
Economic Model Predictive Control of Nonlinear Time-Delay
Systems: Closed-Loop Stability and Delay Compensation

Matthew Ellis
Dept. of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095-1592

Panagiotis D. Christofides
Dept. of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095-1592

Dept. of Electrical Engineering, University of California, Los Angeles, CA 90095-1592

DOI 10.1002/aic.14964
Published online August 3, 2015 in Wiley Online Library (wileyonlinelibrary.com)

Closed-loop stability of nonlinear time-delay systems under Lyapunov-based economic model predictive control (LEMPC) is
considered. LEMPC is initially formulated with an ordinary differential equation model and is designed on the basis of an
explicit stabilizing control law. To address closed-loop stability under LEMPC, first, we consider the stability properties
of the sampled-data system resulting from the nonlinear continuous-time delay system with state and input delay under a
sample-and-hold implementation of the explicit controller. The steady-state of this sampled-data closed-loop system is
shown to be practically stable. Second, conditions such that closed-loop stability, in the sense of boundedness of the closed-
loop state, under LEMPC are derived. A chemical process example is used to demonstrate that indeed closed-loop stability
is maintained under LEMPC for sufficiently small time-delays. To cope with performance degradation owing to the effect of
input delay, a predictor feedback LEMPC methodology is also proposed. The predictor feedback LEMPC design employs a
predictor to compute a prediction of the state after the input delay period and an LEMPC scheme that is formulated with a
differential difference equation (DDE) model, which describes the time-delay system, initialized with the predicted state.
The predictor feedback LEMPC is also applied to the chemical process example and yields improved closed-loop stability
and economic performance properties. VC 2015 American Institute of Chemical Engineers AIChE J, 61: 4152–4165, 2015
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Introduction

Within the context of control of chemical process systems,

time-delays resulting from computation and communication

delays are enviable albeit these time-delays may be small and

insignificant depending on the magnitude of the time-delay

relative to the time-constants of the process dynamics. From a

modeling perspective, time-delays are often employed to

describe and/or to approximate the dynamics of transportation

of material through the process system (e.g., flow through

pipes), control actuator dynamics, measurement sensor

dynamics, and high-order dynamic behavior. Thus, robustness

with respect to closed-loop stability and performance of con-

trol systems to time-delays is an important consideration.

Moreover, many chemical process systems have significant

nonlinear behavior owing to complex reaction mechanisms,

Arrhenius reaction-rate dependence on temperature, and ther-

modynamic relationships which adds additional complexity in

considering the closed-loop behavior of the system resulting

from a nonlinear time-delay system under a control law.

Dynamic models of systems that involve nonlinearities

and time-delays are systems of nonlinear differential differ-

ence equations (DDEs). Systems described by DDEs are fun-

damentally different than systems described by ordinary

differential equations (ODEs) (see e.g., Ref. 1 for more

details on this point). One important difference is that a

dynamic system with an arbitrarily small delay is an infinite-

dimensional system even though the dimension of the state

vector may be finite. For nonlinear DDEs, there are typically

two approaches employed to analyze stability that are analo-

gous to Lyapunov stability theory employed to assess stabil-

ity of equilibria and solutions of ODEs. The first method uses

Lyapunov–Krasovski functionals, which is the direct analog

to Lyapunov functions for ODEs, and the second method

uses Lyapunov–Razumikhin functions.1 While Razumikhin

theorems are typically more conservative than Krasovski the-

orems, Razumikhin theorems require the construction of a

function which is typically less challenging than the con-

struction of a functional. Various extensions of stability

theory for DDE systems exist including input-to-state stabil-

ity using Razumikhin-type arguments and extending the

notion of control Lyapunov functions to control Lyapunov–

Krasovski functionals and control Lyapunov–Razumikhin

functions.2–6
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One approach to design a controller for a time-delay system
is to neglect the delays in the model used for controller design
and employ controller design methods used for systems

described by ODEs. This may lead to acceptable closed-loop
properties especially when the time-delays are small. How-
ever, employing these methods, in general, may pose unac-

ceptable limitations on the achievable control quality and
performance (e.g., sluggish response, oscillations) and even
instability.7 Perhaps, one of the most well-known results to

cope with time-delay in the control input or sensor measure-
ment is the classical Smith predictor structure designed for lin-
ear time-delay systems which eliminates the delay from the

characteristic polynomial of the closed-loop system and allows
for larger controller gains to be used.8 Many extensions of the
Smith predictor exist in the literature including extensions to

nonlinear systems.9,10 With respect to control design and/or
input delay compensation for nonlinear systems, many results
exist in the literature including state and output feedback con-
trol designs for nonlinear DDE systems,11–14 input delay com-

pensation for nonlinear systems,15,16 and nonlinear sampled-
data systems with time-delays17–20 (see, also, the reviews6,21

for more references on control of time-delay systems).
In addition to nonlinearities and time-delays, another impor-

tant consideration within the context of chemical process con-
trol is process constraints and performance considerations. To
deal with constraints and performance considerations, model

predictive control (MPC) is often used because it can control
multiple-input multiple-output nonlinear systems in an optimal
manner while accounting for state and control constraints.22

The traditional MPC methodology (i.e., tracking MPC) is for-
mulated with a quadratic stage cost that attains a global mini-
mum at a desired set point. Recently, economic MPC

(EMPC), which is formulated with a stage cost representing
the process economics, has been proposed which merges eco-
nomic considerations with feedback control23–26 (see, also, the

survey papers27,28 and the references therein). The use of a
general stage cost introduces additional complexity in assess-
ing closed-loop stability. Nonetheless, key economic perform-

ance benefits have been demonstrated.28 While there has been
some work completed on tracking MPC of nonlinear time-
delay systems,29–33 to the best of our knowledge, no work on
EMPC for time-delay systems has been completed.

In this work, we first consider the robustness of Lyapunov-

based EMPC (LEMPC),25 formulated with an ODE model, for
nonlinear systems with state and input delays in the sense that
closed-loop stability (to be made precise below) will be main-

tained when the state and input delays are sufficiently small.
LEMPC is an EMPC methodology with stability constraints
designed from an explicit stabilizing nonlinear control law.

The nonlinear control law is designed for the continuous-time
ODE system using standard techniques.13,34,35 However,
EMPC is a control methodology that typically applies control

actions in sample-and-hold fashion. Thus, to address closed-
loop stability under LEMPC for the time-delay system, we
first consider the closed-loop stability of the nonlinear

sampled-data time-delay system resulting from the
continuous-time delay system under the nonlinear control law
applied in a sample-and-hold fashion. Leveraging the afore-

mentioned results, closed-loop stability is shown for the
closed-loop time-delay system under LEMPC when the time-
delays are sufficiently small. Using a chemical process exam-
ple, we demonstrate that the LEMPC maintains closed-loop

stability when the time-delays in both inputs and states are suf-

ficiently small. To address economic performance deteriora-

tion due to time-delays, in the second part, we develop a

predictor feedback-based LEMPC scheme, formulated with a

DDE model, that compensates for the effect of the input delay.

Preliminaries

Notation

The notation xðtÞ 2 Rn is a time dependent vector and xdðtÞ
: ½2td; 0� ! Rn is a time-dependent function where xdðtÞðsÞ
:¼ xðt1sÞ for s 2 ½2td; 0�. The explicit dependence of t on

x(t) and xdðtÞ may be omitted and we may simply write x and

xd when convenient. The symbol j � j denotes the Euclidean

norm of a real vector and the symbol jj � jj denotes the norm of

a function /

jj/jj :¼ max
a�s�b

j/ðsÞj

where / 2 Cð½a; b�;RnÞ and Cð½a; b�;RnÞ is a space of continu-

ous functions mapping the interval ½a; b� to Rn (see Appendix

for more technical details regarding this space). The floor and

ceiling functions, denoted as bac and dae (a 2 R), respec-

tively, are the largest integer not greater than a and the small-

est integer not less than a, respectively. The symbol Bd

denotes a norm-ball of radius d, and the symbol Xq is a level

set or level surface of a scalar positive definite function V : Rn

! R�0 (i.e., Xq :¼ fx 2 Rn : VðxÞ � qg). The family of

piecewise constant, right-continuous functions with period D
(defined over the appropriate interval) is denoted as SðDÞ. For

a detailed summary of the other notation and mathematical

concepts used in this article, the interested reader is referred to

the Appendix.

