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a b s t r a c t

A novel two-layer economic model predictive control (EMPC) structure that addresses provable finite-
time and infinite-time closed-loop economic performance of nonlinear systems in closed-loopwith EMPC
is presented. In the upper layer, a Lyapunov-based EMPC (LEMPC) scheme is formulatedwith performance
constraints by taking advantage of an auxiliary Lyapunov-basedmodel predictive control (LMPC) problem
solution formulated with a quadratic cost function. The lower layer LEMPC uses a shorter prediction
horizon and smaller sampling period than theupper layer LEMPCand involves explicit performance-based
constraints computed by the upper layer LEMPC. Thus, the two-layer architecture allows for dividing
dynamic optimization and control tasks into two layers for a computationallymanageable control scheme
at the feedback control (lower) layer. A chemical process example is used to demonstrate the performance
and stability properties of the two-layer LEMPC structure.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Within process control, economic model predictive control
(EMPC) has ignited wide-spread interest because of its unique
ability to dynamically regulate processes to achieve closed-loop
economic performance not attainable through traditional tracking
control techniques (Adetola & Guay, 2010; Amrit, Rawlings, & An-
geli, 2011; Angeli, Amrit, & Rawlings, 2012; Baldea & Touretzky,
2013; Diehl, Amrit, & Rawlings, 2011; Fagiano & Teel, 2013; Fer-
ramosca, Rawlings, Limon, & Camacho, 2010; Grüne, 2013; Guay
& Adetola, 2013; Heidarinejad, Liu, & Christofides, 2012, 2013;
Huang, Biegler, & Harinath, 2012; Idris & Engell, 2012; Ma, Qin,
Salsbury, & Xu, 2012; Müller, Angeli, & Allgöwer, 2013; Omell &
Chmielewski, 2013). The fundamental difference between EMPC
and conventional model predictive control (MPC) is the cost func-
tion used in the formulations of these two control schemes. Typi-
cally, in conventional MPC schemes, a quadratic cost function that
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penalizes a weighted error of states and inputs from their econom-
ically optimal steady-state values is typically used, while, EMPC
schemes use a general cost function that is derived from the pro-
cess economics (e.g., operating cost or profit). As a result of the type
of cost function used, EMPC can handle both dynamic process eco-
nomic optimization and process control. To utilize EMPC for the
computation of optimal inputs in real-time, EMPC is formulated
with a finite prediction horizon.

An important, albeit not well understood property, is the
closed-loop performance of systems under EMPC since EMPC is
formulated with a finite prediction horizon. The main results on
closed-loop performancewith EMPC include: (1) EMPC formulated
with a terminal constraint has asymptotic (infinite-time) average
performance at least as good as the economically optimal steady-
state (Angeli et al., 2012) (others have extended asymptotic aver-
age performance to various EMPC formulations Amrit et al., 2011,
Fagiano & Teel, 2013, Müller et al., 2013), (2) EMPC formulated
without any (terminal) constraintswas shown to be approximately
optimal for both finite-time (i.e., transient) and infinite-timewhen
a sufficiently long prediction horizon is used and certain controlla-
bility assumptions are satisfied (Grüne, 2013), and (3) a Lyapunov-
based EMPC (LEMPC) which uses performance constraints derived
from an auxiliary conventional (tracking) MPC and a shrinking
horizon to guarantee that over a finite operating window the
closed-loop performance under LEMPC is at least as good as the
auxiliary conventional MPC (Heidarinejad et al., 2013). In Angeli
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et al. (2012), the effect of the initial condition is essentially ne-
glected since it is insignificant when considering operation for an
infinite-time period. Given the power of EMPC to yield dynamically
optimal regulation of systems operating away from steady-state,
the importance of considering the effect of the initial condition on
closed-loop performance should be considered as this is an impor-
tant property of EMPC. In Heidarinejad et al. (2013), on the other
hand, guarantees on closed-loop performance can only be made
over finite operating windows. Therefore, introducing an EMPC
structure that provides provable finite-time (i.e., accounts for the
effect of the initial condition) and infinite-time performance guar-
antees on closed-loop economic performance is an important is-
sue.

Another challenge of EMPC is that the achievable closed-loop
economic performance benefit of EMPC over conventional track-
ing MPC may strongly depend on the prediction horizon length
(e.g., Grüne, 2013). A long prediction horizon (i.e., many deci-
sion variables), however, may make it difficult to solve the EMPC
optimization problem for real-time applications. To address guar-
anteed closed-loop economic performance while formulating a
computationally efficient control structure, a novel two-layer
LEMPC structure is proposed in this work. The core idea of the
two-layer EMPC is to solve the upper layer LEMPC infrequently
(i.e., not every sampling period) over a long horizon. Then, take
advantage of the solution generated by the upper layer LEMPC in
the formulation of a lower layer LEMPC used for feedback con-
trol. Specifically, in the upper layer, an LEMPC, formulated with a
sufficiently large prediction horizon, is used to compute econom-
ically optimal trajectories which are sent down to the lower layer
LEMPC. The lower layer LEMPC uses a shorter prediction horizon
and smaller sampling time than the upper layer LEMPC to com-
pute control actions for the process in real-timewhile maintaining
operation around the economically optimal trajectories computed
in the upper layer. For guaranteed performance improvementwith
the proposed LEMPC scheme, both layers are formulated with ex-
plicit performance-based constraints computed from an auxiliary
Lyapunov-based model predictive control (LMPC) problem solu-
tion formulated with a quadratic cost which allows for provable
finite-time and infinite-time closed-loop economic performance
and effectively merges the provable performance guarantees on
finite-time and infinite-time performance compared to a conven-
tional (tracking) MPC. The two-layer LEMPC structure is applied
to a chemical process example to demonstrate the closed-loop
performance, stability, and robustness properties of the two-layer
LEMPC structure.

