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Closed-loop stability of nonlinear systems under real-time Lyapunov-based economic model predictive control (LEMPC) with
potentially unknown and time-varying computational delay is considered. To address guaranteed closed-loop stability (in the
sense of boundedness of the closed-loop state in a compact state-space set), an implementation strategy is proposed which
features a triggered evaluation of the LEMPC optimization problem to compute an input trajectory over a finite-time predic-
tion horizon in advance. At each sampling period, stability conditions must be satisfied for the precomputed LEMPC control
action to be applied to the closed-loop system. If the stability conditions are not satisfied, a backup explicit stabilizing con-
troller is applied over the sampling period. Closed-loop stability under the real-time LEMPC strategy is analyzed and spe-
cific stability conditions are derived. The real-time LEMPC scheme is applied to a chemical process network example to
demonstrate closed-loop stability and closed-loop economic performance improvement over that achieved for operation at
the economically optimal steady state. VC 2014 American Institute of Chemical Engineers AIChE J, 61: 555–571, 2015
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Introduction

Nonlinear model predictive control (NMPC) is a control
methodology that has attracted substantial attention espe-
cially within the chemical process control community
because it can stabilize multiple-input multiple-output non-
linear systems while accounting for constraints and perform-
ance considerations. Within the last 5 years, significant
research effort has focused on economic (nonlinear) model
predictive control (EMPC) which attempts to unify process/
system economics and real-time feedback control1–3 (see
also Ref. 4, for an overview of recent results on EMPC).
Using a general cost functional that reflects the process/sys-
tem economics, the overall goal of EMPC is to translate eco-
nomic and stability considerations into control actions that
not only maintain stability of the closed-loop system, but
also, obtain economic optimality that cannot be achieved
through tracking NMPC. The optimization problem of
EMPC consists of three main parts: a cost functional with a
stage cost that accounts for the economics to be optimized,
system constraints including state and input constraints as
well as other constraints like stability and performance con-
straints, and a nonlinear dynamic model to predict the future
evolution of the system (and thus, be able to select the

optimal input profile with respect to the economic cost over
a finite-time prediction horizon). The main difference
between tracking NMPC and EMPC is that tracking NMPC
uses a positive definite stage cost with respect to a set-point
or reference trajectory (typically, a quadratic stage cost is
used that is zero at the economically optimal steady state),
while EMPC uses a general stage cost that does not need to
be positive definite with respect to a set-point, steady state,
or reference trajectory.

To highlight some of the recent theoretical work on
EMPC, the performance of EMPC with a generalized termi-
nal constraint and self-tuning terminal cost was analyzed,5

the asymptotic stability and transient optimality of EMPC
without terminal conditions was considered,6 a Lyapunov-
based EMPC (LEMPC) scheme with performance constraints
generated from an auxiliary Lyapunov-based MPC (LMPC)
was proposed that has guaranteed finite-time and infinite-
time closed-loop economic performance improvement over
the auxiliary LMPC,7 an LEMPC with triggered evaluations
was proposed for both state and output feedback implemen-
tations,8 and a multistage scenario-based EMPC scheme
designed to handle uncertainties was developed.9 Addition-
ally, several applications of EMPC to energy systems have
been studied including applying EMPC to: a commercial
building to account for demand and energy price,10 buildings
with thermal energy storage,11 create an electricity pricing
structure that minimizes peak electricity demand,12 and han-
dle energy management in a chlor-alkai process with hybrid
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renewable energy generation.13 Many of the aforementioned
works have illustrative applications that demonstrate the
potential of EMPC on closed-loop economic performance.

Within the chemical process industries, nonlinearities are
common owing to Arrhenius reaction rate dependencies and
nonlinear kinetic relationships, for example. As the nonli-
nearities may be significant, the use of a nonlinear dynamic
model which is capable of capturing nonlinearities within
model predictive control (MPC) has the potential to yield
better closed-loop performance in general compared to con-
trolling a nonlinear system with an MPC based on a linear
model. However, computational delay that may approach or
exceed the sampling time may result as the NMPC optimiza-
tion problem is nonlinear and potentially nonconvex. If the
computational delay is significant relative to the sampling
period, closed-loop performance degradation and/or closed-
loop instability may occur. To this end, it is important to
point out that computational delay is just one type of delay
that may cause performance degradation or instability. Other
types of delay include measurement and input delay. How-
ever, each type of delay is typically handled using different
methods (see, e.g. Refs. 14 and 15, for some results on mea-
surement and input delay handling).

Some of the early work addressing computational delay
within NMPC includes developing an implementation strat-
egy of solving the MPC problem intermittently to account
for the computational delay16 and predicting the future state
after an assumed constant computational delay to compute
an input trajectory to be implemented after the optimization
problem is solved.17,18 Nominal feasibility and stability has
been proved for MPC subject to computational delay formu-
lated with a positive definite stage cost (with respect to the
set-point or steady state), a terminal cost, and a terminal
region constraint.17,18 Another option to handle computa-
tional delay would be to force the optimization solver to ter-
minate after a prespecified time to ensure that the solver
returns a solution by the time needed to ensure closed-loop
stability. This concept is typically referred to as suboptimal
MPC19 because the returned solution will likely be subopti-
mal. It was shown that when the returned solution of the
MPC with a terminal constraint is any feasible solution, the
origin of the closed-loop system is asymptotically stable.19

Since the early work on computational delay of NMPC,
more involved strategies have been proposed. Particularly,
nonlinear programming (NLP) sensitivity analysis has demon-
strated to be a useful tool to handle computational delay by
splitting the NMPC optimization problem into two parts: (1)
solving a computationally intensive nonlinear optimization
problem which is completed before state feedback is received
and (2) performing a fast on-line update of the precomputed
input trajectories using NLP sensitivities (when the active-set
does not change) after the current state measurement is
obtained (e.g.,20,21). If the active-set changes, various meth-
ods have been proposed to cope with changing active-sets,
for example, solving a quadratic program like that proposed
in Ref. 22. In this direction, the advanced-step NMPC21 has
been proposed which computes the solution of the optimiza-
tion problem one sampling period in advance using a predic-
tion of the state at the next sampling period. At the next
sampling period (when the precomputed control action will
be applied), the optimal solution is updated using NLP sensi-
tivities after state feedback is received. The advanced-step
NMPC has been extended to handle computation spanning
multiple sampling periods23 and to EMPC.24 Another related

approach involves a hierarchical control structure.25,26 The
upper layer is the full optimization problem which is solved
infrequently. In the lower layer, NLP sensitivities are used to
update the control actions at each sampling period that are
applied to the system. The aforementioned schemes solve an
optimization problem to (local) optimality using a prediction
of the state at the sampling time the control action is to be
applied to the system.

As another way, the so-called real-time NMPC scheme27

only takes one Newton-step of the NLP solver instead of
solving the optimization problem to optimality at each sam-
pling period. To accomplish this, the structure of the result-
ing dynamic optimization program, which is solved using a
direct multiple shooting method, is exploited to divide the
program into a preparation phase and a feedback phase. In
the preparation phase, the computationally expensive calcula-
tions are completed before the state feedback is received. In
the feedback phase, a state measurement is received and the
remaining fast computations of the Newton-step are com-
pleted on-line to compute the control action to apply to the
system. The advantage of such a strategy is that the on-line
computation after a feedback measurement is obtained is
insignificant compared to solving the optimization problem
to optimality. The disadvantage is one would expect to sacri-
fice at least some closed-loop performance as a result of not
solving the problem to optimality.

Clearly, the available computing power has significantly
increased since the early work on computational delay of
NMPC and if this trend continues, one can expect a signifi-
cant increase in computing power over the next decade.
Moreover, more efficient solution strategies for nonlinear
dynamic optimization problems continue to be developed
(see, e.g., the overview paper28 and the book29 for results in
this direction). However, the ability to guarantee that a solver
will converge within the time needed for closed-loop stability
remains an open problem especially for nonlinear, nonconvex
dynamic optimization problems and systems with fast
dynamics. Additionally, EMPC is generally more computa-
tionally intensive compared to tracking NMPC given the
additional possible nonlinearities in the stage cost of EMPC.
To date, only limited work on explicitly accounting for com-
putational delay within the context of EMPC has been com-
pleted (e.g.,24,26). In this work, a real-time implementation
strategy for LEMPC, referred to as real-time LEMPC, is pro-
posed to account for possibly unknown and time-varying
computational delay. The underlying implementation strategy
is inspired by event-triggered control concepts30 as the
LEMPC is only recomputed when stability conditions dictate
that it must recompute a new input trajectory. If the precom-
puted control action satisfies the stability conditions, the con-
trol action is applied to the closed-loop system. If not, a
back-up explicit controller, which has negligible computation
time, is used to compute the control action for the system at
the current sampling instance. This type of implementation
strategy has the advantage of being easy to implement and
the strategy avoids potential complications of active-set
changes because the recomputation condition is only formu-
lated to account for closed-loop stability considerations.
Closed-loop stability under the real-time LEMPC scheme is
analyzed and specific stability conditions are derived. Lastly,
the real-time LEMPC scheme is applied to an illustrative
chemical process network to demonstrate closed-loop stabil-
ity under the proposed scheme. The example also demon-
strates that real-time LEMPC improves closed-loop economic
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performance compared to operation at the economically opti-
mal steady state.