Class of nonlinear time-delay systems

The class of nonlinear time-delay systems considered in the

present work are described by a system of differential differ-

ence equations (DDEs), which are also commonly referred to

as delay differential equations, and have the following form

_xðtÞ5f ðxðtÞ; xðt2d1Þ; uðt2d2ÞÞ (1)

where xðtÞ 2 Rn is the state, uðtÞ 2 U � Rm is the bounded

control input, d1 � 0 and d2 � 0 are the state and input delays,

respectively, and f is a locally Lipschitz vector function

of its arguments with f ð0; 0; 0Þ50. The set that bounds the

available control action is given by U :¼ fu 2 Rm :
juij � umax;i; i ¼ 1; . . . ; mg. The initial time is taken to be

zero (t050), the initial data is given by the function /x where

/x 2 Cð½2d1; 0�;RnÞ, and the initial input function, which is

denoted as /u, is defined over the interval ½2d2; 0�, takes val-

ues in U and is therefore, bounded. Moreover, /u is assumed

to be piecewise continuous over its domain. Full state feed-

back of the system of Eq. 1 is assumed.
We will design a controller for the system of Eq. 1 on the basis

of the ODE model (i.e., Eq. 1 with d15d250). We impose the

following stabilizability assumption on the system of Eq. 1. For

the system of Eq. 1 with d15d250, we assume that there exists

a locally Lipschitz control law hc : Rn ! U where hcð0Þ50

such that the origin of the system _x5f ðx; x; hcðxÞÞ is asymptoti-

cally stable. This assumption implies that there exists a contin-

uously differentiable function V : Rn ! R�0 such that the

following inequalities hold35

a1ðjxjÞ � VðxÞ � a2ðjxjÞ (2a)
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@V

@x
ðxÞf ðx; x; hcðxÞÞ � 2a3ðjxjÞ (2b)

@V

@x
ðxÞ

����
���� � a4ðjxjÞ (2c)

for all x 2 D � Rn where D is an open neighborhood of the
origin and ai 2 K, i 5 1, 2, 3, 4. Standard techniques exist for
designing a stabilizing control law for various classes of
continuous-time nonlinear systems (see, for instance, Refs. 13,
34, and 35 as well as the references contained therein). In the
remainder, we will use the notation hcðxÞ when referring to the
stabilizing control law.

REMARK 1. While we restrict our focus to nonlinear sys-
tems described by differential difference equations with con-
stant delay, the extension of the results to systems described
by more general functional differential equations, bounded
time-varying delays, and multiple state and input delays is
conceptually possible.

Controller emulation design

Given the stability properties of the control law hcðxÞ, one
may consider designing stability constraints based on the
stabilizing control law hcðxÞ to be imposed within a MPC
framework. However, MPC is typically implemented in a
sample-and-hold fashion; that is, after receiving a state feed-
back measurement, a control action is computed and applied
over a finite-time interval, called the sampling period. The
control action for the next sampling period is computed from a
new state measurement at the next sampling time.

To design stabilizing constraints based on the control law
hcðxÞ for MPC, one must first consider the stabilizing proper-
ties of the control law hcðxÞ when applied to the system of
Eq. 1 (with time-delays) in a sample-and-hold fashion. When
a controller is applied to the continuous-time system of Eq. 1
in a sample-and-hold fashion, the resulting closed-loop sys-
tem is a sampled-data time-delay system and is given by

_xðtÞ5f ðxðtÞ; xðt2d1Þ; hDðx; t2d2ÞÞ

hDðx; tÞ5hcðxðkDÞÞ; t 2 ½kD; ðk11ÞDÞ

k50; 1; 2; . . .

(3)

where the D > 0 is the sampling period and /x is the initial
data. The initial data is assumed to be continuous and defined
over the appropriate interval. We assume that the initial input
function is determined by hDðx; s2d2Þ for s 2 ½0; d2� which
implies that the initial data must be defined over a prolonged
interval when D1d2 > d1. Provided the time-delays and sam-
pling rate are sufficiently small and the initial data are
restricted to a ball of radius d2 (i.e., /xðsÞ 2 Bd2

for all
s 2 ½2maxfd1;D1d2g; 0�), it can be shown that the origin of
the closed-loop system is uniformly input-to-state stable (ISS)
which is stated in the proposition below. The result follows the
ideas of Ref. 17. Specifically, the system of Eq. 3 is treated as a
perturbed form of the closed-loop system _x5f ðx; x; hcðxÞÞ. By
employing Razumikhin-type arguments, we consider solutions
to the sampled-data system where the solution at time t may
be bounded by the state at time t to show that the origin of the
closed-loop system is locally uniformly ISS.

Proposition 1. Consider the sampled-data system of Eq. 3.
Let ~td5maxfd1;D1d2g, then there exists a t�d such that for
all ~td 2 ð0; t�dÞ, the origin is uniformly ISS with offset d1 and
restriction d2 where d1 < d2 and fx 2 Rn : jxj � d2g � D.

For appropriately chosen offset d1 and restriction d2, one
can find a level set of the Lyapunov (or Lyapunov–Razumi-

khin) function, Xq, such that Bd1
� Xq � Bd2

and for all initial
data satisfying /xðsÞ 2 Xq for all s 2 ½2~td; 0� the closed-loop

state trajectory of the system of Eq. 3 under the control law
hcðxÞ applied in a sample-and-hold fashion will be (uniformly)

ultimately bounded in a ball of radius d1. Moreover, the closed-
loop state is always bounded in Xq as a consequence of the con-

struction of Xq and Proposition 1. This gives practical stability
of the origin of the system of Eq. 3. The set Xq is an estimate of
the region of attraction, and is used to design a region constraint

in LEMPC. Thus, Xq is referred to as the stability region for the
remainder.

REMARK 2. While the system of Eq. 1 is autonomous and
thus, explicitly referring to the stability properties as uni-
form may not appear to be needed, the sampled-data system
of Eq. 3 is a periodically time-varying system and hence, the
fact that stability holds uniformly is needed.

Robustness of LEMPC to Small Time-Delays

In this section, the closed-loop stability of the time-delay sys-
tem of Eq. 1 under LEMPC, formulated with an ODE model of
the system of Eq. 1, is analyzed. The sequence ftkgk�0 denotes

the sequence of sampling times where tk :¼ kD and k 2 N.

Formulation and implementation

We assume that the system of Eq. 1 is equipped with a stage

cost, le : Xq3U! R, that is a measure of the instantaneous
economic cost of Eq. 1. The economic stage cost is assumed

to be continuous over its domain of definition and to depend
on the current state and input (i.e., at time t, the economic

stage cost is leðxðtÞ; uðtÞÞ). For systems described by nonlinear
ODEs, a two-mode LEMPC scheme has been designed.25 We

will show that applying the LEMPC scheme, formulated with
an ODE model of the system of Eq. 1, to the system of Eq. 1

will guarantee closed-loop stability (in a sense to be made pre-
cise below) for sufficiently small time-delays. Instead of

applying the two-mode LEMPC scheme proposed in Ref. 25
directly to the time-delay system of Eq. 1, we consider only

mode one operation of the LEMPC. As we only use mode one
operation of LEMPC, we drop this distinction and simply refer
to this as LEMPC for the remainder.

LEMPC may dictate a time-varying operation strategy that

optimizes the economics while maintaining the closed-loop
state trajectory in Xq. The motivation of this type of control

strategy is that forcing the state to converge to a small neigh-
borhood of the steady state and maintaining the state within

this neighborhood thereafter (i.e., steady state operation) may
not necessarily be the best operation strategy from an econom-

ical perspective. For example, the best operating strategy may
be some periodic operating policy or time-varying operating

policy.25,28 Thus, LEMPC may dictate some bounded time-
varying operating policy that optimizes the economics.

Given that plant-model mismatch affects the accuracy of

the prediction of any MPC scheme, a subset of Xq is used
whereby the LEMPC may dictate a time-varying operating

policy. The subset of Xq, denoted as Xq̂ (Bd1
� Xq̂ � Xq), is

designed such that if the current state xðtkÞ 2 Xq̂ and the pre-
dicted state at the next sampling time zðtk11Þ 2 Xq̂ (zðtk11Þ
denotes the predicted state at the next sampling time), then the
actual state at the next sampling time plus the input delay time

will be in Xq. In this case, plant-model mismatch arises from
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the use of an ODE model to predict the behavior of the time-
delay system of Eq. 1. For any state in Xq n Xq̂ , we use the sta-
bilizing control law hcðxÞ to force the state back to Xq̂ . How-
ever, in most practical cases, the amount of time that the
stabilizing control law is applied to the system is insignificant
relative to the amount of time that the LEMPC is applied for
good closed-loop performance. It is important to note that the
LEMPC proposed in Ref. 25 uses a second mode of operation
to force the state to Xq̂ , utilizing a contractive Lyapunov-based
constraint. Potentially, one could consider using such a contrac-
tive constraint within the context of LEMPC for time-delay sys-
tems. Nonetheless, the closed-loop stability properties of
LEMPC with a contractive constraint for time-delay systems
remain an open problem from a theoretical standpoint.

