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A method for the design of distributed model predictive control (DMPC) systems for a class of switched nonlinear sys-
tems for which the mode transitions take place according to a prescribed switching schedule is presented. Under appro-
priate stabilizability assumptions on the existence of a set of feedback controllers that can stabilize the closed-loop
switched, nonlinear system, a cooperative DMPC architecture using Lyapunov-based model predictive control (MPC) in
which the distributed controllers carry out their calculations in parallel and communicate in an iterative fashion to
compute their control actions is designed. The proposed DMPC design is applied to a nonlinear chemical process net-
work with scheduled mode transitions and its performance and computational efficiency properties in comparison to a
centralized MPC architecture are evaluated through simulations. VC 2013 American Institute of Chemical Engineers
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Introduction

Due to changes in raw materials (feedstock), energy sour-
ces, product specifications, and market demands, control of
switched nonlinear systems with scheduled mode transitions
has received considerable attention in the context of chemi-
cal process control applications. From a stability analysis
point of view, switched systems are well studied using multi-
ple Lyapunov function1 (MLF) and dwell-time2 concepts
(see also Refs. 3, 4 for results and references in this area).
From a controller design standpoint, to achieve closed-loop
stability, mode transition situations should be carefully
accounted for in the control problem formulation and solu-
tion. In this direction, control of switched systems has been
addressed using approaches based on Lyapunov functions,
for example, Refs. 5–9 as well as optimal control theory, for
example, Refs. 1, 10, 11. Furthermore, to achieve scheduled
mode transitions in an optimal setting and accommodate
input and state constraints, model predictive control (MPC)
framework can be used to design control systems that can
achieve these objectives. MPC is an online optimization-
based approach, which takes advantage of a system model to
compute a future manipulated input trajectory by minimizing

a typically quadratic cost function involving penalties on the
system state and control action (see, e.g., Ref. 12 for a com-
prehensive review of results on MPC).

Typically, MPC, including MPC of switched/hybrid sys-

tems, is studied within a centralized control framework in

which all the manipulated inputs are calculated in a single

MPC problem (see, e.g., Refs. 13–16 for results on MPC of

hybrid systems). Because in the evaluation of the control

actions by MPC online optimization problems need to be

solved, the evaluation time of the MPC is a very important

concern. Specifically, the MPC evaluation time strongly

depends on the number of manipulated inputs as well as the

dimensionality of the process model. As the number of

manipulated inputs increases, as it is the case in the context

of large-scale chemical plants, the evaluation time of central-

ized MPC may increase significantly. This may impede the

ability of centralized MPC to carry out real-time calculations

within the limits imposed by process dynamics and operating

conditions. These control action evaluation problems may

become more acute when additional constraints are imposed

on the MPC as it is the case in the context of switched sys-

tems to properly force the closed-loop system state to follow

a trajectory that meets the desired switching (operating)

process schedule.
Distributed MPC (DMPC) is a feasible alternative to over-

come the increasing computational complexity of centralized
MPC; the reader may refer to Refs. 17–20 for results on
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DMPC of linear and nonlinear systems. DMPC takes advant-
age of cooperation and communication of the distributed pre-
dictive controllers, which communicate over a shared
network, to reduce the computational burden of the corre-
sponding centralized MPC solution at the cost of slight deg-
radation of the closed-loop performance. Pertaining to the
DMPC approach adopted in this work are the cooperative
DMPC schemes, where each distributed controller optimizes
the control actions for its actuators by minimizing a “global”
cost accounting for the entire plant state and set of
inputs.18,20 However, at this point, there is no work on the
DMPC of switched or hybrid systems.

Motivated by the lack of methodologies on the DMPC of
nonlinear systems with prescribed switching schedule mode
transitions, in this work, we present a framework for the
design of DMPC systems for a broad class of switched non-
linear systems for which the mode transitions take place
according to a prescribed switching schedule. Under appro-
priate stabilizability assumptions on the existence of a set of
feedback controllers that can stabilize the closed-loop
switched, nonlinear system, we design a Lyapunov-based
iterative DMPC scheme with appropriate stability constraints
that achieves stability of the switched closed-loop system
and tracking of the prescribed switching policy. In terms of
DMPC feasibility, the stability constraints make sure that at
the moment of mode switching, the closed-loop system state
is at the stability region of the new mode while the value of
the Lyapunov function of the new mode (at the moment
of entering the new mode) is smaller compared to the value
of this Lyapunov function at the last time that the closed-
loop system had switched into that mode.

The rest of this article is organized as follows. Section
Preliminaries provides preliminaries and assumptions. Sec-
tion DMPC of Switched Nonlinear Systems describes the
DMPC scheme for switched nonlinear systems, whereas Sec-
tions Stability Analysis and Distributed Optimization Consid-
erations deal with closed-loop stability and convergence
analysis, respectively. The proposed DMPC scheme is
applied to a nonlinear chemical process network with sched-
uled mode transitions in Section Application to a Chemical
Process Network and its performance and computational effi-
ciency properties in comparison to centralized MPC are eval-
uated through simulations. Finally, Section Conclusions
concludes the article.