Preliminaries

Notation

The operator j � j is used to denote the Euclidean norm of
a vector. The symbol SðDÞ denotes the family of piecewise
constant functions with period D. A continuous function
a : ½0; aÞ ! ½0;1Þ belongs to class K if it is strictly increas-
ing and að0Þ50. The symbol Xq denotes a level set of a
scalar-valued function V : Rnx ! R�0 (i.e., Xq : 5fx 2 Rnx j
VðxÞ � qg).

Class of systems

The class of nonlinear systems considered has the follow-
ing state-space form

_xðtÞ5f ðxðtÞ; uðtÞ;wðtÞÞ (1)

where xðtÞ 2 Rnx is the state vector, uðtÞ 2 U � Rnu is the
manipulated input vector, wðtÞ 2 W � Rnw is the disturbance
vector, and f ð�; �; �Þ is a locally Lipschitz vector function.
The input and disturbance vectors are bounded in the follow-
ing sets

U : 5fu 2 Rnu j umin ;i � ui � umax ;i; i51; . . . ; nug; (2)

W : 5fw 2 Rnw j jwj � hg ; (3)

where h > 0 bounds the norm of the disturbance vector.
Without loss of generality, the origin of the unforced system
is assumed to be the equilibrium point of (1) (i.e.,
f ð0; 0; 0Þ50).

The following stabilizability assumption further qualifies
the class of systems considered and is similar to the assump-
tion that the pair (A, B) is stabilizable in linear systems.

Assumption 1. There exists a feedback controller hðxÞ
2 U with hð0Þ50 that renders the origin of the closed-loop
system (1) with uðtÞ5hðxðtÞÞ and wðtÞ � 0 asymptotically
stable for all x 2 D where D is an open neighborhood of the
origin.
Applying converse theorems,31,32 Assumption 1 implies that
there exists a continuously differentiable Lyapunov function,
V(x), for the closed-loop system (1) with u5hðxÞ 2 U and
wðtÞ � 0 such that the following inequalities hold

a1ðjxjÞ � VðxÞ � a2ðjxjÞ; (4a)

@VðxÞ
@x

f ðx; hðxÞ; 0Þ � 2a3ðjxjÞ; (4b)

@V

@x

����
���� � a4ðjxjÞ (4c)

for all x 2 D � Rnx where D is an open neighborhood of the
origin (not necessarily the same open neighborhood as that
introduced in Assumption 1) and aið�Þ; i51; 2; 3; 4 are func-
tions of class K. A level set of the Lyapunov function Xq,
which defines a subset of D (ideally the largest subset con-
tained in D), is taken to be the stability region of the closed-
loop system under the controller h(x). Various techniques have
been developed for designing explicit stabilizing controllers for
the system (1) including Lyapunov-based techniques and geo-
metric methods.33–35

Measurements of the state vector of (1) are assumed to be
available synchronously at sampling instances denoted as tk

: 5kD where D > 0 is the sampling period and k50; 1; . . ..
As described below, the EMPC computes sample-and-hold
control actions and thus, the resulting closed-loop system,
which consists of the continuous-time system (1) under a
sample-and-hold controller, is a sampled-data system. If the
controller h(x) is implemented in a sample-and-hold fashion,
it possesses a certain degree of robustness to uncertainty in
the sense that the origin of the closed-loop system is ren-
dered practically stable when a sufficiently small sampling
period is used and the bound h on the disturbance vector is
sufficiently small; see, for example, Ref. 36 for more discus-
sion on this point.

REMARK 1. Currently, there are no general methods for
constructing Lyapunov functions for broad classes of nonlin-
ear systems with constraints. However, for certain classes of
systems, there exist some general methods for constructing
Lyapunov functions (e.g., Zubov’s method37 and the sum of
squares decomposition38). Within the context of chemical pro-
cess control, quadratic Lyapunov functions have been widely
used and have been demonstrated to be effective for estimat-
ing the region of attraction of a given equilibrium point of a
system (see, e.g., the numerous examples in Ref. 35).

Lyapunov-based economic model predictive control

Lyapunov-based economic model predictive control
(LEMPC) is an EMPC scheme that uses the explicit stabiliz-
ing controller h(x) to design two regions of operation where
closed-loop stability of the system (1) under the LEMPC and
recursive feasibility of the optimization problem are guaran-
teed for operation in the presence of uncertainty. LEMPC is
a two-mode controller where the various modes are defined
by two Lyapunov-based constraints. The formulation of the
LEMPC optimization is

minimize
u2SðDÞ

ðtk1N

tk

leð~xðsÞ; uðsÞÞ ds (5a)

subject to _~xðtÞ5f ð~xðtÞ; uðtÞ; 0Þ (5b)

~xðtkÞ5xðtkÞ (5c)

uðtÞ 2 U 8 t 2 ½tk; tk1NÞ (5d)

Vð~xðtÞÞ � qe 8 t 2 ½tk; tk1NÞ;

if xðtkÞ 2 Xqe

(5e)

@VðxðtkÞÞ
@x

f ðxðtkÞ; uðtkÞ; 0Þ

� @VðxðtkÞÞ
@x

f ðxðtkÞ; hðxðtkÞÞ; 0Þ

if xðtkÞ 62 Xqe

(5f)

where the decision variable of the optimization problem is
the piecewise constant input trajectory over the prediction
horizon ND. The notation ~xðtÞ is used to denote the predicted
state trajectory.

The LEMPC dynamic optimization problem minimizes a
cost functional (5a) with a stage cost le : Rnx 3Rnu ! R cho-
sen to reflect the system economics. The nominal process
model is the constraint (5b) and is used to predict the evolu-
tion of the system under the computed input trajectory over
the prediction horizon. The dynamic model is initialized with
a state measurement obtained at the current sampling period
[constraint (5c)]. The constraint (5d) limits the computed con-
trol actions to be in the set of the available control actions.
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Mode 1 operation of the LEMPC is defined by the constraint
(5e) and is active when the current state is inside a predefined
subset of the stability region Xqe

� Xq. As an economic per-
formance benefit may be realized when operating the system
(1) in a dynamic fashion compared to operating the system at
the economically optimal steady state (i.e., the steady state
that minimizes the stage cost amongst all of the admissible
steady states), mode 1 of the LEMPC is used to allow the
controller to force a potentially dynamic or transient operating
policy. However, to maintain boundedness of the closed-loop
state within a well-defined state-space set (in this case bound-
edness of the state trajectory in Xq) and thus, guarantee
closed-loop stability, a second mode is used which is defined
by the constraint of (5f). This constraint forces the computed
control action by the LEMPC to decrease the Lyapunov func-
tion by at least the rate given by the explicit stabilizing con-
troller h(x) for the first sampling period in the prediction
horizon. Owing to the properties of the explicit controller h(x)
implemented in a sample-and-hold fashion, the Lyapunov
function value under the LEMPC operating in mode 2 will
decrease at the next sampling period with the constraint (5f).

The LEMPC is implemented in a receding horizon fashion
meaning that at each sampling instance, the LEMPC receives
a state measurement xðtkÞ, solves the optimization problem,
and sends the control action for the first sampling period of
the prediction horizon to be implemented by the control
actuators for tk to tk11. The process repeats at the next sam-
pling period by rolling the horizon one sampling period into
the future. The optimal input trajectory computed by the
LEMPC at a given sampling instance tk is denoted as u�ðtjtkÞ
and is defined for t 2 ½tk; tk1NÞ. The control action that is
sent at time tk to the control actuators to be applied over the
sampling period from tk to tk11 is denoted as u�ðtkjtkÞ. For
more details on LEMPC including the complete closed-loop
stability and recursive feasibility proof, the interested reader
is referred to Ref. 3.

REMARK 2. A clarification is in order regarding LEMPC.
Within chemical process industries, many of the processes are
safety critical, and maintaining safe and stable operation is of
the highest priority. Given that EMPC may operate a process
system in a dynamic fashion to optimize the economics, main-
taining the closed-loop state trajectory in a well-defined state-
space set, where a certain degree of robustness to uncertainty
is achieved, is one method to achieve safe and stable opera-
tion under EMPC. This objective is the main motivating factor
in designing LEMPC with a two-mode strategy which allows
for time-varying operation while maintaining the closed-loop
state in Xq. For points outside of Xq, no guarantees on stabil-
ity and robustness can be made a priori. If it is desirable to
force the closed-loop state trajectory to the origin at any point
over the length of operation, one could force the LEMPC to
operate in mode 2 operation only which will steer the closed-
loop state to a small neighborhood of the origin. Thus, the
two mode strategy of the LEMPC is used for the aforemen-
tioned reasons, and the potential use of two-mode operation
does not represent two artificial operational stages.

Real-Time Economic Model Predictive Control

In this section, the formulation and implementation strat-
egy of the real-time LEMPC is presented along with suffi-
cient conditions such that the closed-loop system under the
real-time LEMPC renders the closed-loop state trajectory
bounded in Xq.

