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ABSTRACT: In the this work, we propose a two-layer approach to dynamic economic optimization and process control for
optimal time-varying operation of nonlinear process systems. The upper layer, utilizing a Lyapunov-based economic model
predictive control (LEMPC) system, is used to compute dynamic economic optimization policies for process operation. The
lower layer, utilizing a Lyapunov-based MPC (LMPC) system, is used to ensure that the closed-loop system state follows the
optimal time-varying trajectories computed by the upper layer over each finite-time operating window. To improve the
computational efficiency of the two-layer structure, we allow both the LEMPC and the LMPC to compute control actions for
two distinct sets of manipulated inputs thus decreasing the real-time computational demand compared to other one-layer EMPC
schemes. Following a rigorous formulation and analysis of the proposed method, we demonstrate boundedness of the closed-
loop system state and closed-loop economic performance improvement with the proposed two-layer framework compared to
steady-state operation as well as with respect to other existing time-varying operating strategies previously proposed in the
literature in the context of a benchmark chemical process application.

■ INTRODUCTION
Traditionally, the main objective of chemical process control
systems is to ensure that chemical processes are operated at
a steady-state. The operating steady-state may be changed de-
pending on product grade changes and variable economic con-
siderations. With this operation strategy in mind, a two-layer
framework to process economic optimization and control is
typically employed. The upper layer, called real-time optimiza-
tion (RTO), computes an economically optimal steady-state
using a steady-state process model. The computed steady-state
is then sent down to the lower feedback control layer to steer
the closed-loop system to the computed steady-state and to
maintain operation at steady-state thereafter.1,2

While steady-state operation is typically used in chemical
process industries, steady-state operation may not necessarily
be the economically best operation strategy. As another way to
operate a chemical process, time-varying or transient operation
can improve economic process performance. Within the context
of chemical process industries, the literature is rich with examples
of chemical processes that demonstrate economic performance
improvement with time-varying operation (see, for instance,
refs 3 and 4 and references therein).
To this point, the literature on time-varying operation within

process systems engineering has primarily focused on the
economic performance improvement with periodic operation
where an operating limit cycle is determined and the process is
operated on this limit cycle. In ref 3, many examples of periodic
operation were given which demonstrated that periodic forcing
of concentration can yield activity improvements and better
reactor performance for ammonia synthesis, sulfur dioxide oxi-
dation, carbon monoxide oxidation, Claus reaction, methanol
synthesis, multiple reaction systems, and polymerization reactions.
In ref 4, examples of control of periodically operated reactors
were given that include a more diverse set of manipulated
variables that improve performance if periodically manipulated

like feed temperature for catalytic packed bed reactors, coolant
or heating fluid temperature for stirred tank reactors, and ini-
tiator flow rate or radiation intensity for stirred polymerization
reactors. Periodic control strategies have also been studied in
several other applications (see, for instance, refs 5−9). Other
studies provided a more thorough discussion of specific instances
where periodic operation can benefit reactor performance like
the dynamic study of CO oxidation on supported platinum
which demonstrated that periodic feed switching results in time-
averaged oxidation rates much greater than the maximum
achievable by steady-state operation in ref 10 and the study of
catalytic reactor networks where periodically switched inlet and
outlet sections led to greater conversion in ref 11. Furthermore,
some works have proposed techniques to help identify systems
that can benefit from periodic operation and to determine the
optimal periodic strategy to employ like the analytic procedure
for determining the frequency response of a nonlinear chemical
reactor model in ref 12, the generalized Π-criterion proposed in
ref 13 to analyze the feasibility of periodic operation which was
applied to continuously stirred tank reactor (CSTR) examples in
ref 14, a numerical approach proposed for computing the effects
of periodic input forcing by a shooting algorithm in ref 15, and
the numerical method for determining optimal parameter values
in forced periodic operation in ref 16.
While the periodic operating strategies listed above do de-

monstrate economic performance improvement, they are, in
principle, ad hoc operating strategies and not necessarily optimal.
Even periodic operating strategies that come from solving a
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dynamic optimization problem require that the switching pattern
of the manipulated inputs be determined before solving the opti-
mization problem as in ref 16. However, the periodic switching
pattern determined before solving the optimization problem may
not be optimal (i.e., the best time-varying operating strategy).
Recent work has demonstrated how economic model predictive
control (EMPC) can improve process performance through
general time-varying operation to optimize a process economic
measure (e.g., mode 1 operation of the Lyapunov-based EMPC
(LEMPC) introduced in ref 17 and also refs 18−21 and references
therein). The main advantage to EMPC is that it systematically
determines the optimal operating strategy based on the economic
measure in real time while accounting for state and input con-
straints and time-varying economic objectives and constraints.
However, since EMPC oftentimes requires a larger prediction
horizon for significantly improved closed-loop economic perform-
ance compared to conventional MPC (formulated with a quadratic
cost function), it may be difficult to use EMPC to compute
control actions for all the manipulated inputs of the system every
sampling period because it requires solving a large-scale,
potentially nonconvex optimization problem in real-time. For
large-scale systems with many manipulated inputs and many states,
this may be an impossible task.
While some techniques have been proposed to decrease the

computational complexity of the EMPC such as a distributed
EMPC framework for large-scale systems proposed in ref 22
and using singular perturbation theory when time-scale separa-
tion exists in the dynamics in ref 23 to formulate an EMPC on
the basis of reduced-order models, the computational time
EMPC requires still remains a challenge. We note that not all
manipulated inputs may need to be computed by the EMPC to
improve closed-loop performance significantly which was de-
monstrated in ref 23. Also, since many industrial applications
have existing two-layer architectures for economic optimization
and control (RTO and MPC), two-layer frameworks provide a
natural and attractive method to decrease the computational
demand of EMPC as pointed out in ref 24 where we proposed
a two-layer architecture with EMPC in the upper layer and
used a tracking LMPC to force the system to track the econo-
mically optimal operating trajectory over a finite-time opera-
tion period.
Motivated by the above, we propose a two-layer approach to

