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a b s t r a c t 

Economic model predictive control (EMPC) is a predictive feedback control methodology that unifies eco- 

nomic optimization and control. EMPC uses a stage cost that reflects the process/system economics. In 

general, the stage cost used is not a quadratic stage cost like that typically used in standard tracking 

model predictive control. In this paper, a brief overview of EMPC methods is provided. In particular, the 

role of constraints imposed in the optimization problem of EMPC for feasibility, closed-loop stability, and 

closed-loop performance is explained. Three main types of constraints are considered including termi- 

nal equality constraints, terminal region constraints, and constraints designed via Lyapunov-based tech- 

niques. The paper closes with a well-known chemical engineering example (a non-isothermal CSTR with 

a second-order reaction) to illustrate the effectiveness of time-varying operation to improve closed-loop 

economic performance compared to steady-state operation and to demonstrate the impact of economi- 

cally motivated constraints on optimal operation. 

© 2016 International Federation of Automatic Control. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

Economic model predictive control (EMPC) has attracted signif-

icant attention and research over the last five years. This interest is

a result of the ability of EMPC to integrate optimization of process

economics with process control by incorporating a general stage

cost function in the optimization problem and allowing for con-

sistently dynamic (time-varying) process operation without requir-

ing the process to settle at a steady-state or reference trajectory

( Amrit, Rawlings, and Angeli, 2011; Angeli, Amrit, and Rawlings,

2012; Engell, 2007; Heidarinejad, Liu, and Christofides, 2012a; Hel-

big, Abel, and Marquardt, 20 0 0; Huang, Harinath, and Biegler,

2011; Rawlings and Amrit, 2009 ; see, also, the reviews Ellis, Du-

rand, and Christofides, 2014; Rawlings, Angeli, and Bates, 2012 for

a more complete overview and reference list of the EMPC litera-

ture). In contrast to tracking model predictive control (MPC), which

usually incorporates a quadratic stage cost, the stage cost of EMPC

is chosen as a direct or indirect measure of the process/system

economic performance. As a result of the general stage cost used,

EMPC may force a process to operate in a time-varying manner

to optimize the economics. The rigorous design of EMPC schemes

that operate large-scale processes in a dynamically optimal fashion
∗ Corresponding author. Tel.: +1 310 794 1015; fax: +1 310 206 4107. 

E-mail address: pdc@seas.ucla.edu (P.D. Christofides). 
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hile maintaining stability of the closed-loop system is challenging

ecause traditional stability analysis concepts, such as asymptotic

tability of a steady-state for a process under a given controller,

ay be inapplicable to a closed-loop system under EMPC. 

To address the three key fundamental issues of feasibility, sta-

ility, and economic performance, constraints are often employed

n the EMPC problem formulation. To this end, many EMPC for-

ulations have been proposed encompassing theoretical analysis

f closed-loop properties (e.g., Alessandretti, Aguiar, & Jones, 2014;

mrit et al., 2011; Angeli et al., 2012; Bayer, Müller, & Allgöwer,

014; Faulwasser, Korda, Jones, & Bonvin, 2014; Ferramosca, Rawl-

ngs, Limon, & Camacho, 2010; Grüne, 2013; Grüne & Stieler, 2014;

eidarinejad et al., 2012a; Huang, Biegler, & Harinath, 2012; Huang

t al., 2011; Limon, Pereira, Muñoz de la Peña, Alamo, & Grosso,

014; Müller, Angeli, & Allgöwer, 2014a; Zavala, 2015 ), optimiza-

ion and computational issues (e.g., Biegler, Yang, & Fischer, 2015;

adam & Marquardt, 2007; Würth & Marquardt, 2014 ), and im-

lementation and applications (e.g., Ellis & Christofides, 2015b;

rosso, Ocampo-Martinez, Puig, Limon, & Pereira, 2014; Heidarine-

ad, Liu, & Christofides, 2012b; Omell & Chmielewski, 2013; Zhang,

iu, & Liu, 2014 ). 

This article describes the role and implications of constraints

sed in EMPC. It is an extended version of the work ( Ellis &

hristofides, 2015a ). Owing to space limitations, certain techni-

al assumptions are omitted and statements of the results are

ummarized. 
d. All rights reserved. 
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Notation: | · | denotes the Euclidean norm of a vector. The sym-

ol S ( �) denotes the family of piecewise constant functions with

eriod � > 0. A continuous function β : R 

n → R is positive defi-

ite if β(0) = 0 and β( x ) > 0 for all x � = 0. A continuous function

: [0, a ) → [0, ∞ ) belongs to class K if it strictly increasing and

(0) = 0 . 

.1. Class of nonlinear systems 

The class of systems considered is described by the system of

onlinear ordinary differential equations (ODEs): 

˙ 
 (t) = f (x (t ) , u (t ) , w (t )) (1)

here x (t) ∈ X ⊂ R 

n denotes the state vector, u (t) ∈ U ⊂ R 

m de-

otes the manipulated (control) input vector, and w (t) ∈ W ⊂ R 

l 

enotes the disturbance vector. The set of admissible input values

 is compact, and the disturbance vector is bounded in the set

 := { w ∈ R 

l || w | ≤ θ} where θ > 0 bounds the norm of the dis-

urbance vector. The vector function f : X × U × W → X is locally

ipschitz on X × U × W . A state measurement is synchronously

ampled at sampling instances denoted as t k := k � where k ∈ I ≥0 

nd � > 0 is the sampling period (the initial time is taken to

e zero). The assumption of state feedback is standard owing to

he fact that the separation principle does not generally hold for

onlinear systems. Nevertheless, some rigorous output feedback

mplementations of EMPC exist (e.g., Heidarinejad et al., 2012b;

hang et al., 2014 ). The system (1) is equipped with a continuous

unction l e : X × U → R , which reflects the instantaneous pro-

ess/system economics. The function l e ( ·, ·) will be used as a stage

ost in a model predictive control (MPC) framework and will be

eferred to as the economic stage cost. The system (1) may have

dditional constraints other than the input and state constraints.

ollecting all the constraints including the input, state, and ad-

itional constraints, the constraints may be written generally as

tatic constraints: 

 s (x, u ) ≤ 0 (2)

here g s : X × U → R 

n s and as dynamic constraints (e.g., average

onstraints): 
 t d 

0 

g d (x (t) , u (t)) dt ≤ 0 (3)

here g d : X × U → R 

n d and t d is the time horizon that the con-

traint is imposed. The dynamic constraints are often motivated by

conomic considerations. The economically optimal steady-state

nd steady-state input pair is: 

(x ∗s , u 

∗
s ) = arg min 

(x s ,u s ) 

⎧ ⎨ 

⎩ 

l e (x s , u s ) : 

f (x s , u s , 0) = 0 

g s (x s , u s ) ≤ 0 , 

g d (x s , u s ) ≤ 0 

⎫ ⎬ 

⎭ 

. (4)

ith the notation above, the optimal steady-state pair (x ∗s , u ∗s )
s assumed to be unique. If the minimizing pair is not unique,

et (x ∗s , u ∗s ) denote one of the minimizing steady-state pairs. The

ptimal steady-state is taken to be the origin of the unforced

ystem ( f (0 , 0 , 0) = 0 ). 

