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Economic model predictive control (EMPC) is a feedback control method that dictates a potentially dynamic (time-vary-
ing) operating policy to optimize the process economics. The objective function used in the EMPC system may be a gen-
eral nonlinear function that describes the process/system economics. As this function is not derived on the sole basis of
classical control considerations (stabilization, tracking, and optimal control action calculation) but rather on the basis
of economics, selecting the appropriate control configuration, and quantifying the influence of a given input on an eco-
nomic cost is an important task for the proper design and computational efficiency of an EMPC scheme. Owing to these
considerations, an input selection methodology for EMPC is proposed which utilizes the relative degree and the sensitiv-
ity of the economic cost with respect to an input to identify and select stabilizing manipulated inputs with the most
dynamic and steady-state influence on the economic cost function to be assigned to EMPC. Other considerations for
input selection for EMPC are also discussed and integrated into a proposed input selection methodology for EMPC.
The control configuration selection method for EMPC is demonstrated using a chemical process example. VC 2014
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Introduction

Control structure design (i.e., the selection of manipu-
lated, controlled, and measured variables) has been the sub-
ject of extensive research within the process control
community for many years resulting in many methods for
input–output loop pairing and control configuration selec-
tion (see, for instance, Refs. 1–6). For linear systems, an
important early result was the relative gain array (RGA)
which is commonly used for input–output loop pairing,7

particularly in the context of proportional-integral-
derivative (PID) control. Several extensions and variations
of the RGA have since been proposed like the extension of
the RGA to nonsquare linear systems (i.e., systems with a
different number of inputs than the number of outputs)8 and
the various extensions of RGA to nonlinear systems.9,10

Two metrics are often used to evaluate conventional control
structure configurations (e.g., control structures consisting
of decentralized PID control loops): the open-loop and/or
closed-loop process economics and controllability analy-

sis.11–14 Another potentially important factor in control con-
figuration evaluation may be proper controlled variable
(CV) selection. In particular, Skogestad15 used and mathe-
matically formalized the concept of self-optimizing control,
originally proposed by Luyben in 1988,16 which is a meth-
odology for determining CVs such that when the selected
CVs are maintained at their desired set points, nearly (eco-
nomically) optimal steady-state operation results with an
acceptable loss in the presence of disturbances.15,17,18 Many
of the proposed control structure selection methodologies
use optimization-based techniques especially mixed-integer
optimization problems.13,14,19,20 One such example is the
so-called back-off methodology which consists of solving a
mixed-integer optimization program using linearized
steady-state process models.14,19,21

Most of the control structure selection methodologies have
been developed using linear steady-state or dynamic process
models with the assumption that the system is to be operated
at steady-state (i.e., the main control objective is to force the
system to the desired operating steady-state and maintain
operation at this state in the presence of disturbances).
Within the context of dynamic operation of nonlinear sys-
tems, fewer results and methodologies on control structure
selection exist that explicitly consider the process dynamics
and nonlinearities. One simple and potentially effective
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method for evaluating control configurations of multivariable
nonlinear systems is to use a relative degree analysis which
may be useful as the relative degree is essentially a measure
of the directness of the effect of an input on an output or the
physical closeness between an input and an output.22

One control scheme that may operate the system in a pos-
sibly dynamic fashion (i.e., forced dynamic operation) is
economic model predictive control (EMPC) which is a non-
linear predictive control scheme that optimizes an objective
function describing the process economics23–31 (see also Ref.
32 for an overview of recent results on EMPC). In the case
of tracking model predictive control (MPC) formulated with
a quadratic cost function (i.e., xTQcx1uTRcu where Qc and
Rc are positive definite matrices), the weighting matrices Qc

and Rc are typically tuned such that all the inputs have a
direct effect on the cost function. For EMPC, however, not
all of the possible manipulated inputs must have a direct
effect on the economic cost of the EMPC as it is not derived
from traditional control objectives. As a consequence, con-
trol configuration selection for EMPC (i.e., which inputs to
manipulate for a given EMPC cost) is an open and relevant
problem. Since EMPC may dictate a dynamic operating pol-
icy, the system may be operated in a larger region of opera-
tion (i.e., the effect of nonlinearities in the process may
become significant) compared to traditional/conventional
control schemes which force the system to operate in a small
neighborhood of the steady-state. Thus, traditional methods
that evaluate control structures on the basis of steady-state
operation using linear or linearized models may not provide
sufficient results within the context of EMPC. Furthermore,
owing to the fact that EMPC may use a general nonlinear
objective function, solving EMPC is generally more compu-
tationally challenging compared to tracking MPC. Therefore,
proper input selection for EMPC may also have implications
in the computational burden of the EMPC optimization prob-
lem as the optimization may be poorly conditioned when the
economic cost has a weak dependence on some of the
manipulated inputs (i.e., the decision variables of the optimi-
zation problem).

Owing to the aforementioned considerations, a methodol-
ogy for control configuration selection for EMPC is pro-
posed. Treating the economic cost function as the output, a
relative degree analysis is completed to determine which
inputs have the most direct dynamic effect on the economic
cost. The choice of inputs that are controlled by EMPC are
the inputs that have a low relative degree with respect to the
cost function (typically, one or two). The remaining possible
inputs are partitioned to the set of inputs controlled by
EMPC and the set of remaining inputs that are not controlled
by EMPC on the basis of a sensitivity analysis and a relative
degree analysis of any known disturbances. Furthermore, the
set of inputs selected for EMPC is ensured to be a stabilizing
one. The remaining inputs not controlled by EMPC may be
held constant if the control configuration selected has a suffi-
cient degree of robustness or they may be manipulated
through other control systems (i.e., outside of EMPC). An
evaluation and analysis of the control configuration selection
methodology is provided using a chemical process example.

Preliminaries

NOTATION. The norms |�| and j � jQ denote the Euclidean
norm of a vector and the square of the weighted Euclidean

norm of a vector, where Q is a positive definite matrix (i.e.,
jxjQ5xTQx), respectively. The symbol S(D, N) denotes the
family of piecewise constant, right-continuous functions with
period D over the time interval ND (i.e., uðtÞ 2 SðD;NÞ
means that u(t) 5 ui for all t 2 ½si; si11Þ for i50; 1; . . . ;N21
where ui is a constant, si 5 t0 1 iD, and t0 is the initial
time). The symbol Xq denotes a level set of a function
V(x) (i.e., Xq : 5fx 2 Rnx : VðxÞ � qg). A function ai : ½0; aÞ
! ½0;1Þ is said to be of class K if it is continuous, strictly
increasing, and a(0) 5 0. The notation Lfh(x) denotes the
Lie derivative of the scalar field h(x) along the vector field
f(x), that is

Lf hðxÞ5
@hðxÞ
@x

f ðxÞ

It is also important to recall the following two types of Lie
derivatives

LgLf hðxÞ5
@ðLf hÞ
@x

gðxÞ

Lk
f hðxÞ5Lf Lk21

f hðxÞ
� �

5
@ðLk21

f hÞ
@x

f ðxÞ

where g(x) is a vector field.