dynamic economic optimization and process control for optimal
time-varying operation of nonlinear process systems. The upper
layer, utilizing a LEMPC system, is used to compute economi-
cally optimal policies for process operation and is solved only at
the beginning of every operating window. The lower layer, utilizing
a Lyapunov-based MPC (LMPC) system, is used to ensure the
closed-loop system state follows the optimal time-varying trajec-
tories computed by the upper layer over each finite-time operating
window. To improve the computational efficiency of the two-layer
structure, we allow both the LEMPC and the LMPC to compute
control actions for two distinct sets of manipulated inputs thus
decreasing the real-time computational demand compared to other
one-layer EMPC schemes. Following a rigorous formulation and
analysis of the proposed method, we demonstrate boundedness
of the closed-loop system state and closed-loop economic per-
formance improvement with the proposed two-layer framework
compared to steady-state operation as well as with respect to other
existing time-varying operating strategies previously proposed in
the literature in the context of a benchmark chemical process
application.

■ PRELIMINARIES
Notation. The operator |·| is used to denote the Euclidean

norm of a vector and |·|Q denotes the weighted Euclidean norm
of a vector (i.e., |·|Q = xTQx). A continuous function α: [0,a) →
[0,∞) belongs to class functions if it is strictly increasing
and satisfies α(0) = 0. We use Ωρ to denote the level set Ωρ :=
{x ∈ Rn|V(x) ≤ ρ}. The symbol diag(v) denotes a square
diagonal matrix with diagonal elements equal to the vector v.

Class of Systems. We consider a nonlinear process system
described by the following state-space model:

̇ =x t f x t u t u t w t( ) ( ( ), ( ), ( ), ( ))1 2 (1)

where x(t) ∈ Rn denotes the state vector, u1 ∈ U1 ⊂ Rm1 and u2
∈ U2 ⊂ Rm2 denotes two sets of manipulated inputs, w(t) ∈ Rl

denotes the disturbance vector, and f is assumed to be a locally
Lipschitz vector function. The two sets of manipulated inputs
are assumed to be bounded in nonempty convex sets: Uj :=
{|uj,i| ≤ uj,i

max: i = 1, ..., mj} for j = 1, 2. The two sets of manipulated
inputs can also be viewed in terms of their main responsibilities.
The inputs in set u1 are directly responsible for economic
optimization and/or have the most significant impact on the
process closed-loop economic performance, and the inputs in
set u2 are responsible for maintaining closed-loop stability (see
the Application to a Chemical Process Example section). The
disturbance is assumed to be bounded, i.e., W := {w(t) ∈
Rl: |w(t)| ≤ θ} where θ is a positive parameter. The origin of
the nominal unforced system of eq 1 is assumed to be an
equilibrium point (i.e., f(0,0,0,0) = 0). We note in this work we
propose a two-layer control framework and we assume without
loss of generality that the state x of the system is sampled
synchronously and the time instants at which we have state
measurements are indicated by the time sequence {tk≥0} with
tk = t0 + kΔ, k = 0, 1, ... where t0 is the initial time, andΔ =Δ1 =Δ2
is the sampling time of both layers.

Lyapunov-Based Controller. We assume that there exists
a Lyapunov-based controller

= =u u h x h x h x( , ) ( ( ), ( )) : ( )1 2 1 2 (2)

which renders the origin of closed-loop system asymptotically
stable under continuous, state-feedback implementation. This
assumption is essentially a stabilizability requirement for the
system of eq 1. Using converse Lyapunov theorems,25−27 this
assumption implies that there exist functions αi(·), i = 1, 2, 3, 4
of class and a continuous differentiable Lyapunov func-
tion V(x) for the closed-loop system that satisfy the following
inequalities:

α α| | ≤ ≤ | |x V x x( ) ( ) ( )1 2 (3)

α∂
∂

≤ − | |V x
x

f x h x h x x
( )

( , ( ), ( ), 0) ( )1 2 3 (4)

α∂
∂

≤ | |V x
x

x
( )

( )4
(5)

∈ ∈h x U h x U( ) , ( )1 1 2 2 (6)

for all x ∈ D ⊆ Rn where D is an open neighborhood of the
origin. We denote the region Ωρ ⊆ D as the stability region of
the closed-loop system under the controller (u1, u2) = h(x).
Note that explicit stabilizing control laws that provide explicitly
defined stability regions Ωρ for the closed-loop system have

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie303537e | Ind. Eng. Chem. Res. 2014, 53, 4991−50014992



been developed using Lyapunov techniques for nonlinear
systems (see refs 28−30).
By continuity and the local Lipschitz property assumed for

the vector field f and taking into account that both sets of the
manipulated inputs u1 and u2 and the disturbance w are
bounded, there exists a positive constant M such that

| | ≤f x u u w M( , , , )1 2 (7)

for all x ∈ Ωρ, u1 ∈ U1, u2 ∈ U2, and w ∈W. Furthermore, from
the continuous differentiable property of the Lyapunov func-
tion V and the Lipschitz property of the vector field f, there
exist positive constants Lx, Lw, Lx′, and Lw′ such that

| − ′ | ≤ | − ′| + | |f x u u w f x u u L x x L w( , , , ) ( , , , 0) x w1 2 1 2
(8)

∂
∂

− ∂
∂

′

≤ ′| − ′| + ′ | |

V
x

f x u u w
V
x

f x u u

L x x L w

( , , , ) ( , , , 0)

x w

1 2 1 2

(9)

for all x, x′ ∈ Ωρ, u1 ∈ U1, u2 ∈ U2, and w ∈ W
In this work, we design a two-layer framework where the

upper layer can transmit information to the lower layer and to
the system control actuators. The lower layer can receive in-
formation from the upper layer and is able to transmit in-
formation to the control actuators. The following assumption is
required to ensure stability of the process with this type of com-
munication and defines how we group the full set of manipulated
inputs into two groups u1 and u2.
Assumption 1. We assume that for any f ixed u1,E ∈ U1, there

exists u2 ∈ U2 such that the following holds

∂
∂

≤ ∂
∂

V x
x

f x u u
V x

x
f x h x h x

( )
( , , , 0)