emark 1. Time-varying economic considerations such as cus-

omer demand changes, dynamic energy pricing, and variable

eedstock quality may lead to explicitly time-varying economic

tage costs as well as time-dependent economic-oriented con-

traints. While economic stage costs that are not explicitly time-

ependent are considered here, some EMPC methodologies ex-

st for handling some issues related to time-varying economic

tage costs such as a Lyapunov-based EMPC formulation that al-

ows for changing regions of operation as the economic stage

ost changes with time while guaranteeing closed-loop stability
 Ellis & Christofides, 2014a ). Another potentially useful concept

hat may help enable EMPC to handle time-varying economic stage

osts is the use of a generalized terminal constraint or self-tuning

erminal region and terminal cost (e.g., Fagiano & Teel, 2013; Fer-

amosca et al., 2010; Müller et al., 2014a ). 

. EMPC schemes: feasibility, closed-loop stability, and 

erformance 

Economic model predictive control is an MPC method that uses

he economic stage cost in its formulation. The EMPC problem,

ith a finite-time prediction horizon, can be broadly characterized

y the following optimal control problem (OCP): 

min 

 (·) ∈ S(�) 

∫ t k + N 

t k 

l e ( ̃  x (t) , u (t)) dt + V f ( ̃  x (t k + N )) (5a) 

.t. ˙ ˜ x (t) = f ( ̃  x (t ) , u (t ) , 0) (5b) 

˜ 
 (t k ) = x (t k ) (5c) 

 s ( ̃  x (t) , u (t)) ≤ 0 , ∀ t ∈ [ t k , t k + N ] (5d) 

∫ t k + N 

t k 

g d ( ̃  x (t) , u (t)) dt ≤ 0 (5e) 

here the decision variable of the optimization problem is the

iecewise constant input trajectory over the prediction horizon

i.e., the time interval [ t k , t k + N ) ) and ˜ x denotes the predicted state

rajectory over the prediction horizon. Higher order control pa-

ameterizations may also be considered. Nevertheless, sample-and-

old (i.e., zeroth-order hold) implementation of controls is one of

he most commonly employed control parameterizations (i.e., u ( ·)
 S ( �) as in (5a) ). 

The cost functional (5a) consists of the economic stage cost

ith a terminal cost/penalty V f : X → R . The nominal dynamic

odel (5b) is used to predict the future evolution of the system

nd is initialized with a state measurement (5c) . When available,

isturbance estimates or predictions may be incorporated in the

odel (5b) . The constraints (5d) and (5e) represent the system

onstraints which may include input, state, mixed state and in-

ut, economic, and stability constraints. The constraint (5e) may be

ime-varying (i.e., formulated for the sampling time t k , so that the

onstraint (3) is satisfied over the desired operating interval). With

light abuse of notation, (5e) is not necessarily the same as (3) . For

he remainder of this section, the dynamic constraints are dropped

nd only EMPC schemes of the form (5a) –(5d) are considered, ex-

ept for a brief discussion of the impact of dynamic constraints

n the trajectories of EMPC with input rate of change constraints.

hus, the constraint set is Z := { (x, u ) : x ∈ X , u ∈ U , g s (x, u ) ≤ 0 } ⊆
 × U and Z is assumed to be compact. 

Like tracking MPC, EMPC is typically implemented with a re-

eding horizon implementation to better approximate the infinite

orizon solution and to ensure robustness of the control solution

o disturbances and open-loop instabilities. At a sampling time t k ,

he EMPC receives a state measurement, which is used to initialize

he model (5b) . The OCP (5) is solved on-line for a (local) optimal

iecewise input trajectory, denoted by u ∗( t | t k ) for t ∈ [ t k , t k + N ) . The

ontrol action computed for the first sampling period of the pre-

iction horizon, denoted as u ∗( t k | t k ), is sent to the control actuators

o be implemented over the sampling period from t k to t k +1 (i.e.,

ample-and-hold implementation). At the next sampling time, the

CP (5) is re-solved after receiving a new state measurement and

y shifting the prediction horizon into the future by one sampling

eriod. 

EMPC, which consists of the on-line solution of the OCP

5) along with a receding horizon implementation, results in an

mplicit state feedback law u (t) = κ(x (t k )) for t ∈ [ t k , t k +1 ) . From
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a theoretical perspective, three fundamental issues are considered

and addressed with respect to EMPC. The first consideration is the

feasibility of the optimization problem (both initial and recursive

feasibility may be considered). Second, if (5) is recursively feasible,

it is important to consider the stability properties of the closed-

loop system under EMPC. In general, one may not expect that

EMPC will force the state to a desired steady-state. The last the-

oretical consideration is closed-loop economic performance under

EMPC. Within the context of EMPC, closed-loop performance typi-

cally means the average closed-loop economic performance. Over a

finite-time operating interval of length t f , the average performance

is defined by the following index: 

J̄ e := 

1 

t f 

∫ t f 

0 

l e (x (t) , u (t)) dt (6)

where x and u are the closed-loop state and input trajectories, re-

spectively, and over an infinite-time operating interval, the infinite-

time (asymptotic) average economic performance is given by: 

J̄ e, ∞ 

:= lim sup 

t f →∞ 

1 

t f 

∫ t f 

0 

l e (x (t) , u (t)) dt . (7)

Without additional assumptions and conditions, one can eas-

ily construct examples of systems and stage costs of the form

described above where the closed-loop under EMPC (without

additional stability constraints) is unstable. Clearly, additional

conditions and/or constraints enforced in the EMPC problem may

be needed to guarantee closed-loop stability. Some theoretical

investigations on EMPC that do not incorporate additional stabil-

ity constraints exist including the work of Grüne (2013) , Grüne

and Stieler (2014) which require that the resulting EMPC has a

sufficiently long horizon as well as that certain controllability

assumptions and turnpike conditions be satisfied to guarantee

closed-loop stability and performance properties. Moreover, even

though EMPC optimizes the process/system economics, it does

so over a finite-time prediction horizon. Over long periods of

operation, no conclusion, in general, can be made on closed-loop

performance under EMPC (without additional constraints). For

provable results on feasibility, closed-loop stability, and closed-

loop performance under EMPC, typically, additional stability and/or

performance constraints are added to the formulation of EMPC.

These formulations are discussed in the subsequent sections. 

Remark 2. It is important to clarify why the average economic

performance is of interest for EMPC. EMPC may dictate a time-

varying operating strategy to optimize the process/system eco-

nomics. Thus, it may not enforce convergence to the economically

optimal steady-state. While the instantaneous stage cost under

EMPC at any time may be better or worse than the stage cost at

the economically optimal steady-state and steady-state input pair,

the average economic performance under the time-varying operat-

ing policy dictated by EMPC over the length of operation may be

better than that achieved by operation at the economically opti-

mal steady-state. More explanation on this point is provided below

where an example in which time-varying operation achieves better

performance compared to steady-state operation is considered. 