EMPC formulation

The overall objective of the proposed real-time LEMPC is
to account for the real-time computation time required to
solve the optimization problem for a (local) solution. Particu-
larly, the case when the average computation time, which is
denoted as �ts, is greater than one sampling period is consid-
ered (i.e., Ns5d�ts=De � 1 where Ns is the average number of
sampling periods required to solve the optimization prob-
lem). During the time the solver is solving the optimization
problem, the control actions computed at a previous sam-
pling period are applied to the system if there are precom-
puted control actions available and if the stability conditions
described below are satisfied. If no precomputed control
actions are available or the stability conditions are violated,
the explicit controller h(x) is used to compute and apply con-
trol actions during the time that the real-time LEMPC is
computing. In this fashion, the LEMPC is used to compute
control actions to improve the economic performance when
possible.

Specifically, when the closed-loop state is in the subset of

the stability region Xqe
� Xq, the control actions of the pre-

computed LEMPC problem may be applied to the system.

When the state is outside the subset, the explicit controller is

used because maintaining the closed-loop state in Xq is
required for guaranteeing the existence of a feasible input

trajectory that maintains closed-loop stability (in the sense

that the closed-loop state trajectory is always bounded in
Xq). To force the state back to the subset of the stability

region Xqe
, the Lyapunov function must decrease over each

sampling period in the presence of uncertainty. This requires
the incorporation of feedback (i.e., recomputing the control

action at each sampling period using a measurement of the

current state). Owing to the computational burden of solving
the LEMPC optimization problem, it may not be possible to

achieve convergence of the optimization solver within one

sampling period. Hence, the controller h(x) is used when the
state is outside of Xqe

.
For real-time implementation, only mode 1 of the LEMPC

(5) is used and the LEMPC is solved infrequently (not every

sampling period) which will be made clear when the imple-

mentation strategy is discussed. The real-time LEMPC is for-

mulated as follows

minimize
u2SðDÞ

ðtj1N

tj11

leð~xðtÞ; uðtÞÞ dt (6a)

subject to _~xðtÞ5f ð~xðtÞ; uðtÞ; 0Þ (6b)

~xðtjÞ5xðtjÞ (6c)

uðtÞ5~uðtjÞ; 8 t 2 ½tj; tj11Þ (6d)

uðtÞ 2 U; 8 t 2 ½tj11; tj1NÞ (6e)

Vð~xðtÞÞ � qe; 8 t 2 ½tj11; tj1NÞ (6f)

where the notation and constraints are similar to that used in
LEMPC (5) except for an additional constraint of (6d). This
additional constraint is used because a predetermined control
action is applied to the system over the first sampling period
of the prediction horizon. The predetermined control action
is either the control action computed by the LEMPC at a
previous sampling period or the control action from the
explicit controller h(x) (i.e., the input trajectory over the first
sampling period of the prediction horizon is not a degree of
freedom in the optimization problem). The LEMPC (6) may
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dictate a time-varying operating policy to optimize the eco-
nomic cost as long as the predicted evolution is maintained
in the level set Xqe

� Xq. The notation tj denotes the sam-
pling time at which the LEMPC problem is initialized with a
state measurement and the solver begins solving the resulting
optimization problem. The optimal solution of the LEMPC
is denoted as u�ðtjtjÞ and is defined for t 2 ½tj11; tj1NÞ. Feasi-
bility of the optimization problem is considered in the
“Stability Analysis” Subsection. However, it is important to
point out that xðtjÞ 2 Xqe

and ~xðtj11Þ 2 Xqe
owing to the pro-

posed real-time implementation strategy, and thus, the real-
time LEMPC has a feasible solution (refer to the proof of
Theorem 1).

Implementation strategy

Before the implementation strategy is presented, the fol-
lowing discrete-time signals are defined to simplify the pre-
sentation of the implementation strategy. The first signal is
used to keep track of whether the solver is currently solving
an LEMPC optimization problem

s1ðkÞ5
1; solving the LEMPC

0; not solving the LEMPC

(
(7)

where k denotes the k-th sampling period (i.e., tk). The sec-
ond signal keeps track if there is a previously computed
input trajectory currently stored in memory

s2ðkÞ5
1; previous input solution stored

0; no previous input solution stored

(
(8)

At each sampling period, a state measurement xðtkÞ is
received from the sensors and three conditions are used to
determine if a precomputed control action from LEMPC or
if the control action from the explicit controller h(x) is
applied to the system. If the following three conditions are
satisfied the control action applied to the system in a
sample-and-hold fashion is the precomputed control action
from the LEMPC: (1) the current state must be in Xqe

(xðtkÞ 2 Xqe
), (2) there must be a precomputed control action

available for the sampling instance tk (i.e., s2ðkÞ51), and (3)
the predicted state under the precomputed control action
must satisfy: x̂ðtk11Þ 2 Xqe

where x̂ðtk11Þ denotes the pre-
dicted state. To obtain a prediction of the state at the next
sampling period, the nominal model (1) with wðtÞ � 0 is
recursively solved with the input uðtÞ5u�ðtkjtjÞ for t 2 ½tk;
tk11Þ (the on-line computation time to accomplish this step
is assumed to be negligible). The control action decision at a
given sampling instance tk is summarized by the flow chart
of Figure 1.

A series of decisions are made at each sampling period to
determine if the LEMPC should begin resolving, continue
solving, or terminate solving the optimization problem and is
illustrated in the flow chart of Figure 2. The computation
strategy is summarized in the following algorithm. To initial-
ize the algorithm at t050, get the state measurement
xð0Þ 2 Xq. If xð0Þ 2 Xqe

, begin solving the LEMPC problem
with j 5 0 and x(0). Set s1ð0Þ51; s2ð0Þ50, and
~uðtjÞ5hðxð0ÞÞ. Go to Step 8. Else, set s1ð0Þ5s1ð1Þ5s2ð0Þ5
s2ð1Þ50 and go to Step 9.

1. Receive a measurement of the current state xðtkÞ from
the sensors; go to Step 2.

2. If xðtkÞ 2 Xqe
, then go to Step 2.1. Else, go to Step 2.2.

2.1. If s2ðkÞ51, go to Step 3. Else, go to Step 6.

2.2. Terminate solver if s1ðkÞ51, set s1ðk11Þ50, and
s2ðk11Þ50, and go to Step 9.

3. If x̂ðtk11Þ 2 Xqe
, go to Step 4. Else, set s2ðkÞ50 and

~uðtjÞ5hðxðtkÞÞ; go to Step 7.
4. If s1ðkÞ51, go to Step 8. Else, go to Step 5.
5. If tk1Ns

< tj1N , set s1ðk11Þ50 and s2ðk11Þ51, and go
to Step 9. Else, set ~uðtjÞ5u�ðtkjtjÞ; go to Step 7.

6. If s1ðkÞ51, go to Step 8. Else, set ~uðtjÞ5hðxðtkÞÞ; go to
Step 7.

7. If the solver is currently solving a problem (s1ðkÞ51),
terminate the solver. Begin solving the LEMPC problem
with j 5 k and xðtjÞ5xðtkÞ. Go to Step 8.

8. If the solver converges before tk11, then go to Step 8.1.
Else, go to Step 8.2.

8.1. Save u�ðtjtjÞ for t 2 ½tk; tj1NÞ. Set s1ðk11Þ50 and
s2ðk11Þ51. Go to Step 9.

8.2. Set s1ðk11Þ51. If s2ðkÞ51 and tk11 < tj1N , the go
to Step 8.2.1. Else, go to Step 8.2.2.

8.2.1. Set s2ðk11Þ51. Go to Step 9.
8.2.2. Set s2ðk11Þ50. Go to Step 9.

9. Go to Step 1 (k k11).
In practice, Ns may be unknown or possibly time varying.

If Ns is unknown, then one can specify the number of sam-
pling periods that the real-time LEMPC may apply a pre-
computed input trajectory before it must start recomputing a
new input trajectory as a design parameter. This condition
may be used instead of Step 5 of the algorithm above. Addi-
tionally, it may be beneficial from a closed-loop performance
perspective to force the LEMPC to recompute its solution
more often than prescribed by the implementation strategy
described above.

A possible input trajectory resulting under the proposed
real-time LEMPC scheme is given in Figure 3. In the illus-
tration, the solver begins to solve an LEMPC optimization
problem at t0 and returns a solution at t5. It is assumed that
the closed-loop state is maintained in Xqe

from t0 to t5 so
that the solver is not terminated. Over the time, the solver is
solving, the explicit controller is applied to the system as a
precomputed LEMPC input trajectory is not available. The
precomputed LEMPC solution is applied from t5 to t13. At
t10, the solver begins to solve a new LEMPC problem. The

Figure 1. Implementation strategy for determining the
control action at each sampling period.

The notation u*ðtk jtjÞ is used to denote the control

action to be applied over the sampling period tk to tk11

from the precomputed input solution of the real-time

LEMPC (6) solved at time step tj.
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solver returns a solution at t13. At t16, the stability conditions
are not satisfied for the precomputed LEMPC input trajec-
tory, so the explicit controller computes a control action and
apply it to the system.