( )
( , ( ), ( ), 0)E1, 2 1 2

(10)

for all x ∈ Ωρ.
Remark 1. Although there are currently no general methods for

constructing Lyapunov functions for general nonlinear systems,
quadratic Lyapunov functions (i.e., V(x) = xTVx) are typically
used within the context of chemical process control applications and
have been demonstrated to yield good estimates of closed-loop
stability regions; please see also the Application to a Chemical
Process Example section.
Remark 2. We note the stability region Ωρ can be estimated for

a given system and controller h(x) by the following procedure: V̇(x)
is evaluated for different values of x while the Lyapunov-based
controller h(x) is applied to the nominal system of eq 1 with w(t) ≡ 0.
Then, Ωρ can be estimated as the level set of the Lyapunov function
V(x) (ideally, the largest level set) where V̇(x) ≤ 0.
Lyapunov-Based MPC. To address stability of the closed-

loop system with model predictive control (MPC) and feasibi-
lity of the optimization problem, researchers25,31,32 have combined
the stability and robustness properties of the Lyapunov-based
controller with the optimal control properties of model predic-
tive control (MPC). The resulting MPC is the Lyapunov-based
MPC (LMPC) and is characterized by the following opti-
mization problem:

∫ τ τ

τ τ

| ̃ − | + | − |

+ | − |

∈ Δ

+
x x u u

u u

min ( ( ) ( )

( ) ) d

u u S t

t

s Q s R

s R

( , ) ( )
1 1,

2 2,

k

k N

c c

c

1 2
,1

,2 (11a)

̇ = ̃∼x t f x t u t u ts.t. ( ) ( ( ), ( ), ( ), 0)1 2 (11b)

̃ =x t x t( ) ( )k k (11c)

∈ ∀ ∈ +u t U t t t( ) , [ , )k k N1 1 (11d)

∈ ∀ ∈ +u t U t t t( ) , [ , )k k N2 2 (11e)

∂
∂

≤ ∂
∂

V
x

f x t u t u t

V
x

f x t h x t h x t

( ( ), ( ), ( ), 0)

( ( ), ( ( )), ( ( )), 0)

k k k

k k k

1 2

1 2 (11f)

where x ̃ is the predicted state evolution over the prediction
horizon with the computed control input by the LMPC, S(Δ)
is the set of piecewise constant functions with period Δ, N is
the finite prediction horizon, and Qc, Rc,1, and Rc,2 are positive
definite weighting matrices. In the optimization problem of
eq 11, eq 11b is the nominal system of eq 1 used to predict the
future evolution of the system; eq 11c is the initial condition
of the optimization problem; eqs 11d and 11e define the con-
trol energy available to all manipulated inputs; eq 11f ensures
that over the sampling period t ∈ [tk, tk + Δ) the LMPC
computes manipulated inputs that decrease the Lyapunov
function by at least the rate achieved by the Lyapunov-based
controller h(x) when implemented in a sample-and-hold
fashion. The optimal solution of the optimization problem
of eq 12 is denoted by u1*(t|tk) and u2*(t|tk) and is defined for
t ∈ [tk, tk+N).
Since for any initial condition x(t0) ∈ Ωρ the closed-loop

system state is guaranteed to converge to a small neighborhood
of the origin and the optimization problem of eq 11 is guaranteed
to be feasible for any initial condition x(t0) ∈ Ωρ, the LMPC
is said to inherit the stability region of the Lyapunov-based
controller Ωρ.

Lyapunov-Based Economic MPC. If instead of the
conventional quadratic cost function, a general cost function
is used which accounts for system economic considerations and
we reformulate the Lyapunov-based constraint of eq 11f to
allow the system to operate in a time-varying fashion about the
steady-state by taking advantage of the stability region Ωρ of the
Lyapunov-based controller. The result is the Lyapunov-based
economic MPC (LEMPC),17 and it is defined by the following
optimization problem:

∫ τ τ τ τ̃
∈ Δ

+
L x u umax ( ( ), ( ), ( )) d

u u S t

t

E E E
( , ) ( )

1, 2,
E E k

k NE

1, 2, (12a)

̇ = ̃∼x t f x t u t u ts.t. ( ) ( ( ), ( ), ( ), 0)E E1, 2, (12b)

̃ =x t x t( ) ( )k k (12c)

∈ ∀ ∈ +u t U t t t( ) , [ , )E k k N1, 1 (12d)

∈ ∀ ∈ +u t U t t t( ) , [ , )E k k N2, 2 (12e)

ρ ρ̃ ≤ ∀ ∈ <+V x t t t t V x t( ( )) [ , ), if ( ( ))e k k N k e (12f)

ρ

∂
∂

≤ ∂
∂

≥

V
x

f x t u t u t

V
x

f x t h x t h x t

V x t

( ( ), ( ), ( ), 0)

( ( ), ( ( )), ( ( )), 0),

if ( ( ))

k k k

k k k

k e

1 2

1 2

(12g)

where the parameter ρe is used to denote a subset of Ωρ where
the system is allowed to evolve in a time-varying fashion. In the
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optimization problem of eq 12, the cost function of eq 12a is
constructed to account directly for the economic measure of
the process. The constraint of eq 12f is imposed when the
current state x(tk) of the system is inside the set Ωρe and re-
stricts the future predicted state evolution to remain in the region
Ωρe. This constraint defines mode 1 operation of LEMPC. The
constraint of eq 12g is a similar Lyapunov-based constraint as
eq 11f of the LMPC and is imposed when the current state x(tk)
is outside the set Ωρe to drive the system into Ωρe. This constraint
defines mode 2 operation of the LEMPC. Refer to ref 17 for a
detailed discussion and analysis of the LEMPC formulation of eq
12. The optimal solution of the optimization problem of eq 12 is
denoted by u1,E* (t|tk) and u2,E* (t|tk) and is defined for t ∈ [tk,tk+NE

).