The optimal control problem (OCP) that defines LEMPC is
given by the following optimization problem

min
v2SðDÞ

ðtk1T

tk

leðzðsÞ; vðsÞÞ ds1Vf ðzðtk1TÞÞ (4a)

s:t: _zðtÞ5�f ðzðtÞ; vðtÞÞ (4b)

zðtkÞ5xðtkÞ (4c)

vðtÞ 2 U 8 t 2 ½tk; tk1TÞ (4d)

zðtÞ 2 Xq̂ 8 t 2 ½tk; tk1T� (4e)

where �f ðz; vÞ :¼ f ðz; z; vÞ; T5ND (N 2 N) is the prediction
horizon, z denotes the predicted state trajectory over the pre-
diction horizon, and v is the piecewise constant input trajec-
tory over the prediction horizon which is the decision variable
of the OCP.

The objective function of Eq. 4a consists of the economic
cost functional with a terminal cost. The design of the terminal
cost is beyond the scope of the present work because it is not
needed to prove closed-loop stability (for terminal cost design
techniques for EMPC, see, for example, Refs. 23 and 26). A
model (Eq. 4b) of the system of Eq. 1 with d15d250 is used
to predict the future behavior of the system under the input tra-
jectory computed by the LEMPC over the prediction horizon.
The model is initialized with a state measurement at the cur-
rent sampling time (Eq. 4c). Equation 4d constrains the com-
puted input trajectory to take values within the set of
admissible control action values. The constraint of Eq. 4e
bounds the predicted state trajectory be in Xq̂ .

The optimal input trajectory of Eq. 4 at sampling time tk is
denoted as v�ðtjtkÞ and defined over t 2 ½tk; tk1TÞ. The control
action computed at the kth sampling period is uðtÞ5v�ðtkjtkÞ
for t 2 ½tk; tk11Þ. At the next sampling time, tk11, the LEMPC
(assuming xðtk11Þ 2 Xq̂ ) is reinitialized with an updated state
measurement and it computes an optimal input trajectory over
a shifted horizon (i.e., LEMPC is applied in a standard reced-
ing horizon fashion). The algorithm below summarizes the
implementation of LEMPC.

Algorithm 1. LEMPC implementation.

1. At sampling time tk, the LEMPC receives a state mea-
surement xðtkÞ.

2. If xðtkÞ 2 Xq̂ , go to Step 2.1. Else, go to Step 2.2.
2.1. Solve the OCP of Eq. 4 to compute the optimal

input trajectory v�ðtjtkÞ defined for t 2 ½tk; tk1TÞ.
Go to Step 3.

2.2. Compute the control action from the stabilizing
control law v�ðtkjtkÞ5hcðxðtkÞÞ Go to Step 3.

3. Send the control action v�ðtkjtkÞ to the control actuators
which will be applied to the system from tk1d2 to tk111

d2 (i.e., uðtÞ5v�ðtkjtkÞ for t 2 ½tk; tk11Þ). Go to Step 4.
4. Set k k11 and go to Step 1.

The main tuning parameter of LEMPC is q̂ and does not
need to be chosen so that Xq̂ is the largest subset of Xq such
that the state is guaranteed to be in Xq under LEMPC. The
parameter q̂ governs the set of points (in state-space) where
the LEMPC can operate the system in a time-varying fashion
to optimize the process economics. It is chosen to manage a
potential trade-off between robustness and performance of the
closed-loop system. In this case, closed-loop robustness is
defined as the ability to maintain the closed-loop state inside
an invariant state-space set in the presence of uncertainty. The
uncertainty considered here is time-delay that is not included
in the process model of the LEMPC. Conversely, operating
over a larger region in state-space may improve closed-loop
performance. If there is little plant-model mismatch (i.e., the
delay is small), one can take it to be almost the size of q
because the LEMPC can very accurately predicted the behav-
ior of the process. If there is significant plant-model mismatch,
q̂ will need to be much smaller than q. This will be exten-
sively investigated in the “Application to a chemical process
example” subsection of this section below.

Closed-loop stability analysis

In this subsection, sufficient conditions such that closed-
loop stability of the time-delay system of Eq. 1 under the
LEMPC of Eq. 4 in the sense that the state trajectory is
bounded in Xq are derived. We will show that the state will be
maintained in Xq when the control action is computed by
LEMPC and if the state is in Xq n Xq̂ , the state will be con-
verge to Xq̂ in finite-time when the control action is computed
by the explicit stabilizing control law.

The following proposition bounds the difference between
the state trajectory of the DDE system of Eq. 1 and of the ODE
system of Eq. 1 with d15d250 over a finite-time interval.

Proposition 2. Consider the following two systems

_xðtÞ5f ðxðtÞ; xðt2d1Þ; uðt2d2ÞÞ (5)

_zðtÞ5f ðzðtÞ; zðtÞ; vðtÞÞ (6)

where the initial time is t0, the initial data of Eq. 5 is given
by gx 2 Cð½t02d1; t0�;RnÞ where gxðhÞ 2 Xq for h 2 ½t02d1;
t0�; uðtÞ 2 U for all t � t02d2; vðtÞ 2 U for all t � t0, and x
ðt0Þ5zðt0Þ 2 S where S is a compact subset of Xq. Let t1 > 0
be such that the state trajectories of the systems of Eqs. 5
and 6 are bounded in Xq for all t 2 ½t0; t01t1�. There exists
�a 2 K such that

jxðtÞ2zðtÞj � �aðt2t0Þ (7)

for all t 2 ½t0; t01t1�.
The difference of the Lyapunov function values evaluated

at any two points in Xq can be bounded by a quadratic func-
tion because V is continuously differentiable and Xq is a com-
pact set. This is stated in the following proposition.

Proposition 3 (c.f. Ref. 36). For all x1, x2 2 Xq, there
exists b > 0 such that

Vðx1Þ2Vðx2Þ � fVðjx12x2jÞ (8)

where the quadratic function fVð�Þ is given by
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fVðsÞ :¼ a4ða21
1 ðqÞÞs1bs2 (9)

The following result gives sufficient conditions such that
the closed-loop state trajectory of the system Eq. 1 under the
LEMPC implemented according to Algorithm 1 is always
bounded in Xq.

Theorem 1. Consider the system of Eq. 1 under the
LEMPC of Eq. 4 designed via a control law that satisfies
Eq. 2 which is implemented according to Algorithm 1. Let
the initial data /x 2 Cð½2d1; 0�;RnÞ be such that /xðsÞ 2 Xq

for all s 2 ½2d1; 0� and the initial input /u be such that the
state over the interval ½0; d2� is bounded in Xq for t 2 ½0; d2�
in the sense that xðtÞ 2 Xq for all t 2 ½0; d2�. Let ~td 2 ð0; t�dÞ
and q̂ > 0 be such that

q̂ < q2fVð�aðD1d2ÞÞ (10)

and Bd1
� Xq̂ � Xq � Bd2

. If T � D, then the closed-loop
state trajectory of Eq. 1 under the LEMPC is bounded in Xq

for all t � 0.

REMARK 3. Given the generality of the class of nonlinear
time-delay systems considered, it is difficult to explicitly
characterize the functions used in the analysis. The results
and conditions of this section are constructive in the sense
that they provide insight into the relationship of system
parameters (e.g., nonlinearities and delay size, etc.) and
design parameters of the control system (e.g., sampling
period, choice of stabilizing control law hcðxÞ, and region
constraint size (Xq̂ )).

REMARK 4. In the proof of Proposition 2, we bound
juðt2d2Þ2vðtÞj by 2jumaxj (Eq. A14) which may appear
overly conservative. Even if vðtÞ5uðtÞ for all t, the input tra-
jectories are piecewise continuous. For a given t, the control
actions uðt2d2Þ (control action implemented at time t) and
u(t) (control action computed at time t) could be computed at
different sampling times and uðtÞ 6¼ uðt2d2Þ. Within the con-
text of EMPC, it is conceivable that juðt2d2Þ2uðtÞj52jumaxj
as is the case when EMPC computes a bang-bang input tra-
jectory. One could consider imposing rate of change con-
straints within the context of EMPC that limits how much the
computed control action may change at each sampling time
(i.e., juðtk11Þ2uðtkÞj � du). This may allow one to upper
bound juðt2d2Þ2uðtÞj by du. Nonetheless, this may make the
EMPC problem infeasible and/or may limit the achievable
closed-loop performance when rate of change constraints are
imposed in the EMPC problem.