2. Preliminaries

2.1. Class of systems

The class of continuous-time nonlinear systems considered is
described by the following state-space form:

ẋ(t) = f (x(t), u(t)) (1)

where the state is x(t) ∈ Rn and the input is u(t) ∈ Rm. The vector
function f : Rn

× Rm
→ Rn is a locally Lipschitz vector function on

Rn
× Rm. The available control effort is defined by the convex set

U = {umin ≤ u ≤ umax} ⊂ Rm. The state x of the system is syn-
chronously sampled at time instances t0+k∆with k = 0, 1, 2, . . .
where t0 is the initial time and ∆ is the sampling period. With-
out loss of generality, the initial time is taken to be zero (t0 = 0).
To distinguish between the continuous time and the discrete sam-
pling instances, the notation t will be used for the continuous time
and the time sequence {τk}∞k=0 is the partitioning of t with τk = k∆.

A time-invariant economic cost measure le(x, u) is assumed to
describe the real-time economics of the system of equation (1)
and is assumed to be continuous on X × U where X ⊂ Rn is the
set of admissible operating states. The optimal steady-state x∗s and
steady-state input u∗s with respect to the economic cost function is
(x∗s , u

∗
s ) = argmaxus∈U, xs∈X {le(xs, us) : f (xs, us) = 0}. For the sake

of simplicity, the optimal steady-state is assumed to be unique and
to be (x∗s , u∗s ) = (0, 0). Furthermore, the notation |·| denotes the
Euclidean norm of a vector, the notation |·|Q denotes the square of
aweighted Euclidean norm of a vector (i.e., |x|Q = xTQxwhereQ is
a positive definite matrix), and the symbol Ωρ denotes a level set
of a Lyapunov function (i.e., Ωρ = {y ∈ Rn

: V (y) ≤ ρ}).

2.2. Existence of a stabilizing controller

Assumption 1. There exists a locally Lipschitz feedback controller
u = h(x) with h(0) = 0 for the system of equation (1) that ren-
ders the origin of the closed-loop system under continuous imple-
mentation of the controller h(x) locally exponentially stable. More
specifically, there exist constants ρ > 0, ci > 0, i = 1, 2, 3, 4
and a continuously differentiable Lyapunov function V : Rn

→ R+
such that the following inequalities hold for all x ∈ Ωρ :

c1 |x|2 ≤ V (x) ≤ c2 |x|2 , (2a)

∂V (x)
∂x

f (x, h(x)) ≤ −c3 |x|2 , (2b)∂V (x)
∂x

 ≤ c4 |x| , (2c)

for all x ∈ Ωρ .

Explicit feedback controllers that may be designed to satisfy
Assumption 1 are, for example, feedback linearizing controller and
some Lyapunov-based controllers (e.g., Khalil, 2002, Kokotović &
Arcak, 2001). With the controller h(x), the following results hold
for the closed-loop system of equation (1) under the controller
h(x) implemented in a zero-order sample-and-hold fashion with
sampling period ∆ (i.e., h(x) is applied as an emulation controller).

Proposition 2. Suppose Assumption 1 holds. Then, there exists∆∗ >
0 and M, σ > 0 such that for the partition {τi}∞i=0 of R+ with τi+1 −
τi = ∆ ≤ ∆∗ the closed-loop system of equation (1) with the input
trajectory

u(t) = h(x(τi)) for t ∈ [τi, τi+1) and integers i ≥ 0 (3)

and arbitrary initial condition x(0) = x0 ∈ Ωρ satisfies the estimate:

|x(t)| ≤ M exp(−σ t)|x0| (4)

for all t ≥ 0.

The proof of Proposition 2 may be found in Ellis et al. (2014,
Corollary 1) and shows thatV is a Lyapunov function for the closed-
loop sampled-data system in the sense that there exists a constant
ĉ3 > 0 such that

∂V (x(t))
∂x

f (x(t), h(x(τi))) ≤ −ĉ3 |x(t)|2 (5)

for all t ∈ [τi, τi+1) and integers i ≥ 0 where x(t) is the solution of
Eq. (1) starting from x(τi) ∈ Ωρ and with the input u(t) = h(x(τi))
for t ∈ [τi, τi+1). The stability region of the closed-loop system
under the controller h(x) is defined as Ωρ ⊆ X .

Remark 3. Assumption 1 is stronger than the one imposed in our
previous works (e.g., Christofides, Liu, & Muñoz de la Peña, 2011,
Heidarinejad et al., 2012). In the present works, the existence of a
controller h(x) that renders the origin of the closed-loop system lo-
cally exponentially stable under continuous implementation is as-
sumedwhereas, in Christofides et al. (2011) and Heidarinejad et al.
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(2012), the existence of a controller h(x) is assumed that renders
the closed-loop system only asymptotically stable under continu-
ous implementation. The stronger assumption is needed to ensure
that the controller h(x) renders the origin of the closed-loop sys-
tem exponentially stable under sample-and-hold implementation
and thus, be able to use it to design a Lyapunov-based MPC that
renders the origin of the closed-loop asymptotically stable. The lat-
ter requirement is needed to consider infinite-time operation un-
derMPC. Specifically, asymptotic convergence to the origin and not
just convergence to a neighborhood of the steady-state (i.e., prac-
tical stability) is required to study closed-loop economic perfor-
mance under conventionalMPC on the infinite-time interval. In the
context of sampled-data system, the interested reader is referred
to Karafyllis and Kravaris (2009), Nesić and Teel (2001) and the ref-
erences therein for more issues regarding designing an emulation
controller for the system of equation (1).