■ PROPOSED TWO-LAYER ARCHITECTURE FOR
DYNAMIC ECONOMIC OPTIMIZATION AND
PROCESS CONTROL

In this section, we introduce the proposed two-layered dynamic
economic optimization and control framework and provide a
rigorous theoretical treatment of the stability properties of the
closed-loop system of eq 1 with the proposed architecture.
Dynamic Economic Optimization and Control Frame-

work Formulation. The proposed dynamic economic opti-
mization and control framework consists of EMPC in the upper
layer and MPC in the lower layer. A block diagram of the proposed
framework is given in Figure 1. The upper layer EMPC is
formulated as a LEMPC given by the optimization problem of
eq 12. While LEMPC computes optimal input trajectories for
both sets of manipulated inputs u1,E* and u2,E* , it sends control
actions for the manipulated inputs u1 to the control actuators to
be applied in a sample-and-hold fashion. It uses the full set of
input trajectories u1,E* and u2,E* to compute the optimal operating
trajectory over a finite operating window tf which we explicitly
define in the following definition.
Definition 1. The economically optimal state trajectory xE*(t) of

the system of eq 1 over an operating window tf is obtained by
recursively solving

̇* = * * * ∈ +x t f x t u t u t t t t( ) ( ( ), ( ), ( ), 0), [ , ]E E E E k k1, 2, 1

(13)

where tk = t0 + kΔE, k = 0, 1, ..., and xE(t0) = x(t0) for all
t ∈ [tk, tk + tf ].

The purpose of the lower layer is to force the system to track
the optimal state trajectory xE*. The lower layer MPC is formu-
lated as a LMPC. Since the optimal state trajectory is time-
varying, we reformulate the cost function to track the eco-
nomically optimal state trajectory xE*(t) and reformulate the
Lyapunov-based constraint to allow for time-varying operation.
Specifically, we add a constraint denoted as mode 1 operation to
ensure the predicted system evolution remains bounded inΩρe. The
resulting LMPC is given by the following optimization problem:

∫ τ τ τ τ τ| ̃ − * | + | − * |
∈ Δ

+
x x u umin ( ( ) ( ) ( ) ( ) ) d

u S t

t

E Q E R
( )

2 2,
k

k N

c c
2

(14a)

̇ = ̃ *∼x t f x t u t u ts.t. ( ) ( ( ), ( ), ( ), 0)E1, 2 (14b)

̃ =x t x t( ) ( )k k (14c)

∈ ∀ ∈ +u t U t t t( ) , [ , )k k N2 2 (14d)

ρ

∂
∂

*

≤ ∂
∂

≥

V
x

f x t u t u t

V
x

f x t h x t h x t

V x t

( ( ), ( ), ( ), 0)

( ( ), ( ( )), ( ( )), 0),

if ( ( ))

k E k k

k k k

k e

1, 2

1 2

(14e)

ρ ρ≤ ∀ ∈ <+V x t t t t V x t( ( )) [ , ), if ( ( ))e k k N k e
(14f)

where the optimal solution is denoted as u2*(t) and defined for
t ∈ [tk, tk+N). We note the two key differences between the LMPC
of eq 11 and the LMPC of eq 14 are the added constraint of eq 14e
which ensures the predicted evolution of the system is maintained in
the region Ωρe (the same ρe used in the upper layer LEMPC) and
the quadratic cost function of eq 14a is formulated based on the
optimal time-varying trajectory and not a steady-state point.

Remark 3. For simplicity, we have assumed that the sampling
periods of the EMPC and MPC are the same. However, this two
layer f ramework can easily be extended to the case where the
sampling periods are not equal. In contrast, the prediction horizons
of the two controllers are not assumed to be the same. In general,
EMPC requires a much greater prediction horizon compared to
MPC to ensure good closed-loop performance of the system.

Implementation Strategy. At the beginning of each
operating window denoted t0, the LEMPC operates in either

Figure 1. Block diagram of the proposed two-layer integrated framework for dynamic economic optimization and process control with economic
MPC in the upper layer and MPC in the lower layer. Both the upper and lower layers compute control actions that are applied to the process.
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mode 1 if x(t0) ∈ Ωρe or mode 2 if x(t0) ∉ Ωρe to solve the
optimization problem given by eq 12. With the optimal
solution u1*(t|tk) and u2*(t|tk) defined for t ∈ [t0, t0 + tf), the
economically optimal state trajectory is computed and the
optimal trajectories are sent down to the lower layer LMPC. If
the state x(t0) ∉ Ωρe, the LEMPC works in mode 2 and re-
computes new optimal trajectories while employing a shrinking
horizon strategy at every sampling period until the state converges
to the setΩρe. Once the state converges to the setΩρe, the LEMPC
operates in mode 1 to compute the optimal trajectory over the
remainder of the operating window. The implementation strategy
of the LEMPC can be summarized as follows:

1. At time t0, the LEMPC receives the system state x(t0)

and tk := t0. If x(t0) ∈ Ωρe, go to step 2; else, go to step 3.
2. The LEMPC operates in mode 1 to compute control

actions that optimize the economic cost function; go to
step 4.

3. The LEMPC operates in mode 2 to compute control

actions that drive the system into Ωρe; go to step 4.
4. The LEMPC computes the economically optimal state

trajectory xE*(t) and input trajectories u1,E* (t) and u2,E* (t)
for t ∈ [tk, t0 + tf] and sends the optimal trajectories to
the LMPC; go to step 5.

5. The LEMPC sends the control action u1,E* (tk) to the
control actuators to be applied in a sample-and-hold
fashion for t ∈ [tk, tk+1); go to step 5.1.
5.1. k ← k + 1; go to step 5.2.
5.2. If tk < t0 + tf, go to step 5.3; else, go to step 6.
5.3. If LEMPC is operating in mode 2, go to step 5.3.1;

else, go to step 5.
5.3.1. Decrease the prediction horizon of the

LEMPC, i.e., NE,k = NE − k; go to step 5.3.2.
5.3.2. If x(tk) ∈ Ωρe, go to step 2; else, go to step 3.