Class of nonlinear systems

The class of input-affine nonlinear systems considered
have the following state-space form

_xðtÞ5f ðxðtÞÞ1
Xnu

j51

gjðxðtÞÞujðtÞ1
Xnw

i51

wiðxðtÞÞdiðtÞ (1)

where x 2 Rnx is the state vector, u 2 U � Rnu is the input
vector consisting of all possible manipulated inputs, and d
2 W � Rnw is the disturbance vector. The input and disturb-
ance vectors are bounded in the following sets

U5fu 2 Rnu : umin � u � umax g (2)

W5fd 2 Rnw :jdj � wbg (3)

where the symbol � denotes a component-wise inequality,
umin ; umax 2 Rnu denote the minimum and maximum allow-
able control actions, and wb bounds the norm of the disturb-
ance vector. The vector functions f, gj for j 5 1, . . ., nu, and
wi for i 5 1, . . ., nw are sufficiently smooth vector functions
on Rnx . The existence of a time-invariant economic cost
(scalar) function given by le(x,u), which is a sufficiently
smooth function of its arguments, is assumed for the system
of Eq. 1. For reasons explained below, we assume the eco-
nomic cost function has the following form

leðx; uÞ5le;xðxÞ1le;uðuÞ (4)

This assumption may be relaxed which will be also dis-
cussed below. Additionally, economic constraints are
imposed and are assumed to have the following formðtf

t0

geðxðtÞ; uðtÞÞdt � 0 (5)

where x(t) is the solution to Eq. 1 with a specified input tra-
jectory u(t) over the time t 5 t0 to t 5 tf. Examples of con-
straints that have the form of Eq. 5 include constraints that
limit the average amount of reactant material that can be fed
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to a reactor over the operation period t0 to tf and constraints
on the average production rate of the desired product.

The state vector is assumed to be measured synchronously
at sampling times sk 5 t0 1 kD, k 5 0,1,. . . where t0 is the
initial time and D is the sampling period. EMPC computes
sample-and-hold (i.e., zeroth-order hold) control actions with
a sampling period D for the continuous-time system of Eq.
1. Thus, the closed-loop system of Eq. 1 under EMPC forms
a closed-loop sampled-data system with control actions

uðtÞ5jðxðskÞÞ for t 2 ½sk; sk11Þ (6)

where j(x(sk)) is the implicit control law resulting from the
EMPC scheme which is described below.

Economic model predictive control

EMPC schemes are MPC schemes formulated with an
objective function that reflects the process/system economics.
The optimization problem that defines the EMPC has the fol-
lowing form

max
u2SðD;NÞ

ðsN

0

leð~xðtÞ; uðtÞÞdt (7a)

s:t: _~xðtÞ5f ð~xðtÞÞ1
Xnu

j51

gjð~xðtÞÞujðtÞ (7b)

~xð0Þ5xðskÞ (7c)

uðtÞ 2 U; 8t 2 ½0; sNÞ (7d)

~xðtÞ 2 X (7e)ðsN

0

geð~xðtÞ; uðtÞÞdt � 0 (7f)

where the decision variable u(t) of the optimization problem
is the piecewise constant input trajectory over the finite-time
prediction horizon. The notation ~xðtÞ denotes the predicted
state trajectory of the nominal closed-loop system (Eq. 1
with dðtÞ � 0) with the input trajectory computed by the
EMPC.

In the optimization problem of Eq. 7, the objective func-
tion of Eq. 7a represents the operating profit (cost) of the pro-
cess/system of Eq. 1 which the EMPC maximizes
(minimizes) over the prediction horizon through dynamic
operation. The nominal model of the process/system is used
to predict the future behavior of the process/system (i.e., the
constraint of Eq. 7b). The nominal model is initialized with a
state measurement x(sk) obtained at the current sampling time
(Eq. 7c). The input constraint of Eq. 7d ensures that the com-
puted control actions be within the set of admissible inputs
U. Owing to the finite length prediction horizon of the
EMPC, stability constraints are typically used in the formula-
tion of the EMPC to ensure a form of stability of the closed-
loop system. The stability constraints are expressed by Eq. 7e
which forces the solution ~xðtÞ to the model of Eq. 7b under
the input trajectory computed by the EMPC be in some set.
Various constraints have been proposed in the literature
including various terminal region constraints24,25 and stability
constraints designed via Lyapunov-based control techniques27

(see, for instance, Ref. 32 for an overview of the various
types of stability constraints). Depending on the type of sta-
bility constraint and/or to improve closed-loop performance
under the EMPC, a terminal penalty (i.e., 2VTð~xðsNÞÞ) may
be added to the objective function of the EMPC.24 Besides
the economic objective function, another key difference that

separates EMPC from traditional control structures (e.g.,
tracking MPC) is the use of economics-based constraints (Eq.
7f) directly imposed on the computed input trajectory.

The EMPC is implemented in a receding horizon fashion.
At any sampling instance sk, the EMPC receives a state mea-
surement x(sk) and solves the optimization problem of Eq. 7.
The optimal input trajectory computed over the prediction
horizon of EMPC is denoted as u�ðtjskÞ and is defined for
t 2 ½0; sNÞ. The control action computed for the first sam-
pling period is sent to the control actuators to be applied
over the sampling period sk to sk115sk1D. The input trajec-
tory applied to the system of Eq. 1 under EMPC is given by

uðtÞ5u�ð0jskÞ (8)

for t 2 ½sk; sk11Þ; k50; 1; . . .
REMARK 1. Rigorous stability proofs and algorithms for

guaranteed performance under EMPC have been pro-
posed,23–29,31 but this is not the focus of this article. Further-
more, the proposed input selection methodology may be
applied to any EMPC formulation or algorithm.

REMARK 2. The objective function of Eq. 7a is often
referred to as the economic cost function to maintain consis-
tency with tracking MPC, where the quadratic cost function
is typically referred to as the performance index or cost.
However, the economic cost function could represent an
operating profit (as is the case in this work) or operating
cost depending on the application and the economic per-
formance metric of the particular application.

Input Selection for EMPC

In this section, the input selection methodology for EMPC
is presented. In the next four subsections, the analysis techni-
ques that are used in the methodology are described which
include: determining the relative degree of the economic
cost with respect to the inputs, computing the dynamic sensi-
tivity of the economic cost, computing the steady-state sensi-
tivity of the economic cost, and imposing a stabilizability
requirement on the final input selection for EMPC. The last
subsection summarizes the input selection methodology.

The next three subsections propose analysis techniques to
quantify the sensitivity of the economic cost with respect to
inputs. To this end, it is important to point out the difference
between EMPC and MPC. Recall, quadratic cost functions
used in tracking MPC have the formðsN

0

j~xðtÞjQc
1juðtÞjRc

� �
dt (9)

where Qc and Rc are positive definite weighting matrices and
thus, the cost function is sensitive to all the inputs, that is,
the decision variables of a tracking MPC optimization prob-
lem (i.e., the input trajectory) have a direct effect on the sec-
ond quadratic term of the cost function as well as an indirect
impact on the first term through the dynamic model. Con-
versely, EMPC is formulated with the economic cost func-
tion le(x,u). As the economic cost function is typically
derived from the process economics, it may not be sensitive
to all of the available inputs.

Several issues may arise when the economic cost is not
sensitive to some of the inputs. First, the optimization prob-
lem may be more difficult to solve because, for instance, the
optimization problem may be ill-conditioned if an input has
little effect (i.e., low sensitivity) on the economic cost
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function (see, for example, Ref. 33 for challenges arising in
the context of ill-conditioned optimization problems). Sec-
ond, the effect of plant-model mismatch may be significant
when the economic cost is not as sensitive to an input. For
instance, large input changes are needed to influence the cost
for inputs with a modeled weak dependence. This makes the
optimal solution sensitive to plant-model mismatch (the
actual sensitivity of the economic cost with respect to the
input may be significantly greater/lower). Third, if an input
does not influence the economic cost function much, it may
be desirable to decouple this input from the EMPC problem
to reduce the computational burden required for solving the
optimization problem on-line by either fixing the input to its
nominal value or economically optimal steady-state value or
by computing its control action through other control sys-
tems (e.g., proportional-integral control, or tracking MPC).