Stability analysis

In this section, sufficient conditions such that the closed-
loop state under the real-time LEMPC is bounded in Xq

are presented which make use of the following properties.
As f ð�; �; �Þ is a locally Lipschitz vector function and the Lya-
punov function Vð�Þ is a continuously differentiable function,
there exist positive constants Lx, Lw, L

0
x, and L

0
w such that the

following bounds hold

jf ðxa; u;wÞ2f ðxb; u; 0Þj � Lxjxa2xbj1Lwjwj (9)

j @VðxaÞ
@x

f ðxa; u;wÞ2
@VðxbÞ
@x

f ðxb; u; 0Þj � L
0

xjxa2xbj1L
0

wjwj

(10)

for all xa, xb 2 Xq; u 2 U and w 2 W. Furthermore, there
exists M> 0 such that

jf ðx; u;wÞj � M (11)

for all x 2 Xq; u 2 U, and w 2 W owing to the compactness
of the sets Xq, U, and W and the locally Lipschitz property
of the vector field.

Figure 2. Computation strategy for the real-time LEMPC scheme.
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The following proposition bounds the difference between
the actual state trajectory of the system (1) (wðtÞ 6� 0Þ and
the nominal state trajectory (wðtÞ � 0).

Proposition 1. (c.f.36) Consider the state trajectories x(t)
and x̂ðtÞ with dynamics

_xðtÞ5f ðxðtÞ; uðtÞ;wðtÞÞ; (12)

_̂xðtÞ5f ðx̂ðtÞ; uðtÞ; 0Þ; (13)

input trajectory uðtÞ 2 U;wðtÞ 2 W, and initial condition
xð0Þ5x̂ð0Þ 2 Xq. If x(t), x̂ðtÞ 2 Xq for all t 2 ½0; T	 where
T � 0, then the difference between x(T) and x̂ðTÞ is bounded
by the function ceð�Þ

jxðTÞ2x̂ðTÞj � ceðTÞ : 5
Lwh
Lx

eLxT21
� �

: (14)

Owing to the compactness of the set Xq, the difference in
Lyapunov function values for any two points in Xq can be
bounded by a quadratic function which is stated in the fol-
lowing proposition.

Proposition 2. (c.f.36) Consider the Lyapunov function Vð�Þ
of the closed-loop system (1) under the controller h(x). There
exists a scalar-valued quadratic function fVð�Þ such that

VðxaÞ � VðxbÞ1fVðjxa2xbjÞ (15)

for all xa, xb 2 Xq where

fVðsÞ : 5a4ða21
1 ðqÞÞs1bs2 (16)

and b is a positive constant.
Theorem 1 below provides sufficient conditions such that the
real-time LEMPC renders the closed-loop state trajectory
bounded in Xq for all times. The conditions such that the
closed-loop state trajectory is maintained in Xq are inde-
pendent of the computation time required to solve the
LEMPC optimization problem. From the perspective of
closed-loop stability, computational delay of arbitrary size
can be handled with the proposed real-time LEMPC method-
ology. In the case where the computational delay is always
greater than the prediction horizon, the proposed real-time
LEMPC scheme would return the input trajectory under the
explicit controller applied in a sample-and-hold fashion.

Figure 3. An illustration of an example input trajectory
resulting under the real-time LEMPC scheme.

The triangles are used to denote the time instances when

the LEMPC begins to solve the optimization problem,

while the circles are used to denote when the solver con-

verges to a solution. The solid black trajectory repre-

sents the control actions computed by the LEMPC

which are applied to the system, the dotted trajectory

represents the computed input trajectory by the LEMPC

(not applied to the system), and the solid gray trajectory

is the input trajectory of the explicit controller which is

applied to the system.

Theorem 1. Consider the system (1) in closed-loop under
the real-time LEMPC (6) based on a controller h(x) that sat-
isfies the conditions (4) that is implemented according to the
implementation strategy of Figure 1. Let Ew > 0;D > 0 and

q > qe � qmin � qs > 0 satisfy

2a3ða21
2 ðqsÞÞ1L

0

xMD1L
0

wh � 2Ew=D ; (17)

qmin 5max fVðxðt1DÞ j VðxðtÞÞ � qsg ; (18)

and

qe � q2fVðceðDÞÞ : (19)

If xðt0Þ 2 Xq and N � 1, then the state trajectory x(t) of the
closed-loop system is always bounded in Xq for t � t0.

Proof. If the real-time LEMPC is implemented according to

the implementation strategy of Figure 1, the control action to be

applied over the sampling period either comes from the precom-

puted LEMPC input trajectory or the explicit controller h(x). To

prove that the closed-loop state is bounded in Xq, we will show

that when the control action is computed from the explicit con-

troller and xðtkÞ 2 Xq, then the state at the next sampling period

will be contained in Xq. If the control action comes from a pre-

computed LEMPC solution, we will show that if xðtkÞ 2 Xqe
,

then xðtk11Þ 2 Xq owing to the stability conditions imposed on

applying the precomputed LEMPC solution. The proof consists

of two parts. In the first part, the closed-loop properties when

the control action is computed by the explicit controller h(x) are

analyzed. This part of the proof is based on the proof of36

which considers the stability properties of an explicit controller

of the form assumed for h(x) implemented in a sample-and-hold

fashion. In the second part, the closed-loop stability properties

of the precomputed control actions by the LEMPC are consid-

ered. In both cases, the closed-loop state trajectory is shown to

be maintained in Xq for t � 0 when xðt0Þ 2 Xq.
Part 1: First, consider the properties of the control action

computed by the explicit controller h(x) applied to the system

(1) in a sample-and-hold fashion. Let xðtkÞ 2 XqnXqs
for

some qs > 0 such that the conditions of Theorem 1 are satis-

fied (i.e., (17)). The explicit controller h(x) computes a control

action that has the following property [from condition (4)]

@VðxðtkÞÞ
@x

f ðxðtkÞ; hðxðtkÞÞ; 0Þ � 2a3ðjxðtkÞjÞ

� 2a3ða21
2 ðqsÞÞ

(20)

for any xðtkÞ 2 XqnXqs
. Over the sampling period, the time-

derivative of the Lyapunov function is

_VðxðtÞÞ5 @VðxðtkÞÞ
@x

f ðxðtkÞ; hðxðtkÞÞ; 0Þ

1
@VðxðtÞÞ
@x

f ðxðtÞ; hðxðtkÞÞ;wðtÞÞ

2
@VðxðtkÞÞ

@x
f ðxðtkÞ; hðxðtkÞÞ; 0Þ

(21)

for all t 2 ½tk; tk11Þ. From the bound on the time-derivative

of Lyapunov function (20), the Lipschitz bound (10), and the

bound on the norm of the disturbance vector, the time-

derivative of the Lyapunov function can be bounded for

t 2 ½tk; tk11Þ as follows:
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_VðxðtÞÞ � 2a3ða21
2 ðqsÞÞ

1j @VðxðtÞÞ
@x

f ðxðtÞ; hðxðtkÞÞ;wðtÞÞ

2
@VðxðtkÞÞ

@x
f ðxðtkÞ; hðxðtkÞÞ; 0Þj

� 2a3ða21
2 ðqsÞÞ1L

0
xjxðtÞ2xðtkÞj1L

0
wjwðtÞj

� 2a3ða21
2 ðqsÞÞ1L

0
xjxðtÞ2xðtkÞj1L

0
wh

(22)

for all t 2 ½tk; tk11Þ. Taking into account (11) and the conti-
nuity of x(t), the following bound can be written for all
t 2 ½tk; tk11Þ

jxðtÞ2xðtkÞj � MD : (23)

From (22) and (23), the following bound can be derived

_VðxðtÞÞ � 2a3ða21
2 ðqsÞÞ1L

0

xMD1L
0

wh (24)

for all t 2 ½tk; tk11Þ. If the condition (17) is satisfied (i.e., D
is sufficiently small), then there exists Ew > 0 such that

_VðxðtÞÞ � 2Ew=D (25)

for all t 2 ½tk; tk11Þ. Integrating the above bound, yields

VðxðtÞÞ � VðxðtkÞÞ; 8 t 2 ½tk; tk11Þ; (26)

Vðxðtk11ÞÞ � VðxðtkÞÞ2Ew : (27)

For any state xðtkÞ 2 XqnXqs
, the state at the next sam-

pling period will be in a smaller level set when the control
action uðtÞ5hðxðtkÞÞ is applied for t 2 ½tk; tk11Þ. Also, the
state will not come out of Xq over the sampling period
owing to (25). Once the closed-loop state under the explicit
controller h(x) implemented in a sample-and-hold fashion
has converged to Xqs

, the closed-loop state trajectory will be
maintained in Xqmin

if qmin � q and qmin is defined accord-
ing to (18). Thus, the sets Xq and Xqmin

are forward invariant
sets under the controller h(x) and if xðtkÞ 2 Xq, then xðtk11Þ
2 Xq under the explicit controller h(x).

Part 2: In this part, the closed-loop stability properties of
the input precomputed by the LEMPC for the sampling
period tk to tk11 are considered. For clarity of presentation,
the notation x̂ðtÞ denotes the prediction of closed-loop state
at time t, while the notation ~xðtÞ will be reserved to denote
the predicted state in the LEMPC (6). The predicted state in
the LEMPC (6) at tj11, which is denoted as ~xðtj11Þ, satisfies
x̂ðtj11Þ5~xðtj11Þ because both predicted states use the nomi-
nal model with the same initial condition and same piece-
wise constant input applied from tj to tj11.