6. t0 ← t0 + tf; go to step 1.

At each sampling period denoted as tk, the LMPC computes
optimal control actions u2*(t) defined for t ∈ [tk, tk+N). It sends
the optimal control action to be implemented in a sample-
and-hold fashion over the sampling period t ∈ [tk, tk+1). The
implementation strategy of the LMPC can be summarized as
follows:

1. At time tk, the LMPC receives the system state x(tk) and
the optimal trajectories xE*(t), u1,E* (t), and u2,E* (t) com-
puted by the LEMPC. If x(tk) ∈ Ωρe, go to step 2; else,
go to step 3.

2. The LMPC operates in mode 1 to compute control
actions that track the economically optimal state
trajectory xE*(t); go to step 4.

3. The LMPC operates in mode 2 to compute control

actions that drive the system into Ωρe; go to step 4.
4. Compute the optimal control action u2*(t) for t ∈

[tk, tk+N); go to step 5.
5. The LMPC sends the control action u2*(t) to the control

actuators to be applied in a sample-and-hold fashion for t
∈ [tk, tk+1); go to step 6.

6. k ← k + 1; go to step 1.

With this implementation strategy, we note several computa-
tional advantages over one-layer EMPC structures: when the
LEMPC is operating in mode 1, the LEMPC problem is only
computed once for each operating window. Also, the LMPC is

less computationally complex than the LEMPC because the
LMPC does not compute control actions for all of the
manipulated inputs, and it also can use a smaller prediction
horizon than the LEMPC. Furthermore, some inputs go to
their maximum value and then switch to their minimum value
after some time (like the reactant feed concentration in the
CSTR second-order reaction example in ref 17). These inputs
typically do not act on the system fast enough to drive the
system back to its optimal state trajectories anyway so there
really is not a need to recompute these trajectories (see the
Application to a Chemical Process Example section).

Stability Analysis. In this section, we provide sufficient
conditions whereby the closed-loop system with the proposed
two-layer dynamic economic optimization and control frame-
work is stable in the sense that the system state remains
bounded in a compact set for all times. The first proposition
provides an upper bound on the deviation of the state trajectory
obtained using the nominal model (eq 1 with w(t) ≡ 0) from
the actual system state trajectory when the same control input
trajectories are applied.

Proposition 1 (c.f. ref 32). Consider the systems

̇ =

̇ =

x t f x t u t u t w t

x t f x t u t u t

( ) ( ( ), ( ), ( ), ( ))

( ) ( ( ), ( ), ( ), 0)

a a

b b

1 2

1 2 (15)

with initial states xa(t0) = xb(t0) ∈ Ωρ. There exists a class
function αw(·) such that

α| − | ≤ −x t x t t t( ) ( ) ( )a b w 0 (16)

for all xa(t), xb(t) ∈ Ωρ, and all w(t) ∈ W with

α τ
θ

= −τL
L

e( ) ( 1)w
w

x

Lx

(17)

The following proposition bounds the difference between the
Lyapunov function of two different states in Ωρ.

Proposition 2 (c.f. ref 32). Consider the Lyapunov function
V(·) of the system of eq 1. There exists a quadratic function αV(·)
such that:

α≤ ̂ + | − |̂V x V x x x( ) ( ) ( )V (18)

for all x, x ̂ ∈ Ωρ with αV(s) = α4(α1
−1(ρ))s + MVs

2 where MV is a
positive constant.
Theorem 1 provides sufficient conditions such that the two

layer dynamic economic optimization optimization and control
framework guarantees that the state of the closed-loop system is
always bounded in Ωρ.

Theorem 1. Consider the system of eq 1 in a closed loop under
the proposed two-layer f ramework with the LEMPC of eq 12 in the
upper layer and the LMPC of eq 14 in the lower layer both based
on the Lyapunov-based controller h(x) that satisf ies the Lyapunov
function conditions of eqs 3−5 and the input bound of eq 6. Let
εw > 0, Δ > 0, and ρ > ρe > 0 satisf y

ρ ρ α α≤ − Δ( ( ))e V w (19)

and

α α ρ θ
ε

− + ′ Δ + ′ ≤
−
Δ

− L M L( ( ))e x w
w

3 2
1

(20)

If x(t0) ∈ Ωρ, N ≥ 1, and NE ≥ 1, then the state x(t) of the closed-
loop system is always bounded in Ωρ.

Proof. The proof consists of two parts. We first prove that
the optimization problems of eqs 12 and 14 are feasible for all
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states x ∈ Ωρ. Subsequently, we prove that the closed-loop state
of the system is always bounded in Ωρ.
Part 1. When x(t) is maintained in Ωρ (which will be proved

in Part 2), both the LEMPC of eq 12 and LMPC of eq 14
optimization problems are feasible. The feasibility of the
LEMPC follows because the input trajectory u(t), such that
(u1(t), u2(t)) = h(x(tk+q)), ∀ t ∈ [tk+q, tk+q+1) with q = 0, ...,
NE − 1 is a feasible solution to the optimization problem since
such trajectory satisfies the input constraints and the Lyapunov-
based constraints for both mode 1 and mode 2 operation. This
is guaranteed by the closed-loop stability property of the
Lyapunov-based controller h(x). The feasibility of the LMPC
follows because there exists an input trajectory u1(t) that
decreases the Lyapunov function by at least the rate given by the
Lyapunov-based controller as a consequence of Assumption 1.
Part 2.We prove that for any system state starting within the

set Ωρ that the system state will stay inside of Ωρ for all time
(i.e., Ωρ is an invariant set). To accomplish this, we must
consider two cases. First, we assume that the system state x(tk)
∈ Ωρe and show that x(tk+1) ∈ Ωρ. Second, we show that if x(tk)

∈ Ωρ\Ωρe, then the system state remains in the set Ωρ and after

a finite amount of sampling periods converges to the set Ωρe.