Preliminaries

Notation

The notation j � j is used to denote the Euclidean norm of
a vector, while we use j � jQ to denote the square of a
weighted Euclidean norm, that is, jxjQ5xTQx for all x 2 Rn.
A continuous function a : 0; aÞ ! 0; �aÞ½½ is said to belong to
class K if it is strictly increasing and satisfies að0Þ50. The
symbol Xr is used to denote the set Xr : 5 x 2 Rnx :f
VðxÞ � rg, where V is a continuous differentiable, positive
definite scalar function, and the operator ‘/’ denotes set sub-
traction, that is, A=B : 5 x 2 Rnx : x 2 A; x 62 Bf g. The sym-
bol diag(v) denotes a matrix whose diagonal elements are
the elements of vector v and all the other elements are zeros.
T denotes matrix transpose operation. The symbols tkin

r
and

tkout
r

denote the time when, for the rth time, the system
of consideration has switched in and out of the kth
mode, respectively, that is, rðt1kin

r
Þ5rðt2kout

r
Þ5k. Also, we

define T k;in5ftkin
1
; tkin

2
; � � �g and T k;out5ftkout

1
; tkout

2
; � � �g as the

set of switching times at which the kth mode is switched in
and out, respectively.

Class of switched nonlinear systems

We consider switched nonlinear systems which are com-
posed of p modes (i.e., finite-number of switching modes)
and in each mode, there are m interconnected subsystems.
Each of the subsystems in a mode can be described by the
following state-space model:

_xiðtÞ5firðtÞ ðxÞ1gsirðtÞ ðxÞuirðtÞ ðtÞ (1)

where i51;…;m, xiðtÞ 2 Rnxi denotes the vector of state var-
iables of subsystem i, uirðtÞ ðtÞ 2 Rmui (i51;…;m) is the set of
control (manipulated) inputs affecting the ith subsystem in r
mode. r : 0;1Þ ! I½ denotes the switching signal which is
assumed to be a piecewise continuous from the right func-
tion of time, that is, rðtkÞ5 lim t!t1

k
rðtÞ for all k, implying

that only a finite number of switches is allowed over any
finite interval of time. The variable x 2 Rnx denotes the
state of the entire nonlinear system which is composed
of the states of the m subsystems, that is
x5 xT

1 � � � xT
i � � � xT

m

� �T 2 Rnx . In the subsystem model of Eq. 1,
it is assumed that subsystems are coupled through system
state only. The dynamics of x can be described as follows:

_xðtÞ5frðtÞðxÞ1
Xm

i51

girðtÞ ðxÞuirðtÞ ðtÞ (2)

where the vector function frðtÞðxÞ and the matrix function
girðtÞ ðxÞ are appropriate compositions of firðtÞ and gsirðtÞ which
have dimension (nx31) and (nx3mui

), respectively. The m
sets of inputs are restricted to be in m nonempty convex sets
UirðtÞ � Rmui , i51;…;m, which are defined as UirðtÞ : 5

fuirðtÞ 2 Rmui : juirðtÞ j � umax
irðtÞ
g, where umax

irðtÞ
, i51;…;m, are the

magnitudes of the input constraints. We will design m con-
trollers to compute the m sets of control inputs uirðtÞ ,
i51;…;m, respectively. We will refer to the controller com-
puting uirðtÞ as controller i at mode rðtÞ. We assume that the
switching signal takes its values in a finite index set
I5 1; 2;…; pf g.

We assume that the vector function fk, and the matrix
functions gik , i51;…;m (k 2 I ) are locally Lipschitz vector
and matrix functions, respectively, and that the origin is an
equilibrium point of the unforced system (i.e., system of Eq.
2 with uik ðtÞ50, i51;…;m, for all t, k 2 I ) which implies
that fkð0Þ50, 8k 2 I . We further assume that during the sys-
tem operation at mode k for rth time, that is, tkin

r
� t < tkout

r
,

the system state measurements are available and sampled at
synchronous time instants tq5tkin

r
1qDkr

, q50; 1; 2;…;Nkr

where Dkr
is the sampling time. Without loss of generality,

we assume that Nkr
is a positive integer.

Stabilizability assumptions on nonlinear switched system

Consider the system of Eq. 2, for a fixed rðtÞ5k for some
k 2 I . We assume that there exists a feedback controller

hkðxÞ5 hT
1k
ðxÞ � � � hT

mk
ðxÞ

h iT
with uik 5hik ðxÞ, i51;…;m, which

renders the origin of the closed-loop system at mode k
asymptotically stable while satisfying the input constraints
for all the states x inside a given stability region. Using con-
verse Lyapunov theorems,21,22 this assumption implies that
there exist class K functions alk ð�Þ; l51; 2; 3; 4 and a
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continuously differentiable Lyapunov function VkðxÞ for the
closed-loop system, that satisfy the following inequalities:

a1k
ðjxjÞ � VkðxÞ � a2k

ðjxjÞ
@VkðxÞ
@x

ðfkðxÞ1
Xm

i51

gik ðxÞhik ðxÞÞ � 2a3k
ðjxjÞ

@VkðxÞ
@x

����
���� � a4k

ðjxjÞ

hikðxÞ 2 Uik ; i51;…;m

(3)

for all x 2 Dk � Rnx where Dk is an open neighborhood of the
origin. We denote the region X~qk