First, feasibility of the optimization problem is considered.
Owing to the formulation of the LEMPC (6), the optimization
problem is always feasible if qe satisfies: q > qe � qmin .
Recall, the input over the sampling period tj to tj11 is not a
degree of freedom in the optimization problem. If this control
action is precomputed from a previous LEMPC solution, it
must have the property that x̂ðtj11Þ5~xðtj11Þ 2 Xqe

which is
imposed as a condition of the implementation strategy of Fig-
ure 1. If the control action is computed by the explicit control-
ler, the control action over the sampling period tj to tj11 will
maintain ~xðtj11Þ 2 Xqe

. Thus, ~xðtj11Þ 2 Xqe
in the LEMPC

(6). Feasibility of the optimization problem follows from the
fact that the input trajectory obtained from the explicit control-
ler h(x) over the prediction horizon is a feasible solution, that
is uðtÞ5hðx̂ðtiÞÞ for t 2 ½ti; ti11Þ; i5j11; j12; . . . ; j1N21
where x̂ðtÞ is obtained by recursively solving the model

_̂xðtÞ5f ðx̂ðtÞ; hðx̂ðtiÞÞ; 0Þ (28)

for t 2 ½ti; ti11Þ and i5j11; j11 . . . ; j1N21 with the ini-
tial condition x̂ðtj11Þ5~xðtj11Þ. Furthermore, the set Xqe

is
forward invariant under the controller h(x) (the proof is anal-
ogous to Part 1 where the set Xqe

is used instead of Xq).
Thus, the LEMPC (6) is always feasible for any xðtjÞ 2 Xqe

.
If the LEMPC is implemented according to the proposed

implementation strategy of Figure 1, then the precomputed
input for tk by the LEMPC is only used when xðtkÞ 2 Xqe

and the predicted state at the next sampling period
x̂ðtk11Þ 2 Xqe

. When xðtÞ 2 Xq for t 2 ½tk; tk11Þ (i.e., a suffi-
ciently small sampling period is used), the following bound
on the Lyapunov function value at the next sampling period
tk11 can be derived from Propositions 1 and 2

Vðxðtk11ÞÞ � Vðx̂ðtk11ÞÞ1fVðceðDÞÞ : (29)

As x̂ðtk11Þ 2 Xqe
and if the condition (19) is satisfied,

xðtk11Þ 2 Xq.
To summarize, if the control action to be applied over the

sampling period tk to tk11 is uðtkÞ5hðxðtkÞÞ, the state at the
next sampling period will be in Xq (xðtk11Þ 2 Xq). If the con-
trol action to be applied over the sampling period tk to tk11 is
from a precomputed LEMPC input, the state at the next sam-
pling period will also be contained in Xq which completes the
proof of boundedness of the closed-loop state trajectory xðtÞ
2 Xq under the real-time LEMPC for t � t0. w

REMARK 3. No closed-loop performance guarantees can
be made with the proposed real-time LEMPC because no
performance constraints (e.g., terminal constraints) are
imposed on the LEMPC and the closed-loop performance
may be adversely affected with greater computation time.
The latter point is associated with the fact that the LEMPC
problem allows for the input trajectory from tj11 to tj1Ns

(i.e., the time the solver converges) to be degrees of freedom
in the optimization problem. However, the actual closed-loop
input trajectory applied over this period of time may be dif-
ferent than that computed by the LEMPC over the same time
period. Potentially, one may also use sensitivity-based cor-
rections to the precomputed control actions after receiving
state feedback like that used in Refs. 20 and 21 to improve
closed-loop performance (e.g., a first-order correction).
However, active set changes must be handled appropriately
which may introduce additional on-line computation. A com-
plete and rigorous discussion of this point is beyond the
scope of this work. It is important to point out that the com-
puted solution of the LEMPC may dictate a time-varying
operating policy to optimize the process economics. Even in
the presence of uncertainty, the time-varying operating pol-
icy dictated by the real-time LEMPC may be substantially
better (with respect to the economic cost) than steady state
operation which is the case for the chemical process network
considered below.

REMARK 4. In this work, unknown and possibly time-
varying computational delay is considered for operation
affected by unknown bounded disturbance. If, instead of the
proposed computation algorithm, a hard cap was placed on
the solver to terminate and return a (suboptimal) solution by
a certain number of sampling times, one could account for
the control actions that are applied to the system over the
computation time by setting the input trajectory in the
LEMPC problem over the specified number of sampling peri-
ods of the prediction horizon be equal to a predetermined
input trajectory. This potential strategy, however, does not
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account for the fact that the solver may return a solution
before the end of specified number of sampling periods.
Moreover, the predetermined input trajectory is a strictly
open-loop input trajectory and thus, closed-loop stability
under the influence of unknown disturbances may become an
issue under the resulting controller. Conversely, the pro-
posed real-time LEMPC strategy incorporates a degree of
feedback because a state measurement is received at each
sampling time. The precomputed control action is checked
for closed-loop stability at each sampling period and may be
substituted by the control action computed by the back-up
controller to ensure stability.

REMARK 5. Regarding handling unreachable set-points
(set-points that are not steady states) within LEMPC, recall
that the main objective of LEMPC is to optimize the opera-
tion within Xq. A steady state, possibly the optimal steady
state, of the model is used when characterizing the stability
region Xq. Thus, to handle unreachable set-points within
LEMPC, one can handle them like39; that is, use the
unreachable set-point in the stage cost (a quadratic cost was
used in Ref. 39) and define the stability region with respect
to optimal steady state (the optimal steady state was used as
the terminal constraint in Ref. 39).

REMARK 6. The real-time LEMPC method presented in
this work can be also applied with minor modifications to
periodically-operated processes. To address this case, a few
definitions are needed. As is the case in Ref. 2 (generalizing
to continuous-time), the dynamic behavior of a nominally
operated periodic process evolves with dynamics

_x�ðtÞ5f ðx�ðtÞ; u�ðtÞ; 0Þ (30)

where x�ðtÞ and u�ðtÞ are periodic trajectories; that is, if s
is the period, then x�ðtÞ and u�ðtÞ satisfy the periodic
conditions

x�ðtÞ5x�ðt1sÞ ; (31a)

u�ðtÞ5u�ðt1sÞ (31b)

for all t. In the context of periodically-operated processes, the
periodic trajectories x�ðtÞ and u�ðtÞ will be available a priori
and may correspond to the economically optimal operating
policy. In Ref. 2, the trajectory x�ðtÞ is used in the formula-
tion of a periodic terminal constraint and it was shown that
the closed-loop state trajectory under the resulting EMPC
will converge to the periodic trajectory when certain proper-
ties on the stage cost are satisfied. To satisfy the assumptions
on the stage cost, regularization terms (i.e., tracking terms)
may need to be added to the stage cost. In this context, the
overall control objective may be considered to force the state
to track the periodic trajectory. As this is a tracking control
problem, an important consideration is whether it is applica-
ble to use EMPC to accomplish this control objective because
EMPC with a general stage cost and with or without terminal
constraints is not guaranteed in general to force the closed-
loop state to track the periodic trajectory.
If it is applicable to apply EMPC, one could use LEMPC to
accomplish the desired control objective. To accomplish this
objective, the dynamic model to use in LEMPC is the devia-
tion dynamics: _zðtÞ5 _xðtÞ2 _x�ðtÞ. For this case, the dynamic
model is time-varying (i.e., the vector field depends explicitly
on time). The assumption of the existence of a Lyapunov func-
tion needs to be made for the deviation system and with simi-

lar bounds as in (4) (i.e., the bounds should not explicitly
depend on time). Furthermore, an explicit controller needs to
be assumed that can force the closed-loop system to the peri-
odic trajectory. Using the Lyapunov function and explicit con-
troller in the Lyapunov-based constraints, a mode 2 type
constraint like (5f) can be added to the formulation of the
real-time LEMPC (6). The real-time LEMPC will force the
system to track the periodic trajectory if the resulting mode
two constraint is enforced over each sampling period in the
prediction horizon. If, conversely, a periodic trajectory is not
available a priori, then using LEMPC with a sufficiently long
horizon will result in the LEMPC forcing the system along
the optimal time-varying trajectory whether the resulting tra-
jectory be a periodic trajectory or some other more general
time-varying trajectory (see Ref. 6, for some closed-loop per-
formance results on EMPC without terminal conditions).

REMARK 7. As pointed out in the proof of Theorem 1, recur-
sive feasibility of the LEMPC in the presence of bounded
uncertainty is guaranteed if the initial state is in Xq. It is diffi-
cult in general to characterize the feasible set under EMPC
formulated with a terminal constraint (i.e., the set of points
where recursive feasibility is maintained in the presence of
uncertainty). Thus, it may be difficult to ensure that the closed-
loop state is maintained in the feasible set under EMPC with a
terminal constraint in the presence of uncertainty and computa-
tional delay. In this respect, LEMPC has a unique advantage
for real-time implementation compared to EMPC with a termi-
nal constraint in that LEMPC maintains the closed-loop state
inside Xq where recursive feasibility is guaranteed.

REMARK 8. The number of times that the explicit control-
ler is applied to the closed-loop system may be a factor in
the closed-loop economic performance. Whether the control
action is from a precomputed LEMPC problem or the
explicit controller is mainly influenced by how close the state
measurement is to the boundary of Xqe

. To decrease the
number of times that the explicit controller is applied to the
system, one could potentially add penalization terms to the
stage cost of the LEMPC to penalize the closeness of the
state to the boundary of Xqe

.