When x(tk) ∈ Ωρe, from the constraint of eq 14e, we obtain

that x ̃ ∈ Ωρe. By Propositions 1 and 2, we have that

α α≤ ̃ + Δ+ +V x t V x t( ( )) ( ( )) ( ( ))k k V w1 1 (21)

Since V(x ̃(tk+1)) ≤ ρe, if the condition of eq 19 is satisfied, we
can conclude that

∈ Ωρ+x t( )k 1

When x(tk) ∈ Ωρ\Ωρe, from the constraint of eq 14e and the
condition of eq 4, we can write

α

∂
∂

* *

≤
∂

∂
≤ − | |

V x t
x

f x t u u t

V x t
x

f x t h x t h x t

x t

( ( ))
( ( ), , ( ), 0)

( ( ))
( ( ), ( ( )), ( ( )), 0)

( ( ) )

k
k E k

k
k k k

k

1, 2

1 2

3 (22)

The time derivative of the Lyapunov function along the
computed optimal trajectories u1,E* and u2* for τ ∈ [tk, tk+1) can
be written as follows

τ τ τ τ̇ = ∂
∂

* *V x
V x

x
f x u t u t w( ( ))

( ( ))
( ( ), ( ), ( ), ( ))E k k1, 2

(23)

Adding and subtracting the term {∂V[x(tk)]/∂x}f(x(tk), u1,E* (tk),
u2*(tk), 0) to/from the above equation and considering eq 22,
we have

τ α τ

τ τ

̇ ≤ − | | + ∂
∂

× * *

−
∂

∂
* *

V x x t
V x

x
f x u t u t w

V x t
x

f x t u t u t

( ( )) ( ( ) )
( ( ))

( ( ), ( ), ( ), ( ))

( ( ))
( ( ), ( ), ( ), 0)

k

E k k

k
k E k k

3

1, 2

1, 2

(24)

Due to the fact that the disturbance is bounded |w| ≤ θ and the
Lipschitz properties of eq 9, we can write

τ α τ θ̇ ≤ − | | + ′| − | + ′V x x t L x x t L( ( )) ( ( ) ) ( ) ( )k x k w3 (25)

Taking into account eq 7 and the continuity of x(t), the
following bound can be written for all τ ∈ [tk, tk+1)

τ| − | ≤ Δx x t M( ) ( )k (26)

Substituting eq 26 into eq 25 and noting x(tk) ∈ Ωρ\Ωρe, the
inequality of eq 25 becomes

τ α α ρ θ̇ ≤ − + ′ Δ + ′−V x L M L( ( )) ( ( ))e x w3 2
1

(27)

If the condition of eq 20 is satisfied, then there exists εw > 0
such that the following inequality holds for x(tk) ∈ Ωρ\Ωρe

ε̇ ≤ − Δ ∀ = +V x t t t t( ( )) / , [ , )w k k 1

Integrating this bound on t ∈ [tk, tk+1), we obtain that

ε≤ −+V x t V x t( ( )) ( ( ))k k w1 (28)

≤ ∀ ∈ +V x t V x t t t t( ( )) ( ( )), [ , )k k k 1 (29)

for all x(tk) ∈ Ωρ\Ωρe. Using eq 29 recursively, it is proved that,

if x(tk) ∈ Ωρ\Ωρe, the state converges to Ωρe in a finite number
of sampling times without leaving the stability region Ωρ.

Remark 4. . We note if the sampling periods of the upper and
lower layers are dif ferent, one could take Δ = max{Δ1, Δ2} where
Δ1 and Δ2 are the sampling periods of the upper and lower layer,
respectively.

■ APPLICATION TO A CHEMICAL PROCESS
We implement the proposed two-layer architecture for dynamic
economic optimization and process control on a benchmark
chemical reactor example previously studied in the context of
forced periodic operation.9,16 Consider a nonisothermal CSTR
with a coolant jacket to remove heat from the reactor where
ethylene oxide (C2H4O) is produced from the catalytic
oxidation of ethylene with air. Two combustion reactions
occur that consume both the ethylene and ethylene oxide. The
reactions are given by

+ →C H
1
2

O C H O
r

2 4 2 2 4
1

(30)

+ → +C H 3O 2CO 2H O
r

2 4 2 2 2
2

(31)

+ → +C H O
5
2

O 2CO 2H O
r

2 4 2 2 2
3

(32)

where ri, i = 1, 2, 3 is the reaction rate of the ith reaction and
the reaction rate expressions are

=
−⎜ ⎟⎛

⎝
⎞
⎠r k

E
RT

Pexp E1 1
1 0.5

(33)

=
−⎜ ⎟⎛

⎝
⎞
⎠r k

E
RT

Pexp E2 2
2 0.25

(34)

=
−⎜ ⎟⎛

⎝
⎞
⎠r k

E
RT

Pexp3 3
3

EO
0.5

(35)

where ki and Ei, i = 1, 2, 3 are the reaction rate constant and
activation energy, respectively, for the ith reaction, T is the
temperature, R is the gas constant, and Pj is the partial pressure
of the jth component in the reactor where j = E, EO denotes
ethylene and ethylene oxide, respectively. These results are
from ref 33 where Alfani and Carberry studied catalytic
oxidation of ethylene using an unmodified, commercial catalyst
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and are based on data from the temperature range 523−573 K.
Ideal gas is assumed, and the concentrations of the j = E, EO
component can be written

=C
P

RTj
j

(36)

where Cj is the concentration of the jth component in the
reactor. The states of the system are

ρ ρ= = =

=

x x C C x C C

x T T

/ , / , / ,

/

E1 ref 2 ref 3 EO ref

4 ref

where ρ/ρref is the normalized vapor density in the reactor, CE/
Cref is the normalized ethylene concentration in the reactor,
CEO/Cref is the normalized ethylene oxide concentration in the
reactor, and T/Tref is the normalized reactor temperature. The
manipulated inputs are