Relative degree of cost to inputs

Motivated by the fact that EMPC optimizes the process
dynamics with respect to the economic cost which may lead
to dynamic operation, one method for carrying out input
selection for EMPC is to consider the time evolution of the
economic cost along the process dynamics. Then, select the
inputs that have more direct impact on the time evolution of
the economic cost. In other words, consider the time deriva-
tive of the economic cost function

dleðx; uÞ
dt

5
@le;x
@x

dx

dt
1
@le;u
@u

du

dt
(10)

where the elements in the term @le;u=@u are non-zero for any
inputs that explicitly appear in the economic cost. As the
input trajectory is a piecewise constant function, the second
term of the right-hand side of Eq. 10 is neglected (with this
analysis these inputs should be placed on EMPC since they
explicitly appear in the economic cost).

The vector field of Eq. 1 with dðtÞ � 0 can be substituted
into Eq. 10 which yields

@le;xðxÞ
@x

f ðxÞ1
Xnu

j51

gjðxÞuj

 !
5 : Lf le;x1

Xnu

j51

Lgj
le;xujðtÞ (11)

where Lfle,x(x) and Lgj
le,x(x) denote the Lie derivatives of le,x

along vector fields f(x) and gj(x), respectively. If
Lgj

le;xðxÞ 6� 0, the jth input does not have a direct effect on
economic cost (in terms of the first derivative). Due to the
coupled nature of the dynamics, the jth input may still influ-
ence the economic cost through higher-order derivatives.
Therefore, we define the relative degree or relative order rj

of the economic cost with respect to the jth input as the
smallest positive integer that satisfies

Lgj
Lk21

f le;xðxÞ � 0; k51; 2; . . . ; rj21;

Lgj
L

rj21

f le;xðxÞ 6� 0
(12)

or rj51 if no such integer exists. By convention, the relative
degree of the economic cost with respect to any input with
@le;u=@u 6� 0 is zero. Here, the relative degree is similar to
standard input–output analysis for nonlinear systems34–36 where
the economic cost function is treated as an output. It is impor-
tant to point out that the scalar fields le;xðxÞ; Lf le;xðxÞ; . . . ;
L

rj21

f le;x ðxÞ are linearly independent.35 As Rnx can only
have nx linearly independent elements, rj� nx if rj is finite.
Additionally, for disturbances that are explicitly included in

the process model, one may be able to compute the relative
degree of the economic cost with respect to these disturban-
ces. This may be helpful in the input selection methodology
for EMPC (see the “Input Selection Methodology” subsec-
tion later).

Since the relative degree is essentially a measure of how
fast the input affects the process economics, the relative
degree analysis allows for some intuition of how manipulat-
ing the jth input affects the time evolution of the economic
cost. This is of particular interest when EMPC dictates a
time-varying or dynamic operating policy (i.e., off steady-
state operation). Using the relative degree as a basis, a sys-
tematic method for selecting the manipulated inputs for
which EMPC computes control actions can be developed
while explicitly accounting for the dynamics of the system.
If the relative degree of the jth input is large (i.e., the jth
input influences high-order derivatives with respect to each
input; perhaps, third-order or higher time derivatives of the
economic cost), using EMPC to compute control actions for
the jth input may not be effective with respect to the closed-
loop economic performance and/or computationally efficient.

REMARK 3. It may be possible to consider more general
cost functions other than the ones of the assumed form (i.e.,
leðx; uÞ5le;xðxÞ1le;uðuÞ). In this case, for any inputs where
@le=@uj; j51; . . . ; nu is non-zero (i.e., any inputs explicitly
appearing in the economic cost function), these inputs have a
direct effect on the economic cost. One could still determine
the relative degree of the other inputs by taking the inputs
appearing in the cost function as fixed parameters to deter-
mine the relative degree. It is important to note that one type
of cost function that possesses the assumed form is a quad-
ratic cost function. The economic cost functions in the exam-
ples considered in this work all have the assumed form. Also,
the relative degree analysis could be applied to a time-
varying cost function (i.e., leðt; x; uÞ5le;xðt; xÞ1le;uðt; uÞ which
is an explicit function of the time) when the cost function is a
continuous or piecewise continuous function of time by gener-
alizing the definition of Lie derivative to time-varying vector
fields. However, other issues arise when using a time-varying
cost function and as a result, using an EMPC scheme that
explicitly accounts for this time variation may be important to
achieve the best possible closed-loop performance under
EMPC; see, for instance, Ref. 37 for details on this point.

Connection Between Relative Degree and a Directed
Graph. For large-scale process networks, analytical computa-
tion of the relative degree may become tedious. However, one
may use the directed graph method for determining the relative
degree.22,38 This methodology has the advantage that only struc-
tural information of the process model is required. In the context
of this work, the output is considered to be the economic cost.
The edges are constructed using the following modified rules
based on Ref. 22 to treat the economic cost as the output:

1. If @fiðxÞ=@xk 6� 0 for i 5 1, . . ., nx and k 5 1,. . .,nx, then
there is an edge from xk to xi.

2. If gj;kðxÞ 6� 0 for k 5 1, . . ., nx and j 5 1,. . .,nu, then
there is an edge from uj to xk.

3. If @leðx; uÞ=@xi 6� 0 for i 5 1, . . ., nx, then there is an
edge from xi to le.

4. If @leðx; uÞ=@uj 6� 0 for j 5 1, . . ., nu, then there is an
edge from uj to le.

where fk(x) and gj,k(x) denote the kth elements of the vector
fields f(x) and gj(x), respectively. If there are known
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disturbances, the disturbance may be treated as an input in
the above directed graph rules.

Utilizing the first main result from Ref. 22, a connection
between the relative degree as defined in Eq. 12 and the
directed graph constructed with the rules presented above can
be made. Defining the length of shortest path connecting the
jth input to the economic cost (i.e., the smallest number of
edges connecting the jth input to the economic cost) as Lj, the
relative degree of the jth input with respect to the economic
cost is rj5Lj21. It is important to point out that this works
for many cases. However, there are cases where this does not
work like cases where there are potential cancellations (see
Ref. 22 for more details on this point). This gives a rather
intuitive understanding of how the inputs affect the economic
cost. Furthermore, it requires only limited structural under-
standing of the process dynamics (i.e., not detailed process
models) during the input selection phase of the control struc-
ture design. For instance, consider the following example.

EXAMPLE 1. Consider the following input-affine nonlinear
system

_x15f1ðx2; x3Þ1g1;1ðxÞu1

_x25f2ðx1; x2Þ

_x35f3ðx1; x3Þ1g2;3ðxÞu2

(13)

where the vector fields are f TðxÞ5½f1ðx2; x3Þ f2ðx1; x2Þ
f3ðx1; x3Þ�; gT

1 ðxÞ5½g1;1ðxÞ 0 0�, and gT
2 ðxÞ5½0 0 g2;3ðxÞ� and

the economic cost function has the following form

leðx; uÞ : 5l̂e;xðx2Þ1l̂e;uðu2Þ (14)

The relative degree of the economic cost with respect to u2

is defined to be 0 as the economic cost is an explicit func-
tion of this input. For the input u1, the Lie derivative of
le(x,u) along the vector field g1(x) is

Lg1
le5

@le

@x
g1ðxÞ � 0 (15)

Since the first Lie derivative is zero, higher order Lie deriva-
tives are computed. The next Lie derivative is

Lg1
Lf le5

@

@x1

@le
@x2

f2ðx1; x2Þ
� �

g11ðxÞ 6� 0 (16)

From this analysis, the relative degree of the economic cost
function with respect to the input u1 is 2.

Applying the construction rules for the nodes and edges,
the directed graph for the system of Eq. 13 is displayed in
Figure 1. From the directed graph, one can easily determine
the relative degree. The shortest path between the input u1

and the economic cost is 3. Therefore, the relative degree of
the economic cost with respect to u1 is 2. Similarly, the short-
est path from the input u2 to the economic cost is 1, so, the
relative degree is 0. The relative degrees computed from the
directed graph agree with the ones computed analytically.