REMARK 5. Stabilization at a steady state typically will pro-
vide a degree of robustness to plant-model mismatch. In con-
trast, LEMPC may dictate a time-varying operating strategy.
While time-varying operation may lead to better closed-loop
economic performance, it may lead to a decrease in the robust-
ness to uncertainty (see the “Application to a chemical process
example” subsection below for a demonstration of this point).

REMARK 6. The sampling period D plays a role in stability
and performance. Sufficiently fast sampling is required to
maintain closed-loop stability (Proposition 1 and Theorem 1).
Potentially, faster sampling may also improve closed-loop
performance because there are more degrees of freedom to
optimize over. However, in the example considered below, lit-
tle performance benefit is achieved through faster sampling.
From a practical standpoint, there may also be limitations on
the hardware that may limit how fast one can sample.

Application to a chemical process example

Consider a well-mixed, nonisothermal continuous stirred-
tank reactor (CSTR) where an irreversible, elementary second
order, and exothermic reaction takes place that converts a reac-
tant A to a desired product B (A! B). A process flow diagram
of the CSTR is given in Figure 1. The inlet stream of the reactor
with flow rate kF (constant density of the inlet flow stream is
assumed), temperature Tf, and reactant concentration CAf feeds
the reactor with the reactant A in an inert solvent D. The outlet
stream of the reactor is split with a constant splitting fraction k
(k 2 ½0; 1�), and the fraction k of the outlet stream is the product
stream. A recycle stream, which contains a fraction of 12k of
the reactor outlet, is used to recover unreacted A. A transporta-
tion lag, which is modeled as a time-delay with magnitude d1, is
considered in the recycle stream leading to a state delay in the
process model. To supply or remove thermal energy to/from the
reactor, the CSTR is outfitted with a jacket. The manipulated
inputs to the CSTR are the feed concentration of the reactant
CAf and the heat rate Q supplied to/removed from the reactor.

To construct a first-principles model of the reactor, constant
liquid hold-up, density, and heat capacity are assumed. In
addition to the state delay, the control actuators are assumed
to operate with dead-time which gives rise to input delay. The
input delay is assumed to model, for instance, the actuator
dynamics and/or to model the possible computation delay
resulting from solving the EMPC optimization problem online.
The dead-times of the two manipulated inputs are assumed to
be the same for simplicity of the presentation and are denoted
as d2. Using a mass balance of the reactant A and energy bal-
ance along with standard modeling assumptions, a dynamic
model can be constructed of the CSTR with recycle and is
given by the following system of DDEs

_CAðtÞ5
ð12kÞF

VR
CAðt2d1Þ1

kF

VR
CAf ðt2d2Þ

2
F

VR
CAðtÞ2k0e2E=RTðtÞC2

AðtÞ
(11a)

_TðtÞ5 ð12kÞF
VR

Tðt2d1Þ1
kF

VR
Tf

2
F

VR
TðtÞ2 DHk0

qLCp
e2E=RTðtÞC2

AðtÞ1
Qðt2d2Þ
VRqLCp

(11b)

where the state variables are the concentration of the reactant CA

in the reactor and the reactor temperature T (i.e., xT5½CA T�).

Figure 1. Process flow diagram of the CSTR with
recycle.
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The remaining notation and process parameter values are
defined and summarized in Table 1. The admissible input values
for each input are bounded in the following sets: CA0 2 ½0:5;
7:5� kmol m23 and Q 2 ½280:0; 80:0� MJ h21. The CSTR
model of Eq. 11 has a steady state in the operating range of inter-
est: xT

s :¼ CAs Ts½ �5 2:96 kmol m23 320:0 K
� �

correspond-
ing to the inputs: CA0s54:0 kmol m23 and Qs511:5 MJ h21.
The steady state xs is open-loop asymptotically stable.

The control objective is to operate the CSTR around the
steady state to maximize the average production rate of the
product B while satisfying two process constraints. The pro-
cess constraints are: (1) to maintain the closed-loop state
within a bounded and well-defined state-space set and (2) the
time-averaged amount of reactant A that may be fed to the
CSTR must be equal to kFCA0s or mathematically

1

tf

ðtf

0

CA0ðtÞ dt5CA0s (12)

where tf is the length of operation. To accomplish the control
objective while satisfying the process constraints, LEMPC is
applied to the CSTR. In the closed-loop simulations of this
section, robustness of LEMPC to time-delay is demonstrated.
More precisely, we illustrate robustness in the sense that the
closed-loop state trajectory of Eq. 11 under an LEMPC system
formulated with an ODE model of the CSTR will be main-
tained in a compact state-space set (in R2) for sufficiently
small time-delays.

To design an LEMPC system with the ODE model of the
CSTR (Eq. 11 with d15d250), an explicit stabilizing control
law is designed and a Lyapunov function for the closed-loop
system under the control law is constructed. The explicit stabi-
lizing control law hc : R2 ! U is given component-wise with
hT

c ðxÞ5½hc;1ðxÞ hc;2ðxÞ� where hc;1ðxÞ5CA0s to satisfy the input
average constraint of Eq. 12 and feedback linearization for
h2ðxÞ. Specifically, within the range where the input bounds
are satisfied, the following nonlinear control law makes the
evolution of T to be described by a linear model

�hc;2ðxÞ52VRqLCp 2
kF

VR
Tf 1

kF

VR
T1

DHk0

qLCp
e2E=RTC2

A1KðT2TsÞ
� �

(13)

where K is the gain of the control law. To account for the
bounds on the admissible input, saturation is accounted for in
hc;2 which is given by

h2ðxÞ5
Qmin if �h2ðxÞ < Qmin

�h2ðxÞ if Qmin � �h2ðxÞ � Qmax

Qmax if �h2ðxÞ > Qmax

8>><
>>: (14)

where Qmin and Qmax is the minimum and maximum admissi-
ble heat rate value. In this example, the gain of the controller
is tuned to K 5 2.0. A quadratic Lyapunov function for the
closed-loop system under the stabilizing control law is con-
structed, which has the form

VðxÞ5ðx2xsÞTPðx2xsÞ (15)

where

P5
500 20

20 1

" #

With the control law and Lyapunov function, the stability
region is estimated to be a level set of the Lyapunov function

Xq with q 5 1200 by taking it to be points in state-space where
_V < 0.

The following economic stage cost is used in the LEMPC

leðx; uÞ52k0e2E=RTC2
A1qTðT2TsÞ2 (16)

where the first term credits the production rate of B and the

second term penalizes temperature deviations from the steady-

state temperature Ts. The justification for the second term is

the stability region of this system is large and operating over a

large temperature range may be impractical. Thus, the second

term penalizes large deviations of the temperature from the

steady state temperature. In this case, the stage cost parameter

is qT50:05 which has been tuned on the basis of the delay-

free system such that the closed-loop temperature is main-

tained near the steady state temperature.
To integrate forward in time the DDEs of Eq. 11, the stand-

ard Runge–Kutta (4,5) method was used with an absolute tol-

erance set at 1027. The remaining parameters of the LEMPC

and implementation details of the LEMPC are as followed: the

sampling period is D50:01 h, the number of sampling periods

in the prediction horizon is N 5 70 (i.e., T50:70 h), and the

average constraint must be satisfied over each operating inter-

val of 0.65 h (i.e., the average constraint of Eq. 12 must be

satisfied every 0.65 h which guarantees that the average con-

straint is satisfied over the entire length of operation). For the

remainder, the operating period will refer to an interval of

length 0.65 h that the average constraint is imposed. The pre-

diction horizon and operating period length have been chosen

so that the asymptotic average closed-loop performance of the

CSTR without time-delays leads to better closed-loop per-

formance compared with that of the operation at the steady

state. Orthogonal collocation with three Radau collocation

points per sampling period is used to integrate the ODE model

within the LEMPC OCP. Ipopt37 was employed to solve the

OCP of the LEMPC at each sampling time. Analytical first-

order and second-order derivative information was supplied to

the solver. The simulations were completed on a desktop com-

puter with an Intel
VR

CoreTM 2 Quad 2.66 GHz processor run-

ning an Ubuntu Linux operating system. In the simulations

below, the computation time to solve the OCP at each sam-

pling time was less than 1% of the sampling period

(D50:01 h536 s) on average.
In the first set of simulations, the closed-loop stability and

performance properties of the CSTR without delays under

LEMPC are considered. The level set Xq̂ is such that q̂51000.