= = =u Q Q u C C u T T/ , / , /1 f ref 2 E,f ref 3 c ref

where Qf/Qref is the normalized volumetric flow rate of the
reactor feed, CE,f/Cref is the normalized ethylene concentration
of the reactor feed, and Tc/Tref is the normalized coolant
temperature. The model describing the dynamic behavior of the
reactor obtained through first principles under standard
modeling assumptions (i.e., ideal gas, constant heat capacity,
etc.) is

= −
x
t

u x x
d
d

(1 )1
1 1 4 (37)

γ

γ

= − −

−

x
t

u u x x A x x x

A x x x

d
d

( ) exp( / )( )

exp( / )( )

2
1 2 2 4 1 1 4 2 4

1/2

2 2 4 2 4
1/4

(38)

γ

γ

= − +

−

x
t

u x x A x x x

A x x x

d
d

exp( / )( )

exp( / )( )

3
1 3 4 1 1 4 2 4

1/2

3 3 4 3 4
1/2

(39)
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γ γ

= − +

+ +

− −
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u
x

x
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x

x x x

B
x

x x x
B
x

x x x
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x

x u

d
d

(1 ) exp( / )( )

exp( / )( ) exp( / )( )

( )

4 1

1
4

1

1
1 4 2 4

1/2

2

1
2 4 2 4
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1
3 4 3 4

1/2

4

1
4 3

(40)

where the parameters are given in Table 1 and are taken from
refs 9 and 16. We note that the parameters, states, inputs, and
time have been normalized and are unitless. To integrate the

ordinary differential equations (ODEs), the explicit Euler method
is used with integration step size of 0.0001.
The CSTR system of eqs 37−40 has an asymptotically stable

steady-state

=x [0.998, 0.424, 0.032, 1.002]s
T

(41)

which corresponds to the steady-state input

=u [0.35, 0.5, 1.0]s
T

(42)

The maximum available control energy is considered bounded
in the following set: u1 ∈ [0.0704, 0.7042], u2 ∈ [0.2465,
2.4648], and u3 ∈ [0.6, 1.1]. The control objective is to
optimize the time-averaged yield of ethylene oxide by operating
the CSTR in a time-varying fashion around the stable steady-
state (mode 1 operation only). The time-averaged yield of
ethylene oxide over an operating window tf is given by

∫

∫

τ τ τ τ

τ τ τ
=Y t

u x x

u u
( )

( ) ( ) ( ) d

( ) ( ) d

t

tf
0 1 4 3

0 1 2

f

f

(43)

which is a measure of the amount of ethylene oxide leaving the
CSTR compared to the amount of ethylene fed into the CSTR.
To provide a fair comparison between the closed-loop per-
formance with the proposed two-layer framework and the closed-
loop performance when feeding the reactant material uniformly
to the reactor, we impose an additional constraint on the EMPC
to limit the average amount of ethylene fed into the process over
the operating window to be the same as uniformly distributing
the reactant material to the CSTR. The constraint is given by

∫ τ τ τ = =
t

u u u u
1

( ) ( ) d 0.175
t

s s
f 0

1 2 ,1 ,2
f

(44)

where us,1 and us,2 are the steady-state inlet volumetric flow rate
and ethylene concentration, respectively. Since the average
ethylene fed to the CSTR over the operating window tf is
fixed, the economic cost that the EMPC attempts to maximizes is

∫ ∫ τ τ=L x t u t u x t x t( ( ), ( )) ( ) ( ) ( ) d
t t

0 0
1 4 3

f f

(45)

which is equivalent to maximizing the time-averaged yield over
the period tf.
In the implemented two-layer dynamic optimization and

control framework, we partition the manipulated inputs into
two sets as in eq 1. The first set of manipulated inputs consists
of u1 and u2 for which the upper layer LEMPC of eq 12
computes control actions and applies them to the closed-loop
system. The second set of manipulated inputs consists of the
manipulated input u3 for which the LMPC of eq 14 computes
control actions that are applied in a sample-and-hold fashion to
the closed-loop system. The LEMPC also sends the optimal
operating trajectory xE*(t) over one operating period to the
lower LMPC layer to force the system to track this trajectory.
To characterize the closed-loop stability region Ωρe, we define

the Lyapunov-based controller u3 = h(x) = K(x3 − xs,3) + us,3 as
a proportional controller with K = 0.1 and use a quadratic
Lyapunov function defined as V(x) = (x − xs)

TP(x − xs) with
the positive definite matrix P defined as P = diag[10, 0.01, 10, 10].
With the given CSTR system, the Lyapunov-based controller,
and Lyapunov function, we are able to estimate the closed-loop
stability region as ρe = 0.2. This Lyapunov-based controller h(x)
is used in the design of the upper layer LEMPC and the lower

Table 1. Dimensionless Process Model Parameters of the
Ethylene Oxidation CSTRa

parameter value parameter value

A1 92.80 γ1 −8.13
A2 12.66 γ2 −7.12
A3 2412.71 γ3 −11.07
B1 7.32
B2 10.39
B3 2170.57
B4 7.02

aThe parameters are taken from ref 16.
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layer LMPC. The prediction horizon of the LEMPC and
LMPC are NE = tf/Δ and N = 3, respectively. The weighting
matrices of the LMPC are Qc = P, and Rc = 0.01 which have
been tuned to achieve close tracking of the optimal trajectory.
The optimization problems of eq 12 and 14 are solved using
the open-source software Ipopt.34

In the simulations, we implement the proposed two-layer
dynamic optimization and process control structure (upper
layer LEMPC and lower layer LMPC) and compare the closed-
loop economic performance of the process under the proposed
architecture with the economic performance of the forced
periodic operating strategy proposed in ref 16. We also
demonstrate the ability to handle process noise of the closed-
loop system with the proposed two-layer framework.
We first motivate the use of EMPC over steady-state

operation and the time-varying operating strategy proposed in
ref 16. Specifically, we implement a similar periodic control
strategy as in ref 16 which varies the inlet feed flow rate and
feed concentration in an open-loop periodic fashion as shown
in Figure 2 while keeping the reactor coolant temperature fixed.
The parameters we use for this control strategy are τ = 46.8,
a1 = 0.073, a2 = 0.500, a3 = 0.514, a4 = 0.941, and k = 0, 1, ...
which are similar parameters to the ones calculated in ref 16.
To compare this strategy to using EMPC, we implement the
upper layer LEMPC only to compute control actions for the
inlet feed flow rate and feed concentration in a closed-loop
fashion for the system without uncertainties or process noise.