Dynamic sensitivity of the economic cost

While the relative degree is a readily computable metric
that quantifies the directness of the effect of an input on the
economic cost, it is unable to capture the magnitude of the
interaction between an input and the economic cost.22 One
cannot distinguish the degree of the sensitivity of the eco-
nomic cost with respect to inputs of the same relative degree.
In linear systems, the steady-state gain on the economic cost
with respect to an input is one metric that captures such a sen-
sitivity. However, the steady-state gain is state dependent for

nonlinear systems in general. Therefore, in this subsection, an
analysis technique to quantify the dynamic sensitivity of the
economic cost with respect to an input is proposed.

For dynamic sensitivity analysis, we consider the inputs
with the same relative degree. Let û 2 Rnr be a vector con-
taining all inputs with relative degree r. The inputs with rela-
tive degree not equal to r are taken as constants in this
analysis set to their economically optimal value and are
incorporated in the f(x) term of the model of Eq. 1. To avoid
potential scaling differences of inputs which may potentially
skew the sensitivity analysis, all inputs contained in the vec-
tor û are scaled so that ûj 2 ½21; 1� for j 5 1, . . ., nr. The
auxiliary scalar output variable y(t) is defined as the state-
dependent part of the economic cost y(t) 5 le,x(x(t)). Consider
a Taylor series expansion of y(t) at a time t*

yðtÞ5
X1
k50

ðt2t�Þk

k!

dkyðt�Þ
dtk

(17)

The kth derivative of y for k50; 1; . . . ; r21 is

dkyðt�Þ
dtk

5Lk
f le;xðxðt�ÞÞ (18)

and the rth derivative of y is

dryðt�Þ
dtr

5Lr
f le;xðxðt�ÞÞ1

Xnr

j51

Lgj
Lr21

f le;xðxðt�ÞÞûjðt�Þ (19)

Thus, the Taylor series expansion can be written as

yðtÞ5
Xr

k50

ðt2t�Þk

k!
Lk

f le;xðxðt�ÞÞ

1
ðt2t�Þr

r!

Xnr

j51

Lgj
Lr21

f le;xðxðt�ÞÞûjðt�Þ

1
X1

k5r11

dkyðt�Þ
dtk

ðt2t�Þk

k!

(20)

The high-order (r 1 1 order and higher) derivatives of y
are neglected to obtain an approximation of y(t)

Figure 1. Directed graph representing the system of
Eq. 13.
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yðtÞ 	
Xr

k50

ðt2t�Þk

k!
Lk

f le;xðxðt�ÞÞ

1
ðt2t�Þr

r!

Xnr

j51

Lgj
Lr21

f le;xðxðt�ÞÞûjðt�Þ (21)

Consider the difference of the output DyðtÞ5y1ðtÞ2y2ðtÞ
with respect to a change Dûjðt�Þ5ûj;1ðt�Þ2ûj;2ðt�Þ and all
other inputs constant. From Eq. 21, the following can be
derived

Dy

Duj

����
Duk ;k 6¼j

5
ðt2t�Þr

r!
Lgj

Lr21
f le;xðxðt�ÞÞ (22)

Therefore, the nr-dimensional vector Sr is defined with
elements

Sr;j : 5Lgj
Lr21

f le;xðxðt�ÞÞ (23)

for j 5 1, . . ., nr. The vector Sr contains elements that essen-
tially quantify the dynamic sensitivity of inputs with the
same relative degree on the economic cost. To use the sensi-
tivities in a comparison, they are normalized with respect to
the Euclidean norm

�Sr;j : 5
S2

r;j

jSrj2
5

S2
r;jXnr

j51
S2

r;j

� � (24)

and �Sr;j 2 ½0; 1�. The economic cost is more sensitive to
inputs whose corresponding �Sr;j values are close to one com-
pared to inputs with corresponding �Sr;j values close to zero.
Thus, the dynamic sensitivity analysis ranks inputs with the
same relative degree on the basis of their dynamic sensitiv-
ities. Also, �Sr;j may be computed for various points in state-
space to capture the dynamic sensitivities (i.e., sensitivity of
the economic cost with respect to inputs for states off
steady-state).

EXAMPLE 2. Consider a nonisothermal continuous stirred
tank reactor (CSTR), where an elementary second-order
reaction of the form A! B occurs. The states of the CSTR
are the reactor temperature x1 and the concentration of A in
the reactor which is denoted as x2 (i.e., the state vector is
xT5½x1 x2�). The evolution of the CSTR system is described
by the following ordinary differential equations in dimen-
sionless form

dx1

ds
5x102x12b1e21=x1 x2

21b21b3u1 (25a)

dx2

ds
52x22b4e21=x1 x2

21b51u2 (25b)

where the process parameters are b1521:733105;b251:44
3 1023;b351:4431023; b455:923106, and b5 5 1.14. The
CSTR has two candidate inputs: the heat rate u1 supplied to
the reactor and the inlet concentration of species A to the
reactor u2. Both inputs have been scaled so that uj 2 ½21; 1�
for j 5 1, 2. The production rate of B corresponds to the
dominant factor in the operating profit of the CSTR. Thus,
the economic cost function is

leðx; uÞ5e21=x1 x2
2 (26)

The relative degree of the economic cost with respect to
both inputs is 1, so the relative degree analysis would not be
able to discriminate between the importance of controlling
each of the inputs with EMPC. The Lie derivatives of le;xðxÞ

5leðx; uÞ with respect to the vector fields g1ðxÞ5½b3 0�T and
g2ðxÞ5½0 1�T are

Lg1
le;xðxÞ5

b3

x2
1

e21=x1 x2
2 (27)

Lg2
le;xðxÞ52e21=x1 x2 (28)

From the Lie derivatives, the dynamic sensitivities can be
computed. For simplicity of presentation, the Lie derivatives
are evaluated at the economically optimal steady-state x�1s5

0:08 and x�2s50:21 and the normalized dynamic sensitivity
vector for the inputs with relative degree 1 is

�S15 0:0 1:0½ � (29)

This analysis suggests that the input u2 has a more substan-
tial dynamic effect compared to the input u1. In terms of
input selection for EMPC, it would be more desirable in
terms of the dynamic sensitivity analysis to control the input
u2 compared to the input u1. In fact, it has been demon-
strated that periodic switching of the inlet concentration
achieves greater production rates compared to a constant
inlet concentration equal to the time-average inlet concentra-
tion of the periodic switching policy (e.g., Ref. 32). Since
the reaction rate is concave with respect to the temperature,
the maximum production rate is achieved by supplying the
maximum allowable heat rate to the reactor (i.e., little bene-
fit with respect to the economic cost is achieved when the
heat rate is controlled by EMPC under nominal operation).

Steady-state sensitivities of the economic cost

From the dynamic sensitivity analysis, the inputs with the
same relative degree can be ranked on the basis of the
dynamic sensitivity of the economic cost. However, this
ranking is made with respect to other inputs with the same
relative degree (i.e., the dynamic sensitivity vector �Sr is nor-
malized with the sensitivity of the other inputs). Therefore, a
procedure is needed to identify if the interaction between an
input and the economic cost is significant with respect to all
the other inputs. To accomplish this, we propose to use a
steady-state sensitivity.