The closed-loop CSTR under LEMPC without delay is simu-

lated over six operating periods, and the closed-loop trajecto-

ries are given in Figure 2. From Figure 2, the LEMPC dictates

Table 1. Notation and Parameter Values of the CSTR with

Recycle

Density qL51:03103 kg m23

Heat capacity Cp54:18 kJ kg21 K21

Flow rate F56:0 m3 h21

Reactor volume VR51:0 m3

Heat of reaction DH527:83104 kJ kmol21

Activation energy E=R525:73104=8:314 K
Feed temperature Tf 5300:0 K
Reaction rate constant k051:03109 m3 kmol21 h21

Splitting fraction k50:70
Concentration of chemical A CA

Reactor temperature T
Heat removal rate from reactor Q
Feed concentration CAf
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a cyclical operating policy. Throughout the length of opera-

tion, the state trajectory is maintained in Xq. The asymptotic

average production rate of B (i.e., average production rate after

the effect of the initial condition becomes insignificant) was

4:820 kmol m23. As a comparison, the average production rate

of B at the steady state is 4:354 kmol m23 and the closed-loop

(asymptotic) production rate under LEMPC is 10.70% better

than the steady state production rate. Moreover, we will use

the average closed-loop economic stage cost index (given and

explained below) to assess the closed-loop performance of the

CSTR with time-delay. The asymptotic average economic

stage cost index for this case study is 4.572, while it is 4.354

for operation at the steady state (performance under LEMPC

as assessed through this metric is 5.01% better than that at the

steady state).
In the second set of simulations, we consider the effect of

the time-delay on performance and stability. In all cases, the

state and input delays are taken to be equal in magnitude and

the time-delay is denoted as d (d5d15d2). Figure 3 shows the

closed-loop state evolution of the CSTR under the LEMPC for

d50:05 h and d50:10 h, respectively. With the time-delay, the

CSTR is still operated in a cyclical fashion, but as the time-

delay increases, the CSTR operates over a larger region of

state-space. The closed-loop state is maintained in Xq for

d50:05 h, but for d50:10 h, the state is not bounded in Xq

over the length of operation. To assess the closed-loop per-

formance, the average economic stage cost performance index

is used which is given by

�Le5
1

tf

ðtf

0

leðxðtÞ; uðt2d2ÞÞ dt (17)

The average economic stage cost is computed with the

closed-loop state and input. The reason for using the metric of

Eq. 17 as opposed to the average production rate of B to assess

the closed-loop performance is as the magnitude of the time-

delay increases, the CSTR operates over a larger temperature

range (Figure 3). The temperature is greater than the steady-

state temperature on average for the cases with time-delay. As

the production rate scales with temperature, the production

rate of B increases with the size of the time-delay. Moreover,

the LEMPC does not directly optimize the production rate of

B, but rather the stage cost of Eq. 16. Thus, we use the metric

of Eq. 17 to assess the performance because it also accounts

for operation over a larger temperature range.
Table 2 summarizes the closed-loop performance and

closed-loop stability properties of the CSTR under LEMPC

for several closed-loop simulations each over six operating

periods with varying time-delays. Closed-loop stability is

defined as the closed-loop state remaining bounded in Xq over

the length of the simulated operation. From Table 2, it follows

that the closed-loop performance deteriorates as the time-

delay increases. Moreover, for time-delays greater than 0.06 h,

the closed-loop stability of the CSTR is not maintained. It is

important to note that the state trajectory of the closed-loop

system under the stabilizing control law remains bounded in

Xq for all the magnitudes of the time-delay used in Table 2

which suggests that steady state type operation (i.e., stabiliza-

tion at a steady state) is more robust to time-delays than time-

varying-type operation.

Figure 2. The closed-loop trajectories of the CSTR under
the LEMPC without time-delays (d15d250).

Figure 3. The state-space evolution of the closed-loop CSTR states under LEMPC with (a) d50:05 h and (b)
d50:10 h.
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The available tuning parameter of LEMPC that can be

manipulated to make the closed-loop system more robust to

uncertainty is q̂ (i.e., the level set where LEMPC operates). In

the last set of simulations, the effect of the size of q̂ on closed-

loop stability and performance is evaluated. Several closed-

loop simulations were performed each over six operating peri-

ods with varying q̂ and d. The average economic stage cost

indices for these simulations are given in Figure 4. Only the

closed-loop simulations that led to a stable operation were

included in Figure 4. Figure 4 shows that the closed-loop per-

formance degrades with larger time-delays. For small time-

delays, the closed-loop performance is better as the size of Xq̂

increases because the LEMPC may operate the system over a

larger state-space set with greater q̂. For small time-delays,

the ODE model can capture enough of the behavior of the sys-

tem to improve the performance. For larger time-delays, the

closed-loop performance is worse than that achieved at the

steady state.

Time-Delay Compensation for Improved
Closed-Loop Performance

Larger time-delay may lead to significant performance deg-

radation when the control system does not explicitly account

for the time-delays as demonstrated in the example of the pre-

vious section. In this section, a methodological framework for

compensating state and input delay within the context of

EMPC is presented. A closed-loop predictor is used to com-

pensate the adverse effect of the input delay, and a DDE

model is used within the EMPC to predict the behavior of the

system of Eq. 1. We restrict our attention to nominally oper-

ated systems of the form of Eq. 1.

Predictor feedback LEMPC methodology and
implementation

A block diagram of the predictor feedback LEMPC method-

ology is shown in Figure 5. At a sampling time tk, a predictor

is used to predict the state at tk1d2 utilizing the past measure-

ments of the state and the previously computed input trajec-

tory over tk to tk1d2 to compensate the effect of the input

delay. Then, the LEMPC system is initialized with the pre-

dicted state and solves for the optimal control action that will

be implemented on the system from tk1d2 to tk111d2. More-

over, instead of using an ODE model within the LEMPC, the

DDE model is used to account for the state delay. Thus, the

predictor must also generate the initial data used to initialize

the DDE model in the LEMPC from tk1d22d1 to tk1d2. The

predicted state (initial data) for a given sampling time is

denoted as x̂dðtk þ d2Þ 2 Cð½2d1; 0�;RnÞ.
Given that we consider nominal operation, the predictor

may simply consist of solving the DDEs forward in time

which is what we employ in the example below. The predictor

is a closed-loop predictor in the sense that the predictor is rein-

itialized with a new state measurement at each sampling time.

The closed-loop nature of the predictor allows for the potential

use of the predictor feedback LEMPC on open-loop unstable

processes as opposed to open-loop predictors (e.g., the classi-

cal Smith predictor) which require the steady state solution be

open-loop asymptotically stable. Other types of time-delay

compensators or predictors may potentially be used to possibly

increase the robustness of the closed-loop system to plant-

model mismatch (e.g., the predictor proposed in Ref. 10), but

we note that most, if not all, of time-delay compensators have

been designed for systems with input-delay only. Thus, appro-

priate modifications may need to be made to these other types

of time-delay compensators to account for state delay.
A shifted sampling time sequence is defined as f�tkgk�0

where �tk5kD1d2; k50; 1; . . . which is a time sequence cor-

responding to when control actions are applied to the system

(i.e., the control action computed at tk is applied to the system

from �tk to �tk11). The OCP that defines the predictor feedback

LEMPC is

min
v2SðDÞ

ð�tk1T

�tk

leðzðsÞ; vðsÞÞ ds1Vf ðzð�tk1TÞÞ (18a)

s:t: _zðtÞ5f ðzðtÞ; zðt2d1Þ; vðtÞÞ (18b)

zdð�tkÞ5x̂dð�tkÞ (18c)

Table 2. Closed-Loop Performance Relative to the Perform-

ance at the Steady State and Closed-Loop Stability Proper-

ties of the CSTR under LEMPC

d �Le Diff. (%) Stability

0 4.668 7.21 Yes
0.01 4.654 6.88 Yes
0.02 4.618 6.07 Yes
0.03 4.518 3.77 Yes
0.04 4.441 1.99 Yes
0.05 4.220 23.09 Yes
0.06 3.995 28.26 Yes
0.07 2.763 236.55 No
0.08 3.002 231.06 No
0.09 1.801 258.64 No
0.10 0.565 287.03 No

The average stage cost index for operation at the steady state is 4.354. The
column “Diff.” is the percent difference of the average stage cost index rela-
tive to the steady state stage cost index.

Figure 4. A comparison of the closed-loop perform-
ance with the tuning parameter q̂ and magni-
tude of the time-delay.