2.3. Lyapunov-based MPC

Lyapunov-based model predictive control (LMPC) is a conven-
tional MPC scheme (i.e., formulatedwith a quadratic cost function)
that is used to steer the system to the origin (Christofides et al.,
2011). The LMPC scheme is given by the following optimization
problem:

min
u∈S(∆)

 τN

0

x̃(t)Qc
+ |u(t)|Rc


dt (6a)

s.t. ˙̃x(t) = f (x̃(t), u(t)) (6b)

x̃(0) = x(τk) (6c)

u(t) ∈ U, ∀ t ∈ [0, τN) (6d)

∂V (x(τk))
∂x

f (x(τk), u(0)) ≤
∂V (x(τk))

∂x
f (x(τk), h(x(τk))) (6e)

where x̃ is the predicted state trajectory, S(∆) is the set of piece-
wise constant functionswith period∆, andN is the number of sam-
pling periods of the prediction horizon. Given that the cost function
is positive definite with respect to the optimal steady-state, the
global minimum of the cost function occurs at the optimal steady-
state. The optimal input trajectory to the optimization problem of
the LMPC is u∗(t) and is defined for t ∈ [τk, τk+N). The control ac-
tion computed for the first sampling period of the prediction hori-
zon u∗(τk) is sent to the control actuators to be applied over the
sampling period and the LMPC is resolved at the next sampling pe-
riod.

In the optimization problem of Eq. (6), the model of the system
is used to predict the future state of the system with control input
computed by the LMPC (Eq. (6b)). The dynamic model is initialized
through a state measurement obtained at the current sampling in-
stance τk and is given by the constraint of Eq. (6c). The input con-
straint (Eq. (6d)) ensures the computed control input is within the
bounds of the available control action. Lastly, the Lyapunov-based
constraint (Eq. (6e)) is used to guarantee closed-loop stability. The
constraint of Eq. (6e) is enforced at the sampling instance τk to en-
sure that the Lyapunov function of the closed-loop system under
the LMPC decreases by at least the rate given by the Lyapunov-
based controller over [τk, τk+1).When the controller h(x) is applied
in a sample-and-hold fashion with a sufficiently small sampling
period, the rate of decrease of the Lyapunov function due to the
control action h(x) applied in a sample-and-hold fashion over the
sampling period is enough to overcome the rate of possible in-
crease of the Lyapunov function due to the fact that the controller
h(x) is applied in a sample-and-hold fashion. Owing to the con-
straint (Eq. (6e)), the control action computed by the LMPC for the
sampling period τk to τk+1 will have the same property and thus,
the LMPC inherits the closed-loop stability region Ωρ of the con-
troller h(x) applied in a sample-and-hold fashion.
2.4. Lyapunov-based EMPC

Lyapunov-based economic model predictive control (LEMPC)
directly optimizes the economic cost (profit) function le(·, ·). The
LEMPC scheme (Heidarinejad et al., 2012) is given by the following
optimization problem:

max
u∈S(∆)

 τN

0
le(x̃(t), u(t)) dt (7a)

s.t. ˙̃x(t) = f (x̃(t), u(t)) (7b)

x̃(0) = x(τk) (7c)
u(t) ∈ U, ∀ t ∈ [0, τN) (7d)

V (x̃(t)) ≤ ρ, ∀ t ∈ [0, τN) (7e)

where the notation and constraints Eqs. (7b)–(7d) are equivalent to
the notation and constraints of Eqs. (6b)–(6d) of the LMPC. To al-
low for the LEMPC to dictate a time-varying operating policy to op-
timize the system economics, a Lyapunov-based constraint is used
to maintain the predicted state in the stability region Ωρ (i.e., Ωρ

is an invariant set for the system of equation (1) which has been
shown in Heidarinejad et al. 2012). With the Lyapunov-based con-
straint of Eq. (7e), the provable stability property of the closed-loop
system is boundedness in Ωρ and not asymptotic convergence to
the steady-state.

3. Two-layer EMPC structure

In this section, a detailed description of the proposed two-layer
EMPC structure is provided which includes descriptions of the
implementation strategy, the formulations of the upper and lower
layer LEMPC schemes, and the provable stability and performance
properties.

3.1. Implementation strategy

To address guaranteed performance improvement with EMPC
compared to that with conventional MPC over both finite-time
and infinite-time, performance-based constraints are used in the
formulation of an LEMPC which are computed from an auxiliary
LMPC. In general, the achievable economic performance improve-
mentwith EMPC is closely associatedwith the length of the predic-
tion horizon of the EMPC. However, an EMPCwith a long prediction
horizonmay be unsuitable for use in real-time implementation be-
cause of the computational time required to solve the optimization
problemof the EMPC. To address this challenge, a two-layer LEMPC
structure is proposed. In the upper layer, an LEMPC is used to opti-
mize dynamic operation over a long horizon while accounting for
the performance-based constraints from the auxiliary LMPC. Both
the auxiliary LMPC and the upper layer LEMPC compute their op-
timal input trajectory once over some operating window. In the
lower layer, an LEMPC, using a shorter prediction horizon and a
smaller sampling period than the upper layer LEMPC, computes
control inputs that are applied to the process. Constraints that have
been generated from the upper layer LEMPC are used to ensure that
the lower layer LEMPC guides the system along the optimal solu-
tion computed in the upper layer since it uses a shorter prediction
horizon and a smaller sampling period. In this manner, the lower
layer LEMPC is used to improve robustness of the closed-loop sys-
tem (recomputes its optimal trajectory every sampling period to
incorporate feedback) as well as for providing additional economic
cost improvement over the upper layer LEMPC solution owing to
the use of a smaller sampling time.

Since the upper layer LEMPC and auxiliary LMPC use a differ-
ent sampling period and prediction horizon than the lower layer
LEMPC, the notation ·̂will be used for the upper layerMPCs (i.e., the
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Fig. 1. A state-space illustration of the evolution of the closed-loop system in the
stability region Ωρ over two operating periods with inputs computed by the upper
layer LEMPC (solid line) and the auxiliary LMPC (dashed line).

auxiliary LMPC and the upper layer LEMPC): N̂ is the number of
sampling periods of size ∆̂ of each operating window and it is also
the prediction horizon used in the upper layer MPCs. The time se-
quence {τ̂j}∞j=0 corresponds to the sampling periods of the upper
layer (τ̂j = j∆̂) and M is a positive integer corresponding to the
number of elapsed operation windows. At the beginning of each
operating window, the upper layer MPCs receive a state measure-
ment of the system x(τ̂(M−1)N̂) and eachMPC computes a piecewise
constant input trajectory with period ∆̂ over the horizon τ̂(M−1)N̂
to τ̂MN̂ .

