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Economic model predictive control (EMPC) is a control scheme that combines real-time dynamic economic process
optimization with the feedback properties of model predictive control (MPC) by replacing the quadratic cost function
with a general economic cost function. Almost all the recent work on EMPC involves cost functions that are time invari-
ant (do not explicitly account for time-varying process economics). In the present work, we focus on the development of
a Lyapunov-based EMPC (LEMPC) scheme that is formulated with an explicitly time-varying economic cost function.
First, the formulation of the proposed two-mode LEMPC is given. Second, closed-loop stability is proven through a the-
oretical treatment. Last, we demonstrate through extensive closed-loop simulations of a chemical process that the pro-
posed LEMPC can achieve stability with time-varying economic cost as well as improve economic performance of the
process over a conventional MPC scheme. VC 2013 American Institute of Chemical Engineers AIChE J, 60: 507–519,
2014

Keywords: process control, optimization

Introduction

Within the chemical process industries, achieving optimal
operating performance of chemical processes has tradition-
ally relied on steady state or static optimization to compute
new optimal operating set points (steady states) to address
dynamic energy pricing, customer demand changes, and
other time-varying economic considerations. This paradigm
divides economic optimization of chemical processes into
two layers. In the upper layer, called the real-time optimiza-
tion (RTO) layer, economically optimal steady states are
computed using steady state models of the process; see, for
instance, Refs. 1 and 2. The operating steady states are sent
down to the lower process control layer as set points or tar-
gets for the lower-layer controller(s) to guide the process to
the optimal set points and maintain operation at the set
points until the set points are updated by the upper layer. In
the lower layer, model predictive control (MPC) has been
widely implemented within the chemical process industries.
MPC is a control framework that takes advantage of a
dynamic model to predict the future state and outputs of a
process to compute optimal control actions with respect to a
cost function while accounting for process constraints. The
standard cost function of an MPC scheme is a quadratic cost

that penalizes the deviation of states and inputs from their
corresponding set points.

While the two-layer paradigm of RTO and MPC has been
successfully deployed in many applications, optimal dynamic
performance of process systems has remained an open topic
for research as traditional RTO systems only address static
or steady state optimization. Additionally, the models used
in the RTO and MPC layers are often not consistent which
may result in set points computed by the upper layer that are
unreachable by the lower layer.3 To this end, many research-
ers have explored alternatives to the traditional RTO/MPC
framework within the context of other two-layer frameworks
including replacing the steady state model with a dynamic
model in the upper layer, called dynamic RTO,4–7 studying
the rate at which the upper layer should be resolved,4,6 pro-
posing an intermediate layer between the RTO and MPC
layer, called steady state target optimization, to compute set
points that are reachable in the lower layer,8,9 and using non-
linear MPC to compute target states corresponding to the
desired set point.10

As another way to address the drawbacks of traditional
RTO/MPC frameworks, the two layers can be merged into
one layer by replacing the quadratic cost function in MPC
with a cost function that directly accounts for the economics
of the process. The resulting economically optimal control
scheme is referred to as economic MPC (EMPC). Several
formulations have been proposed in the literature to address
the critical challenge of formulating a stabilizing controller
resulting from replacing the quadratic cost function with a
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general cost function.3,11–19 Some of the more recent work
on EMPC includes Ref. 17 where two EMPC schemes are
proposed for a catalytic distillation process: one EMPC for-
mulated with a pure economics-based cost function and
another economics-oriented tracking controller. Both control-
lers demonstrated improved performance over a conventional
tracking controller. In Ref. 14, an adaptive EMPC scheme
for uncertain nonlinear systems was developed. In Ref. 20, a
Lyapunov-based EMPC (LEMPC) scheme was applied to a
large-scale process network used in the production of vinyl
acetate and the applicability of EMPC to large-scale process
networks was discussed. In Ref. 18, the necessity of dissipa-
tivity for optimal steady state operation was discussed as
well as a stability analysis for averagely constrained EMPC
with terminal constraint was carried out.

For stability purposes, the aforementioned EMPC
schemes, with provable stability properties, use a steady
state to impose constraints in the EMPC optimization prob-
lem to ensure closed-loop stability in their formulations, for
example, the terminal constant3 and the Lyapunov-based
constraint.15 Moreover, almost all these EMPC schemes are
formulated with time-invariant economic cost functions.
The limited work on EMPC with explicitly time-dependent
cost functions includes replacing the traditional RTO sys-
tem in existing industrial two-layer architecture with an
EMPC formulated with a time-dependent cost function21

and formulating an EMPC with a terminal constraint that
enforces convergence of the predicted state to an equilib-
rium manifold instead of formulating the terminal con-
straint with the economically optimal steady state.12

However, when the time scale of the time-varying eco-
nomic information is comparable to the time scale of the
process dynamics, economically optimal time-varying oper-
ation may not necessarily be at or even near the economi-
cally optimal steady state. Furthermore, most of the
previous EMPC work has addressed nominal asymptotic
stability of an equilibrium point of the closed-loop system
and not closed-loop stability in the sense of boundedness of
the state in a compact set. As a result, formulating a one-
layer EMPC scheme with a time-dependent cost function
that can operate the system in a dynamic and economically
optimal fashion while maintaining the state in a bounded
region in the presence of disturbances is an important and
open research topic.

In the present work, an LEMPC scheme is developed

that can accommodate an explicitly time-varying economic

cost function. First, the formulation of the LEMPC scheme

is presented. With this formulation, dynamic process eco-

nomic optimization and process control are completely

handled in a one-layer control structure which removes the

need for an RTO layer. Second, closed-loop stability, in the

sense of boundedness of the closed-loop state, is proven

through a theoretical treatment of the LEMPC scheme. No

restrictions on the type of economic cost function are

required for provable closed-loop stability under the pro-

posed LEMPC scheme. Last, the LEMPC is applied to a

chemical process example to demonstrate through extensive

closed-loop simulations that the proposed LEMPC achieves

stability with time-varying economic cost arising due to

variable energy pricing and product demand changes and

results in improved closed-loop economic performance

over a conventional RTO/MPC scheme (i.e., steady state

operation).

Preliminaries

Notation

The notation j � j denotes the Euclidean norm of a vector
and the notation j � jQ denotes the weighted Euclidean norm
of a vector (i.e., jxjQ5xTQx where Q is a positive definite
matrix). A scalar valued function a : ½0; aÞ ! ½0;1Þ is said
to belong to class K if it is continuous, strictly increasing,
and satisfies að0Þ50. The symbol XqðxsÞ, where xs 2 C � Rn,
is a fixed parameter denotes a level set of a function Vðx; xsÞ
(i.e., XqðxsÞ5fx 2 RnjVðx; xsÞ � qðxsÞg). The notation
diag ðvÞ denotes a matrix whose diagonal elements are the
elements of vector v and all the other elements are zeros.