Remark 3. To address closed-loop stability, one may consider em-

ploying an infinite horizon in the EMPC. This may be a more ap-

propriate prediction horizon because many chemical processes are

continuously operated over long periods of time (practically infi-

nite time). At least intuitively, the resulting control law will pro-

vide some form of closed-loop stability assuming the existence

of a solution to the infinite horizon EMPC as well as the abil-

ity to solve for a solution on-line. However, it is difficult to solve

an OCP with an infinite horizon. To overcome this problem, two

approaches include: (1) approximating the infinite horizon with
 sufficiently long finite-time horizon and (2) dividing the infi-

ite horizon into a finite-time horizon and estimating the infinite

orizon tail through an auxiliary control law or with modeling-

ased techniques (e.g., Diehl, Amrit, & Rawlings, 2011; Huang et al.,

012; Omell & Chmielewski, 2013 ). Although some of these EMPC

chemes may be computationally tractable, the use of constraints

ypically enables shorter prediction horizons reducing the on-line

omputation relative to those that require sufficiently long hori-

ons. Thus, infinite horizon EMPC and EMPC without stability con-

traints are not discussed, but rather, EMPC systems formulated

ith constraints to provide guaranteed closed-loop properties are

onsidered. 

.1. EMPC with an equality terminal constraint 

Much of the recent theoretical work on EMPC investigates the

xtension of stabilizing elements used in tracking MPC to EMPC

uch as adding a terminal constraint and/or terminal cost (see,

or instance, Mayne, Rawlings, Rao, and Scokaert (20 0 0) for more

etails on the use of terminal constraints and/or a terminal cost

ithin the context of tracking MPC). Numerous EMPC formulations

nd theoretical developments which include a terminal constraint

nd/or terminal cost have been proposed and studied (e.g., Amrit

t al., 2011; Angeli et al., 2012; Diehl et al., 2011; Huang et al.,

011; Müller & Allgöwer, 2012 ). There are two main types of EMPC

ith terminal constraints: (1) EMPC with an equality terminal con-

traint, and (2) EMPC with a terminal region constraint. In this

ection, the former type of EMPC is considered which is an EMPC

5a) –(5d) with the following constraint: 

˜ 
 (t k + N ) = x ∗s . (8)

he constraint (8) forces the predicted state trajectory to converge

o the optimal steady-state at the end of the finite-time horizon.

or EMPC with an equality terminal constraint, the terminal cost

s often omitted as it is not required for stability and performance

uarantees. 

.1.1. Feasibility 

EMPC with a terminal equality constraint is (initially) feasible

or any initial state in X N ∈ R 

n which denotes the feasible region

f EMPC (5a) –(5d), (8) . The feasible region depends on the pre-

iction horizon, and an explicit characterization of X N is difficult

n general. Recursive feasibility (i.e., feasibility at each subsequent

ampling time) of EMPC with an equality terminal constraint is

uaranteed for the nominally operated system for any initial state

 (0) ∈ X N . This follows from the fact that a feasible solution to

he EMPC can be constructed from the solution from the pre-

ious sampling time. Namely, u (t) = u ∗(t| t k −1 ) for t ∈ [ t k , t k + N−1 )

nd u (t) = u ∗s for t ∈ [ t k + N−1 , t k + N ) is a feasible solution for the

MPC at t k because it satisfies the constraints and the terminal

onstraint (8) . However, recursive feasibility is harder to show, in

eneral, when w (·) �≡ 0 . 

.1.2. Closed-loop stability 

With respect to closed-loop stability, a weak notion of stability

ollows from the EMPC with terminal constraint formulation. If the

nitial state is in the feasible set, the closed-loop state trajectory

emains contained in the feasible set for nominal operation. For

tronger stability properties (e.g., asymptotic stability of x ∗s ), addi-

ional assumptions on the closed-loop system must be satisfied. To

iscuss this issue, nonlinear discrete-time systems are considered

hat have the form: 

 (k + 1) = f d (x (k ) , u (k )) (9)

here f d : X × U → X is the discrete-time state transition map and

 ∈ I ≥0 is the time index. As before, the system (9) is subject to
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ixed state and input constraints (x, u ) ∈ Z ⊆ X × U where Z is a

ompact set and the origin is assumed to be the optimal steady-

tate ( f d (0 , 0) = 0 ). Discrete-time systems are considered here to

aintain consistency with the literature on the topic. Nonethe-

ess, some of these conditions and results have been extended to

ontinuous-time systems (e.g., Alessandretti et al., 2014 ). The no-

ion of dissipativity has been extended to EMPC which leads to

tronger stability properties under EMPC with an equality termi-

al constraint. 

efinition 1 ( Angeli et al. (2012) ) . The system of (9) is strictly dis-

ipative with respect to a supply rate s : X × U → R if there exist

 function λ : X → R and a positive definite function β : X → R ≥0 

uch that 

( f d (x, u )) − λ(x ) ≤ −β(x ) + s (x, u ) (10)

or all (x, u ) ∈ Z . 

If the system (9) is strictly dissipative with a supply rate: 

 (x, u ) = l e (x, u ) − l e (x ∗s , u 

∗
s ) (11)

hen, the optimal steady-state is asymptotically stable for the

losed-loop system under EMPC with an equality terminal con-

traint ( Angeli et al., 2012 ). Moreover, a Lyapunov function for the

losed-loop system was derived using the cost functional of the

o-called rotated cost function ( Angeli et al., 2012 ): 

 (x, u ) := l e (x, u ) + λ(x ) − λ( f d (x, u )) . (12)

he idea of using the rotated cost function to construct a Lya-

unov function for the closed-loop system was originally proposed

n Diehl et al. (2011) . However, it relied on strong duality of the

teady-state optimization problem, which is a stronger assumption

han strict dissipativity. 