The upper layer period ∆̂ is divided intoN subintervals of length
∆ (∆ = ∆̂/N where N is a positive integer). The subintervals de-
fine the sampling period of the lower layer and correspond to the
sequence {τk}∞k=0. The lower layer LEMPC recomputes its optimal
input trajectory employing a shrinking horizon. Namely, at the be-
ginning of each sampling period of the upper layer ∆̂, the lower
layer is initialized with a prediction horizon N and computes an
input trajectory from τk to τk+N . At each subsequent sampling pe-
riod of the lower layer LEMPC, the prediction horizon decreases
(i.e., shrinking horizon approach) until the next sampling period of
the upper layer LEMPC when the prediction horizon is reset to N .

The implementation strategy is summarized below and an il-
lustration of the closed-loop system is given in Fig. 1.
1. At the beginning of the Mth operating period, the auxiliary

LMPC and the upper layer LEMPC are initialized with the state
measurement x(τ̂(M−1)N̂).

2. The auxiliary LMPC computes its optimal input trajectory de-
noted as v∗(t) and defined for t ∈ [τ̂(M−1)N̂ , τ̂MN̂), the state
trajectory denoted as z∗(t) under the input trajectory v∗(t) ac-
cording to Eq. (1), and the total economic cost:

L∗LMPC,M =

 τ̂MN̂

τ̂
(M−1)N̂

le(z∗(t), v∗(t)) dt. (8)

3. The upper layer LEMPC receives L∗LMPC,M , and z∗(τ̂MN̂) from the
auxiliary LMPC.

4. The upper layer LEMPC computes its optimal input û∗(t) and
state x̂∗(t) trajectories defined for t ∈ [τ̂(M−1)N̂ , τ̂MN̂) and sends
them down to the lower layer LEMPC.

5. The lower layer LEMPC receives the optimal trajectories com-
puted in the upper layer LEMPC and initializes the prediction
horizon N = ∆̂/∆.
5.1 At the lower layer sampling period τk, the lower layer

LEMPC receives a state measurement x(τk).
5.2 The total economic cost L̂∗k with the upper layer LEMPC

input trajectory is computed over the horizon τk to τk+N
where

L̂∗k =
 τk+N

τk

le(x̂∗(t), û∗(t)) dt, (9)

and the state at x̂∗(τk+N) with the upper layer LEMPC input
trajectory is also computed.

5.3 Using L̂∗k and x̂∗(τk+N), the lower layer LEMPC computes its
optimal input trajectory.
5.4 The lower layer LEMPC sends the input u∗(τk) to the control
actuators to be applied in a sample-and-hold fashion from
τk to τk+1.

5.5 If N > 1, k← k+ 1, N ← N − 1 and go to Step 5.1. Else
if N = 1 and τk+1 < τ̂MN̂ , k ← k + 1, N ← ∆̂/∆ and go
to Step 5.1. Else, go to Step 1,M ← M + 1 and k← k+ 1.

Remark 4. The lower layer LEMPC recomputes its solution at the
beginning of each sampling period because the lower layer uses
a smaller sampling period than the upper layer. Recomputing the
lower layer EMPC input at every subsequent sampling time is nec-
essary regardless if the solution to the lower level EMPC is the
same or not. The incorporation of feedback allows for stabiliza-
tion of open-loop unstable systems that cannot be accomplished
with an open-loop implementation and ensures the robustness of
the control solution with respect to infinitesimally small distur-
bances/uncertainty. For further explanation on this point, see, for
example, Sontag (1998).

3.2. Formulation

In this subsection, the formulations of the auxiliary LMPC and
the two LEMPC schemes are given. First, the closed-loop state tra-
jectory over theMth operating window (τ̂(M−1)N̂ to τ̂MN̂ ) under the
explicit controller h(x) is defined as the state trajectory xh(t) satis-
fying
ẋh(t) = f (xh(t), uh(t)) (10)
initialized with a state measurement of the system xh(0) =
x(τ̂(M−1)N̂) and the input trajectory defined as

uh(t) = h(xh(τ̂j)) (11)

for all t ∈ [τ̂j, τ̂j+1) where j = 0, 1, . . . , N̂ − 1. Utilizing xh(t)
and uh(t) according to Eqs. (10)–(11), the auxiliary LMPC solution
is computed at the beginning of each operating window. The aux-
iliary LMPC is given by the following optimization problem:

min
v∈S(∆̂)

 τ̂N̂

0
(|z(t)|Qc + |v(t)|Rc ) dt (12a)

s.t. ż(t) = f (z(t), v(t)) (12b)

z(0) = x(τ̂(M−1)N̂) (12c)

v(t) ∈ U, ∀ t ∈ [0, τ̂N̂) (12d)
∂V (z(τ̂j))

∂z
f (z(τ̂j), v(τ̂j))

≤
∂V (xh(τ̂j))

∂xh
f (xh(τ̂j), uh(τ̂j)), j = 0, 1, . . . , N̂ − 1 (12e)

where z(t) is the state trajectory of the system with input trajec-
tory v(t) calculated by the auxiliary LMPC. The Lyapunov-based
constraint of Eq. (12e) differs from the Lyapunov-based constraint
of Eq. (6e) as it is imposed at each sampling period along the pre-
diction horizon of the LMPC to ensure that the state trajectorywith
input computed by the LMPC converges to the steady-state. The
optimal solution of Eq. (12) is denoted as v∗(t) and is defined for
t ∈ [τ̂(M−1)N̂ , τ̂MN̂). From the optimal input trajectory, the optimal
state trajectory z∗(t) and the total economic cost L∗LMPC,M (Eq. (8))
can be computed for theMth operating window.