The input vector is scaled so that uj 2 ½21; 1� for j51; . . . ;
nu to remove any scaling differences between the inputs. A
steady-state of the system of Eq. 1, which is denoted as xs,
with its corresponding steady-state input, which is denoted as
us, satisfies the following algebraic equation

f ðxsÞ1
Xnu

j51

gjðxsÞus;j50 (30)

For a given steady-state input, the corresponding steady-
state can be computed, and thus, we can write: xs5�f ðusÞ
where �f : Rnu ! Rnx maps a given steady-state input to a cor-
responding steady-state. With xs5�f ðusÞ, the state dependence
on the steady-state economic cost can be removed: leðxs;
usÞ5leð�f ðusÞ; usÞ � �leðusÞ. The steady-state sensitivity on the
economic cost to the jth input is determined numerically by

@�le

@us;j
	 1

2d
½ð�leðus; 1; . . . ; us;j 2 1; us; j1d; us; j11; . . . ; us; nu

Þ

2�leðus; 1; . . . ; us;j 2 1; us; j2d; us; j11; . . . ; us; nu
Þ�

(31)

where d> 0 is a small perturbation term. Similar to the
dynamic sensitivity analysis, the steady-state sensitivity is
normalized with respect to the other inputs
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� �2 Xnu

j51

@�le

@us;j

� �2
 !21

(32)

where Ŝj will be approximately one for any inputs with a
large steady-state sensitivity on the economic cost and will
be approximately zero for any inputs with a small steady-
state sensitivity on the economic cost.

Stabilizability of control configurations

The aforementioned analysis techniques identify the
inputs that influence the economic cost function, but they
do not explicitly consider control considerations like con-
trollability and stabilizability. Before a final input selection
for EMPC can be made, a verification of such control con-
siderations must be completed. Below, one stabilizability
assumption is given which is verifiable for nonlinear sys-
tems of the form of Eq. 1. If this assumption is satisfied, a
specific formulation of EMPC may be applied to the
closed-loop system of Eq. 1 and the closed-loop system
will have guaranteed stability properties. Other EMPC for-
mulations that require other types of controllability/stabiliz-
ability assumptions (e.g., weak controllability) could be
used instead of the assumption and the EMPC formulation
provided below.

Lyapunov-Based EMPC. Without loss of generality, the
origin of the system of Eq. 1 is assumed to be the steady-
state of the unforced system (i.e., f(0) 5 0 with uðtÞ � 0 and
dðtÞ � 0). The following assumption is placed on the system
of Eq. 1 which is essentially a stabilizability assumption for
nonlinear systems.

ASSUMPTION. (Existence of a Lyapunov-based Controller).
There exists a Lyapunov-based controller u5kðxÞ 2 U that
renders the origin of the nominal closed-loop system of Eq.
1 under k(x) asymptotically stable. This implies that there
exists a continuously differentiable Lyapunov function
V(x)36,39 such that the following holds

a1ðjxjÞ � VðxÞ � a2ðjxjÞ (33a)

@VðxÞ
@x

f ðxÞ1
Xnu

j50

gjðxÞkðxÞ
 !

� 2a3ðjxjÞ (33b)

���� @VðxÞ
@x

���� � a4ðjxjÞ (33c)

for x 2 D � Rnx where D is an open neighborhood of the
origin where the functions ai : ½0; aÞ ! ½0;1Þ, i51; 2; 3;
4 are class K functions.

It is important to point out that in Assumption 1 the
controller k(x) is implemented in a continuous fashion.
However, when the controller k(x) is implemented in a
sample-and-hold fashion with a sufficiently small sam-
pling period, the origin of the closed-loop system is ren-
dered practically stable (see, for instance, Ref. 40 for
details on this point). The stability region under the
Lyapunov-based controller is defined as Xq � D which is
a level set of V(x) where the time-derivative of the Lya-
punov function is negative.

Taking advantage of the explicit Lyapunov-based con-
troller and its corresponding stability region Xq, the
Lyapunov-based economic model predictive control
(LEMPC) scheme is characterized by the following opti-
mization problem

max
u2SðD;NÞ

ðsN

0

leð~xðtÞ; uðtÞÞdt (34a)

s:t: _~xðtÞ5f ð~xðtÞÞ1
Xnu

j50

gjð~xðtÞÞujðtÞ (34b)

~xð0Þ5xðskÞ (34c)

uðtÞ 2 U;8t 2 ½0; sNÞ (34d)

Vð~xðtÞÞ � ~q;8t 2 ½0; sNÞ

if VðxðtkÞÞ < ~q
(34e)

@V

@x
f ðxðtkÞÞ1

Xnu

j50

gjðxðtkÞÞujðtkÞ
 !

� @V

@x
f ðxðtkÞÞ1

Xnu

j50

gjðxðtkÞÞkjðxðtkÞÞ
 !

if VðxðtkÞÞ 
 ~q

(34f)

where the LEMPC is a two-mode control strategy with the
two modes defined by the Lyapunov-based constraints of
Eqs. 34e and 34f.

The design procedure of LEMPC is as follows: (1) an
explicit stabilizing controller k(x) is designed for the system
of Eq. 1, (2) a Lyapunov function is derived for the closed-
loop system under the controller k(x), and (3) the stability
region Xq of the closed-loop system is estimated by taking it
to be the (largest) level set of the Lyapunov function such
that the time-derivative of the Lyapunov function along the
closed-loop state trajectory is negative. For any state starting
in Xq, the existence of an input trajectory that maintains the
closed-loop state trajectory in Xq follows owing to the con-
struction of Xq. Therefore, one can take advantage of this
explicitly defined set in the design of an LEMPC scheme.
Namely, the two Lyapunov-based constraints are derived to
allow the LEMPC to dynamically operate the system while
maintaining operation in Xq. To accomplish this objective, a
subset of Xq is defined which is denoted as X~q where
~q � q. For any initial state xðtkÞ 2 X~q , the LEMPC operates
in mode 1 operation which enforces that the predicted state
trajectory be contained in X~q . For any initial state
xðtkÞ 62 X~q , the LEMPC operates in mode 2 to force the state
into X~q (i.e., the constraint of Eq. 34f ensures that the time-
derivative of the Lyapunov function of the LEMPC is less
than the time-derivative of the Lyapunov function under the
Lyapunov-based controller). Under the LEMPC, bounded-
ness of the closed-loop state in Xq is guaranteed for t
 t0
when xðt0Þ 2 Xq. The maximum size of X~q depends on the
properties of a particular system (for more details on the lat-
ter point and a rigorous stability analysis of LEMPC, see
Ref. 27).

Input selection methodology

The description of the input selection methodology is
given in this subsection which is summarized by the flow-
chart of Figure 2. All the possible manipulated inputs to the
system of Eq. 1 are candidate manipulated inputs whose con-
trol action may be computed by EMPC. For the remainder
of this section, an input on EMPC will refer to an input
whose control action is computed by EMPC and an input
not on EMPC will refer to an input, that is, fixed or whose
control action is computed through another controller. For
the latter case, explicit design of an integrated EMPC with
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another controller to compute control actions for the inputs
not on EMPC is beyond the scope of the article and thus,
only the case where the inputs not on EMPC are fixed to a
constant value will be considered in the “EMPC Input Selec-
tion for a Chemical Process Example” section below.

The input selection methodology for EMPC is as follows
(Figure 2): the relative degree of the economic cost with
respect to each candidate input is computed. Any input with an
infinite overall relative degree should not be placed on EMPC
as these inputs have no influence on the process economics.
These inputs can be set to any arbitrary value without adversely
affecting the closed-loop economic performance. For the
remaining inputs, the inputs with a low relative degree should
be on EMPC. Typically, inputs with relative degree 2 or less
should be placed on EMPC unless identified otherwise through
the sensitivity analysis. When the economic cost function is
associated with the outlet product stream of a process network
(e.g., the economic cost is the amount of desired product leav-
ing the process), it may be necessary to include more inputs
with relative degree greater than 2 owing to closed-loop per-
formance, stability, and robustness considerations.