Figure 5. Flow diagram of the predictor feedback
LEMPC scheme.
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vðtÞ 2 U 8 t 2 ½�tk;�tk1TÞ (18d)

zðtÞ 2 Xq̂ 8 t 2 ½�tk; �tk1T� (18e)

where x̂ðtkÞ5x̂dð�tkÞð0Þ. The main difference between the pre-
dictor feedback LEMPC and the LEMPC of Eq. 4 is the DDE
model, which is initialized with the initial data computed by
the predictor and provides a prediction of the future evolution
of the system in the predictor feedback LEMPC. The LEMPC
of Eq. 4 uses an ODE model and is initialized with a current
state measurement.

An illustration of the implementation of the predictor feed-
back LEMPC methodology is given in Figure 6. At a sampling
time tk, the predictor (i.e., prediction phase) uses past state
data and the control actions that will be applied from tk to tk1
d2 (these control actions are computed at previous sampling
times) to predict the state trajectory over tk to tk1d2. In the
optimization phase, the predictor feedback LEMPC solves for
the optimal input trajectory over tk1d2 to tk1d21T. This
implementation is summarized in the following algorithm:

Algorithm 2. Predictor feedback LEMPC implementation.

1. At sampling time tk, the predictor receives a state mea-
surement xðtkÞ. Go to Step 2.

2. The predictor computes the predicted data x̂dð�tkÞ. Go to
Step 3.

3. If x̂ð�tkÞ 2 Xq̂ , go to Step 3.1. Else, go to Step 3.2.
3.1. Solve the OCP of Eq. 18 to compute the optimal

input trajectory v�ðtj�tk2d2Þ defined for t 2 ½�tk; �tk1NÞ. Go
to Step 4.

3.2. Compute the control action from the stabilizing
control law v�ð�tkj�tk2d2Þ5hcðx̂ð�tkÞÞ Go to Step 4.

4. Send the computed control action v�ð�tkj�tk2d2Þ, to the
control actuators to be applied from �tk to �tk11 (i.e., uðt1
d2Þ5v�ðtk1d2jtkÞ for t 2 ½tk; tk11Þ). Go to Step 5.

5. Set k k11 and go to Step 1.

REMARK 7. In the design of the LEMPC of Eq. 18, we
leverage the results of Proposition 1 to again design an
explicit stabilizing control law and utilize it to characterize
a region constraint that is imposed in the LEMPC problem.
This design methodology allows for standard control techni-
ques developed for systems described by nonlinear ODEs be
applied to design stabilizing control laws for nonlinear time-

delay systems. Conversely, the results and size of delays that
may be handled in the closed-loop systems may be limited
owing to the fact that the delays are neglected in the design
of the stabilizing control law. However, design of stabilizing
control laws for nonlinear time-delay systems is by no means
a trivial task. Moreover, a complete and rigorous stability
analysis of such a closed-loop system is a challenging and
potentially intractable task given the degree of complexity
(e.g., state and input delay, sampling, and nonlinearities).

REMARK 8. It is important to point out that the extension of
numerical methods used to obtain solutions of ODEs to
obtaining solutions of differential difference equations (DDEs)
is not straightforward.38 Thus, when selecting the numerical
method used to solve the predictor, the practitioner must be
aware of potential numerical issues (e.g., “ghost solutions,”
loss of injectivity, and nonuniqueness of solution).

Application to a chemical process example

The predictor feedback LEMPC methodology is applied to

the CSTR example of Eq. 11. The LEMPC design and param-

eters are the same as that used in the previous section (in all

simulations below q̂51000). To solve the DDEs of Eq. 11

embedded in the LEMPC optimization problem (i.e., the con-

straint of Eq. 18b), orthogonal collocation with three Radau

collocation points per sampling period was employed (see, for

example, Refs. 38 and 39 for stability and convergence analy-

sis of collocation methods applied to DDEs). As a qualita-

tive comparison, a single-shooting implementation of the OCP

of Eq. 18a using the explicit Euler method with first-order

derivatives approximated through finite-difference and quasi-

Newton with the Broyden-Fletcher-Goldforb-Shanno (BFGS)

method for the second-order derivatives required greater than

50 times more time to solve the optimization problem at each

sampling time compared with the implementation with orthog-

onal collocation. Moreover, the average computation time

required to solve the OCP with the collocation implementation

was approximately 2% of the sampling period. It is important

to point out that while the success of orthogonal collocation

used to solve OCPs with ODEs has been well documented,40

fewer cases of employing orthogonal collocation within the

context of OCPs formulated with DDE models have reported

in the literature especially in the EMPC literature.

Figure 6. An illustration of the phases of the predictor feedback LEMPC scheme.
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Several closed-loop simulations were completed of the

CSTR under the predictor feedback LEMPC with varying

magnitudes of the time-delays. Figure 7 gives the closed-loop

trajectories of the CSTR with d50:10 h. In comparison with

the CSTR under LEMPC formulated with an ODE model (Fig-

ure 3b), the predictor feedback LEMPC operates the CSTR

over a smaller temperature range (Figure 7). To further

emphasize the differences between the evolution of the CSTR

under the predictor feedback LEMPC and the LEMPC of the

previous section, Figure 8 gives the state space evolution of

the CSTR with d50:05 h and d50:10 h, respectively. Compar-

ing the evolution of the two cases shown in Figure 7, less dif-

ferences in the evolution between the two cases are observed

compared with the two cases of Figure 3.
The closed-loop performance under the predictor feedback

LEMPC is considered with respect to the magnitude of the

time-delay. Table 3 summarizes the average economic stage
cost of Eq. 17 of six operating period simulations. Interest-
ingly, the closed-loop performance improves with larger time-
delay. The performance improvement is associated with the
state delay in the stream recycle (given that the predictor
effectively deals with the effect of the input delay on the
closed-loop system). In all cases, the closed-loop performance
under the predictor feedback LEMPC was at least 7% better
than that achieved at the steady state.

Conclusion

In this work, closed-loop stability and performance of sys-
tems described by nonlinear DDEs under LEMPC was consid-
ered. First, conditions such that closed-loop stability for
systems with sufficiently small state and input delays under
LEMPC, formulated with an ODE model of the system, were
derived. A chemical process example demonstrated that
indeed closed-loop stability is maintained under LEMPC for
sufficiently small time-delays in both the states and the inputs.
However, closed-loop performance significantly degraded for
larger input delays. This motivated designing a predictor feed-
back LEMPC methodology. The predictor feedback LEMPC

Figure 7. The closed-loop trajectories of the CSTR
under the LEMPC with time-delay of
d50:10 h.

The input trajectories shown in the plots correspond to

the input values applied to the system at each time.

Figure 8. The state-space evolution of the closed-loop CSTR states under LEMPC with (a) d50:05 h and (b)
d50:10 h.

Table 3. Closed-Loop Performance of the CSTR under the

Predictor Feedback LEMPC Relative to the Performance at

the Steady State

d �Le Diff. (%)

0 4.668 7.21
0.01 4.675 7.36
0.02 4.682 7.54
0.03 4.690 7.71
0.04 4.697 7.87
0.05 4.703 8.01
0.06 4.710 8.17
0.07 4.705 8.07
0.08 4.722 8.45
0.09 4.728 8.58
0.10 4.733 8.70

The average stage cost index for operation at the steady state is 4.354. The
column “Diff.” is the percent difference of the average stage cost index rela-
tive to the steady state stage cost index.
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design employs a predictor to compute a prediction of the state
after the input delay and an LEMPC scheme, formulated with

a DDE model. The predicted state from the predictor is used
to initialize the DDE model. The predictor feedback LEMPC

was applied to the chemical process example and resulted in
better closed-loop stability and performance properties com-

pared with the LEMPC, formulated with an ODE approxima-
tion of the nonlinear time-delay system.
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Appendix

Notation and preliminary results

A function c : ½0; aÞ ! R�0 is said to be of class-G if it is a

nondecreasing continuous function and cð0Þ50. A function a :
½0; aÞ ! R�0 is said to be of class-K if it is of class G and

strictly increasing, and it is of class K1 if it is of class

K; a51, and aðrÞ as r !1. A function b : ½0; aÞ3R�0

! R�0 is said to be of class-KL if bð�; tÞ is of class-K for each

t � 0 and bðs; �Þ is monotonically decreasing to 0 for each

s � 0. The symbol Cð½a; b�;RnÞ is the Banach space of continu-

ous functions mapping the interval ½a; b� into Rn with topology

of uniform convergence and equipped with the norm

jj/jj :¼ max
a�s�b

j/ðsÞj

where / 2 Cð½a; b�;RnÞ.
To present some preliminary definitions and results, consider

the class of systems described by functional differential

equations

4162 DOI 10.1002/aic Published on behalf of the AIChE December 2015 Vol. 61, No. 12 AIChE Journal

info:doi/10.1016/j.ces.2015.01.041.