.1.3. Closed-loop performance 

Utilizing the optimal input trajectory at t k (or time step k in

iscrete-time) as a feasible solution to the EMPC at the next sam-

ling period, one can upper bound the difference between the cost

unctional value at the next sampling time and at the current sam-

ling time under nominal operation. The optimal input trajectory

n discrete-time is denoted u ∗( j | k ) for j = k, k + 1 , . . . , k + N − 1 ,

nd the optimal cost functional value at time step k is denoted:

 

∗
e (x (k ) , u 

∗(·| k )) = 

k + N−1 ∑ 

j= k 
l e (x ∗( j| k ) , u 

∗( j| k )) , (13)

here u ∗( · | k ) is the optimal input sequence (trajectory) and x ∗( · | k )

s the corresponding state sequence starting at x ( k ). Using the

ound on the difference between the two consecutive cost func-

ional values, the closed-loop average economic performance can

e bounded: 

1 

T + 1 

T ∑ 

k =0 

l e (x (k ) , u 

∗(k | k )) ≤ l e (x ∗s , u 

∗
s ) + 

L ∗e (0) − L ∗e (T ) 

T + 1 

(14)

here x ( k ) is the closed-loop state at time step k , L ∗e ( j) , with abuse

f notation, denotes the optimal cost functional value at time step

 , and T < ∞ is the length of operation. From (14) , the effect of

he second term of the right-hand side dissipates with longer (but

nite) operation. For infinite-time, the average economic perfor-

ance is bounded by: 

im sup 

T →∞ 

1 

T + 1 

T ∑ 

k =0 

l e (x (k ) , u 

∗(k | k )) ≤ l e (x ∗s , u 

∗
s ) , (15)

hat is, the asymptotic average performance is no worse than that

t the pair (x ∗s , u ∗s ) ( Angeli et al., 2012 ). 
emark 4. If the dynamic constraints (3) take the form of average

onstraints, Angeli et al. (2012) and Müller, Angeli, and Allgöwer

2014b) provide methodologies for EMPC with an equality terminal

onstraint to ensure that the average constraint is satisfied asymp-

otically and over finite-time operating horizons, respectively. 

.2. EMPC with a terminal region constraint 

EMPC with the equality terminal constraint (8) requires that

he initial state be sufficiently close to the steady-state such that

t is possible to reach the steady-state in N sampling times. This

ype of constraint can limit the feasible region ( Amrit et al., 2011 ).

umerically computing a solution that satisfies such a constraint

xactly may also be challenging. Therefore, terminal region con-

traints may be employed in EMPC. 

One such method is a terminal region constraint designed via

n auxiliary local control law. The terminal region is designed to

e forward invariant for the nonlinear system under the local con-

rol law. The local control law can, for instance, be designed on the

asis of the linearization of the system around the optimal steady-

tate. The terminal region is denoted as X f and the terminal con-

traint imposed in the EMPC problem is 

˜ 
 (t k + N ) ∈ X f . (16)

n general, for closed-loop stability and performance, the terminal

ost is such that V f (·) �≡ 0 . 

In Amrit et al. (2011) , a procedure to design a local control law,

 terminal region constraint, and a terminal cost for EMPC satisfy-

ng the assumption below was proposed: 

ssumption 1. There exist a compact terminal region X f ⊂ R 

n ,

ontaining the point x ∗s in its interior, and control law h L : X f → U ,

uch that (for the discrete-time system of (9) ): 

 f ( f d (x, h L (x ))) ≤ V f (x ) − l e (x, h L (x )) + l e (x ∗s , u 

∗
s ) (17)

or all x ∈ X f . 

.2.1. Feasibility 

For nominal operation, if the EMPC with a terminal region is

nitially feasible, the EMPC will be recursively feasible. This can

e shown by using similar recursive arguments as those used in

howing the feasibility of the EMPC with the equality terminal

onstraint. If u ∗(t| t k −1 ) for t ∈ [ t k −1 , t k + N−1 ) is the optimal input

rajectory at t k −1 , then at t k , a feasible solution is u (t) = u ∗(t| t k −1 )

or t ∈ [ t k , t k + N−1 ) and u (t) = h L ( ̃  x (t k + N−1 )) for t ∈ [ t k + N−1 , t k + N )
here ˜ x (t k + N−1 ) is the predicted state at t k + N−1 . For recursive fea-

ibility when w (·) �≡ 0 , one EMPC methodology designed with a

erminal region constraint was presented in Bayer et al. (2014) . 

.2.2. Closed-loop stability 

The closed-loop stability properties of EMPC with a terminal

onstraint designed to satisfy Assumption 1 are similar to those

f EMPC with an equality terminal constraint. For nominal opera-

ion, the closed-loop state trajectory will stay in the feasible region.

f the system (9) is strictly dissipative with supply rate (11) , the

teady-state is asymptotically stable under EMPC with a terminal

egion constraint ( Amrit et al. (2011) ; see, also, Alessandretti et al.

2014) which extends these results to continuous-time systems). 

.2.3. Closed-loop performance 

If the local control law, terminal cost, and terminal region are

esigned such that Assumption 1 is satisfied, the bound on asymp-

otic average performance (15) holds ( Amrit et al., 2011 ). For finite-

ime, a similar bound as the bound (14) may be derived for the

losed-loop system under EMPC with a terminal cost and terminal

egion. 
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2.3. Lyapunov-based EMPC 

The feasible region of EMPC with a terminal region constraint,

while larger than the feasible region of EMPC with an equality

terminal constraint, depends on the prediction horizon length. As

previously pointed out, the feasible region of both aforementioned

EMPC formulations is difficult to characterize. As an alternative

to overcome these challenges, one can consider designing an

explicit nonlinear control law for the system (1) (as opposed to a

local stabilizing controller) and constructing a Lyapunov function

for the resulting closed-loop system consisting of the system

(1) under the explicit nonlinear control law. With the control law

and Lyapunov function, a region constraint may be designed to

be imposed within EMPC. Because the control law and Lyapunov

function are derived for the closed-loop system, the resulting

region constraint also provides an estimate of the region of at-

traction of the nonlinear system (1) under the Lyapunov-based

controller. Here, continuous-time systems are considered, and the

effect of sampling on closed-loop stability is explicitly considered.

Also, bounded disturbances and other forms of uncertainty (e.g.,

discretization error) are taken into account. 

The existence of a feedback controller h : R 

n → U is assumed

which renders the origin of the nominal closed-loop system ˙ x =
f (x, h (x ) , 0) asymptotically stable (e.g., Khalil, 2002 ) in the sense

that there exists a continuously differentiable Lyapunov function

 : R 

n → R that satisfies the following inequalities: 

α1 (| x | ) ≤ V (x ) ≤ α2 (| x | ) (18a)

∂V (x ) 

∂x 
f (x, h (x ) , 0) ≤ −α3 (| x | ) (18b)

for all x ∈ D where αi , i = 1 , 2 , 3 are class K functions and D

is an open neighborhood of the origin. A level set 	ρ ⊂ D of

the Lyapunov function (i.e., 	ρ := { x ∈ R 

n : V (x ) ≤ ρ} ) within

which all state constraints are met ( 	ρ ⊆ X ) and within which

the time-derivative of V is negative along the trajectories of the

closed-loop system under the explicit controller h is an estimate

of the stability region of the closed-loop system. A number of

works have addressed the development of control laws for various

classes of nonlinear systems including those that ensure the satis-

faction of input constraints and for which the region of attraction

of the closed-loop system under the given control law can be

explicitly characterized (see, for example, ( Christofides & El-Farra,

2005; Kokotovi ́c & Arcak, 2001; Lin & Sontag, 1991; Sontag, 1998 )

and the references therein for results in this direction). Practical

stability of the origin of the closed-loop system results when the

feedback controller is applied in a sample-and-hold fashion with a

sufficiently small sampling period (see, for instance, ( Muñoz de la

Peña & Christofides, 2008 ) and the references therein for results

and analysis of sampled-data systems). Moreover, for the resulting

sampled-data system consisting of the continuous-time system

(1) and the feedback controller applied in a sample-and-hold

fashion, the region 	ρ is forward invariant and V is a (practical)

Lyapunov function (e.g., Muñoz de la Peña & Christofides, 2008 ). 