The formulation of the upper layer LEMPC for theMth operating
period is similar to the optimization problem of Eq. (7) formulated
with the following additional constraints: τ̂MN̂

τ̂
(M−1)N̂

le(x̂(t), û(t)) dt ≥ L∗LMPC,M , (13)

x̂(τ̂MN̂) = z∗(τ̂MN̂), (14)
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where x̂ is the predicted state trajectory with the input trajectory
û computed by the upper layer LEMPC. The constraint of Eq. (13)
guarantees that the total economic cost over the entire operating
period with the input trajectory from the upper layer LEMPC is no
less than that given by the total economic cost of the input tra-
jectory from the auxiliary LMPC. To ensure the existence of an in-
put trajectory that has at least as good economic performance as
the auxiliary LMPC input trajectory over the entire length of op-
eration, a terminal constraint based on the auxiliary LMPC is used
(Eq. (14)). The terminal constraint differs from traditional terminal
constraints because z∗(τ̂MN̂) is not necessarily the steady-state. The
optimal solution to the optimization problem of the upper layer
LEMPC is denoted as û∗(t) and is defined for t ∈ [τ̂(M−1)N̂ , τ̂MN̂).

At each sampling period of the lower layer LEMPC, the total eco-
nomic cost of the solution obtained from the upper layer is recom-
puted over the prediction horizon of the lower layer LEMPC and is
defined by Eq. (9). The lower layer LEMPC uses L̂∗k in its formulation
and a terminal constraint which are given by: τk+N

τk

le(x̃(t), u(t)) dt ≥ L̂∗k , (15)

x̃(τk+N) = x̂∗(τk+N) (16)

where the performance-based constraints of Eqs. (15)–(16) are
computed from the upper layer LEMPC, but have the same pur-
pose as the constraints of Eqs. (13)–(14). The optimal solution to
the lower layer LEMPC is denoted as u∗(t) which is defined for
t ∈ [τk, τk+N). The control input u∗(τk) is sent to the control ac-
tuators to be applied to the system of equation (1) in a sample-
and-hold fashion until the next sampling period.

Remark 5. When each optimization problem can be solved to
optimality, the terminal constraints of Eqs. (14) and (16) imply
Eqs. (13) and (15) by the principle of optimality. Given the non-
linearity and likely non-convexity of each optimization problem,
this may be difficult to guarantee. Even if the solver converges, it
will likely return a local optimum. In the context of the theoret-
ical developments of the present work the optimization solver is
treated as a black box with a minimum requirement that it at least
returns the higher level input solution (e.g., the auxiliary LMPC at
worst returns the Lyapunov-based controller solution, the LEMPC
atworst returns the auxiliary LMPC solution, etc.). Although the so-
lution returned by the solver of the various optimization problems
is denoted as the optimal solution, it does not need to be optimal for
the results of the subsequent subsection to hold (stability and per-
formance). This point is especially important considering that any
optimization-based control algorithm may take a non-negligible
time to solve for real-time applications. In other words, there is a
(theoretical) maximum amount of computation time alloted to the
optimization-based controller to ensure closed-loop stability. Our
results hold for premature termination (i.e., when the solver re-
turns a solution before it converges to the local optimum) as long
as the solver returns a feasible solutionwhich is always possible by
design.

3.3. Closed-loop stability and performance

The following proposition proves that the closed-loop system
state under the two-layer EMPC structure is always bounded in the
invariant set Ωρ and the economic performance is at least as good
as the closed-loop state with the auxiliary LMPC over each operat-
ing period.

Proposition 6. Consider the system of equation (1) in closed-loop
under the lower layer LEMPC with the performance constraints based
on the upper layer LEMPC and the auxiliary LMPC of Eq. (12) and
Lyapunov-based constraints based on the controller h(x) that satis-
fies Assumption 1. Let ∆̂ ∈ (0, ∆∗], N̂ ≥ 1, N ≥ 1, and ∆ = ∆̂/N.
If x(τ̂(M−1)N̂) ∈ Ωρ , then the state remains bounded in Ωρ over the
entire operating period with x(τ̂MN̂) = z∗(τ̂MN̂) ∈ Ωρ , the upper
and lower LEMPCs and the auxiliary LMPC remain feasible for all t ∈
[τ̂(M−1)N̂ , τ̂MN̂), and the following inequality holds: τ̂MN̂

τ̂
(M−1)N̂

le(x(t), u∗(t)) dt ≥
 τ̂MN̂

τ̂
(M−1)N̂

le(z∗(t), v∗(t)) dt. (17)

Proof. If the optimization problems of the controllers remain fea-
sible, stability (i.e., state remains bounded in Ωρ) follows (by con-
struction of the LEMPCs). As a result of imposing the conditions of
Eqs. (13) and (15) as constraints in the computed control actions,
the inequality of Eq. (17) directly followswhen all upper and lower
layer LEMPCs and the auxiliary LMPC are feasible optimization
problems. Since z∗(t), x(t) ∈ Ωρ and v∗(t), u∗(t) ∈ U for all t ∈
[τ̂(M−1)N̂ , τ̂MN̂) and le(·, ·) is continuous on Ωρ × U , both integrals
of Eq. (17) are bounded.

The remaining part of the proposition focuses on the feasibil-
ity of the optimization problems. At the beginning of an opera-
tion period τ̂(M−1)N̂ , the auxiliary LMPC of Eq. (12) is feasible if
x(τ̂(M−1)N̂) ∈ Ωρ because the input trajectory obtained from the
controller h(x)when applied in a sample-and-hold fashion is a fea-
sible solution to the auxiliary LMPC optimization problem. Feasi-
bility of the upper layer LEMPC is maintained if x(τ̂(M−1)N̂) ∈ Ωρ .
At τ̂(M−1)N̂ , the upper layer LEMPC receives the total economic
cost and the terminal constraint from the auxiliary LMPC. There-
fore, one feasible solution to the upper layer LEMPC is the auxil-
iary LMPC solution since it satisfies the performance constraint of
Eq. (13) and the terminal constraint of Eq. (14).