Class of nonlinear systems

The following class of continuous-time nonlinear dynamic
systems that can be written in the following state-space form
is considered

_xðtÞ5f ðxðtÞ; uðtÞ;wðtÞÞ (1)

where xðtÞ 2 Rn denotes the state vector uðtÞ 2 U � Rm

denotes the manipulated input vector, and wðtÞ 2 W � Rl

denotes the disturbance vector. The vector field f :
Rn3Rm3Rl ! Rn is assumed to be a locally Lipschitz vec-
tor function of its arguments. The set of available control
energy U is assumed to be the convex set

U5fu 2 Rmjumin
i � ui � umax

i ; i51;…;mg (2)

and the disturbance vector is assumed to be bounded in the
following set

W5fw 2 Rljjwj � wpg (3)

where wp is some positive constant that bounds the norm of
the disturbance vector. State measurements are assumed to
be available and sampled synchronously at each time
instance of the time sequence: ftk�0g where tk5t01kD, k 2
Z1 and D is the sampling period. As a consequence of the
discrete time sampling of the state, control actions are
applied to the continuous-time system of Eq. 1 in a sample-
and-hold fashion with sampling period D. The existence of
an equilibrium manifold, which denoted as C5fxs 2 Rnj
9us 2 Us:t:f ðxs; us; 0Þ50g � Rn, is assumed for the system
of Eq. 1. An additional assumption is made on the set C to
ensure that the acceptable operating region is nonempty
which is stated in the “Economic Model Predictive Control-
ler with Time-varying Cost” section. For a given system, the
equilibrium manifold C can be taken as the set of admissible
operating steady states.

The economic cost of the system of Eq. 1 is assumed to
have the following form

Leðt; xðtÞ; uðtÞÞ (4)

which depends explicitly on time. If the time scale of the
change of the economic information is on a comparable time
scale to the one of the process dynamics, the economically
optimal strategy is to operate the process in a time-varying
(transient) fashion while accounting for time-dependent pro-
cess economics.20 As a result, the class of chemical proc-
esses that may benefit from the EMPC methodology
proposed in this work are processes in which the economic
cost time variation is on a time scale comparable to the pro-
cess dynamics.
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Stabilizability assumption

A stabilizability assumption is imposed on the system of
Eq. 1. For each fixed xs 2 C, the existence of an explicit
Lyapunov-based controller hðx; xsÞ that renders xs of the
nominal system of Eq. 1 asymptotically stable under continu-
ous implementation is assumed. Using converse theo-
rems,22,23 the existence of a Lyapunov function Vðx; xsÞ
follows from the stabilizability assumption. The Lyapunov
function satisfies the following conditions

a1ðjx2xsjÞ � Vðx; xsÞ � a2ðjx2xsjÞ (5a)

@V

@x
f ðx; hðx; xsÞ; 0Þ � 2a3ðjx2xsjÞ (5b)���� @V@x

���� � a4ðjx2xsjÞ (5c)

hðx; xsÞ 2 U (5d)

for ðx2xsÞ 2 D and each xs 2 C where D is an open neigh-
borhood of the origin. For each xs 2 C, the stability region
XqðxsÞ can be characterized for the closed-loop system of Eq.
1 with the explicit stabilizing controller hðx; xsÞ. Numerous
control laws that provide explicitly defined stability regions
for the closed-loop system have been developed using Lya-
punov techniques for various classes of nonlinear systems;
see Refs. 24–26 and the references therein. The union of the
stability regions is denoted as X5 [

xs2C
XqðxsÞ and it is

assumed to be a compact set.
By continuity and the local Lipschitz property assumed

for the vector field f and taking into account that the manipu-
lated inputs u are bounded and the continuous differentiable
property of the Lyapunov function, there exists positive con-
stants M, Lw, Lx, L

0
x, and L

0
w such that

jf ðx; u;wÞj � M (6)

jf ðx; u;wÞ2f ðx0; u; 0Þj � Lxjx2x0j1Lwjwj (7)���� @Vðx; xsÞ@x
f ðx; u;wÞ2 @Vðx0; xsÞ

@x
f ðx0; u; 0Þ

���� � L
0
xjx2x0j1L

0
wjwj
(8)

for all u 2 U, w 2 W, and x; x0 2 X .

The union of the stability regions

A simple demonstration of the construction of the set X is
provided to embellish the concept of the union set X . The
stability region of a closed-loop system under an explicit sta-
bilizing control law can be estimated for a steady state in C
through the off-line computation described below. After the
stability regions of sufficiently many steady states in C are
computed, the union of these sets can be described mathe-
matically through various mathematical techniques (e.g.,
curve fitting, convex optimization, etc.). The basic algorithm
is

1. For j5 1 to J (J is a sufficiently large positive integer).
1.1. Select a steady state (xs;j) in the set C.
1.2. Partition state space near xs;j into I discrete points (I

is a sufficiently large positive integer).
1.3. Initialize qðxs;jÞ : 51.
1.4. For i51 to I.
1.4.1. Compute _Vðxi; xs;jÞ. If _Vðxi; xs;jÞ > 0, go to Step
1.4.2. Else, go to Step 1.4.3.
1.4.2. If Vðxi; xs;jÞ � qðxs;jÞ, set qðxs;jÞ : 5Vðxi; xs;jÞ. Go to

Step 1.4.3.

1.4.3. If i11 � I, go to Step 1.4.1 and i i11. Else, go
to Step 2.

2. Save qðxs;jÞ.
3. If j11 � J, go to Step 1 and j j11. Else, go to Step

4.
4. Approximate the union set with analytic mathematical

expressions (constraints) using appropriate techniques.
If C consists of a finite number of points, then J could be

taken as the number of points in C. If the number of points
in C is large or infinite, J could be a sufficiently large inte-
ger. From a practical stand point, these numbers need to be
small enough such that this type of calculation can be imple-
mented. Figure 1 gives an illustration of the construction of
X using this procedure. The following example provides a
tractable illustration of the construction of X for a scalar
system.

EXAMPLE 1. Consider the nonlinear scalar system
described by

_x5x22x21xu (9)

with available control energy uðtÞ 2 ½2100; 100� and with
the set of admissible operating steady states defined as
C5fxs 2 ½225; 25�g. The steady states in C are open-loop
unstable. The system of Eq. 9 can be written in the following
input-affine form

_xðtÞ5f ðxðtÞÞ1gðxðtÞÞuðtÞ (10)

where x5x2xs and u5u2us. For simplicity, consider a
quadratic Lyapunov function of the form

Vðx; xsÞ5 1

2
ðx2xsÞ2 (11)

for the closed system of Eq. 9 under the following Lyapunov-
based feedback control law27

ĥðx; xsÞ5
2

Lf V1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lf V21LgV4

p
LgV

if LgV 6¼ 0

0 if LgV50

8><
>: (12)

where Lf V and LgV are the Lie derivatives of the function V
with respect to f and g, respectively. To account for the
bound on the available control energy, the controller is for-
mulated as

Figure 1. An illustration of the construction of the sta-
bility region X .
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hðx; xsÞ5100 sat
ĥðx; xsÞ
100

 !
(13)

where sat ð�Þ denotes the standard saturation function.
For this particular case, the stability region of the system of
Eq. 9 with the stabilizing controller of Eq. 13 for the mini-
mum and maximum steady state in the set C are used to
approximate the set X . For the steady state xs;15225 with
corresponding steady state input us;15251, the largest level
set of the Lyapunov function where the Lyapunov function
is decreasing along the state trajectory with respect to the
steady state xs;1 is Xqðxs;1Þ5fx 2 RjVðxÞ � 300:25g, (i.e.,
qðxs;1Þ5300:25). For the steady state xs;2525 and us;2549,
the level set is Xqðxs;2Þ5fx 2 RjVðxÞ � 2775:49g, (i.e.,
qðxs;2Þ52775:49). Therefore, the union of the stability region
is described as X5fx 2 ½249:5; 99:5�g.