Several factors may influence the decision on which of the
remaining inputs (i.e., inputs with relative degree three or
higher) should be on EMPC and to confirm that inputs with
relative degree two or lower should be on EMPC. First, the
dynamic sensitivities are computed for inputs of the same
relative degree which creates a ranking of inputs with the
same relative degree on the basis of the dynamic sensitivity
of the economic cost. Second, the steady-state sensitivities
are computed. If �Sr;j and Ŝj are close to one, the input should
be placed on EMPC since it has both a dynamic and a
steady-state impact on the economic cost. If �Sr;j and Ŝj are
close to zero, the input should not be placed on EMPC since
the economic cost is not sensitive with respect to this input.
For inputs with �Sr;j close to one and Ŝj close to zero or vice
versa, the decision to control these inputs with EMPC should
be made on the basis of the remaining two criteria (i.e., rela-
tive degree of the economic cost with respect to the distur-
bances and the stabilizability requirement). It may be
desirable from a disturbance rejection standpoint to pick
additional inputs that have a smaller relative degree with
respect to the cost than the known disturbances. Inputs with
�Sr;j close to one and with a low relative degree compared to
the disturbances may be chosen to be placed on EMPC. The
dynamic sensitivity �Sr;j is used because it quantifies the
dynamic sensitivity and EMPC dictates a dynamic operating
policy in general to optimize the process economics.

All of the aforementioned factors contribute in partitioning

the set of inputs controlled by EMPC and the set of inputs

not controlled by EMPC. One must try to find a stabilizing

Lyapunov-based controller k(x) with the inputs that will be

placed on EMPC. This is a verification step to ensure the

selected inputs are able to achieve the stabilizability require-

ment. If no such controller exists (i.e., it is difficult to find

such a controller), then the inputs are repartitioned to include

more inputs that will be on EMPC. For this step, the addi-

tional inputs to be placed on EMPC should be inputs with

the lowest relative degree and highest sensitivity. Once a sta-

bilizing controller is constructed for a certain set of inputs

that will be on EMPC, an LEMPC may be formulated for

the system and a final verification step is completed. In the

final verification step, extensive closed-loop simulations are

completed to ensure that the LEMPC scheme has desirable

closed-loop properties (e.g., performance, stability, robust-

ness, etc.).
It may be beneficial to use more available inputs as

manipulated inputs in the final EMPC control configuration

than what is determined from the input selection methodol-

ogy to increase the overall robustness of the control structure

to the effects of disturbances and uncertainty. Two strategies

to include more manipulated inputs are: (1) to modify the

economic cost (i.e., add quadratic terms) so that these inputs

have a more direct effect on the cost function used in the

EMPC or (2) to use another controller to compute control

actions for the added manipulated inputs instead of setting

them to a fixed value (e.g., proportional-integral control may

be used to compute the control actions for these inputs). In

fact, the former strategy has already been utilized in many

EMPC case studies.25,26,31

REMARK 4. If there is some flexibility in the choice of eco-
nomic cost and the sources of the significant disturbances
are known (i.e., how the disturbance enters into the process
model of Eq. 1 is known), one may determine the relative
degree of the candidate economic cost functions with respect

Figure 2. A flowchart of the input selection for EMPC
methodology.

Solid lines are used to represent necessary steps and

dashed lines are used to represent optional steps.
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to the disturbances. The economic cost that should be used
is the one where the disturbances have a high relative
degree compared to the selected manipulated inputs (i.e., the
disturbances will have a weaker dynamic effect on the eco-
nomic cost).

REMARK 5. The potential limitations of the proposed meth-
odology for control structure selection for EMPC are: (1)
there is no guarantee that there will be a discrete dichotomy
between the relative degree of the economic cost and the
sensitivities of economic cost with respect to the inputs. For
instance, the relative degree analysis may not result in two
distinct sets of inputs: one containing the inputs with a low
relative degree and another containing the inputs with high
relative degree and similarly for the sensitivity analysis. This
may make picking the EMPC inputs solely on the basis of
these tools difficult. Since the proposed methodology pro-
vides tools to identify which inputs to control with EMPC,
(2) the final control structure configuration decision is ulti-
mately left to the control engineer (as is the case in many
control configuration selection methodologies). Therefore,
there is no guarantee that the “optimal” input selection will
be selected. However, given the possible uncertainty
involved with input selection, it may not be possible to deter-
mine the “optimal” input selection. Lastly, (3) closed-loop
simulations may be particularly important to select the final
input selection from many candidate control configurations.
For large-scale systems with many candidate inputs, a large
number of simulations may need to be completed to make
the final input selection decision given the combinatorial
nature of the number of possible control configurations.

EMPC Input Selection for a Chemical Process
Example

In this section, the input selection methodology for EMPC
is applied to a chemical process example. Various closed-
loop simulation results and analyses are provided to demon-
strate the method. The specific example has been chosen as
it is manageable to consider all possible combinations of
input pairs, while being of sufficient complexity to demon-
strate the input selection methodology.

Consider a chemical process example consisting of two
CSTRs in series. In each of the reactors a second-order, exo-
thermic reaction of the form A! B occurs where A is the
reactant material and B is the desired product. Each of the
two reactors are fed with fresh reactant material with con-
centration CAj0 and flow rate Fj0, j 5 1, 2 where j 5 1
denotes the first CSTR and j 5 2 denotes the second CSTR.
To provide heat to the reactor contents, each of the reactors
has a heating jacket. The contents of each of the CSTRs
have a uniform temperature Tj, concentration of the reactant
CAj, and concentration of the product CBj for j 5 1, 2. Under
standard modeling assumptions, the following set of differen-
tial equations describing the evolution of the reactor state
variables can be derived from first principles modeling
techniques

dT1

dt
5

F10

V1

ðT102T1Þ2
DHk0

qCp
e2E=RT 1 C2

A11
Q1

qCpV1

(35a)

dCA1

dt
5

F10

V1

ðCA102CA1Þ2k0e2E=RT 1 C2
A1 (35b)

dCB1

dt
52

F10

V1

CB11k0e2E=RT 1 C2
A1 (35c)

dT2

dt
5

F20

V2

T201
F10

V2

T12
ðF101F20Þ

V2

T2

2
DHk0

qCp
e2E=RT 2 C2

A21
Q2

qCpV2

(35d)

dCA2

dt
5

F20

V2

CA201
F10

V2

CA12
ðF101F20Þ

V2

CA22k0e2E=RT 2 C2
A2

(35e)

dCB2

dt
5

F10

V2

CB12
ðF101F20Þ

V2

CB21k0e2E=RT 2 C2
A2 (35f)

where the process parameters are given in Table 1. The pos-
sible inputs to the process are the heat rates supplied to the
reactors Q1 and Q2 and the inlet concentrations of the reac-
tant material CA10 and CA20. The available control action is
bounded in the following set: Qj 2 ½0:0; 100:0�MJ h21; j51;
2 and CAj0 2 ½0:5; 7:5� kmol m23; j51; 2.

The operating profit of the process is considered to be pro-
portional to the product molar flow rate out of the second
reactor. Therefore, the economic cost is

leðx; uÞ5ðF101F20ÞCB2 (36)

where F10 1 F20 is the outlet volumetric flow rate of the sec-
ond CSTR and CB2 is the concentration of the product in the
second CSTR. An economics-based constraint is imposed
which limits the amount of reactant that may be fed to each
reactor

1

tf

ðtf

0

Fj0CAj0dt5 _MAj0;avg (37)

for j 5 1,2 where _MAj0;avg 520 kmolh21. The average con-
straint of Eq. 37 is enforced over operating windows of
length 0.55 h which has been determined through simula-
tions as the operating window length that leads to improved
asymptotic performance of the closed-loop system under
EMPC compared to steady-state operation (refer to Ref. 32
for the details for implementing the average constraint over
a finite-length operating window). The economically optimal
steady-state with respect to the cost of Eq. 36 and the con-
straint of Eq. 37 corresponds to the economically optimal
steady-state input of Q�15Q�25100 MJ h21 and C�A105C�A205

4:0 kmol m23 and is open-loop (locally) asymptotically
stable.