REMARK 9. Within the context of EMPC, output feedback
may be handled using similar principles used in Refs. 40
and 41 which use a high-gain observer and moving horizon
estimation scheme, respectively, to carry out state estima-
tion. For the case of significant measurement noise, a mov-
ing horizon estimation scheme, such as the one designed in
Ref. 41, may give better estimation performance compared
to a high-gain observer which tends to be more sensitive to
measurement noise. Regarding the application of real-time
EMPC to large-scale systems, a distributed EMPC strategy
may be more suited to handle the computation of many con-
trol actions for large-scale systems. However, addressing the
rigorous design of a distributed EMPC strategy for real-time
implementation is beyond the scope of this work.

Application to a Chemical Process Network

Consider a chemical process network consisting of two
continuous stirred tank reactors (CSTRs) in series followed
by a flash separator shown in Figure 4. In each of the reac-
tors, the reactant A is converted to the desired product B
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through an exothermic and irreversible reaction of the form
A! B. A fresh feedstock containing a dilute solution of the
reactant A in an inert solvent D is fed to each reactor. The
reaction rate is second order in the reactant concentration.
The CSTRs are denoted as CSTR-1 and CSTR-2, respec-
tively. A flash separator, which is denoted as SEP-1, is used
to recover some of the unreacted A. The overhead vapor
from the flash tank is condensed and recycled back to
CSTR-1. The bottom stream is the product stream of the
process network which contains the desired product B. In the
separator, a negligible amount of A is assumed to be con-
verted to B through the reaction. The two reactors have both
heating and cooling capabilities and the rate of heat supplied
to or removed from the reactors is denoted as Qj, j51; 2.
While the heat supplied to or removed from the vessel con-
tents is modeled with one variable, two different actuators
may be used in practice for supplying heat to and removing
heat from each vessel. To vaporize some of the contents of
the separator, heat is supplied to the separator at a rate of
Q3. The liquid holdup of each vessel is assumed to be con-
stant and the liquid density throughout the process network
is assumed to be constant.

Applying first principles, a dynamic model of the process
network can be obtained (neglecting the dynamics of the
condenser and the solvent) and is given by the following
ordinary differential equations (ODEs) (see Table 1 for
parameter notation and values)

dT1

dt
5

F10

V1

T101
Fr

V1

T32
F1

V1

T12
DHk0

qLCp
e2E=RT1 C2

A11
Q1

qLCpV1

(32a)

dCA1

dt
5

F10

V1

CA101
Fr

V1

CAr2
F1

V1

CA12k0e2E=RT1 C2
A1 (32b)

dCB1

dt
5

Fr

V1

CBr2
F1

V1

CB11k0e2E=RT1 C2
A1 (32c)

dT2

dt
5

F20

V2

T201
F1

V2

T12
F2

V2

T22
DHk0

qLCp
e2E=RT2 C2

A21
Q2

qLCpV2

(32d)

dCA2

dt
5

F20

V2

CA201
F1

V2

CA12
F2

V2

CA22k0e2E=RT2 C2
A2 (32e)

dCB2

dt
5

F1

V2

CB12
F2

V2

CB21k0e2E=RT2 C2
A2 (32f)

dT3

dt
5

F2

V3

ðT22T3Þ2
DHvap

_Mr

qLCpV3

1
Q3

qLCpV3

(32g)

dCA3

dt
5

F2

V3

CA22
Fr

V3

CAr2
F3

V3

CA3 (32h)

dCB3

dt
5

F2

V3

CB22
Fr

V3

CBr2
F3

V3

CB3 (32i)

where Tj denotes the temperature of the j-th vessel (j 5 1
denotes CSTR-1, j 5 2 denotes CSTR-2, and j 5 3 denotes
SEP-1), Cij denotes the concentration of the i-th species
(i5A; B) in the j-th vessel, and _Mr denotes the molar flow
rate of the recycle stream.

The relative volatility of each species is assumed to be
constant within the operating temperature range of the flash
tank. The following algebraic equations are used to model
the composition of the recycle stream

CD35 qL2CA3MWA2CB3MWBð Þ=MWD (33a)

Cir5
aiqLCi3X

j2fA;B;DgajCj3MWj

; i5A; B; D (33b)

_Mr5Fr CAr1CBr1CDrð Þ (33c)

where Cir is the overhead vapor concentration of the separa-
tor. Given the assumption of constant liquid hold-up and
constant liquid density, the volumetric flow rates are given
by the following equations

F15Fr1F10 (34a)

F25F11F20 (34b)

F35F22Fr (34c)

where Fj is the volumetric flow rate of the outlet stream of
the j-th vessel.

The process network has five manipulated inputs: the three
heat rates Qj, j51; 2; 3 and the inlet concentration of the
reactant A in the feedstock to each reactor (CA10 and CA20).
The bounds on the available control action are Qj 2 ½21:0;
1:0	3105 kJ h21 for j51; 2; Q3 2 ½2:2; 2:5	 3106 kJ h21,
and CAj0 2 ½0:5; 7:5	 kmol m23j51; 2. In addition to the
input constraints, the reactions take place within the temper-
ature range from 370.0 to 395.0 K and thus, the reactors are
to be operated within this temperature range. The separation
occurs at 390.0 K.

Figure 4. Process flow diagram of the reactor and sep-
arator process network.

Table 1. Process Parameters of the Reactor and Separator

Process Network

Symbol / Value Description

T105300 K Temp.: CSTR-1 inlet
T205300 K Temp.: CSTR-2 inlet
F1055:0 m3h21 Flow rate: CSTR-1 inlet
F2055:0 m3h21 Flow rate: CSTR-2 inlet
Fr52:0 m3h21 Flow rate: SEP-1 vapor
V155:0 m3 Volume: CSTR-1
V255:0 m3 Volume: CSTR-2
V353:0 m3 Volume: SEP-1
k051:93109 m3 kmol21h21 Pre-exponential factor
E57:13104 kJ kmol21 Activation energy
DH527:83103 kJ kmol21 Heat of reaction
DHvap54:023104 kJ kmol21 Heat of vaporization
Cp50:231 kJ kg21 K21 Heat capacity
R58:314 kJ kmol21 K21 Gas constant
qL51000 kgm23 Liquid Solution Density
aA53:0 Relative volatility: A
aB50:8 Relative volatility: B
aD51:0 Relative volatility: D
MWA518 kg kmol21 Molecular weight: A
MWB518 kg kmol21 Molecular weight: B
MWD540:0 kg kmol21 Molecular weight: D
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The real-time economics of the process network are
assumed to be described by the molar flow rate of desired
product B leaving the process network which is denoted as
_MB3. The time-averaged amount of reactant that may be fed

to each reactor is constrained to an average amount of 20.0
kmol h21 which gives rise to the following two input aver-
age constraints

1

tf

ðtf

t0

Fj0CAj0ðtÞ dt520:0 kmol h21 (35)

for j51; 2 where t0 and tf are the initial and final time of the
operation of the process network. Since the inlet flow rates F10

and F20 are constant, the average input constraint can be writ-
ten in terms of the inlet concentration of A only such that the
time-averaged value of CAj0 must be equal to 4.0 kmol m23.

The economically optimal steady state (which is simply
referred to as the optimal steady state for the remainder) will
be used in the design of a real-time LEMPC (i.e., the stability
region for the optimal steady state will be used in the LEMPC
formulation). As the reaction rate is maximized at high tem-
perature, computing the optimal steady state with the exact
acceptable temperature operating range will give an optimal
steady state with the greatest acceptable reactor operating tem-
perature. Much like current practice, the optimal steady state
is computed with a degree of conservativeness or “back-off”
introduced in the acceptable operating temperature range, so
that the reactor temperature is maintained within the accepta-
ble operating range over the length of operation in the pres-
ence of uncertainty and disturbances (see Ref. 42 and the
references therein, for instance, for more details on the back-
off methodology). Thus, the optimal steady state must satisfy
a restricted temperature range of Tjs 2 ½370:0; 380:0	 K for
j51; 2. The steady state optimization problem is given by

max xs;us
F3CB3s

s:t:f ðxs; usÞ50

370:0 K � T1s � 380:0 K

370:0 K � T2s � 380:0 K

T3s5390:0 K

21:03105 kJ h21 � Q1s � 1:03105 kJ h21

21:03105 kJh21 � Q2s � 1:03105 kJ h21

2:23106 kJ h21 � Q3s � 2:53106 kJ h21

CA10s5CA20s54:0 kmol m23

(36)

where f ðxs; usÞ50 represents the steady-state model. The
optimal steady-state vector (omitting units) is

x�s 5 T�1s C�A1s C�B1s T�2s C�A2s C�B2s T�3s C�A3s C�B3s½ 	T

5 380:0 2:67 2:15 380:0 2:42 2:06 390:0 1:85 2:15½ 	T ;
(37)

and the optimal steady-state input vector is

u�s 5 Q�1s Q�2s Q�3s C�A10s C�A20s½ 	T

5 24:213103 1:703104 2:343106 4:0 4:0
� �T

:
(38)

The optimal steady state is open-loop unstable.
The control objective of the process network is to optimize

the economics through real-time operation while maintaining

the closed-loop state trajectory inside a well-defined state-
space set. To accomplish this objective, the real-time LEMPC
scheme is applied to the process network. In stark contrast to
traditional tracking control that forces the closed-loop state to
converge to the (optimal) steady state, applying LEMPC to
the process network is not expected to achieve convergence
to the optimal steady state. Instead, LEMPC may force the
process network to operate in a consistently transient manner
to achieve better closed-loop performance compared to the
closed-loop performance at the optimal steady state.