Economic Model Predictive Controller with
Time-varying Cost

In this section, the formulation, implementation strategy,
and stability analysis of the proposed LEMPC which
accounts directly for the time-varying economic cost func-
tion are given.

Formulation

First, consider the case where no disturbances and uncer-
tainties affect the system of Eq. 1 (i.e., the nominal system
of Eq. 1). As a direct consequence of the construction
method used for X , any state in X is also in a stability
region of at least one acceptable operating steady state (i.e.,
any x 2 X is also in XqðxsÞ for some xs 2 C). The stability
properties of X make it an attractive choice to use in the for-
mulation of a LEMPC. Namely, use X to formulate a con-
straint in the optimization problem of the LEMPC that
allows the predicted state to evolve in a time-varying fashion
while maintains the state in the bounded region X . The exis-
tence of an input trajectory that satisfies the input constraint
and that maintains operation in X is guaranteed because
applying the input trajectory obtained from the Lyapunov-
based controller with respect to the steady state xs that the
current state x 2 XqðxsÞ is a feasible solution.

In any practical setting, process disturbances and uncer-
tainties will affect the closed-loop system and the actual
state trajectory will deviate from the predicted nominal tra-
jectory. For this case, forcing the predicted state to be in X
is not sufficient for maintaining the actual (time varying)
state trajectory in X because the disturbances may force the
system out of X over the sampling period and the input is
applied in a sample-and-hold fashion to a continuous-time
system. To make X an invariant set when operating the sys-
tem in a time-varying fashion, a subset of X is defined and
is denoted as X̂ . The maximum size of this set is the largest
subset of X such that for any state starting in X̂ forced out-
side of X̂ over one sampling period, the state trajectory will
be maintained in X over the sampling period. The size of X̂
depends on the properties of the system and bound on the
disturbance. Furthermore, any state xðtkÞ 2 XnX̂ can be
forced back into the set X̂ . This statement holds as a result
of the method used to construct X̂ and X . In other words, a
steady state x̂s 2 C can be found such that the current state
is in its stability region Xqðx̂sÞ. Then, a Lyapunov-based con-
straint can be used in the formulation of the LEMPC to

ensure that the computed control action uðtkÞ decreases the
Lyapunov function by at least the rate given by the explicit
stabilizing controller hðx; x̂sÞ over the first sampling period
in the prediction horizon to enforce convergence of the state
back to the set X̂ .

Given the definitions of the sets X and X̂ , a slight clarifi-
cation must be made on the set C. First, the set C is the set
of points in state space that satisfies the steady state process
model equation for some us 2 U (i.e., f ðxs; us; 0Þ50). Sec-
ond, the union of the stability regions XqðxsÞ constructed for
each steady state in C must form a nonempty, compact set.
As pointed out, the intersection of all these stability regions
is defined as X . Last, there must exist a nonempty set, X̂ ,
satisfying C � X̂ � X such that if xðtkÞ 2 X̂ , then xðtk11Þ 2
X for a given system and bounded disturbance. Usually, one
possible choice of X̂ is to take it to be C as C would typi-
cally satisfy these properties. If this is not the case or if X̂ is
empty, then the set C must be reduced to construct a set X̂
that is nonempty. The importance of constructing X̂ to be
nonempty comes from the fact that the set X̂ is where the
LEMPC is allowed to operate the system in a dynamically
optimal fashion. From a stability perspective, the LEMPC
would still work if X̂ is empty as the controller would
always operate in mode 2.

Using the sets C, X , and X̂ , the proposed LEMPC formu-
lation with an explicitly time-varying cost is given by the
following optimization problem

minimize
u2SðDÞ

ðtk1N

tk

Leðs; ~xðsÞ; uðsÞÞds (14a)

subject to _~xðtÞ5f ð~xðtÞ; uðtÞ; 0Þ (14b)

~xðtkÞ5xðtkÞ (14c)

uðtÞ 2 U 8t 2 ½tk; tk1NÞ (14d)

x̂ðtÞ 2 X̂ 8t 2 ½tk; tk1NÞ if xðtkÞ 2 X̂ (14e)

x̂ðtÞ 2 X 8t 2 ½tk; tk1NÞ if xðtkÞ 2 XnX̂ (14f)

@Vðx; x̂sÞ
@x

f ðxðtkÞ; uðtkÞ; 0Þ � @Vðx; x̂sÞ
@x

f ðxðtkÞ; hðxðtkÞ; x̂sÞ; 0Þ

if xðtkÞ 62 X̂ ; xðtkÞ 2 Xqðx̂ sÞ with x̂s 2 C

(14g)

where SðDÞ is the family of piecewise constant functions

with sampling period D, N is the prediction horizon of the

LEMPC, Leðs; xðsÞ; uðsÞÞ is the explicitly time-dependent

economic measure of Eq. 4 which defines the cost function

of the optimization problem, ~xðtÞ denotes the predicted state

trajectory of the system with input trajectory u(t), t 2
½tk; tk1NÞ computed by the LEMPC and xðtkÞ is the state

measurement obtained at time tk. The optimal solution of

this optimization problem is denoted as u�ðtjtkÞ and it is

defined for t 2 ½tk; tk1NÞ.
In the optimization problem of Eq. 14, Eq. 14a defines the

economic cost function to minimize over the prediction hori-
zon. The constraint of Eq. 14b is the nominal model of the
system (wðtÞ 	 0) used to predict the evolution of the system
with input trajectory u(t) computed by the LEMPC and an
initial condition given in Eq. 14c obtained through state
measurement feedback. The constraint of Eq. 14d is the
bound on the available control energy. The constraint of Eq.
14e defines mode 1 operation of the LEMPC and is active
when the state at the current sampling time xðtkÞ 2 X̂ . It
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enforces that the predicted state trajectory be maintained in
X̂ . The constraint of Eq. 14f is active when xðtkÞ 2 XnX̂
and ensures the predicted state be contained in the set X .
The constraint of Eq. 14g defines mode 2 operation of the
LEMPC and is active when the state is outside X̂ . It is used
to force the state back into the X̂ which is guaranteed for
any xðtkÞ 2 X . Although Eq. 14f is not needed for stability,
it is used to ensure that the LEMPC optimizes the input tra-
jectory with knowledge that the future evolution must be
contained in X , and helps to improve the closed-loop eco-
nomic performance when the LEMPC is operating under
mode 2 operation. Figure 2 illustrates the sets and different
operation modes of the closed-loop system under the
LEMPC of Eq. 14.