Figure 2. Design of the open-loop periodic operation strategy over
one period τ.

Figure 3. Open-loop CSTR (a) state trajectories and (b) input
trajectories with the periodic operating strategy shown in Figure 2.

Figure 4. Closed-loop CSTR (a) state trajectories and (b) input
trajectories with the proposed two-layer dynamic economic
optimization and control framework.
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The LEMPC uses a prediction horizon of NE = 468 with a
sampling period of Δ = 0.1 chosen to cover the entire operating
window (i.e., tf = τ = 46.8). The LEMPC is implemented with a
shrinking horizon at each sampling time where the prediction
horizon is equal to NE,k = NE − k at each sampling period until
the end of the operating window when the prediction horizon
is reset to NE and k = 0.
The CSTR system is initialized at

=x [0.997, 1.264, 0.209, 1.004]0
T

(46)

which corresponds to an initial state on the stable limit cycle
that the process with the periodic strategy follows. Simulations
are carried out with the periodic control strategy and the
LEMPC over 10 operating windows. The evolution of the
CSTR for both cases is plotted in Figure 3 with the open-loop
periodic operation and Figure 4 with the upper layer LEMPC.
The state-space evolutions of the two strategies are plotted in
the x2−x3 phase plane (Figure 5). From these figures, we
observe the system with the two operating strategies
approaches different limit cycles. For the case with LEMPC,
the time-averaged yield over the entire time-interval of the
process simulation is 9.97% compared to the 7.93% with the
periodic operation. The latter agrees with the yield of 7.90%
reported in ref 16, and the difference likely lies in the small
differences in the model parameters used. We note that if we
were to initialize the CSTR system with the same initial point
and distribute the material uniformly over the operating
window by setting the inlet volumetric flow rate and ethylene
concentration to a fixed value at its steady-state value the
average yield is 6.63%. If instead, we initialize the system at the
steady-state and maintain the feed conditions constant, the
average yield is 6.41%. Therefore, the CSTR operated with
EMPC has a clear performance benefit as opposed to steady-
state operation and the open-loop periodic operation strategy.
To increase the robustness of the closed-loop CSTR system

and to deal with disturbances, uncertainties, and modeling error
while decreasing the computational demand, we implement the
proposed two-layer dynamic economic optimization and
process control framework to the system. With this strategy,

LEMPC, operating in mode 1 only, computes optimal state and
input trajectories at the beginning of each operating window.
The LEMPC sends down the trajectories to the LMPC and the
LMPC works to force the system to track this operating policy.
We first implement the proposed two-layer framework to the
system without process noise and initialize the system at the
same initial condition as in the previous simulations. The
closed-loop evolution of the CSTR is plotted in Figure 6. As we
can see in the figure, the LMPC is able to force the system to
track the optimal state trajectory. This is expected because the
sampling periods of the upper and lower layer are the same and
the closed-loop system is subjected to no uncertainities or
disturbances.
We note that the computation time of the lower layer LMPC

is insignificant compared to the computation time of the upper
layer LEMPC. Our proposed two-layer framework only solves
the LEMPC optimization problem once every operating
window. At the beginning of the operating window, the com-
putational burden of our two-layer framework compared to the
one-layer LEMPC would be the only time the two approaches
would be comparable (theoretically, the computational time of
the two approaches would be the same). For all other times, the

Figure 5. State-space evolution in the x2−x3 phase plane of the CSTR
system given by eqs 37−40 with the LEMPC of eq 12 operating in
mode 1 only and with the periodic control strategy shown in Figure 2.

Figure 6. Closed-loop CSTR (a) state trajectories and (b) input
trajectories with the proposed two-layer dynamic economic optimization
and control framework.
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computation of the LMPC which computes control actions for
the set of manipulated inputs u2 is insignificant compared to the
one-layer LEMPC. The one-layer LEMPC would have a larger
prediction horizon in general and would need to compute
control actions for both sets of manipulated inputs: u1 and u2.
Finally, we add significant process noise to the system states.

The noise is assumed to be bounded Gaussian white noise with
zero mean and standard deviation of σw = [0.005, 0.03, 0.01,
0.02] and bounds given by θ = [0.02, 0.1, 0.03, 0.08]. To
simulate the process noise, a new random number is generated
and applied to the process over each sampling period. The
results of a closed-loop simulation are plotted in Figure 7.
Because of the added process noise, the lower layer LMPC is
not able to force the closed-loop system to fully track the
economically optimal state trajectory. Also, the added process
noise has an effect on the closed-loop economic cost. Specifi-
cally, the time-averaged yield of the closed-loop system with the
proposed two-layer framework is 10.3% with the added process
disturbance and 10.4% without the added process disturbance.
It is important to point out that even with the process noise
added, the two-layer framework is able to outperform steady-

state operation and the periodic operating strategy without
process noise.

■ CONCLUSIONS

In this work, we proposed a two-layer framework for dynamic
economic optimization and process control that reduces the
computational demand required for one-layer economic MPC
schemes. In the upper layer, Lyapunov-based economic MPC
(LEMPC) was used to compute optimal operating trajectories
and control actions for some of the process manipulated inputs.
The lower layer, utilizing Lyapunov-based MPC (LMPC), is
used to force the system to track the optimal operating policy
computed by the upper layer. We proved boundedness of the
closed-loop system state with the proposed framework. Lastly,
we demonstrated through a chemical process example that the
proposed framework achieves stability and yields improved
closed-loop economic performance compared to steady-state
operation.
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