REMARK 6. The fact that the economically optimal steady-
state is open-loop asymptotically stable implies that there

Table 1. Process Parameters of the Reactor–Reactor Process

Notation Value Description

T10 300.0 K CSTR-1 Inlet Temp.
T20 300.0 K CSTR-2 Inlet Temp.
F10 5.0 m3 h21 CSTR-1 Inlet Flow Rate
F20 5.0 m3 h21 CSTR-2 Inlet Flow Rate
V1 1.5 m3 CSTR-1 Volume
V2 1.0 m3 CSTR-2 Volume
k0 3:03104 m3kmol 21h21 Pre-exponential Factor
E 3:03104 kJ kmol 21 Activation Energy
DH 25:03103 kJ kmol 21 Heat of Reaction
Cp 0.231 kJ kg21 K21 Heat Capacity
R 8.314 kJ kmol21 K21 Gas Constant
qL 1000 kg m23 Density
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exists a control Lyapunov function (i.e., there exists a
smooth positive-definite function V(x) that satisfies LfV< 0
for all states in some neighborhood of the origin when
Lgi

V� 0 for all i 5 1,. . .,nu), see, for example, Ref. 40 for
more discussion of this point. Furthermore, there exists a
stabilizing controller which satisfies the conditions of Eq.
33a–33c. Thus, an explicit characterization of the stabilizing
controller for each of the simulated control structure config-
urations is not given. Also, it is important to point out the
EMPC is able to maintain operation in a bounded region
around the economically optimal steady-state (verified by
extensive simulations). Although the optimal steady-state is
open-loop asymptotically stable, the main objective of apply-
ing feedback control is to maintain robustness of the opera-
tion and to optimize the process economics in a manner that
cannot be achieved through open-loop operation.
The purpose of applying EMPC to the process is to maxi-
mize the economic cost function of Eq. 36 through dynamic
(off steady-state) operation of the process. First, we demon-
strate that dynamic operation of the process with the cost
function of Eq. 7a and constraint of Eq. 37 is better than
operation at the economically optimal steady-state. In this
set of simulations, control actions for all possible inputs are
computed by EMPC. We apply the EMPC with the follow-
ing formulation to the process

max
u2SðD;NÞ

ðsN

0

leð~xðtÞ; uðtÞÞdt

s:t: _~xðtÞ5f ð~xðtÞÞ1
X4

j51

gjð~xðtÞÞujðtÞ

~xð0Þ5xðskÞ

uðtÞ 2 U; 8t 2 ½0; sNÞ
1

sM

ðsM

0

Fj0CAj0 dt5 _MAj 0;avg ; j51; 2

(38)

where the dynamic model is that of Eq. 35, the prediction
horizon is N 5 5, the sampling period is D 5 0.05 h, and the
number of sampling periods in the operating window that
the average constraint is enforced is M 5 11 (i.e., sM 5 0.55 h).
To numerically integrate the dynamic model, explicit Euler
method is used with an integration time step of 1:031023h.
Ipopt41 was used to solve the nonlinear optimization problem

of Eq. 38. All simulations below were completed on a desktop
PC with an Intel CoreVR 2 DuoTM processor running an Ubuntu
operating system.

The EMPC of Eq. 38 is applied to the chemical process of
Eq. 35. The chemical process is initialized at a transient initial
condition (i.e., off steady-state initial condition) and a length of
operation of 33.0 h was simulated. The closed-loop state and
input trajectories over the time period 31.0 to 33.0 h are shown
in Figures 3 and 4 to illustrate the asymptotic operating behav-
ior of the process under EMPC. The EMPC dictates a dynamic
operation policy (Figures 3 and 4) through continuous manipula-
tion of the inlet reactant concentration. However, for the heat
rate inputs, the EMPC computes a constant input profile which
corresponds to 100 MJ h21 (i.e., the maximum allowable heat
rate). The reason for this behavior is because the reaction rate is
maximized at large temperature and thus, the molar flow rate of
the desired product leaving the process is the largest when the
maximum amount of heat is provided to the reactors. To show
that the operating policy is economically better than steady-state
operation, the average economic cost is defined as

�Je5
1

tf

ðtf

0

leðxðtÞ; uðtÞÞdt: (39)

For the process of Eq. 35 under EMPC, the asymptotic per-
formance (i.e., the average economic cost after a sufficiently
long operating time such that the effect of the initial condi-
tion becomes negligible) is 29.98. The economically optimal
steady-state has an (average) economic cost of 28.21. Thus,
asymptotic operation under EMPC is 6.27% better than
steady-state operation.

Since there is a benefit in terms of the economic cost to
operate the chemical process of Eq. 35 under EMPC, input
selection for EMPC is considered. First, the input selection
methodology (Figure 2) is applied to the chemical process
example. Subsequently, closed-loop simulation results are pro-
vided to confirm this is the proper choice of input selection
for EMPC. Two sets of simulations are considered. In the first
set of simulations, all the possible 16 combinations of input
selections for EMPC are simulated under nominal operation.
In the second set, operation with process noise is considered.

Applying the input selection methodology for EMPC (Fig-
ure 2), the relative degree of the economic cost with respect
to each input is computed with the directed graph method22

(Figure 5). Based on this analysis, the inputs Q1 and CA10

have a relative degree of 3, while the inputs Q2 and CA20

have a relative degree of 2. No inputs have an infinite relative

Figure 3. The closed-loop state trajectories under the
EMPC of Eq. 38.

Figure 4. The manipulated input trajectories under the
EMPC of Eq. 38.

The input trajectories Q1(t) and Q2(t) are not shown

because they are constant profiles with Qi(t)5100 MJ

h21, i51,2 over the entire 33.0 h length of operation.
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degree. The normalized dynamic and steady-state sensitivities
are computed. All the inputs are scaled such that uj 2 ½21; 1�;
j51; 2; 3; 4 and the following notation is adopted for
the inputs: u15ðQ12Qshift Þ=Qref ; u25ðQ22Qshift Þ=Qref ; u35

ðCA102Cshift Þ=Cref and u45ðCA202Cshift Þ=Cref where Qref

and Cref are scaling factors, Qshift and Cshift are shifting con-
stants, and the vector fields g1ðxÞ; g2ðxÞ; g3ðxÞ, and g4(x) are
the vector fields corresponding to the inputs u1, u2, u3, and u4,
respectively, from the dynamic model of Eq. 35.

The dynamic sensitivities of Eq. 24 for the inputs with rel-
ative degree of 2 are

S2;15Lg2
Lf le;xðxÞ5

Qref k0EðF101F20Þ
qCpV2RT 2

2

e2E=RT 2 C2
A2 (40)

S2;25Lg4
Lf le;xðxÞ5

2F20Cref k0ðF101F20Þ
V2

e2E=RT 2 CA2 (41)

for u2 and u4, respectively. The dynamic sensitivities are
computed from the closed-loop state trajectory under the
EMPC with control actions computed by EMPC for all
inputs and are shown in Figure 6. The average normalized
dynamic sensitivities over the length of operation are �S2;15

0:02 and �S2;250:98. From this analysis, the input u4 has a
much greater dynamic sensitivity on the economic cost than
u2. A similar analysis is completed for inputs with relative
degree of 3 and their dynamic sensitivities are given by

S3;15Lg1
L2

f le;xðxÞ5
Qref F10k0EðF101F20Þ

qCpV1V2R

3
1

T2
1

e2E=RT 1 C2
A11

1

T2
2

e2E=RT 2 C2
A2

� �
(42)

S3;25Lg3
L2

f le;xðxÞ5
2F2

10Cref k0F3

V1V2

3 e2E=RT 1 CA11e2E=RT 2 CA2

� �
(43)

for u1 and u3, respectively and are shown in Figure 7. The
average normalized dynamic sensitivities are �S3;150:01 and
�S3;250:99. A similar relationship is observed, that is, the
inlet concentration input u3 has a greater dynamic sensitivity
than the heat rate input u1.