Remark 1. The set X̂ does not necessarily need to be the
largest subset of X where if xðtkÞ 2 X̂ , then xðtk11Þ 2 X .
This set could be taken as a smaller set. For instance, if it is
desirable to maintain operation near the acceptable operating
steady states, X̂ could be taken as C or a slightly larger set
than C.

Implementation strategy

The LEMPC of Eq. 14 is implemented in a receding hori-
zon fashion for robustness to disturbances and uncertainty.
Namely, the optimization problem is resolved every sam-
pling period D after receiving state feedback from the sys-
tem. The implementation strategy can be summarized as
follows:

1. At sampling time tk, the LEMPC receives a state mea-
surement xðtkÞ from the sensors.

2. If xðtkÞ 2 X̂ , go to Step 2.1. Else, go to Step 2.2.
2.1. LEMPC operates in mode 1: the constraint of Eq. 14e

is active and constraints of Eqs. 14f–14g are inactive, go to
Step 3.

2.2. LEMPC operates in mode 2: the constraint of Eq. 14e
is inactive and constraints of Eqs. 14f–14g are active, go to
Step 2.3.

2.3. Using a lookup table, find a x̂s 2 C such that
xðtkÞ 2 Xqðx̂sÞ, go to Step 3.

3. The LEMPC computes the optimal input trajectory
u�ðtÞ for t 2 ½tk; tk1NÞ, go to Step 4.

4. The LEMPC sends the control action computed for the
first sampling period of the prediction horizon to the control
actuators to apply to the system in a sample-and-hold fash-
ion from tk to tk11. Go to Step 5.

5. k k11. Go to Step 1.
Remark 2. For systems that are open-loop stable or do

not have input constraints, the sets X and X̂ may be large
(practically the entire Rn), and the implementation strategy
of the LEMPC and definition of these sets greatly
simplifies.

Remark 3. Regarding finding the steady state x̂s when the
LEMPC is operating in mode 2, it may be any steady state
with xðtkÞ 2 Xqðx̂ sÞ although ideally the steady state x̂s would
be in the direction of the vector field at the current state for
economically optimal performance.

Stability analysis

In this subsection, Theorem 1 provides sufficient condi-
tions for closed-loop stability, in the sense of boundedness
of the closed-loop system state inside the set X , under the
proposed LEMPC of Eq. 14a for any initial condition
xðt0Þ 2 X .

Theorem 1 Consider the system of Eq. 1 in closed-loop
under the LEMPC design of Eq. 5 based on a controller
hðx; xsÞ that satisfies the conditions of Eq. 5. Let �w > 0,
D > 0, qðxsÞ > qeðxsÞ � qe;min > 0 for all xs 2 C satisfy

0 < qe;min5min
xs2C
fmax fqeðxsÞjXqeðxsÞ � X̂ gg (15)

and

2a3ða21
2 ðqe;min ÞÞ1L

0
xMD1L

0
wwp � 2�w=D (16)

If xðt0Þ 2 X and N � 1, then the state x(t) of the closed-
loop system is always bounded in X .

Proof. The proof of Theorem 1 consists of the following
parts: first, the feasibility of the optimization problem of Eq.
14 is proven for any state xðtkÞ 2 X . Second, boundedness of
the state trajectory xðtÞ 2 X is proven for any initial state
starting in X .

Part 1. Owing to the construction of X , any state xðtkÞ 2
X is also in the stability region XqðxsÞ of the controller
hðx; xsÞ for some steady state xs. This implies that there exists
an input trajectory that is a feasible solution because the input
trajectory uðtk1jÞ5hðxðtk1jÞ; xsÞ, j50; 1;…;N21 is a feasible
solution to the optimization of Eq. 14a as it satisfies the con-
straints. The latter claim is guaranteed by the closed-loop sta-
bility properties of the Lyapunov-based controller hðx; xsÞ.
The reader may refer to Ref. 28 for a thorough discussion on
the stability properties of the Lyapunov-based controller when
implemented in a sample-and-hold fashion.

Part 2. If xðtkÞ 2 XnX̂ , then the LEMPC operates in
mode 2. As xðtkÞ 2 X , a steady state x̂s 2 C can be found
such that the current state xðtkÞ 2 Xqðx̂ sÞ (recall Xqðx̂sÞ is com-
puted from the Lyapunov-based controller hðx; x̂sÞ). Utilizing
the Lyapunov-based controller hðx; x̂sÞ, the LEMPC com-
putes control actions that satisfy the constraint of Eq. 14g

Figure 2. This illustration gives the state evolution over
two sampling periods.

Over the first sampling period, the LEMPC, operating

in mode 1, computes a control action that maintains the

predicted state ~xðtk11Þ inside X̂ . However, the actual

state at the next sampling time xðtk11Þ is driven outside

of X̂ by disturbances. The LEMPC, operating in mode

2, ensures that the computed control action decrease the

Lyapunov function based on the steady state x̂s over the

next sampling period to force the state back into X̂ .
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@VðxðtkÞ; x̂sÞ
@x

f ðxðtkÞ; u�ðtkÞ; 0Þ

� @VðxðtkÞ; x̂sÞ
@x

f ðxðtkÞ; hðxðtkÞ; x̂sÞ; 0Þ (17)

for some x̂s 2 C where u�ðtkÞ is the optimal control action
computed by the LEMPC to be applied in a sample-and-hold
fashion to the system of Eq. 1 for t 2 ½tk; tk11Þ. From Eq. 5b,
the term in the right-hand side of the inequality of Eq. 17
can be upper bounded by a class K function as follows

@VðxðtkÞ; x̂sÞ
@x

f ðxðtkÞ; u�ðtkÞ; 0Þ � 2a3ðjxðtkÞ2x̂sjÞ (18)

The derivative of the Lyapunov function along the state tra-
jectory for s 2 ½tk; tk11Þ is

_VðxðsÞ; x̂sÞ5 @VðxðsÞ; x̂sÞ
@x

f ðxðsÞ; u�ðtkÞ;wðsÞÞ (19)

Adding and subtracting the term _VðxðtkÞ; x̂sÞ to and from
Eq. 19 and accounting for the bound of Eq. 18 and the Lip-
schitz properties of Eq. 8, the following bound can be
derived that bounds the rate of decrease of the Lyapunov
function due to the control action uðtkÞ and the rate of possi-
ble increase due to the disturbance wðsÞ for s 2 ½tk; tk11Þ

_VðxðsÞ; x̂sÞ � 2a3ðjxðtkÞ2x̂sjÞ1L
0
xjxðsÞ2xðtkÞj1L

0
wjwðsÞj

(20)

Utilizing Eq. 6 and the continuity of x(t), the difference in
the state over one sampling period can be bounded by

jxðsÞ2xðtkÞj � MD (21)

which holds for s 2 ½tk; tk11Þ and M is a positive constant.
Combining Eqs. 20 with 21 and accounting for the bound on
the disturbance, the resulting bound on the time derivative of
the Lyapunov function over one sampling period is