_xðtÞ5f ðxdðtÞ;wdðtÞÞ; xdðt0Þ5n (A1)

where f : Cð½2td; 0�;RnÞ3Cð½2td; 0�;RmÞ ! Rn with f ð0; 0Þ50

and the initial data is n 2 Cð½2td; 0�;RnÞ, and w is a bounded,

piecewise continuous input. For each initial data and initial

time t0 � 0, we suppose there exists Tf � 0 and a unique maxi-

mal solution xð�Þ defined on ½t02td; t01Tf �. We define the fol-

lowing norm

jjxdjjt0
:¼ sup

s�t0

jjxdðsÞjj

We will make use of the following definition and results on

input-to-state stability of the zero solution of the system of Eq.

A1 from Ref. 3. The definition and results are stated here for

the reader’s convenience.

DEFINITION (Ref. 3). Let c 2 G; m 2 R�0 and Dx;
Dw 2 R�0. The zero solution of Eq. A1 is said to be uniform
ISS with gain c, offset m, and restriction (Dx, Dw) if jjxdðt0Þjj
< dx imply Tf 51 and that the following properties hold
uniformly in t0: (1) for each � > 0 there exists d > 0 such
that jjxdðt0Þjj � d implies jjxdjjt0 � maxf�; cðjjwdjjt0Þ; mg and
(2) for each � > 0 and gx 2 ð0;DxÞ and gw 2 ð0;DwÞ there
exists T> 0 such that jjxdðt0Þjj � gx and jjwdjjt0

� gw imply
jjxdjjt01T � maxf�; cðjjwdjjt0Þ; mg.

If V : ½2td;1Þ3Rn ! R�0 is a continuous function, then

we use _Vðt; xðtÞÞ to denote the upper right-hand derivative of
V along the solution of Eq. A1 and is defined as

_Vðt; xðtÞÞ :¼ limsup
h!01

Vðt1h; xðt1hÞ2Vðt; xðtÞÞ
h

: (A2)

The following two results are needed

Lemma 1 (Refs. 3 and 35). Let l � 0 and a 2 K. If VðtÞ
� l implies _VðtÞ � 2aðVðtÞÞ, then there exists b 2 KL
(independent of l) with bðs; 0Þ � s such that VðtÞ �
maxfbðVðt0Þ; t2t0Þ; lg.

The following stability result for the system of Eq. A1 is

from Ref. 3 which is a Razumikhin-type theorem for input-to-

state stability of functional differential equations.

Theorem 2 (Ref. 3, Theorem 2). Suppose there exist a
continuous function V : ½2td;1Þ3Rn ! R�0, a1, a2 2 K1;
a3 2 K, cx, cw 2 G, and nonnegative real numbers d < D
such that

1. a1ðjxjÞ � Vðt; xÞ � a2ðjxjÞ;
2. jxðtÞj � maxfcxðjjxdðtÞjjÞ; cwðjjwdðtÞjjÞg ) _Vðt; xðtÞÞ �

2a3ðjxðtÞjÞ;
3. a21

1 	 a2 	 cxðsÞ < s for d < s < D.

Let b 2 KL be as in the conclusion of Lemma 1 when
a5a3 	 a21

2 . Then, the origin of the system of Eq. A1 is uni-
formly ISS with gain ~cw :¼ a21

1 	 a2 	 cw, offset d, and restric-
tion (Dx, Dw) such that maxfa21

1 ðbða2ðs1Þ; 0ÞÞ;~cwðs2Þg < D
when s1 < Dx; s2 < Dw.

Proof of Proposition 1

The sampled-data system of Eq. 3 can be written as a time-

delay system with time-varying delay to account for sampling

_xðtÞ5f ðxðtÞ; xðt2d1Þ; hcðxðt2sðtÞÞÞÞ (A3)

where sðtÞ5t2bðt2d2Þ=DcD and sðtÞ � ðd2=D11ÞD5 : NdD
(Nd :¼ ðd2=D11Þ). In the sampled-data system with input delay

setting that we consider, the quantity t2sðtÞ represents the sampling

time instance that feedback is received to compute the control action

applied to the system at time t. The maximum amount of time in

the past that the feedback measurement used to compute the control

action applied to the system at the current time (the maximum of

sðtÞ) is the sampling time (D) plus the input delay (d2).

The system of Eq. A3 may be analyzed as a perturbed form

of the system without delays and sampling (i.e., the system

_x5f ðx; x; hcðxÞÞ). In other words, consider the following system

_xðtÞ 5 f ðxðtÞ; xðtÞ1n1ðtÞ; hcðxðtÞÞ1n2ðtÞÞ

n1ðtÞ 5 xðt2d1Þ2xðtÞ

n2ðtÞ 5 hcðxðt2sðtÞÞÞ2hcðxðtÞÞ

(A4)

We define the following: nT :¼ ½nT
1 nT

2 � with nðtÞ 2 D
3U � Rnþm; gðx; nÞ :¼ f ðx; xþ n1; hcðxÞ þ n2Þ, and td :¼
maxf2d1; 2NdDg. The perturbation term nðtÞ is bounded. From

the triangle inequality, we have

jnðtÞj5j½nT
1 ðtÞ 0T �T1½0 nT

2 ðtÞ�
T j � jn1ðtÞj1jn2ðtÞj (A5)

Owing to the fact that f and hc are locally Lipschitz vector

functions, there exists a c�1 2 K such that

jn1ðtÞj5
����
ðt

t2d1

f ðxðsÞ; xðs2d1Þ; hcðxðs2sðsÞÞÞÞ ds

����
� d1c�1ðjjxdðtÞjjÞ

(A6)

where jjxdðtÞjj5 maxs2½2td ;0� jxðt1sÞj. Again, by the locally Lip-

schitz properties assumed for f and hc, there exist functions Lh,

c�2 2 K such that

jn2ðtÞj � LhðjjxdðtÞjjÞjxðt2sðtÞÞ2xðtÞj

� NdDLhðjjxdðtÞjjÞc�2ðjjxdðtÞjjÞ
(A7)

From the inequalities of Eqs. A5–A7, there exists a c� 2 K
such that

jnðtÞj � ~tdc
�ðjjxdðtÞjjÞ (A8)

where ~td5maxfd1;NdDg.
The time-derivative of V along the state trajectory of Eq. 3 is

_V5
@V

@x
ðxðtÞÞgðxðtÞ; 0Þ1 @V

@x
ðxðtÞÞ gðxðtÞ; nðtÞÞ2gðxðtÞ; 0Þ½ �

� 2a3ðjxðtÞjÞ1a4ðjxðtÞjÞjgðxðtÞ; nðtÞÞ2gðxðtÞ; 0Þj
(A9)

for all xðtÞ 2 D where the inequality follows from Eqs. 2b and

2c. As g is a locally Lipschitz vector function (this follows from

the fact that f and hc are locally Lipschitz), there exists a func-

tion Ln 2 K such that

_V � 2a3ðjxðtÞjÞ1a4ðjxðtÞjÞLnðjnðtÞjÞ

� 2a3ðjxðtÞjÞ1a4ðjxðtÞjÞLnð~tdc�ðjjxdðtÞjjÞÞ
(A10)

where the second inequality follows from Eq. A8. For some pair

of strictly positive real numbers d1 and d2 such that d1 < d2 and

fx 2 Rn : jxj � d2g � D, there exists t�d > 0 such that ~td 2 ð0;
t�dÞ implies

jxðtÞj � a21
3 ða4ðd2ÞLnð~tdc

�ðjjxdðtÞjjÞÞ=qÞ
) _V � 2ð12qÞa3ðjxðtÞjÞ (A11)

for some q 2 ð0; 1Þ and
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a21
1 	 a2 	 a21

3

a4ðd2ÞLnð~tdc�ðsÞÞ
q

� �
< s (A12)

for all s 2 ðd1; d2Þ. We note that the size of d2, which governs

the restriction on the initial condition, and ~td , which accounts

for the magnitude of delays and the sampling period size, are

restricted to be sufficiently small so that the arguments of the

inverted class K functions in Eqs. A11 and A12 are within the

domain of the functions. From Theorem 2 (taking

cxð�Þ5a21
3 ða4ðd2ÞLnð~td~c�ð�Þ=qÞ), the origin of the sampled-data

time-delay system of Eq. 3 is uniformly ISS with offset d1 and

restriction d2 for all ~td 2 ð0; t�dÞ.