For the implementation of the LEMPC, the acceptable
temperature range is not treated as a hard constraint. Instead,
the acceptable temperature range is accounted for by impos-
ing quadratic penalty terms in the stage cost of the LEMPC.
Thus, the stage cost used in the objective function of the
LEMPC is

leðx; uÞ52F3CB31
X3

i51

Qc;iðTi2T�isÞ
2

(39)

where T�is; i51; 2; 3 are the optimal steady-state tempera-
tures. The stage cost (39) includes the economics and the
quadratic penalty terms for the temperature. The weight
coefficients are Qc;150:018;Qc;250:022, and Qc;350:01 and
have been tuned such that the closed-loop temperatures are
maintained near the optimal steady-state temperature.
Since no hard or soft constraints are imposed on the tem-
perature in the LEMPC, it is emphasized that there is no
guarantee that the temperatures are maintained within the
acceptable temperature range described above
(Tj 2 ½370:0; 395:0	 K for j51; 2 and T3 
 390:0K). In
this example, small violations over a short period of time
are considered acceptable. If maintaining the operation
within the acceptable operating temperature range is con-
sidered critical, one may add various modifications to the
LEMPC to achieve this objective such as decreasing the
size of Xqe

, adding hard or soft constraints on the tempera-
ture in the LEMPC (see Ref. 4, for discussion on imposing
hard and soft state constraints within the context of
LEMPC), or adding a contractive constraint on the temper-
ature ODEs (see the example of Ref. 3, for an illustrative
example).

An explicit stabilizing controller is designed using feed-
back linearization techniques to make the dynamics of the
temperature ODEs linear (in a state-space region where the
input constraints are not violated) under the explicit control-
ler. Specifically, the temperature ODEs are input-affine in
the heat rate input and have the form

_Tj5fjðxÞ1bjQj (40)

where fjðxÞ is a nonlinear scalar-valued function, bj is con-
stant and j51; 2; 3. The controller that makes the closed-
loop temperature dynamics linear is:

Qj52
1

bj
fjðxÞ1KjðTj2T�jsÞ
� �

(41)

where Kj denotes the controller gain. In this case, the con-
troller gains are K155;K255, and K357, respectively. The
inlet concentration input values are fixed to the average val-
ues (4.0 kmol m23). Through extensive closed-loop simula-
tions under the state feedback controller, a quadratic
Lyapunov function for the process network under the feed-
back controller h(x) was determined. An estimate of the
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stability region of the process network under the feedback
controller was characterized by computing the state-space
points where _V < 0 and taking the stability region to be a
level set of the Lyapunov function containing only state-
space points where the time-derivative of the Lyapunov
function is negative. The quadratic Lyapunov function has
the form

VðxÞ5ðx2x�s Þ
TPðx2x�s Þ (42)

where P is the following positive definite matrix

P5diag 0:001 1:5 0:05 0:001 1:5 0:05 0:001 1:5 0:05½ 	:
(43)

The estimated stability region Xq is the level set of the
Lyapunov function where VðxÞ � 11:0 (i.e., q511:0). The
subset of the stability region which defines the mode 1 con-
straint of the LEMPC is qe510:0 and has been determined
through extensive closed-loop simulation under LEMPC as
the subset of the stability region Xq where the closed-loop
state under LEMPC is maintained in Xq.

The input average constraint is imposed over successive,
finite-length operating periods. Specifically, the average
constraint must be satisfied over each operating period tM
5MD where M is the number of sampling periods in the
operating period. This ensures that over the entire length
of operation the average constraint will be satisfied (see
Ref. 4 for details on the implementation of this type of
constraint). For this example, the operating period was
chosen to be tM52:4h which leads to better asymptotic
average economic performance under LEMPC (assuming
no computational delay) than the asymptotic average per-
formance at the economically optimal steady state. To
solve the dynamic optimization problem of the LEMPC, a
simultaneous approach is used with collocation discretiza-
tion of the ODEs, and three Radau collocation points are
used per sampling period (see, for instance, Ref. 29 for
details on solving a dynamic optimization problem using a
simultaneous approach). The open-source nonlinear optimi-
zation solver Ipopt29,43 was used owing to its ability to
exploit the high degree of sparsity of the resulting
optimization problem. Exact (analytical) first- and second-
order derivative information was provided to the solver.
The closed-loop simulations were coded in C11 and per-
formed on an Intel

VR

Core
TM

2 Quad 2.66 GHz processor
running an Ubuntu Linux operating system. The sampling
period of the LEMPC used in the simulations below is
D50:01h. To simulate forward in time the closed-loop
process network, the fourth-order Runge–Kutta method
was used with a time step of 0.0001 h.

In the first set of simulations, nominal operation of the
process network under LEMPC implemented in a typical
receding horizon fashion is considered under ideal computa-
tion (i.e., assuming no computational delay). The closed-loop
economic performance under LEMPC is assessed using the
economic performance index which is defined as

Je5

ðtf

0

F3CB3 dt : (44)

As the LEMPC does not directly optimize the molar flow
rate of product out of the process network, the stage cost
index will also be considered as a measure of the closed-
loop performance and is given by

Le52

ðtf

0

leðx; uÞ dt : (45)

First, the effect of the prediction horizon on the closed-
loop economic performance over one operating period
(2.4 h) is considered. The closed-loop performance index
(44) plotted against the prediction horizon length is given in
Figure 5. A significant increase in closed-loop performance
is observed initially with increasing prediction horizon length
until the closed-loop performance becomes approximately
constant. Owing to this fact, a prediction horizon of N 5 200
is used in all subsequent simulations. A simulation over
many operating periods such that the effect of the initial
condition on closed-loop performance becomes negligible is
performed (with N 5 200). The asymptotic average closed-
loop economic performance, which is the time-averaged eco-
nomic cost after the effect of the initial condition becomes
negligible, was determined from this simulation to be 25.0
kmol h21 (in this case, the time-averaged production rate
over each operating window becomes constant after a suffi-
ciently long length of operation). The optimal steady-state
production rate of B is 21.5 kmol h21. Thus, the asymptotic
production rate of the process network under the LEMPC is
16.3% better than the production rate at the economically
optimal steady state.

The effect of computational delay is considered in the
next set of simulations, and two scenarios are considered: (1)
the closed-loop process network under LEMPC implemented
in a typical receding horizon fashion where the control
action is subject to real-time computational delay (for the
sake of simplicity, this case will be referred to as the closed-
loop process network under LEMPC for the remainder) and
(2) the closed-loop process network under the real-time
LEMPC scheme (also, subject to real-time computational
delay). For the former scenario, the LEMPC begins to com-
pute a control action at each sampling instance after receiv-
ing a state measurement. Owing to the computational delay,
the control action applied to the process network is the most
up-to-date control action. For example, if it takes 0.002 h to
compute the control action at the sampling instance tk, then
uðtk21Þ is applied to the process network from tk to

Figure 5. The total economic cost Je over one operat-
ing window length of operation (2.4 h) of the
process network under LEMPC with the pre-
diction horizon length.
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tk 1 0.002 h (assuming uðtk21Þ is available at tk) and applies
uðtkÞ to the process network from tk 1 0.002 h to
tk115tk1D. For each scenario, a 12.0 h length of closed-
loop operation was simulated. For the real-time LEMPC, the
LEMPC is forced to recompute a new solution after three
sampling periods have elapsed since the last time an LEMPC
solution was computed (i.e., the solver starts computing a
new solution at the beginning of the fourth sampling period).

The average computation time required to solve the
LEMPC (of scenario (1)) at each sampling time was 11.2 s
(31.2% of the sampling period) with a standard deviation of
7.42 s. The maximum computation time over the simulation
was 61.9 s which is almost double the sampling period. The
computation time exceeded the sampling period 10 out of
the 1200 sampling periods in the simulation. Over the course
of both simulations, the closed-loop state was maintained in
Xq. The closed-loop trajectories under the real-time LEMPC
scheme are given in Figure 6 (the closed-loop behavior
under the LEMPC subject to real-time computational delay
was similar). The difference between the performance indi-
ces of the two cases was less than 0.5% (the performance
indices for case (1) and case (2) were 284.3 and 283.3,
respectively).

While little difference between the two cases in terms of
closed-loop performance was realized, it is important to note
that an a priori guarantee on closed-loop stability under the
real-time LEMPC can be made, while, under the LEMPC
with computational delay, it is difficult to guarantee closed-
loop stability a priori. Also, the total on-line computation
time to solve the LEMPC over the two simulations was 3.74
and 0.94 h, respectively. The real-time LEMPC reduces the
total on-line computation requirement by 75% compared to
LEMPC implemented in a receding horizon fashion because
the real-time LEMPC does not recompute a control action at
each sampling instance, while LEMPC, implemented in a
receding horizon fashion, recomputes a control action at
each sampling instance. To better illustrate this point, Figure
7 shows the frequency the LEMPC problem was solved
under the real-time implementation strategy with respect to
the sampling period over the first 0.5 h of operation. Over

this time, the LEMPC optimization problem was solved at a
rate of one out of every four sampling periods. This trend
continues over the remainder of the 12.0 h length of opera-
tion and hence, the 75% reduction in total computational
time.