_VðxðsÞ; x̂sÞ � 2a3ðjxðtkÞ2x̂sjÞ1L
0
xMD1L

0
wwp (22)

for all s 2 ½tk; tk11Þ.
As xðtkÞ 2 XnX̂ and C � X̂ , the difference jxðtkÞ2x̂sj is

always greater than zero. To upper bound the right-hand side
of Eq. 22, a lower bound on the difference jxðtkÞ2x̂sj needs
to be derived. Taking advantage of the level sets of Vðx; xsÞ,
the largest level set XqeðxsÞ contained in X̂ is computed for
each xs 2 C (refer to Figure 2 for an illustration of Xqeðx̂sÞ
for x̂s). Of all the level sets for each xs 2 C, the magnitude
of the smallest level set denoted as qe;min is used to bound
the Lyapunov function value from below

Vðx; x̂sÞ � qe;min (23)

for all x 2 XnX̂ and x̂s 2 C (x 2 Xqðx̂sÞ and x̂s 2 C; this is the
condition of Eq. 15). Note also that qe;min > 0 as jxðtkÞ2x̂sj >
0 for all x 2 XnX̂ and x̂s 2 C. Using the lower bound on the
Lyapunov function of Eq. 23 and accounting for the bound of
Eq. 5a, the difference jx2x̂sj may be lower bounded by the fol-
lowing class K function

a21
2 ðqe;min Þ � jx2x̂sj (24)

which holds for all x 2 XnX̂ and x̂s 2 C. Applying this
result to the bound on the time derivative of Eq. 22, the fol-
lowing bound is obtained

_VðxðsÞ; x̂sÞ � 2a3ða21
2 ðqe;min ÞÞ1L

0
xMD1L

0
wwp (25)

for xðtkÞ 2 XnX̂ . If the condition of Eq. 16 is satisfied, then
there exists �w > 0 such that the following inequality holds
for xðtkÞ 2 XnX̂

_VðxðsÞÞ � 2�w=D; 8s 2 ½tk; tk11� (26)

Integrating this bound on the interval ½tk; tk11Þ, we obtain
that

Vðxðtk11ÞÞ � VðxðtkÞÞ2�w

VðxðsÞÞ � VðxðtkÞÞ; 8s 2 ½tk; tk11�
(27)

for all xðtkÞ 2 XnX̂ . Using the above expression recursively,
it follows that if xðtkÞ 2 XnX̂ , then the state is driven closer
to the equilibrium manifold C over each sampling time until
it converges to X̂ as C � X̂ . Furthermore, operation is
always maintained within X because if xðtkÞ 2 X̂ , then
xðtk11Þ 2 X owing to the construction of X̂ and if
xðtkÞ 2 XnX̂ , then xðtk11Þ 2 X . The latter fact holds because
the state is forced to a smaller level set of the Lyapunov
function with respect to the steady state x̂s 2 C over the
sampling period. w

Remark 4. Referring to Eq. 15, it is important to remark
that it states to first select the largest level set (e.g., XqeðxsÞ)
of Vðx; xsÞ contained in X̂ for each steady state in the set C.
From all these level sets, the smallest one denoted as Xqe;min

is selected. Furthermore, it is important to point out that if
C5fx�sg (i.e., a set that only includes the optimal steady
state), then the theoretical developments reduce to the previ-
ous work on LEMPC for time-invariant cost function; see
Ref. 15. The sets X and X̂ would correspond to the sets Xq

and X~q , respectively, in Ref. 15. Regarding the restrictions
on the set of admissible steady states and the set X̂ that
result from Eqs. 15 and 16, in order for these equations to
hold the sampling period, bound on the disturbance, and the
set X̂ must be sufficiently small as governed by Eqs. 15 and
16.

Remark 5. With the formulated constraints of the LEMPC
of Eq. 14a, the optimization problem can always be made
feasible regardless of whether the current state xðtkÞ is in X
or not. For any state xðtkÞ 62 X , the Lyapunov-based con-
straint of mode 2 (Eq. 14g) can be formulated with any
steady state in C (e.g., the steady state closest to the current
state), and the controller would attempt to force the state
closer to this steady state. While closed-loop stability
(boundedness of the state) cannot be guaranteed for this
case, it may still be possible for a state starting outside X to
be forced into X .

Remark 6. The two-mode control strategy of Eq. 14 par-
allels the LEMPC with time-invariant economic cost func-
tion that was first proposed in Ref. 15. For the LEMPC with
time-invariant cost function, a subset of the stability region
associated with the economically optimal steady state was
found where the LEMPC was allowed to operate the system
in a possibly time-varying fashion. The definition of this
subset of the stability region could be clearly defined in
terms of another level set of the Lyapunov function that
depended on the sampling period, properties of the system,
and bound on the disturbance. While similar type arguments
could be used to derive a bound on X̂ , this analysis has not
been included in the present work because of the overly
conservative nature of the result when applied to the
LEMPC of Eq. 14.
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Remark 7. No restriction on the form of the cost function
is required for stability. However, some limitations to the
cost function that can be considered must be made to solve
the optimization problem. From a practical point-of-view,
most, if not all, of the cost functions that would be used to
describe the economics of a process system can be assumed
to be piecewise continuous functions of time and sufficiently
smooth functions with respect to the state and input vectors
as they are typically derived from a total cost or profit which
are generally not complex mathematical expressions.

Application to a Chemical Process Example

Consider a nonisothermal continuous stirred-tank reactor
(CSTR) where three parallel reactions take place. The reac-
tions are elementary irreversible exothermic reactions of the
form: A! B, A! C, and A! D. The desired product is B;
whereas, C and D are byproducts. The feed of the reactor
consists of the reactant A in an inert solvent and does not
contain any of the products. Using first principles and stand-
ard modeling assumptions, a nonlinear dynamic model of the
process is obtained

dCA

dt
5

F

V
ðCA02CAÞ2

X3
i51

k0;ie
2Ei=RTCA

dT

dt
5

F

V
ðT02TÞ2 1

qRCp

X3
i51

DHik0;ie
2Ei=RTCA1

Q

qRCpV

(28)

where CA is the concentration of the reactant A, T is the tem-
perature of the reactor, Q is the rate of heat supplied or
removed from the reactor, CA0 and T0 are the reactor feed
reactant concentration and temperature, respectively, F is a
constant volumetric flow rate through the reactor, V is the
constant liquid hold-up in reactor, DHi, k0;i, and Ei, i51; 2; 3
denote the enthalpy changes, pre-exponential constants and
activation energies of the three reactions, respectively, and
Cp and qR denote the heat capacity and the density of the
fluid in the reactor. The process parameters are given in
Table 1. The CSTR has two manipulated inputs: the inlet
concentration CA0 with available control energy
0:5kmolm23 � CA0 � 7:5kmolm23 and the heat rate to/from
the vessel Q with available control energy 21:03105kJ h21

� Q � 1:03105kJ h21. The state vector is xT5½CA T� and the
input vector is uT5½CA0 Q�.