Recursive arguments, utilizing the previously obtained solu-
tion, are used to construct a feasible solution for the lower layer
LEMPC at each sampling period ∆. Given that the lower layer
LEMPC is implemented with a shrinking horizon until the next
sampling period ∆̂ ∈ (0, ∆∗] of the upper layer LEMPC, the lower
layer is always feasible because the upper layer LEMPC solution is a
feasible solution to the lower layer LEMPC. At the beginning of the
upper layer LEMPC sampling period ∆̂, there is a constant input
û∗(τ̂j) that forces the state from x̂(τ̂j) to x̂(τ̂j+1). Namely, the up-
per layer LEMPC sampling period is divided into N = ∆̂/∆ subin-
tervals corresponding to the sampling period ∆ of the lower layer
LEMPC. At τk = τ̂j, the constant input trajectory u(t) = û∗(τ̂j)
for t ∈ [τk, τk+N) is a feasible solution for the optimization prob-
lem since it satisfies the performance constraint of Eq. (15) and the
terminal constraint of Eq. (16). If the lower layer LEMPC computes
a different input trajectory, it must still force the state to x̂(τk+N)
while satisfying the performance constraint. At the next sampling
period τk+1, the prediction horizon decreases, so the previous solu-
tion defined for τk+1 to τk+N is a feasible solution to the lower layer
LEMPC. �

The following theorem provides sufficient conditions such that the
two-layer EMPC structure maintains the closed-loop state inside
the region Ωρ and the closed-loop economic performance is at
least as good as if the auxiliary LMPC was applied to the system
of equation (1) over the entire length of operation which may be
finite or infinite.

Theorem 7. Consider the system of equation (1) in closed-loop under
the lower layer LEMPC with the performance constraints based on the
upper layer LEMPC and the auxiliary LMPC of Eq. (6) and Lyapunov-
based constraints based on the controller h(x) that satisfies Assump-
tion 1 and let the assumptions of Proposition 6 hold. If x(0) ∈ Ωρ ,
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then x(t) ∈ Ωρ for all t ≥ 0 and the following inequality holds for
finite-time operation: T

0
le(x(t), u∗(t)) dt ≥

 T

0
le(z∗(t), v∗(t)) dt (18)

for any T = iN̂∆̂ where i is any positive integer, and the following
inequality holds for infinite-time operation:

lim inf
T→∞

1
T

 T

0
le(x(t), u∗(t)) dt ≥ le(x∗s , u

∗

s ). (19)

Proof. Applying the results of Proposition 6 recursively over M
operating periods, recursive feasibility of the optimization prob-
lems follows, and the closed-loop state is always bounded in Ωρ if
x(0) ∈ Ωρ , and x(τ̂jN̂) = z∗(τ̂jN̂) for j = 1, 2, . . . ,M . To show the
result of Eq. (18), the length of operation is divided intoM operat-
ing periods and T := τ̂MN̂ : T

0
le(x(t), u∗(t)) dt =

 τ̂N̂

0
le(x(t), u∗(t)) dt + · · ·

+

 τ̂MN̂

τ̂
(M−1)N̂

le(x(t), u∗(t)) dt. (20)

By Proposition 6, the inequality of Eq. (17) holds over each operat-
ing window when x(τ̂jN̂) = z∗(τ̂jN̂), j = 1, 2, . . . ,M and thus, the
inequality of Eq. (18) follows.

Owing to the result of Eq. (18), the average finite-time economic
cost is given by:

1
T

 T

0
le(x(t), u∗(t)) dt ≥

1
T

 T

0
le(z∗(t), v∗(t)) dt (21)

for any T = iN̂∆̂ where i is any positive integer. Recall, the eco-
nomic cost function le(·, ·) is continuous on the compact setΩρ×U
and x(t), z∗(t) ∈ Ωρ and u∗(t), v∗(t) ∈ U for all t ≥ 0. Thus, both
integrals of Eq. (21) are bounded for any T > 0. As a result of the
Lyapunov-based constraint of Eq. (12e) imposed on the input tra-
jectory of the auxiliary LMPC and the fact that the system of equa-
tion (1) in closed-loop with the Lyapunov-based controller h(x)
implemented in a sample-and-hold fashion is exponentially sta-
ble for ∆̂ ∈ (0, ∆∗], the state and input computed by the LMPC
(i.e., z∗(t) and v∗(t)) asymptotically converge to the steady-state
(x∗s , u

∗
s ).

If we consider the limit of the right-hand side of Eq. (21) as T
tends to infinity, the limit exists and is equal to le(x∗s , u

∗
s ) owing

to the fact that z∗(t) and v∗(t) asymptotically converge to optimal
steady-state (x∗s , u

∗
s ) while remaining bounded for all t ≥ 0. To

prove this limit, it is sufficient to prove that given any ϵ > 0, there
exists a T ∗ > 0 such that for T > T ∗, the following holds (Amann
& Escher, 2005): 1T

 T

0
le(z∗(t), v∗(t)) dt − le(x∗s , u

∗

s )

 < ϵ. (22)

Define I(0, T ) as the following integral:

I(0, T ) :=

 T

0
le(z∗(t), v∗(t)) dt (23)

where the arguments of I represent the lower and upper limits
of integration, respectively. Since z∗(t) and v∗(t) asymptotically
converge to x∗s and u∗s , respectively, as t tends to infinity, le(z∗(t),
v∗(t))→ le(x∗s , u

∗
s ) as t tends to infinity. Furthermore, z∗(t) ∈ Ωρ

and v∗(t) ∈ U for all t ≥ 0, so for every ϵ > 0, there exists a T̃ > 0
such that

|le(z∗(t), v∗(t))− le(x∗s , u
∗

s )| < ϵ/2 (24)
for t ≥ T̃ . For any T > T̃ , we have:I(0, T )− Tle(x∗s , u
∗

s )


=

I(0, T̃ )+ I(T̃ , T )− Tle(x∗s , u
∗

s )


≤

 T̃

0

le(z∗(t), v∗(t))− le(x∗s , u
∗

s )
 dt

+

 T

T̃

le(z∗(t), v∗(t))− le(x∗s , u
∗

s )
 dt

≤ T̃ M̃ + (T − T̃ )ϵ/2 (25)

where M̃ := supt∈[0,T̃ ]

le(z∗(t), v∗(t))− le(x∗s , u
∗
s )

. For any T >

T ∗ = 2T̃ (M̃ − ϵ/2)/ϵ, the following inequality is satisfied:I(0, T )/T − le(x∗s , u
∗

s )
 ≤ (1− T̃/T )ϵ/2+ T̃ M̃/T < ϵ (26)

which proves that the asymptotic average economic cost under the
auxiliary LMPC is le(x∗s , u

∗
s ).