The dynamic sensitivity analysis identified that the inlet
concentration inputs have a more substantial dynamic sensi-
tivity compared to the heat rate inputs (comparing inputs
with the same relative degree). Using steady-state sensitivity,
all inputs are compared to see if these effects are significant
across the set of all the possible inputs. For simplicity, the
steady-state sensitivities (Eq. 32) are computed with the eco-
nomically optimal steady-state and are given by

Ŝ150:01

Ŝ250:01

Ŝ350:56

Ŝ450:43

(44)

for the inputs u1, u2, u3, and u4, respectively. Based on both
sensitivity analyses, the inlet concentration inputs should be
placed on EMPC. Based on the relative degree analysis, Q2

may also be placed on EMPC. However, the sensitivity anal-
ysis revealed that the economic cost is not sensitive to this
input.

All 16 possible input selection combinations for EMPC
are simulated. If the control action is not computed by
EMPC, then it is fixed to its economically optimal steady-
state value. The case where no inputs are placed on EMPC
is also considered. The resulting EMPC schemes were
applied to the process under nominal operation. The average
economic cost for each of these cases depended only on
whether CA10 and CA20 were on EMPC. If none of inlet con-
centrations were on EMPC, the average economic cost was
�Je528:22; if CA10 was manipulated by EMPC and CA20 was

Figure 5. A directed graph constructed for the chemi-
cal process example for the economic cost
function of Eq. 36 to compute the relative
degree of various input variables using the
methodology of Ref. 22.

The candidate manipulated inputs are dark gray and

the economic cost is light gray.

Figure 6. The dynamic sensitivities for inputs with rela-
tive degree 2 which are computed with the
closed-loop state trajectory under the EMPC
with all inputs on EMPC.

Figure 7. The dynamic sensitivities for inputs with rela-
tive degree 3 which are computed with the
closed-loop state trajectory under the EMPC
with all inputs on EMPC.
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fixed, the cost was �Je528:54; if CA10 was fixed and CA20

was manipulated by EMPC, the cost was �Je529:57; and if
both CA10 and CA20 were on EMPC, the cost was �Je530:13.
The reason the economic cost function is not influenced by
the heat rates is the computed heat rate trajectories by
EMPC are constant trajectories; that is, the constant trajec-
tory when the heat rate was fixed to its economically optimal
value is the same as the computed heat rate trajectory of
EMPC.

From the average economic cost results, the inlet concen-
tration CA20 has more of an impact on the average cost than
the inlet concentration CA10 (the case that CA20 is on EMPC
and CA10 is not on EMPC the performance is 1.1% better
than the case that CA10 is on EMPC and CA20 is not on
EMPC). This agrees with the relative degree of the eco-
nomic cost function with respect to CA10 and CA20 which are
3 and 2, respectively. The average computation time
required to solve the EMPC problem, a key metric consid-
ered in the last set of simulations, was also considered for
each of the 16 simulations considered here. It was found that
the computation time was mainly a function of the number
of inputs whose control action was computed by EMPC (i.e.,
the computation time scaled with the number of decision
variables) and the computation time of each EMPC with the
same number of inputs were all comparable. The average
computation time required to solve the EMPC with the
inputs CA10 and CA20 was 36.4 ms, while, that of the EMPC
with all inputs was 163.6 ms.

In the last set of simulations, process operation in the
presence of process noise was considered. The process
noise was modeled as bounded Gaussian noise. The process
noise added to the temperature differential equations was
wT � Nð0; 152Þ and was bounded by wb,T 5 40.0 (i.e.,
jwTðtÞj � wb;T); the process noise added to the concentration
differential equations was wC � Nð0; 22Þ with a bound of
wb,C 5 5.0. The process noise was realized by generating a
new random number and adding it to the right-hand side of
the process model of Eq. 35 over the sampling period. Four
cases were considered: (1) all the inputs were controlled by
EMPC, (2) the inputs having relative degree 2 (CA20 and
Q2) were controlled by EMPC, (3) the inputs having rela-
tive degree 3 (CA10 and Q1) were controlled by EMPC, and
(4) the inputs CA10 and CA20 were controlled by EMPC. For
each of the four cases, the process was initialized with the

same initial condition and simulated for 16.5 h length of
operation with the same realization of the process noise.
The closed-loop trajectories are given in Figures 8 and 9
for the case where control actions for all inputs are com-
puted by EMPC.

The average economic costs over the simulation for these
cases were: (1) �Je529:87, (2) �Je529:21 (a decrease of 2.2%
over all inputs on EMPC), (3) �Je528:26 (a decrease of 5.4%
over all inputs on EMPC), and (4) �Je529:87, respectively,
for each case. Furthermore, the average computation time
required to solve the EMPC for each case was (1) 4041 ms,
(2) 239 ms, (3) 584 ms, and (4) 718 ms, respectively. The
computation time reduction going from all four inputs to
two inputs was an order of magnitude as the number of deci-
sion variables in the optimization problem is a dominant fac-
tor in the computational burden of solving the optimization
problem. Also, case (4) has two average constraints imposed
in the optimization problem compared to cases (2) and (3)
which only have one average constraint. It is important to
emphasize that the same program and computer processing
power were used in all cases. Thus, the comparison of the
computation time is consistent. The average computation
time was computed for a simulation with 320 sampling peri-
ods (i.e., the EMPC was solved 320 times). The computation
time required to solve the EMPC that computes control
actions for CA20 and Q2 is less than the computation time of
EMPC that computes control actions for CA10 and Q1 (the
reduction in computation time is approximately a factor of
two) which suggests that the computational burden is associ-
ated with how direct is the dynamic effect of the input on
the economic cost.

This example is relatively small and, thus, it may be com-
putationally viable to compute control actions for the full set
of manipulated inputs with EMPC. In the final input selec-
tion, we propose to use CA10 and CA20 as the inputs that are
controlled by EMPC. The inlet concentrations are the inputs
that are continuously manipulated by the EMPC which leads
to dynamic operation of the process that is economically bet-
ter compared to steady-state operation. The input CA20 has
more of an impact on the closed-loop performance compared
to the input CA10. Even though the relative degree of the
economic cost with respect to Q2 is 2, it is not included on

Figure 8. The closed-loop state trajectories of the
chemical process under EMPC with added
process noise.

Figure 9. The manipulated input trajectories of the
chemical process under EMPC with added
process noise.
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EMPC because practically no benefit is realized with this
input on EMPC which the sensitivity analysis showed.

Conclusions

In this work, control configuration selection for EMPC
was considered. A methodology to identify the manipulated
inputs from the set of all possible manipulated inputs for
which EMPC should compute control actions was proposed
on the basis of the process economics. Since EMPC will typ-
ically enforce a dynamic operating policy, the relative degree
and the sensitivities of the economic cost function with
respect to an input were used to explicitly account for the
nonlinear process dynamics and choose the manipulated
inputs assigned to EMPC. The set of inputs selected for
EMPC is guaranteed to be a stabilizing one. The overall
methodology was demonstrated with a chemical process
example.
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