Proof of Proposition 2

Owing to the fact that f is locally Lipschitz, there exist posi-

tive constants Lx1
; Lx2

, and Lu such that

jf ðx; y; uÞ2f ðz; z; vÞj

� Lx1
jx2zj1Lx2

jy2zj1Luju2vj
(A13)

for all x, y, z 2 Xq and u, v 2 U. Consider the difference

between the state, x(t), of Eq. 5 and the state, z(t) of Eq. 6, for t
2 ½t0; t01t1� where t1 > 0 is such that x(t) and z(t) are bounded

in Xq for all t 2 ½t0; t01t1� (the existence of t1 > 0 follows

from continuity arguments and the fact that S � Xq is compact).

Let eðtÞ :¼ xðtÞ2zðtÞ which has dynamics _eðtÞ5 _xðtÞ2 _zðtÞ. The

error dynamics can be bounded using Eq. A13

j _eðtÞj5jf ðxðtÞ; xðt2d1Þ; uðt2d2ÞÞ2f ðzðtÞ; zðtÞ; vðtÞÞj

� Lx1
jxðtÞ2zðtÞj1 Lx2

jxðt2d1Þ2zðtÞj1 Lujuðt2d2Þ2vðtÞj

� Lx1
jeðtÞj1 Lx2

jxðt2d1Þ2xðtÞ1xðtÞ2zðtÞj1 Lujuðt2d2Þ2vðtÞj

� ðLx1
1Lx2

ÞjeðtÞj1Lx2
jxðt2d1Þ2xðtÞj1 2Lujumaxj

(A14)

for all t 2 ½t0; t01t1� where x(t), xðt2d1Þ; zðtÞ 2 Xq and

uðt2d2Þ; vðtÞ 2 U. The last inequality of Eq. A14 follows from

the triangle inequality and the fact that uðt2d2Þ and v(t) are

bounded in U. For all xðsÞ 2 Xq for s 2 ½t2d1; t�, we can bound

the difference between xðt2d1Þ and x(t)

jxðt2d1Þ2xðtÞj � d1jjxdðtÞjj

� d1a21
1 ðqÞ

(A15)

where jjxdðtÞjj is a slight abuse of notation and it denotes the

max-norm of xdðtÞ 2 Cð½2d1; 0�;RnÞ (i.e., jjxdðtÞjj5
maxh2½2d1 ;0� jxðt2hÞj) and the last inequality follows from Eq.

2a. From Eqs. A14 and A15, the error dynamics can be bounded

by

j _eðtÞj � ðLx1
1Lx2

ÞjeðtÞj1 Lx2
d1a

21
1 ðqÞ12Lujumaxj (A16)

The error is bounded for all t 2 ½t0; t01t1� which can be

shown by integrating the bound of Eq. A16 and noting eðt0Þ50

to derive the following bound

jeðtÞj � Lx2
d1a21

1 ðqÞ12Lujumaxj
ðLx1

1Lx2
Þ expððLx1

1Lx2
Þðt2t0ÞÞ21½ �

(A17)

for all t 2 ½t0; t01t1�. Taking

�aðsÞ :¼ Lx2
d1a21

1 ðqÞ12Lujumaxj
ðLx1

1Lx2
Þ expððLx1

1Lx2
ÞsÞ21½ � (A18)

completes the proof.

Proof of Theorem 1

To prove the theorem, we need to show the following: (1) the

LEMPC is feasible for all xðtkÞ 2 Xq̂ , under the LEMPC, (2) the

state is bounded in Xq under the LEMPC, and (3) the closed-

loop state starting from Xq n Xq̂ will converge to Xq̂ in a finite

number of sampling times without coming out of Xq. To help

the readability of the proof, we divide the proof into three parts

corresponding to the three results that we need to show,

respectively.

Part 1: Feasibility of the LEMPC is proved provided that the

state at the current sampling time is in Xq̂ . If ~td 2 ð0; t�dÞ (where
~td and t�d are defined according to Proposition 1), the input tra-

jectory computed by the stabilizing control law hcðxÞ applied in

a sample-and-hold fashion is a feasible solution to the OCP of

Eq. 4. Specifically, let ẑðtÞ and v̂ðtÞ denote the solution and

input trajectory, respectively, to the system

_̂z ðtÞ5�f ðẑðtÞ; v̂ðtÞÞv̂ðtÞ5hcðẑðjDÞÞ; t 2 ½tj; tj11Þ (A19)

for j5k; k11; . . . ; k1N21 with the initial condition

ẑðtkÞ5xðtkÞ 2 Xq̂ . Owing to the properties of the stabilizing con-

trol law hcðxÞ; v̂ðtÞ 2 U for all t 2 ½tk; tk1TÞ. Moreover, from

Proposition 1, the input trajectory v̂ is a feasible input trajectory

to the OCP of Eq. 4. This statement holds as Xq̂ is forward

invariant for the sampled-data system of Eq. A19 if Bd1
� Xq̂

and if the sampling period is sufficiently small such that Propo-

sition 1 holds (i.e., the proof of forward invariance of the set Xq̂

for the system of Eq. A19 follows that of Proposition 1 with

d15d250).

Part 2: We consider boundedness of the state in Xq under

LEMPC. The LEMPC computes an input trajectory such that

the predicted state will be maintained in Xq̂ over the prediction

horizon. However, the system of Eq. 1 does not evolve accord-

ing to the ODE model of Eq. 4b and the control actions applied

to the system over the time tk to tk1d1 may be computed by

either the LEMPC or the stabilizing control law at previous

sampling times. Specifically, the predicted state, z(t), over the

prediction horizon will be bounded in Xq̂ for all t 2 ½tk; tk1TÞ
under the computed input trajectory which is guaranteed by the

constraint of Eq. 4e. Owing to the input delay the control action

computed at tk is applied to the system from tk1d2 to tk111d2.

We need to show that xðtÞ 2 Xq for all t 2 ½tk; tk111d2� when

xðtkÞ 2 Xq̂ .

Let q̂ satisfy Eq. 10. We proceed by contradiction and

assume there exists a time s� 2 ½tk; tk111d2� such that Vðxðs�ÞÞ
> q (the case that x(t) is not defined for some s 2 ½tk; tk111d2�
is also covered by this assumption). We define

s1 :¼ inffs 2 ½tk; tk111d2� : VðxðsÞÞ > qg. A standard continuity

argument in conjunction with the fact that VðxðtkÞÞ � q̂ < q
shows that s1 2 ðtk; tk111d2�; VðxðtÞÞ � q for all t 2 ½tk; s1� with

Vðxðs1ÞÞ5q, and VðxðtÞÞ > q for some t 2 ½s1; tk111d2�. If q̂
satisfies Eq. 10, we have

q5Vðxðs1ÞÞ � Vðzðs1ÞÞ1fVð�aðs1ÞÞ

� q̂1fVð�aðD1d2ÞÞ < q
(A20)

where the first inequality follows from Propositions 2 and 3 and

the second inequality follows from the fact that fV 	 �a 2 K
and s1 � D1d2. Equation A20 leads to a contradiction. Thus,

xðtk111d1Þ 2 Xq if Eq. 10 is satisfied (regardless of whether

the LEMPC or the stabilizing control hcðxÞ is used to compute

the input trajectory over tk to tk1d1).

Part 3: We prove that the state will converge to Xq̂ for any

state starting in Xq n Xq̂ . When the current state xðtkÞ 2 Xq n Xq̂ ,
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the control action is computed from the stabilizing control law

hcðxÞ. First, consider tk 2 ½0; d2�, by assumption of the initial data

and initial input value, the past data from tk2d1 to tk is in Xq. The

stabilizing control law will force the state to converge to Xq̂ with-

out coming out of Xq in finite-time if ~td 2 ð0; t�dÞ. This follows

from Proposition 1.

Now, let us consider the case that the LEMPC previously

computed the control actions for the system. Owing to the

plant-model mismatch, the state may come outside of Xq̂ .

From Part 2, the state will still remain bounded in Xq if indeed

it comes outside of Xq̂ . Again, once the stabilizing control law

hcðxÞ starts to compute control actions for the system to force

the state to converge to Xq̂ all of the assumptions of Proposi-

tion 1 are satisfied (assuming ~td 2 ð0; t�dÞ) and thus, the state

will be forced back to Xq̂ in finite-time without coming out of

Xq when xðtkÞ 2 Xq n Xq̂ which completes the proof.
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