Stability region construction

Supplying or removing significant amount of thermal
energy to/from the reactor (nonzero Q) is considered to be
undesirable from an economic perspective. Therefore, the set
X is constructed considering steady states with a steady state
reactant inlet concentration of CA0s 2 ½2:0; 6:0�kmolm23 and
no heat rate supplied/removed from the reactor (i.e.,
Qs50:0kJ h21). The corresponding steady states in the
desired operating range form a set denoted as C of admissi-
ble operating steady states. Several of these steady states
have been verified to be open-loop unstable (i.e., the eigen-
values of the linearization around the steady states corre-
sponding to the minimum and maximum steady-state inlet
concentrations are k1;min521:00, k2;min52:73 and
k1;max521:00, k2;max52:10, respectively). The set C covers
approximately a temperature range of 50 K.

A set of two proportional controllers is used in the design
of the explicit stabilizing control law (i.e., the Lyapunov-
based controller)

hðx; xsÞ5
3:5 sat

K1ðxs;12x1Þ1u1;s24:0

3:5

� �
14:0

105 sat
K2ðxs;22x2Þ1u2;s

105

� �
8>>><
>>>:

(29)

where K1510 and K258000 are the gains of each proportional
controller. The proportional controllers have been tuned to
give the largest estimate of the stability region for a given
steady state. A quadratic Lyapunov function of the form

Vðx; xsÞ5ðx2xsÞTPðx2xsÞ (30)

where P is a positive definite matrix is used to estimate the
stability regions of many steady states in the set C (i.e., the
stability region is taken to be a level set of the Lyapunov
function where the Lyapunov function is decreasing along
the state trajectory; see the procedure outlined in the
“Example Construction of the Union of Stability Regions”
subsection). To obtain the largest estimate of the region X ,
several different P matrices were used. The results of this
procedure are shown in Figure 3. The union of these regions
X was approximated with two quadratic polynomial inequal-
ities and three linear state inequalities

1:26x21219:84x11467:662x2 � 0

2:36x21226:72x11428:262x2 � 0

0:4 � x1 � 7:4

x2 � 434:5

(31)

which will be used in the formulation of the LEMPC to
ensure that the state trajectories are maintained inside X .

Closed-loop simulation results

The control objective of this chemical process example is
to operate the CSTR in an economically optimal manner

Table 1. CSTR Process Parameters

Feedstock volumetric flow rate F55:0m3h21

Feedstock temperature T05300K
Reactor volume V55:0m3

Pre-exponential factor
for reaction 1

k0156:03105h21

Pre-exponential factor
for reaction 2

k0256:03104h21

Pre-exponential factor
for reaction 3

k0356:03104h21

Reaction enthalpy change
for reaction 1

DH1525:03104kJ kmol21

Reaction enthalpy change
for reaction 2

DH2525:23104kJ kmol21

Reaction enthalpy change
for reaction 3

DH3525:43104kJ kmol21

Activation energy
for reaction 1

E155:03104kJ kmol21

Activation energy
for reaction 2

E257:533104kJ kmol21

Activation energy
for reaction 3

E357:533104kJ kmol21

Heat capacity Cp50:231kgm23

Density qR51000kJ kg21K21

Gas constant R58:314kJ kmol21K21
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while accounting for changing economic factors and main-
taining the system operation inside a bounded set. For this
chemical process example, the economic measure being con-
sidered is

Leðt; x; uÞ5A1u
2
21A2u12A3r1ðxÞ1A4ðx22395Þ2 (32)

where r1ðxÞ is the reaction rate of the first reaction that pro-
duces the desired product

r1ðxÞ5k01e
2E1=Rx2x1 (33)

The economic measure of Eq. 32 penalizes energy usage/
removal, penalizes reactant material consumption, credits the
production rate of the desired product, and penalizes the
deviation of the operating temperature from the median oper-
ating temperature. The fourth term of the economic cost is
used to prevent the LEMPC from operating the CSTR at the
boundary of the allowable operating range for long periods
of times which is considered undesirable from a practical
perspective. In this fashion, the economic cost consists of
terms that are associated with the operating cost (economic
terms) as well as terms that ensure that the LEMPC operates
the CSTR in a practical and safe fashion.

For this study, the weights A1 and A2 are considered to
vary with time; while, A35278 and A450:4 are constants
over the 5.0 h simulated operation of the CSTR under the
LEMPC. The weight A1 is equal to 4:031026 for
t50:024.0 h and 5:031026 for 4.0–5.0 h, and the time-
dependent weight A2 is given by the following piecewise
constant relationship

A25

333 0:0h � t < 1:0h

167 1:0h � t < 2:0h

83 2:0h � t < 3:0h

17 3:0h � t < 4:0h

167 4:0h � t < 5:0h

8>>>>>>>><
>>>>>>>>:

(34)

As the economic cost is considered to account for more
than just the operating cost (or profit) of the CSTR, the
weights can be considered to account for more than the price
of a particular resource. For instance, the variation of the
weight A2 may be caused by demand or supply changes of
the reactant A from other processes within a single process-

ing facility. While these weights would come from a higher
level information technology system, careful tuning of these
weights is critical to achieve both practical operation with
LEMPC as well as economically optimal (with respect to the
actual operating cost) operation. For this particular study, the
economic cost has been chosen to vary on a time scale com-
parable to the one of the process dynamics.

In the first set of simulations, nominal operation (wðtÞ 	 0)
is considered to understand the operation of the CSTR under
the LEMPC operating in mode 1 only. The formulation of the
LEMPC with explicitly time-varying cost function used to
accomplished the desired control objective is

minimize
u2SðDÞ

ðtk1N

tk

Leðs; ~xðsÞ; uðsÞÞds

subject to _~xðtÞ5f ð~xðtÞ; uðtÞ; 0Þ
~xðtkÞ5xðtkÞ

uðtÞ 2 U 8t 2 ½tk; tk1NÞ
1:26x21ðtÞ219:84x1ðtÞ1467:662x2ðtÞ � 0 8t 2 ½tk; tk1NÞ
2:36x21ðtÞ226:72x1ðtÞ1428:262x2ðtÞ � 0 8t 2 ½tk; tk1NÞ

0:4 � x1ðtÞ � 7:4 8t 2 ½tk; tk1NÞ
x2ðtÞ � 434:5 8t 2 ½tk; tk1NÞ

(35)

where the economic measure Le is given in Eq. 32. As no
disturbances or uncertainties are present, the regions X̂5X .
The sampling period and the prediction horizon of the
LEMPC is D50:1h and N510, respectively. These parame-
ters have been chosen through extensive simulations such
that the total prediction horizon is sufficiently long to yield
good economic performance of the closed-loop system. In
other words, the LEMPC needs to observe enough of the
future evolution of the system to make economically desira-
ble decisions (with respect to the total length of operation of
the CSTR) to optimally operate the CSTR in a time-varying
fashion. To solve the LEMPC optimization problem at each
sampling period, the open-source interior point solver Ipopt29

was used. A fourth-order Runge-Kutta method with integra-
tion step of 5:031024h was used to numerically solve the
nonlinear ODEs of Eq. 28. To assess the total economic per-
formance of each simulation, the total economic measure
over the simulated operation of the CSTR is defined as

XM
j50

½A1ðtjÞu22ðtjÞ1A2ðtjÞu1ðtjÞ2A3r1ðxðtjÞÞ1A4ðx2ðtjÞ2395Þ2�

(36)

where M is the number of integration steps over the entire
simulated time tf.

