closed-loop
time-varying evolution of the two simulations becomes similar, but
the reactor is still operated in a time-varying fashion.

To compare the closed-loop economic performance under the
proposed dynamic economic optimization and control framework
and steady-state operation, we define the total economic cost
over the simulation as

~JE ¼
XM
j ¼ 0

A1ðtjÞQ2ðtjÞþA2
CAðtjÞ
CA0ðtjÞ

þA3ðTðtjÞ�365 KÞ2
� �

ð47Þ

where t0 is the initial time of the simulation and tM ¼ 4:0 h is the
end of the simulation. The optimal steady-state from steady-state
economic process optimization is

xns ðtÞ ¼

½370:0 K,2:576 kmol=m3�T , to1:0 h

½371:7 K,2:447 kmol=m3�T , 1:0 hrto2:0 h

½375:2 K,2:205 kmol=m3�T , 2:0 hrto3:0 h

½371:7 K,2:447 kmol=m3�T , tZ3:0 h

8>>>><
>>>>:

with the corresponding steady-state input of

un

s ðtÞ ¼

½0:0 kJ=h,3:923 kmol=m3�T , to1:0 h

½�0:5 kJ=h,3:827 kmol=m3�T , 1:0 hrto2:0 h

½0:0 kJ=h,3:653 kmol=m3�T , 2:0 hrto3:0 h

½�0:5 kJ=h,3:827 kmol=m3�T , tZ3:0 h

8>>>><
>>>>:

We implement an LMPC, to drive the system to the time-varying
optimal steady-state, which is formulated as follows:

minimize
uA SðDÞ

Z tjþN

tj

ð9 ~xðtÞ�xns ðtÞ9Qc
þ9uðtÞ�un

s ðtÞ9Rc
Þ dt

subject to _~x ðtÞ ¼ f ð ~xðtÞ,uðtÞ,0Þ,
~xðtjÞ ¼ xðtjÞ,
�2� 105ru1ðtÞr2� 105, 8tA ½tj,tjþNÞ,
0:5ru2ðtÞr8, 8tA ½tj,tjþNÞ,
@VðxðtjÞÞ

@x
f ðxðtjÞ,uðtjÞ,0Þ

r @VðxðtjÞÞ
@x

f ðxðtjÞ,hðxðtjÞ,xns ðtjÞ,0Þ ð48Þ
Fig. 4. The process feed disturbance noise realization applied to the closed-loop

systems simulated with feed temperature and reactant concentration disturbances.

Table 2
Total economic cost, given by Eq. (47), comparison for 4 h simulations of the closed-loop system with and without feed disturbance.

Initial conditions Total economic cost

Tðt0Þ (K) CAðt0Þ
(kmol/m3)

Steady-state optimization

without disturbance

EMPC/LMPC without

disturbance

Cost decrease (%) Steady-state optimization

with disturbance

EMPC/LMPC

with disturbance

Cost decrease

(%)

400.0 3.0 21,970.5 14,531.1 51.2 21,642.4 14,130.7 53.2

380.0 3.0 5235.4 3409.5 53.6 5060.1 3037.9 66.6

360.0 3.0 4261.8 3308.6 28.8 4083.2 2997.1 36.2

340.0 3.0 13,732.2 10,997.3 24.9 13,554.9 10,882.3 24.6

320.0 3.0 23,719.4 19,315.9 22.8 23,729.1 19,210.3 23.5

400.0 2.5 18,546.8 10,062.1 84.3 18,283.4 9691.4 88.7

380.0 2.5 4558.7 3163.3 44.1 4387.2 2811.9 56.0

360.0 2.5 4496.4 3335.6 34.8 4322.7 3030.3 42.6

340.0 2.5 14,078.3 11,034.4 27.6 13,910.2 10,928.8 27.3

320.0 2.5 24,052.2 19,293.4 24.7 24,002.2 19,193.8 25.1

400.0 2.0 14,831.5 6774.0 118.9 14,682.4 6412.6 129.0

380.0 2.0 4073.2 3085.1 32.0 3905.0 2739.8 42.5

360.0 2.0 4765.4 3431.2 38.9 4596.4 3139.3 46.4

340.0 2.0 14,395.5 11,162.3 29.0 14,236.8 11,068.2 28.6

320.0 2.0 24,202.7 19,241.2 25.8 24,223.5 19,146.7 26.5

400.0 0.1 8146.1 4360.5 86.8 7999.4 4025.7 98.7
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where the Lyapunov function, the Lyapunov-based controller, the
weighting matrices Rc and Qc, the sampling period D, and the
prediction horizon N are all the same as the ones used in the
tracking LMPC scheme. To make a fair comparison with process
feed disturbance, the same process noise plotted in Fig. 4 was
applied to each closed-loop system simulation with disturbances
in feed temperature and reactant concentration. The total eco-
nomic cost of several closed-loop simulations starting from
different initial conditions is shown in Table 2. From the results
of Table 2, the largest economic cost decrease occurs for systems
starting from higher temperature. When the system starts from a
lower temperature, it requires much more heat energy supplied
to the reactor initially compared to the heat removed initially
when the system starts at a higher temperature as explained
above and demonstrated in Fig. 3. Thus, a system starting from a
higher temperature is capable of more economic cost reduction
because it can use less input heat energy.

5. Conclusions

In this work, we proposed a two-layer framework for integrat-
ing dynamic economic optimization and model predictive control
for nonlinear process systems. In the upper layer, EMPC is used to
compute economically optimal time-varying operating trajec-
tories while restricting the rate of change of the trajectory and
constraining the trajectory inside the equilibrium manifold of the
process for the allowable values of the control actions. The lower
layer model predictive controller designed via Lyapunov-based
techniques, is used to force the system to track the optimal time-
varying trajectory computed by the EMPC. We proved that the
deviation between the actual closed-loop system and the eco-
nomically optimal closed-loop trajectory is bounded and the
closed-loop system state always remains bounded. The theore-
tical results were demonstrated through a chemical process
example.
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Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathema-
tical Programming, 106, 25–57.

Würth, L., Hannemann, R., & Marquardt, W. (2009). Neighboring-extremal updates
for nonlinear model-predictive control and dynamic real-time optimization.
Journal of Process Control, 19, 1277–1288.

Würth, L., Hannemann, R., & Marquardt, W. (2011). A two-layer architecture for
economically optimal process control and operation. Journal of Process Control,
21, 311–321.

Würth, L., Rawlings, J. B. & Marquardt, W. (2009). Economic dynamic real-time
optimization and nonlinear model predictive control on infinite horizons. In
Proceedings of the international symposium on advanced control of chemical
process, Istanbul, Turkey.

Yousfi, C. & Tournier, R. (1991). Steady state optimization inside model predictive
control. In Proceedings at American control conference (pp. 1866–1870), Boston,
Massachusetts.
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