As the computational delay depends on many factors (e.g.,
model dimension, prediction horizon, solution strategy used
to solve the dynamic optimization problem, the nonlinear
optimization solver used, and computer hardware), it is also
important to consider computational delay greater than one
sampling period to demonstrate that the real-time LEMPC
scheme can handle computation delay of arbitrary length.
Therefore, another set of simulations is considered where
longer computational delay is simulated. The computation
delay is modeled as a bounded uniformly-distributed random
number and the maximum computational delay is assumed
to be less than 10 sampling periods. Both the LEMPC
(receding horizon implementation) and the real-time LEMPC
scheme are considered. To make the comparison as consist-
ent as possible, the computational delay, at the time steps
the real-time LEMPC is solved, is simulated to be the same
as the computation delay to solve the LEMPC at the same
time step (recall the real-time LEMPC is not solved at each
sampling period). Given the computational delay is much
greater for this set of simulations than in the previous set of
simulations, the real-time LEMPC is forced to recompute a
new solution after 15 sampling periods have elapsed since
the last time it computed a solution.

Figure 6. The closed-loop (a) state and (b) input trajectories of the nominally operated process network under the
real-time LEMPC scheme.

Figure 7. The number of times the LEMPC optimization
problem was solved (Comp.) as dictated by
the real-time implementation strategy com-
pared to the sampling period (D) over the first
0.5 h of operation.
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Several simulations were performed, each starting at a dif-
ferent initial condition, and the performance indices of these
simulations are given in Table 2. Applying the back-up

explicit controller h(x) implemented in a sample-and-hold
fashion to the chemical process network was also considered
and the performance indices of these simulations are given
in Table 2 as well. The average improvement in economic
performance compared to the process network under the
back-up controller was 26.1% under the real-time LEMPC
scheme and 23.9% under the LEMPC (implemented in a
receding horizon). Thus, a substantial economic benefit is
achieved by applying LEMPC to the process network. While
the real-time LEMPC did not always achieve better perform-
ance (either measured in terms of the economic performance
index or stage cost index) compared to the performance
under LEMPC, the closed-loop trajectories between the two
cases are significantly different. Figures 8 and 9 give the
closed-loop trajectories of simulation 2 (as labeled in Table
2). The input trajectory computed by the real-time LEMPC
has chattering initially over the first operating period because

Table 2. The Performance Indices of the Process Network

Under the Back-Up Explicit Controller, Under the LEMPC

Subject to Computational Delay, and Under the Real-Time

LEMPC for Several Simulations

Sim.

Back-Up
Controller LEMPC

Real-Time
LEMPC

Je Le Je Le Je Le

1 225.5 225.4 277.0 245.0 295.1 216.5
2 254.2 254.1 318.7 278.6 307.3 279.6
3 260.5 260.4 319.9 286.3 318.1 294.7
4 232.7 230.6 290.7 255.7 299.2 266.4
5 250.0 250.0 308.7 276.9 322.8 282.9

Figure 8. The closed-loop (a) state and (b) input trajectories of process network under the real-time LEMPC
scheme where the computational delay is modeled as a bounded random number.

Figure 9. The closed-loop (a) state and (b) input trajectories of process network under LEMPC subject to compu-
tational delay where the computational delay is modeled as a bounded random number.
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of the effect of the initial condition, but after the first operat-
ing period when the effect of the initial condition dissipates,
the computed input trajectory is significantly smoother. Con-
versely, chattering in the input profiles is observed through-

out the entire simulation under the LEMPC. If we compare
the performance index of operation from t52:4h to t512:0h
(after the first operating period) for simulation 2, the indices
are Je5249:8 and Le5227:9 for operation under the real-
time LEMPC and Je5248:5 and Le5217:4 for operation
under the LEMPC; the performance under the real-time
LEMPC is better over this period than under LEMPC.

Over the five simulations under the real-time LEMPC
strategy, the explicit controller was applied on average 19
out of 1200 sampling periods. For the simulation of Figure
8, a discrete trajectory showing when the control action
applied to the process network under the real-time LEMPC
strategy was from a precomputed LEMPC solution or from
the back-up controller is given in Figure 10. For this case,
the back-up controller is used 31 out of 1200 sampling peri-
ods (2.7% of the sampling periods). From Figure 10, the

Figure 10. A discrete trajectory depicting when the
control action applied to the process net-
work over each sampling period was from
a precomputed LEMPC solution or from the
back-up controller for the closed-loop sim-
ulation of Figure 8.

Figure 11. The closed-loop (a) state and (b) input trajectories of process network under the real-time LEMPC
scheme with bounded process noise.

Figure 12. The closed-loop (a) state and (b) input trajectories of process network under LEMPC subject to compu-
tational delay with bounded process noise.
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back-up controller is only applied over the first operating
period and is not used in any subsequent sampling period.
Thus, the source of performance degradation for this case
(Sim. 2 in Table 2) is due to applying the explicit back-up
controller to maintain the closed-loop state in Xq. Again, it
is emphasized that there is no a priori guarantee that the
LEMPC implemented in a receding horizon fashion subject
to computational delay could maintain the closed-loop state
inside Xq.

In the last set of simulations, significant bounded Gaussian
process noise with zero mean was added to the model states.
The standard deviations of the noise added to the tempera-
ture and concentration states were 5.0 and 0.5, respectively,
and the bounds on the noise were 2.0 and 15.0, respectively.
Two closed-loop simulations over 12.0 h length of operation
were completed with the same realization of the process
noise. In the first simulation, the process network was con-
trolled by the real-time LEMPC and the closed-loop trajecto-
ries are given in Figure 11 over the first two operating
periods. For this case, the back-up controller is applied 69
out of 1200 sampling periods (5.8% of the sampling peri-
ods). In the second simulation, the process network was con-
trolled by LEMPC subject to computation delay (trajectories
shown in Figure 12).

From Figure 12, a significant degree of chattering and
bang–bang type actuation in the input trajectory is observed.
This behavior tries to combat the effect of the added process
noise and is due to not penalizing control actions in the stage
cost and not imposing rate of change constraints on the con-
trol actions. In practice, one could add one or both of these
elements to the LEMPC if the computed input trajectory is
not implementable. Conversely, the real-time LEMPC imple-
ments a much smoother input trajectory (Figure 11) because
the precomputed input trajectory of the real-time LEMPC
has a degree of smoothness like the closed-loop trajectory of
the nominally operated process network (Figure 6). If the
precomputed input trajectory satisfies the stability conditions,
it will be applied to the closed-loop process network with
disturbances. The closed-loop system under the real-time
LEMPC has guaranteed stability properties, but is not recom-
puted at each sampling period like the receding horizon
implementation of LEMPC which will try to combat the
effect of the disturbance on performance. In both cases, the
state is maintained in Xq. The performance indices of the
two cases are 301.6 under the real-time LEMPC and 295.5
under the LEMPC; the closed-loop performance under the
real-time LEMPC scheme is 2.0% better than applying
LEMPC without accounting for the computational delay.
Moreover, the back-up controller was also applied to the
process network subject to the same realization of the pro-
cess noise. The economic performance index for this case
was 242.3. For operation with process noise, the economic
performance improvement over the process network under
the back-up controller was 24.4% under the real-time
LEMPC strategy and 21.9% under the receding horizon
LEMPC for the same initial condition.

Conclusions

In this work, a strategy for implementing LEMPC in real-
time with computation delay was proposed. The implementa-
tion strategy uses a triggering condition to precompute an
input trajectory from LEMPC over a finite-time horizon. At
each sampling period, if a certain stability (triggering) condi-

tion is satisfied, then the precomputed control action by
LEMPC is applied to the closed-loop system. If the stability
condition is violated, then a backup explicit stabilizing con-
troller is used to compute the control action for the sampling
period. In this fashion, the LEMPC is used when possible to
optimize the economics of the process. Conditions such that
the closed-loop state under the real-time LEMPC is always
bounded in a compact set were derived. Lastly, the real-time
LEMPC scheme was applied to a chemical process network
and demonstrated that it can maintain closed-loop stability in
the presence of significant computation delay and process
noise while also, improving the closed-loop economic per-
formance compared to the economic performance at the eco-
nomically optimal steady state.
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34. Kokotović P, Arcak M. Constructive nonlinear control: a historical
perspective. Automatica. 2001;37:637–662.

35. Christofides PD, El-Farra NH. Control of Nonlinear and Hybrid Pro-
cess Systems: Designs for Uncertainty, Constraints and Time-Delays.
Berlin, Germany: Springer-Verlag, 2005.

36. Mu~noz de la Pe~na D, Christofides PD. Lyapunov-based model pre-
dictive control of nonlinear systems subject to data losses. IEEE
Trans Automat Control. 2008;53:2076–2089.
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