Remark 8. While the nonlinear programming software
Ipopt, which returns a local optimum, is used in this study to
solve the LEMPC optimization problem, any other optimiza-
tion software (e.g., a global optimization solver that can
return the global optimum) can be used as long as it can
return a solution to the optimization problem in considerably
less time than the sampling time. However, if a global opti-
mization solver is used, the time required to solve the opti-
mization may significantly increase.30

The CSTR is initialized at the initial condition of
CAð0Þ52:0kmolm23 and Tð0Þ5410:0K. As the exact future

Figure 3. The construction of the set X for the CSTR.
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values of the cost weights may not be known exactly in a
practical setting, two cases were simulated: (1) the LEMPC
knows the future cost weights A1ðtÞ and A2ðtÞ exactly which
is denoted as LEMPC-1 and (2) the LEMPC only knows the
cost weight values when the weights change which is
denoted as LEMPC-2. For LEMPC-2, the previously
obtained weights A1 and A2 are used in the optimization
problem until the LEMPC receives new weight values which
are obtained at the time instance the weights change. The
results of these simulations are shown in Figure 4. Over the
course of both of these simulations, the LEMPC schemes
operate the CSTR in a time-varying (transient) fashion. If
the economic weights become fixed or if a significant time-
scale separation between economic cost change and the pro-
cess dynamics existed, steady state operation would become
optimal for this particular economic cost and nonlinear

model. Also, the LEMPC in this example is not formulated
with any periodic, average, or integral input constraints as in
Refs. 11,15,16, and is not formulated with any stabilizing
constraints to enforce convergence to the economically opti-
mal steady state. Therefore, the reason for the time-varying
operation is due to the economic cost changing with time on
a time-scale comparable to the process dynamics. To demon-
strate this point, Figure 5 shows the state and input trajecto-
ries under LEMPC of Eq. 35 (i.e., mode 1 only) where the
economic cost weights are constant with time. Recalling the
LEMPC does not have any constraints that enforce conver-
gence to the steady state, the CSTR under the LEMPC with
a prediction horizon of N510 settles on a slightly offsetting
steady state from the economically optimal steady state.

The total economic cost of the CSTR under LEMPC-1 is
2:373104; whereas, the economic cost of the CSTR under
LEMPC-2 is 2:913104. The key factor that contributes to
the performance degradation of the second simulation (as
depicted in Figure 4) can be observed in the input trajecto-
ries that the two LEMPC schemes compute. For the
LEMPC-1 simulation, the LEMPC knows that the cost of the
reactant material decreases at the beginning of each of the
first 4 h of operation so it waits to utilize this resource until
the beginning of each of these hours when the price is less
than in the previous hour. For the LEMPC-2 simulation, the
LEMPC uses the minimum amount of reactant material at

Figure 4. The states and inputs of the CSTR under
nominal operation with the proposed LEMPC
of Eq. 35 (i.e., mode 1 operation only) initial-
ized at CAð0Þ52:0kmolm23 and Tð0Þ5410:0K
for (a) LEMPC-1 and (b) LEMPC-2.

Table 2. The Optimal Steady State with Respect to the

Time-Varying Economic Weights

t C�A;s T�s C�A0;s Q�s
0:0h � t < 1:0h 1.77 414.1 2.30 591.5

1:0h � t < 2:0h 2.12 407.5 2.61 300.9

2:0h � t < 3:0h 2.40 402.9 2.87 151.2

3:0h � t < 4:0h 2.75 398.1 3.20 280.0

4:0h � t < 5:0h 2.12 407.5 2.61 240.6

Figure 5. The states and inputs of the CSTR under the
LEMPC of Eq. 35 (i.e., mode 1 operation only)
when the economic cost weights are con-
stant with time (solid line) with the economi-
cally optimal steady state (dashed line).
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the beginning of each of these 4 h. Also, the cost of the ther-
mal energy Q increases over the last hour of the simulated
operation. In the first case, the LEMPC utilizes the thermal
energy before the price increases to increase the reactor tem-
perature, and then, uses less energy thereafter. In the second
case, the LEMPC supplies heat to the reactor when the cost
of thermal energy has already increased. Comparing the evo-
lution of the states in both cases, the regions of operation in
state space between the two cases are similar.

Remark 9. If the future economic cost is not known, one
may be able to find a method to decrease the performance
degradation such as using the average value of the economic
cost weights or using an estimate of the future weight values
in the formulation of the LEMPC cost.

To assess the economic performance of the CSTR under
the LEMPC, a comparison between the CSTR under the
LEMPC and under a conventional RTO and MPC framework
was carried out. The CSTR is simulated under a Lyapunov-
based MPC (LMPC), formulated with a conventional quad-
ratic cost; see Ref. 28 for details on LMPC, where the
LMPC works to drive the system to the economically opti-
mal steady state which is the minimizer of

minimize
ðxs;usÞ

Leðt; xs; usÞ

subject to f ðxs; us; 0Þ50

us 2 U; xs 2 X
(37)

for a fixed t. The optimal steady state is denoted as x�s ðtÞ and
the optimal steady state with time for the economic weights
is given in Table 2.

The formulation of LMPC is as follows

minimize
u2SðDÞ

ðtk1N

tk

�
j~xðsÞ2x�s ðsÞjQc

1juðsÞ2u�s ðsÞjRc

�
ds

subject to _~xðtÞ5f ð~xðtÞ; uðtÞ; 0Þ
~xðtkÞ5xðtkÞ

uðtÞ 2 U; 8t 2 ½tk; tk1NÞ
@VðxðtkÞ; x�s ðtkÞÞ

@x
f ðxðtkÞ; uðtkÞ; 0Þ

� @VðxðtkÞ; x�s ðtkÞÞ
@x

f ðxðtkÞ; hðxðtkÞ; x�s ðtkÞÞ; 0Þ

(38)

where the cost function is a conventional quadratic cost
function that penalizes the deviation of states and inputs
from the optimal (time varying) steady state. The Lyapunov-
based constraint is similar to the mode 2 Lyapunov-based
constraint (Eq. 14g) of the LEMPC. The sampling period

and prediction horizon of the LMPC are chosen to be the
same as the LEMPC. The weighting matrices are
Qc5diag ð½2788:00:6�Þ and Rc5diag ð½27:85:031027�Þ. A
quadratic Lyapunov function of the form given in Eq. 30 with
a positive definite matrix P5diag ð½280:09:0�Þ is considered.
The Lyapunov-based controller used in the formulation of the
Lyapunov-based constraint is a set of P-controllers like in Eq.
29 with gains K151 and K256000. The P-controllers have
been tuned less aggressively compared to the P-controllers
used in the construction of the set X to allow the LMPC more
freedom in the optimization of the control action.