Utilizing the stability region 	ρ , the following EMPC for-

mulation, which is the so-called Lyapunov-based EMPC (LEMPC)

( Heidarinejad et al., 2012a ), has been proposed. LEMPC is a two-

mode control strategy, and its problem formulation is given by the

following OCP: 

min 

u (·) ∈ S(�) 

∫ t k + N 

t k 

l e ( ̃  x (t) , u (t)) dt (19a)

s.t. ˙ ˜ x (t) = f ( ̃  x (t ) , u (t ) , 0) (19b)

˜ x (t k ) = x (t k ) (19c)
 (t) ∈ U , ∀ t ∈ [ t k , t k + N ) (19d)

 ( ̃  x (t)) ≤ ρe , ∀ t ∈ [ t k , t k + N ] if V (x (t k )) ≤ ρe and t k < t s (19e)

∂V (x (t k )) 

∂x 
f (x (t k ) , u (t k ) , 0) ≤ ∂V (x (t k )) 

∂x 
f (x (t k ) , h (x (t k )) , 0) 

if V (x (t k )) > ρe or t k ≥ t s (19f)

here t s is the switching time of the controller, which is selected

ased on practical considerations for a given process, as will be

iscussed below. The LEMPC problem is similar to the general

MPC problem (5) with two Lyapunov-based constraints (19e) and

19f) , which define the two modes of operation. Only one of these

wo constraints is imposed at any given sampling time. The con-

traint (19e) , which defines mode 1 operation, constrains the pre-

icted state trajectory to be contained in a subset of the stabil-

ty region ( 	ρe = { x ∈ R 

n : V (x ) ≤ ρe } ⊂ 	ρ ). The constraint (19f) ,

hich defines mode 2 operation, is a contractive constraint im-

osed on the control action computed for the first sampling period

f the horizon. Both constraints are explained below. 

.3.1. Feasibility 

The LEMPC optimization problem is feasible for any initial state

n 	ρ . This follows because the sample-and-hold input trajectory

btained from the explicit controller is a feasible solution to the

ptimization problem for either mode of operation. For x ( t k ) ∈ 	ρ ,

 (t) = ˆ u (t) for t ∈ [ t k , t k + N ) is a feasible input trajectory where ˆ u is

he resulting input trajectory of the system: 

˙ ˆ x (t) = f ( ̂  x (t) , ˆ u (t) , 0) , ̂  x (t k ) = x (t k ) 

ˆ 
 (t) = h ( ̂  x (t j )) , for t ∈ [ t j , t j+1 ) 

or j = k, k + 1 , . . . , k + N − 1 . For mode 1 operation, 	ρe is forward

nvariant for the nominal system under the sample-and-hold con-

roller (assuming that 	ρe is an appropriately chosen subset of

ρ ). Also, the input trajectory ˆ u (trivially) satisfies the contractive

onstraint (19f) making it a feasible solution under mode 2 oper-

tion. Recursive feasibility of the LEMPC follows if the closed-loop

tate trajectory is maintained in 	ρ , which is guaranteed by the

ual-mode implementation. 

.3.2. Closed-loop stability 

The motivation for the design of LEMPC is that forcing the

tate to converge to a small neighborhood of the steady-state and

aintaining the state within this neighborhood thereafter (i.e.,

teady-state operation) may not be the best operating strategy

rom an economic perspective. For example, the best operating

trategy may be some periodic operating policy. Moreover, the

EMPC design seeks to provide guarantees on recursive feasibil-

ty and closed-loop stability for operation affected by sufficiently

mall bounded disturbances or uncertainty. Thus, mode 1 oper-

tion allows for the LEMPC to enforce a bounded time-varying

perating policy that optimizes the economics while maintain-

ng the closed-loop state trajectory inside 	ρ in the presence of

ounded disturbances or other sources of uncertainty. The set 	ρe 

s designed such that if the current state x (t k ) ∈ 	ρe and the pre-

icted state at the next sampling time ˜ x (t k +1 ) ∈ 	ρe , then the ac-

ual state at the next sampling time, which may be forced away

rom 	ρe owing to a disturbance/uncertainty, will be in 	ρ . For

ny state in 	ρ \ 	ρe or if it is desirable to force convergence

f the state to a neighborhood of the steady-state, the contractive

yapunov-based constraint (19f) is used. The constraint guarantees

hat the Lyapunov function value will decrease at the next sam-

ling time. Under mode 1 operation, the closed-loop state trajec-

ory will remain bounded in 	ρ , and under mode 2 operation, the
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Fig. 1. An illustration of the possible consequence of using the stability region 	ρ

as a terminal region constraint. The dashed trajectory is the open-loop predicted 

state trajectory of the EMPC, while the solid trajectory is the closed-loop state 

trajectory. 

s  

a  

c  

e

 

t  

m  

p  

i  

s  

g  

o  

v  

i  

u  

p  

a  

i  

n  

t

u  

f  

s

 

a  

p  

o  

t  

i  

a  

u  

(  

i  

b  

b  

o  

t  

i  

i  

c  

O  

t  

t  

r  

s

2

 

i  

a  

Fig. 2. An illustration of the state-space sets discussed with respect to LEMPC satis- 

fying state constraints. This illustration specifically considers the case when X ⊂ �u . 
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tate will converge to 	ρe in a finite number of sampling times for

ny x (t k ) ∈ 	ρ \ 	ρe . After t s , the state will converge to a small

ompact forward invariant set containing the origin ( Heidarinejad

t al., 2012a ). 

The two tuning parameters of LEMPC are the switching time

 s and the set 	ρe . If t s = 0 , the LEMPC will always operate in

ode 2. This may be desirable if steady-state operation is ex-

ected and/or is the best operating strategy. A strict dissipativ-

ty assumption with a supply rate that depends on the economic

tage cost does not need to hold for this case to ensure conver-

ence of the closed-loop state trajectory to a neighborhood of the

ptimal steady-state. If t s → ∞ , the LEMPC may dictate a time-

arying operating policy over the entire length of operation. An

ntermediate choice for the switching time ( t s ∈ (0, ∞ )) may be

sed to balance the trade-off between achieving better economic

erformance through time-varying operation and excessive control

ctuator wear required to enforce the time-varying operating pol-

cy. The other tuning parameter of LEMPC is ρe which does not

eed to be chosen so that 	ρe is the largest subset of 	ρ such

hat the state at the next sampling time is guaranteed to be in 	ρ

nder mode 1 operation of the LEMPC. A larger set 	ρe may allow

or better closed-loop economic performance. On the other hand, a

maller set 	ρe may allow for more robustness to uncertainty. 