Considering the left hand side of Eq. (21), the limit as T → ∞
may not exist owing to the possible time-varying system operation
under the proposed two-layer LEMPC scheme. Therefore, a lower
bound on the asymptotic average performance under the proposed
LEMPC scheme is considered. Since the limit inferior is equal to the
limit when the limit exists (Amann & Escher, 2005), we obtain:

lim inf
T→∞

1
T

 T

0
le(x(t), u∗(t)) dt

≥ lim inf
T→∞

1
T

 T

0
le(z∗(t), v∗(t)) dt = le(x∗s , u

∗

s ) (27)

which is the desired result of Eq. (19). �

Remark 8. Besides introducing a two-layer structure, the cur-
rent work goes beyond what was presented in Heidarinejad et al.
(2013). In fact, one cannot apply the results of Heidarinejad et al.
(2013) recursively to get the results of the present work as guaran-
tees on closed-loop performance improvement with LEMPC over a
LMPC can only bemade over each (individual) finite time operating
window in Heidarinejad et al. (2013). Using the approach in Hei-
darinejad et al. (2013), one could guarantee improved closed-loop
performance over some operating window τ̂0 to τ̂N̂ and over the
next operating window from τ̂N̂ to τ̂2N̂ . No performance conclu-
sion can be made if one were to consider the performance of the
closed-loop system under the LMPC applied to the system from τ̂0
to τ̂2N̂ compared to the closed-loop performance under the LEMPC
from τ̂0 to τ̂2N̂ because at the beginning of each operating window,
both the auxiliary LMPC and the LEMPC are re-initialized with a
state measurement obtained from the system under LEMPC. How-
ever, the closed-loop system under the auxiliary LMPC may have
evolved to a different state at end of each operating window if the
auxiliary LMPC was applied in a feedback control fashion to the
system.

4. Application to the chemical process example

Consider a three vessel chemical process network consisting of
two non-isothermal continuously stirred tank reactors (CSTRs) in
series followed by a flash separator. In each of the reactors, an ir-
reversible second-order reaction of the form A→ B takes place in
an inert solvent D (A is the reactant and B is the desired product).
The bottom stream of the flash tank is the product stream of the
process network. Part of the overhead vapor stream from the flash
separator is purged from the process, while, the remainder is fully
condensed and recycled back to the first reactor. Each of the ves-
sels have a heating/cooling jacket to supply/remove heat from the
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liquid contents of the vessel. To simplify the notation, the follow-
ing indices are used to refer to each vessel: j = 1 denotes CSTR-1,
j = 2 denotes CSTR-2, and j = 3 denotes SEP-1. The heat rate sup-
plied/removed from the jth vessel is Qj, j = 1, 2, 3. Furthermore,
each reactor is fed with fresh feedstock containing A in the solvent
D with concentration CAj0 where j = 1, 2. Applying first principles
and standard modeling assumption, a ninth-order dynamic model
of the reactor–separator process network can be obtained (neglect-
ing the dynamics of the condenser). The ODEs and process param-
eters are given in Ellis et al. (2014).

There are nine state variables that are used to describe the evo-
lution of the process network which includes vessel temperatures
and vessel concentrations of A and B. The manipulated inputs to
the system are the heat inputs to the three vessels, Q1,Q2, and
Q3, and the concentration of A in the inlet streams, CA10 and CA20:
uT
= [Q1 Q2 Q3 CA10 CA20]. The control objective is to regulate the

process in an economically optimal time-varying fashion to maxi-
mize the average amount of product B in the product stream F3.We
consider that the average amount of reactant material with time is
fixed motivating the need to operate this process network under
EMPC. In addition, supplying/removing heat to/from the vessels is
considered undesirable. To accomplish these economic considera-
tions, the proposed two-layer LEMPC structure is applied and the
upper layer and lower layer LEMPCs are formulated with the fol-
lowing cost function and constraint, respectively:

le(x, u) = F3CB3 − A1Q 2
1 − A2Q 2

2 − A3Q 2
3 (28)

1
tf

 τ̂MN̂

τ̂
(M−1)N̂

(CA10 + CA20) dt = 8.0 kmol m−3 (29)

where CB3 is the concentration of the desired product in the prod-
uct stream and tf = 1.0 h is the operating period length and Ai =

10−6, i = 1, 2, 3 are the penalty weights for using energy. The
value for the heat rate penalty has been chosen to account for the
different numerical range of the heat rate and the first term in the
economic cost. The economically optimal steady-statewith respect
to the economic cost function of Eq. (28) is open-loop asymptoti-
cally stable and is the only steady-state in the operating region of
interest. Therefore, an explicit characterization ofΩρ is not needed
for the LEMPC implementation.

The proposed two-layer LEMPC structure, formulated with the
cost function and reactant material constraint of Eqs. (28)–(29),
respectively, is applied to the reactor–separator chemical process
network. To numerically integrate the dynamic model, the explicit
Euler method is used with an integration step of 1 × 10−3 h. The
prediction horizon and sampling period of the auxiliary LMPC and
upper LEMPC are N̂ = 10 and ∆̂ = 0.1 h, respectively, while,
the lower layer LEMPC is formulated with a prediction horizon of
N = 2 and sampling period ∆ = 0.05 h. To solve the optimization
problems, Ipopt (Wächter & Biegler, 2006) was used and the
simulationswere completed on a desktop PCwith an Intel R⃝ CoreTM
2 Quad 2.66 GHz processor and a Linux operating system.