The CSTR was initialized at several states in state space
and was simulated with three control strategies: (1) the
LEMPC-1, (2) the LEMPC-2, and (3) the LMPC that works
to track the economically optimal steady state. The total eco-
nomic cost of each simulation is given in Table 3. The oper-
ating trajectories of a simulation under LMPC is also given
in Figure 6 to demonstrate the differences in achievable tra-
jectories with the conventional MPC formulation working to
track the economically optimal steady state. Clearly, the
operating trajectories of the EMPC cannot be obtained by a
conventional MPC, regardless of the tuning of the weighting
matrices. From the results of Table 3, the economic perform-
ance of the system under both of the LEMPC schemes is
better than the performance under the conventional LMPC.

Table 3. The Total Economic Cost over Several Simulations with Different Initial States

Initial State Total Economic Cost (3105) and Improvement over Conventional MPC

x1ð0Þ x2ð0Þ LMPC LEMPC-1 Improvement LEMPC-2 Improvement

2.0 410.0 0.908 0.237 73.9% 0.291 68.0%
2.0 425.0 2.325 0.456 80.4% 0.507 78.2%
4.0 370.0 4.274 1.234 71.1% 1.075 74.8%
4.0 395.0 2.744 0.152 94.4% 0.192 93.0%
5.0 370.0 4.164 0.634 84.8% 0.643 84.6%
6.0 360.0 5.370 1.375 74.4% 1.225 77.2%

The total economic cost of the simulations where the LEMPC knows the future cost weight values exactly is denoted as “LEMPC-1”; whereas, the simulations
where the LEMPC does not know the future cost weights until the time they are updated to new values is denoted as “LEMPC-2.”

Figure 6. The states and inputs of the CSTR under the
LMPC of Eq. 38 used to track the economi-
cally optimal steady state (dashed line).
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For two of the initial conditions, the economic perform-
ance was better with LEMPC-2 compared to LEMPC-1
(Table 3). The closed-loop evolution of the CSTR with the
two LEMPC schemes for one of these simulations is shown
in Figure 7. In short, this is as a result of not having a suffi-
ciently long prediction horizon for these two initial condi-
tions. More specifically, this behavior is caused by
initializing the CSTR far away from the economically opti-
mal region to operate the process. For this prediction horizon
(N510), the LEMPC cannot simulate enough of the future
evolution of the process to know there is an economically
better region to operate the process. As a result, the state is
maintained away from this optimal region at the beginning
of both simulations. For the LEMPC-2 simulation, the maxi-
mum allowable amount of reactant concentration is fed to
the process from 0.0 to 1.8 h. This causes the rates of the
three reactions to increase. As the heat rate supplied/removed

from the reactor is penalized in the cost and the LEMPC
does not know that the price of the reactant material will
decrease at 2.0 h, Q and CA0 decrease leading up to 2.0 h to
maintain stability. This decrease in Q and CA0 decreases the
reactant concentration in the reactor while increasing the
temperature bringing the states closer to the economically
optimal region of operation. The LEMPC is then able to
observe the economically optimal region of operation along
its prediction horizon. Thus, it forces the states to this
region. For LEMPC-1, the LEMPC knows that the reactant
price will decrease at the beginning of each of the first 4 h.
Therefore, it maintains feeding the maximum allowable reac-
tant material to maximize reaction rate of the first reaction,
and it supplies less heat to the reactor compared to LEMPC-
2. As a result of this, operation is maintained far enough
away from the economically optimal steady state such that
the LEMPC cannot find the optimal region for operation.

Figure 7. The states and inputs of the CSTR under
nominal operation with the proposed LEMPC
of Eq. 35 initialized at CAð0Þ54:0kmolm23

and Tð0Þ5370:0K for (a) LEMPC-1 and (b)
LEMPC-2.

Figure 8. The states and inputs of the CSTR under the
two-mode LEMPC with added process noise
shown: (a) with time and (b) in state space.
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Remark 10. Economic performance improvement under
the LEMPC cannot be guaranteed in general. For guaranteed
performance with a LEMPC scheme, refer to Ref. 31 which
provides a method for guaranteed closed-loop performance
improvement under LEMPC; this method can be extended to
the case of time-varying cost using the set constraints X̂ and
X with the performance constraints provided in Ref. 31.
Specifically, to utilize the performance-based constraints, the
LEMPC would need to be formulated with a shrinking hori-
zon. The use of a shrinking horizon is covered in the stabil-
ity analysis of this work as boundedness in X is proved for
any horizon N � 1.

Remark 11. As it is difficult, for a general system and
cost function, to determine the economically optimal region
to dynamically operate a process, closed-loop simulations
under EMPC must be carried out to determine this region.
To ensure that the state converges to the economically opti-
mal steady state, one could reduce the size of X̂ and enforce
convergence to this set using a mode 2 type constraint in the
LEMPC. Another way to address this problem is to use a
sufficiently large horizon such that the LEMPC can explore
enough state space to determine the economically optimal
region of operation at the cost of increased computational
burden.

To assess the stability and robustness properties of the pro-
posed LEMPC, as discussed in the theoretical developments
of the control framework, the size where the LEMPC is able
to operate the system in a time-varying manner to optimize the
process economic cost is reduced and the two-mode control
strategy is used. Process noise is added to the closed-loop sys-
tem and is modeled as bounded Gaussian white noise on the
feed reactant concentration and temperature which has zero
mean and the following standard deviation and bound:
rCA0

50:5 kmol=m3 and wp;CA0
51:0 kmol=m3 and rT053:0K

and wp;T0510:0K. To simulate the noise, a new random num-
ber is generated and used to add noise in the process model
over each integration step. The region X̂ is approximated
through the following constraints

1:20x21219:17x11460:612x2 � 0

2:59x21229:14x11438:362x2 � 0

0:7 � x1 � 7:1

x2 � 431:5

(39)

which has been estimated through extensive simulations with
the given process model, economic cost, and process noise
as the region whereby closed-loop stability can be main-
tained. The results of a closed-loop simulation of the CSTR
are displayed in Figure 8. The LEMPC does maintain the
process inside the region X for the duration of the simula-
tion as observed in Figure 8.

Conclusions

Accounting for dynamic energy costs and changing eco-
nomic conditions is important for maximizing profit of a pro-
cess. In this work, a LEMPC scheme that can handle
dynamic economic conditions such as real-time changes in
energy cost, demand, and feedstock pricing is presented. The
formulation of the LEMPC scheme was provided as well as
a rigorous theoretical treatment of the proposed control strat-
egy. Closed-loop stability, in the sense of boundedness of
the closed-loop state, under the proposed LEMPC was pro-

ven. A demonstration of the effectiveness of the LEMPC
scheme on a chemical process example was provided. Com-
pared to a conventional RTO/MPC scheme, the proposed
LEMPC improved the closed-loop economic performance
while maintaining stability of the process.
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