In contrast to EMPC with a terminal region constraint based on

 local control law, the region constraint (19e) is imposed over the

rediction horizon. For any state contained in 	ρ , there is an a pri-

ri guarantee that there is a feasible control action that will lead

o closed-loop stability in the sense of boundedness of the state

nside 	ρ in the presence of bounded disturbances (i.e., there is

 degree of robustness to uncertainty). To increase the feasible set

nder LEMPC, one may attempt to impose the region constraint

19e) as a terminal region constraint. While this may potentially

ncrease the feasible region of the resulting EMPC, closed-loop sta-

ility (boundedness of the state in the feasible region) may only

e guaranteed, in general, for nominal operation. In the presence

f bounded disturbances, the closed-loop state trajectory may lead

o infeasibility of the resulting EMPC problem or even closed-loop

nstability. The reason for this behavior is that the EMPC result-

ng from imposing the region constraint (19e) as a terminal region

onstraint may allow for the closed-loop state to evolve out of 	ρ .

nce the closed-loop state is outside 	ρ , robustness is not guaran-

eed meaning that a disturbance could force the state away from

he predicted state trajectory that converges back to 	ρ , and the

esult is that there is no feasible input trajectory that forces the

tate back to 	ρ (this is illustrated in Fig. 1 ). 

.3.3. Closed-loop performance 

If one could design a terminal cost such that (17) is sat-

sfied with the explicit controller, then a similar performance

nalysis as that of the EMPC with a terminal region constraint
ould be used to derive bounds on the closed-loop perfor-

ance under LEMPC given that the closed-loop state trajectory is

ounded in the compact set 	ρ . Systematic methods of design-

ng such a terminal cost that satisfies (17) as well as addressing

ey technical considerations remain open problems. However, in

iu, Zhang, and Liu (2015) , a terminal cost design methodology was

roposed that takes advantage of an explicit controller using a dif-

erent approach. 

One may also consider methods of constructing a terminal

quality constraint that accounts for the closed-loop performance

ver a finite operating window to obtain closed-loop performance

uarantees under LEMPC ( Ellis & Christofides, 2014b ). For example,

he input profile and open-loop predicted state trajectory of a pro-

ess under an auxiliary stabilizing controller such as the explicit

ontroller or a tracking MPC could be computed over an operat-

ng window. The terminal state of the computed state trajectory

i.e., the state at the end of the operating window with the auxil-

ary controller) could be incorporated in the LEMPC as an equality

erminal constraint. The closed-loop economic performance under

EMPC can be proven to be at least as good as the closed-loop

conomic performance under the auxiliary stabilizing controller on

oth the finite-time and infinite-time intervals ( Ellis & Christofides,

014b; 2016 ). Another idea for constraining the LEMPC using an

uxiliary control law is to compute the total control energy used

y the auxiliary stabilizing controller and enforce that the LEMPC

omputes an input trajectory that uses no more control energy

han the auxiliary controller input profile over the operating win-

ow ( Heidarinejad, Liu, & Christofides, 2013 ). This may be partic-

larly important when the economic stage cost does not penalize

he use of control energy. 

.3.4. Satisfying state constraints 

To clarify imposing state constraints within LEMPC, one can

xtend the concepts from LMPC (e.g., Mhaskar, El-Farra, &

hristofides, 2006 ) for imposing state constraints in LEMPC. Specif-

cally, define the set �u as the set in state-space that includes

ll the states where ˙ V < 0 under the explicit controller. Then, if

u ⊆ X , any initial state starting in the region X \ �u satisfies

he state constraint. However, because the region X \ �u includes

tate-space points at which the time-derivative of the Lyapunov

unction may be positive, there may be initial conditions in that

egion for which the closed-loop system cannot be stabilized. Thus,

n this case, the stability region used in the formulation of the

EMPC is 	ρ = 	x,u = { x ∈ R 

n x : V (x ) ≤ ρx,u } where ρx,u is chosen

uch that 	x,u ⊆ �u . 

Alternatively, if X ⊂ �u , which is the case depicted in Fig. 2 ,

hen any initial state in �u \ X violates the state constraint

rom the onset. Also, for any initial state in the set X , it is

ot possible, in general, to guarantee that the set X is forward

nvariant because there may exist a stabilizing state trajectory
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(i.e., a trajectory where ˙ V < 0 ) that goes outside of the set X

before it enters back into the set to converge to the origin. When

the state constraints are imposed as hard constraints, define the

set 	ρ as 	ρ = 	x,u = { x ∈ R 

n x : V (x ) ≤ ρx,u } where ρx,u is such

that 	x,u ⊆ X . Since �u cannot be computed in practice, the set

	u := { x ∈ R 

n : V (x ) ≤ ρu } where ρu is such that ˙ V < 0 for all x ∈
	u under the explicit controller may be used. The set 	u accounts

for the input constraints, but not necessarily the state constraints.

An illustration of the set definitions is provided in Fig. 2 . The

following illustrative example provides a demonstration of the

above methodology to satisfy state constraints. 

Example 1. Consider 

˙ x (t) = x (t) + u (t) (20)

which has an open-loop unstable steady-state at the origin. First,

consider that the system has the following constraints on the input

and state: u (t) ∈ U = [ −1 , 1] and x (t) ∈ X = [ −2 , 2] . For any initial

state x (0) �∈ [ −1 , 1] , the state will diverge to positive/negative in-

finity (i.e., some initial states that satisfy the state constraint may

result in a closed-loop trajectory that does not continue satisfying

the state constraints over the length of operation). Following the

approach detailed above, the nonlinear control law u = −sat (Kx )

where sat( ·) is the saturation function and K > 1 is a tuning pa-

rameter renders the origin of (20) exponentially stable while satis-

fying the input constraints. The quadratic function: 

 (x ) = x 2 (21)

is a Lyapunov function for the closed-loop system. Moreover, the

region where ˙ V < 0 while accounting for the input constraints

is 	u = { x ∈ R : V (x ) ≤ ρu } where ρu is chosen such that ρu <

1. Since 	u ⊂ X , 	ρ can be taken to be 	u . If, instead, X =
[ −0 . 9 , 0 . 9] , then X ⊂ 	u , and 	ρ can be taken to be { x ∈ R :

 (x ) ≤ 0 . 81 } (i.e., 	ρ = X ). In either situation, one can verify that

for any initial state in 	ρ , the closed-loop state trajectory will

remain bounded in 	ρ and converge exponentially to the origin

without violating the state constraints. If one were to apply LEMPC

to the system designing the Lyapunov-based constraints with the

control law, the LEMPC would inherit these properties as well. 

2.3.5. Real-time implementation 

As a by-product of designing the explicit nonlinear control law,

it may be used as an auxiliary or back-up controller. For instance,

a real-time implementation strategy for LEMPC, referred to as real-

time LEMPC, was proposed in Ellis and Christofides (2015b) to ac-

count for possibly unknown and time-varying computational de-

lay. The strategy uses triggered evaluations of the LEMPC to only

recompute a solution when stability conditions dictate a new in-

put trajectory must be computed. If the precomputed control ac-

tion satisfies the stability conditions, the control action is applied

to the closed-loop system. If not, the explicit control law, which

has negligible computation time, is used to compute the control

action for the system at the current sampling time. 