4.1. Two-layer LEMPC structure performance

In the first set of simulations, the proposed two layer LEMPC
structure with performance-based constraints computed from an
auxiliary LMPC is applied to the reactor–separator process net-
work. Eight closed-loop simulations over a 4.0 h length of oper-
ation were completed. The closed-loop state and input trajectories
of one of the simulations are shown in Figs. 2–3, respectively and
demonstrate time-varying operation. The economic performance
(integral of the economic cost over the length of operation) is com-
pared to the economic performance with the auxiliary LMPC for
each of these simulations. From this comparison, an average of
about 10% benefit with the proposed two-layer LEMPC structure
was realized over operation under the auxiliary LMPC. Addition-
ally, a comparison between the computational time required to
solve the two-layer LEMPC system and that of a one-layer LEMPC
system was completed. The one-layer LEMPC system consists of
the auxiliary LMPC and upper layer LEMPC where the upper layer
LEMPC computes the control actions for the manipulated inputs
of the system. To make the comparison consistent, the one layer
LEMPC is implemented with a prediction horizon of N̂ = 20 and
a sampling period of ∆̂ = 0.05 h. Also, since the auxiliary LMPC
and upper layer LEMPC are sequentially computed, the compu-
tational time at the beginning of each operating window is mea-
sured as the sum of the computational time to solve the auxil-
iary LMPC, the upper layer LEMPC, and the lower layer LEMPC for
the proposed two-layer LEMPC system and the sum of the time to
solve the auxiliary LMPC and the LEMPC for the one-layer LEMPC
system. The one-layer LEMPC achieves slightly better closed-loop
economic performance (less than a 1% improvement) owing to a
smaller sampling period than the upper layer LEMPC in the two-
layer LEMPC structure. However, the computational time required
to solve the one-layer LEMPC structure is significantly greater, and
the proposed two-layer LEMPC structure is able to reduce the com-
putational time by 75% on average.

4.2. Handling disturbances

While the two-layer EMPC has been designed for nominal op-
eration to merge guaranteed finite-time and infinite-time closed-
loop performance over conventional MPC, it may be applied to the
process model in the presence of disturbances, plant/model mis-
match, and other uncertainties with some modifications to im-
prove recursive feasibility of the optimization problems and to
ensure greater robustness of the controller to these uncertainties.
For instance, if the disturbances are relatively small, it may be suf-
ficient to relax the performance-based constraints or treat the per-
formance constraints as soft constraints. If onewere to simply relax
the performance-based constraints (e.g., use a terminal region in-
stead of a point-wise terminal constraint), it is difficult to guaran-
tee recursive feasibility of the optimization problem as is the case
with any type of MPC formulated with terminal constraints. An-
other methodology is to use the performance-based constraints in
the cost function, that is use a cost of the form

le(x, u) =
−α

N

 τk+N

τk

le(x̃(t), u(t)) dt


+β
x̃(τk+N)− x̂∗(τk+N)


Q (30)

which the lower layer LEMPC works to minimize, where α and β
are tuning parameters. This cost function works to optimize the
economic performance while ensuring the predicted evolution is
near the terminal state through the quadratic terminal cost. The re-
sulting lower layer LEMPC has all the same stability and robustness
to bounded disturbances properties as the LEMPC of Heidarine-
jad et al. (2012) (i.e., recursive feasibility and boundedness of the
closed-loop state for all initial states starting in Ωρ). In the pres-
ence of disturbances, we can only guarantee closed-loop stability
in the presence of disturbances and no provable guarantees can be
made on closed-loop performance. However, the closed-loop per-
formance benefit can be evaluated through simulations.

The two-layer LEMPC with the lower layer LEMPC designed
with the cost described above in Eq. (30) and no performance-
based constraints was applied to the example with significant pro-
cess noise added. The noise was modeled as bounded Gaussian
white noise and was introduced additively to each model state
over each sampling period. The closed-loop state and input tra-
jectories are shown in Figs. 4 and 5, respectively. We compare the
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Fig. 2. Closed-loop state trajectories of the reactor–separator process networkwith
the proposed two-layer LEMPC structure.

Fig. 3. Input trajectories of the reactor–separator process network computed by
the two-layer LEMPC structure.

closed-loop systemperformance under the two-layer LEMPC to the
system with the same realization of the process noise under con-
ventional MPC. Specifically, an LMPC is formulated with a predic-
tion horizon of N = 2 and ∆ = 0.05 h which is the same as the
lower layer LEMPC. The closed-loop performance under the two-
layer LEMPC is 2.6% better than that under the LMPC for this par-
ticular realization of the process noise. More simulation results can
be found in Ellis et al. (2014).

5. Conclusion

In this work, guaranteed closed-loop performance under eco-
nomic model predictive control (EMPC) over finite-time and
infinite-time operation of a nonlinear systemwas considered. Ow-
ing to the dependence of prediction horizon length on closed-loop
economic performance with EMPC, a two-layer Lyapunov-based
EMPC was proposed to effectively divide dynamic optimization
and feedback control tasks and thus, ease the computational bur-
den of the lower (feedback) layer LEMPC responsible for pro-
cess control (stability and robustness). In the proposed two-layer
LEMPC structure, performance and terminal constraints are gen-
erated by an auxiliary LMPC and then, imposed on the LEMPC op-
timization problems leading to guaranteed closed-loop economic
performance improvement under LEMPC over the auxiliary LMPC.
Fig. 4. Closed-loop state trajectories of the reactor–separator process networkwith
process noise added with the proposed two-layer LEMPC structure.

Fig. 5. Input trajectories of the reactor–separator process network with process
noise added computed by the two-layer LEMPC structure.

The two-layer LEMPC structure was applied to a chemical process
network to demonstrate the closed-loop stability, performance, ro-
bustness, and computational efficiency properties of the proposed
two-layer EMPC structure.
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