2.3.6. Input rate of change constraints 

Mode 1 operation of LEMPC may cause excessive actuator wear

if the control actions calculated by the LEMPC regularly change sig-

nificantly between two sampling periods. One method for prevent-

ing the excessive wear without exiting mode 1 operation or re-

stricting the manipulated input u ( t ) to a subset of U , which would

likely reduce the economic performance of the LEMPC strategy

compared to that which could be obtained, is by adding input rate

of change constraints to the LEMPC. To reduce actuator wear, it is

desirable to limit the difference between u ∗
i 
(t k | t k ) and u ∗

i 
(t k −1 | t k −1 )

for i = 1 , . . . , m to be within a desired range εdesired as follows: 

| u 

∗(t k | t k ) − u 

∗(t k −1 | t k −1 ) | ≤ εdesired , i = 1 , . . . , m (22)
i i 
owever, if this constraint is incorporated directly in the LEMPC of

q. (19) , the input trajectory ˆ u (t) that is feasible for all of the other

EMPC constraints cannot be proven to meet the constraint in Eq.

22) . However, ˆ u (t) does satisfy the following constraint which can

e added to the LEMPC instead: 

 u i (t k ) − h i (x (t k )) | ≤ ε, i = 1 , . . . , m (23)

he constraint in Eq. (23) is proven in Durand, Ellis, and

hristofides (2016) to cause the desired input rate of change of

q. (22) to be met for an appropriately chosen ε and a sufficiently

mall � when the component functions of the explicit controller h

re Lipschitz continuous, which is not practically restrictive. 

The input rate of change constraints in Eqs. (22) and ( 23 ) are

nforced for the first sampling period of the prediction horizon,

eaning that they constrain only the control action that will be

mplemented on the process due to the receding horizon imple-

entation of LEMPC. However, the rate of change constraint in

q. 23 could be enforced at additional sampling periods in the pre-

iction horizon, including throughout the entire prediction hori-

on, to satisfy the desired bound of Eq. (22) for each sampling

eriod in the prediction horizon. Specifically, if the following con-

traints are added to the LEMPC: 

 u i (t k ) − h i (x (t k )) | ≤ ε, i = 1 , . . . , m (24a)

 u i (t j ) − h i ( ̃  x (t j )) | ≤ ε, i = 1 , . . . , m, j = k + 1 , . . . , k + N − 1 

(24b)

hen for an appropriate ε and �, the following bounds are

atisfied: 

 u 

∗
i (t k | t k ) − u 

∗
i (t k −1 | t k −1 ) | ≤ εdesired , i = 1 , . . . , m (25a)

| u 

∗
i (t j | t k ) − u 

∗
i (t j−1 | t k ) | ≤ εdesired , 

i = 1 , . . . , m, j = k + 1 , . . . , k + N − 1 (25b)

The number of sampling periods over which the constraint in

q. (23) is enforced (i.e., the choice to use Eq. (23) or ( 24 ) in Eq.

19) ) is an important consideration for the performance and con-

traint satisfaction of the LEMPC, especially if dynamic constraints

ike those in Eq. (5e) are also used in the LEMPC. In general, LEMPC

ncorporating input rate of change constraints can be expected to

erform more optimally throughout an operating period if it is

ware of all constraints that will be enforced upon it throughout

he operating period (i.e., the constraints in Eq. (24) are likely to

rovide the most economically optimal input trajectories). If, for

xample, the input rate of change constraint is only enforced for

he first sampling period of the prediction horizon, the LEMPC may

redict a trajectory with wide variations in the input after the first

ampling period to maximize process economics, while choosing

n input for the first sampling period with less economic bene-

t than might be obtained if it predicted that future trajectories

ould be similarly constrained. This would be especially important

o consider if the LEMPC incorporated a dynamic constraint, be-

ause then the expected values of the inputs in the later sampling

eriods of the prediction horizon would affect the value chosen

n the first sampling period. In addition, the ability of the process

o meet all constraints is also impacted by the number of sam-

ling periods over which the input rate of change constraints are

nforced, particularly if dynamic constraints are used that require

he states and inputs to meet certain metrics in a given timeframe,

hich implies that good forecasting of the process and input tra-

ectories would be required in each sampling period to ensure that

he control actions in each sampling period are contributing to this

oal. 
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Fig. 3. An illustration of possible open-loop predicted trajectories under EMPC for- 

mulated with a terminal constraint (dotted), under EMPC formulated with a termi- 

nal region constraint (dashed), and under LEMPC (solid). 
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Table 1 

Process parameters of the CSTR. 

k 0 8.46 × 10 6 A 1 1.69 × 10 6 

x 20 0.050 A 2 1.41 × 10 4 

Fig. 4. Depiction of CSTR considered in the chemical process example. 
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The enforcement of the input rate of change constraints in the

EMPC of Eq. (19) would be likely to reduce the profit below that

hich could be attained without the input rate of change con-

traints because they restrict the allowable control actions. How-

ver, there are many cases in which the LEMPC with input rate

f change constraints will still significantly outperform steady-state

peration ( Durand et al., 2016 ). In addition, economics-based cost

unctions do not typically reflect profit loss that may occur due

o actuator wear and tear, so though an initial analysis of LEMPC

ith input rate of change constraints may suggest that the input

ate of change constraints lead to a loss in profit compared to the

ase that input rate of change constraints are not used, the use of

he input rate of change constraints to reduce actuator wear has

he potential to improve control loop performance overall by re-

ucing the likelihood that issues associated with the actuation el-

ment may occur. If the reduction in profit with the addition of

uch constraints remains a concern, however, and the constraints

re only added to achieve more desirable trends in the inputs from

he LEMPC instead of because of hard constraints on the process-

ng equipment capabilities, one could consider formulating the in-

ut rate of change constraints as soft constraints or as constraints

hat are only enforced if the process economics are better than a

ertain threshold. 

Because the input rate of change constraints in Eqs. (23) and

 24 ) are designed so that ˆ u is a feasible solution, feasibility of the

EMPC of Eq. (19) with the input rate of change constraints in

qs. (23) and ( 24 ) is ensured. In addition, the input rate of change

onstraints do not affect the closed-loop stability properties of the

EMPC, so it remains stable in the sense of maintaining bounded-

ess of the closed-loop states in the presence of disturbances after

he input rate of change constraints are added. 

emark 5. The three EMPC formulations with explicit stability

onstraints presented each have specific advantages and disad-

antages. Assuming that feasibility is not an issue, EMPC with a

erminal equality constraint is perhaps the easiest to implement

ecause it does not require the derivation of a region constraint.

n the other hand, the LEMPC design provides guaranteed closed-

oop stability in the sense that the closed-loop state trajectory will

e bounded in a well-defined state-space region and also, does not

equire a dissipativity assumption to be satisfied if steady-state

peration is desired. However, the design of LEMPC requires the

vailability of an explicit stabilizing controller and a Lyapunov

unction for the nonlinear system. 

emark 6. The EMPC formulations may result in different open-

oop predicted state trajectories which are illustrated in Fig. 3 .

onetheless, if the prediction horizon is sufficiently long, the

losed-loop behavior of the system under the various EMPC for-

ulations would (intuitively) be expected to be similar because
or a long prediction horizon, the EMPC solution starts to closely

pproximate the infinite horizon solution and the effect on the

losed-loop behavior of the terminal conditions of the open-loop

redicted trajectory is less significant than the corresponding ef-

ect for shorter prediction horizons. 

. Performance improvement through time-varying operation 

A well-known chemical engineering example that demonstrates

erformance improvement through time-varying operation is ex-

mined to consider the role of economic-oriented constraints on

he optimal operating strategy and to motivate future research on

ime-varying operation under EMPC. In this illustration, stability is

ot considered. The necessity for feedback control is discussed at

he end of the illustration. 

Consider the system described by the following dynamic equa-

ions given in dimensionless form: 

˙ 
 1 = −x 1 − A 1 e 

−1 /x 2 x 2 1 + u (26a) 

˙ 
 2 = −x 2 + A 2 e 

−1 /x 2 x 2 1 + x 20 (26b) 

here x 1 is the dimensionless reactant concentration, x 2 is the di-

ensionless temperature, and A 1 , A 2 and x 20 are constant param-

ters. The values of the parameters are given in Table 1 . The input

s bounded: u ∈ [ u min , u max ] = [0 . 5 , 7 . 5] . The system (26) describes

 non-isothermal CSTR where a second-order reaction occurs and

he inlet concentration of the reactant material is the manipulated

nput ( Fig. 4 ). The economic stage cost is 

 e (x, u ) = k 0 e 
−1 /x 2 x 2 1 (27)

hich is the production rate of the desired product ( k 0 is a param-

ter). The system has an input average constraint (dynamic con-

traint) given by: 

1 

t f 

∫ t f 

0 

u (t) dt = u a v g = 4 . 0 (28)

here t f is the length of operation. The practical motivation of

he average constraint (28) is that the average amount of material

hat may be distributed to the reactor over time is fixed (i.e., the

onstraint is economically motivated). The CSTR has an optimal

teady-state x T s = [1 . 182 0 . 073] which corresponds to the steady-

tate input that satisfies the average input constraint ( u s = u a v g )

ith a production rate of 14.03. 

An analysis is completed to determine if the economic perfor-

ance (i.e., the average production rate of the product) can be

mproved by using a time-varying operating strategy compared to
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Fig. 5. Average economic performance J̄ e as a function of the period length τ . 

Fig. 6. State, input, and λ1 + λ3 /τ trajectories of the CSTR under the bang-bang 

input policy with period τ = 1 . 20 . 
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operating at the optimal steady-state. An auxiliary state is defined

for the average constraint: 

x 3 (t) := 

1 

t f 

∫ t 

0 
( u (t) − u a v g ) dt (29)

which has dynamics: 

˙ x 3 (t) = 

1 

t f 
(u (t) − u a v g ) . (30)

The non-isothermal CSTR with the objective function (27) is a

member of a special class of nonlinear systems: 

˙ x = f̄ (x ) + Bu (31)

where B ∈ R 

n × R 

m is a constant matrix and f̄ : R 

n → R 

n is a

differentiable vector function. Additionally, the stage cost only

depends on the states: 

l e (x, u ) = l̄ e (x ) (32)

where l̄ e : R 

n → R is a differentiable function. The Hamiltonian

function of the system (31) and cost (32) is 

H(x, u, λ) = l̄ e (x ) + λT f̄ (x ) + λT Bu (33)

where λ is the adjoint variable vector that satisfies 

˙ λ(t) = −H x (x (t ) , u (t ) , λ(t )) (34)

where H x denotes the partial derivative of H with respect to x .

From Pontryagin’s maximum principle ( Pontryagin, Boltyanskii,

Gamkrelidze, & Mishchenko, 1961 ), a necessary condition can be

derived for the optimal control (i.e., the control that maximizes

the Hamiltonian): 

u 

∗
i (t) = 

{
u i, max if b T 

i 
λ(t) > 0 

u i, min if b T 
i 
λ(t) < 0 

(35)

where b i is the i th column of B . For this class of systems and

stage costs, if some time-varying operating policy is the optimal

operating strategy, then the operating policy is a bang-bang input

policy (35) . 

Although the analysis above significantly reduces the space of

input trajectories that one must consider to find the optimal con-

trol, it still yields an infinite space of input trajectories. Thus, con-

sider the following periodic bang-bang input trajectory over one

period: 

u (t) = 

{
u max if t < τ/ 2 

u min else 
(36)

where τ is the period and t ∈ [0, τ ). The input trajectory of

(36) satisfies the average constraint of (28) over each period. For

the system (26) with the input trajectory (36) , there exists a pe-

riodic state trajectory for some τ > 0 (i.e., it has the property

x (t) = x (t + τ ) for all t ). 

Indeed, the periodic solution of the system (26) with the in-

put (36) achieves better economic performance compared to the

economic performance at steady-state for some τ . Moreover, the

economic performance depends on the period which is shown in

Fig. 5 . Over the range of periods considered (0.5 to 2.4), the pe-

riod τ = 1 . 20 yields the best performance ( Fig. 5 ). The periodic so-

lution with the input period of τ = 1 . 20 has an average cost of

J̄ e = 15 . 20 which is 8.30% better than the performance at the op-

timal steady-state. Periods greater than 1.96 achieve worse per-

formance compared to that at steady-state. The state, input, and

B T λ = b T 
1 
λ = λ1 + λ3 /τ trajectories are given in Fig. 6 over one pe-

riod. From Fig. 6 , the input trajectory satisfies the necessary condi-

tion (35) . From these results, time-varying operation is better than

steady-state operation from an economical point of view for this

example. If the average constraint (28) was not imposed, the op-

timal operating strategy would be steady-state operation at the
teady-state corresponding to the input u max . The average con-

traint plays a crucial role for this particular example. 

As pointed out, the above analysis only considers economic

erformance. If the periodic solution depicted in Fig. 6 is indeed

ptimal or some other bang-bang policy is the best operating

trategy, feedback control is needed to force the system state

rom an initial state to the optimal time-varying solution. More-

ver, the control problem becomes more complex when one

onsiders disturbances, plant-model mismatch and other forms

f uncertainty, implementability of the computed input trajectory

i.e., bang-bang control may not be implementable in practice),

nd time-varying economic objectives and constraints. For this

xample, the application of EMPC has been studied and results

n performance improvement over steady-state while addressing

tability and robustness ( Ellis et al., 2014 ). The example further

otivates the inquiry and theoretical developments in the context

f EMPC systems that dictate time-varying operating policies. 
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