� Dk as the stability region
of the closed-loop system at mode k under the controller
hkðxÞ. Using the smoothness assumed for the fk and gik , and
taking into account that the manipulated inputs uik

, i51;…;m,
are bounded, there exists a positive constant Mk such that

fkðxÞ1
Xm

i51

gik ðxÞuik

�����
����� � Mk (4)

for all x 2 X~qk
, uik 2 Uik , i51;…;m, and k 2 I . In addition,

by the continuous differentiable property of the Lyapunov
function VkðxÞ and the smoothness of fk and gik , there exist
positive constants Lxk

, Luik
, and Cgik such that

@Vk

@x
fkðxÞ2

@Vk

@x
fkðx0Þ

����
���� � Lxk

jx2x0j

@Vk

@x
gik ðxÞ2

@Vk

@x
gik ðx0Þ

����
���� � Luik

jx2x0j; i51;…;m

@Vk

@x
gik ðxÞ

����
���� � Cgik ; i51;…;m

(5)

for all x; x0 2 X~qk
, uik 2 Uik , i51;…;m, and k 2 I .

Stability properties of hkðxÞ
In this subsection, we address the stability properties of

the controller hkðxÞ. Proposition 1 addresses the closed-loop
stability properties of the controller hkðxÞ, whereas Proposi-
tion 2 provides sufficient conditions to force the closed-loop
system state under implementation of the Lyapunov-based
controller in a sample-and-hold fashion to enter the corre-
sponding stability region of the subsequent mode once the
system switches to that mode.

We define the following sampled trajectory when the con-
troller hkðxÞ is applied in a sample-and-hold fashion at mode
k for tkin

r
� s < tkout

r
as follows

_̂xðsÞ5fkðx̂ðsÞÞ1
Xm

i51

gikðx̂ðsÞÞhikðx̂ðtlÞÞ;

l50; 1;…;Nkr21; x̂ðt0Þ5xðtkin
r
Þ

(6)

where t05tkin
r

.
Proposition 1 below ensures that if the closed-loop system

at mode k controlled by hkðxÞ implemented in a sample-and-
hold fashion and with open-loop state estimation (initial
state) starts in X~qk

and stays in mode k for all times, then it
is ultimately bounded in Xqmin k

. It characterizes the closed-
loop stability region corresponding to each mode.

Proposition 1. (c.f. Ref. 20). Consider the closed-loop
system of Eq. 6 and assume it operates at mode k for all
times. Let Dk; �sk

> 0 and ~qk > qsk
> 0 satisfy:

2a3k
ða21

2k
ðqsk
ÞÞ1L0xk

MkDk � 2�sk
=Dk: (7)

Then, if x̂ðt0Þ 2 X~qk
and qmin k

< ~qk, where qmin k
5

max Vkðx̂ðt1Dkr
ÞÞ : Vkðx̂ðtÞÞ � qsk

� �
, 8Dkr

2 ð0;Dk� the fol-

lowing inequality holds: Vkðx̂ðtÞÞ � Vkðx̂ðtqÞÞ;8t 2 tq; tq11Þ
�

(q50; 1;…) and Vkðx̂ðtqÞÞ � max Vkðx̂ðt0ÞÞ2q�sk
; qmin k

� �
.

Since Vkð�Þ is a continuous function, Vkðx̂Þ � qmin k
implies

jx̂j � dk, where dk is a positive constant and therefore,
lim sup t!1 jx̂ðtÞj � dk.

For each mode k 2 I , we assume there exist a set of ini-
tial conditions X~qk

, which is estimated as the level set of the
Lyapunov function at mode k (Vkð�Þ) and a positive real
number q�k such that under implementation of the Lyapunov-
based controller hkð�Þ in a sample-and-hold fashion, the state
of Eq. 6 satisfies

_V kðx̂ðsÞÞ � 2q�kVkðx̂ðsÞÞ; x̂ðsÞ 2 X~qk=qsk
; tkin

r
� s < tkout

r
(8)

Proposition 2. Consider the closed-loop sampled trajec-
tory x̂ðtÞ defined in Eq. 6. Given that tkin

r
� t < tkout

r
5tf in

w
, and

x̂ðtkin
r
Þ 2 X~qk

, if there exist ~qk > 0, q�k > 0, Nkr
> 0 and

Dkr
> 0 8k 2 I such that

a2f
ða21

1k
ð~qke2q�k Nkr Dkr ÞÞ � ~qf ; (9)

then x̂ðtf in
w
Þ 2 X~q f

.
Proof. It can be obtained from Eq. 8 that

Vkðx̂ðtkout
r
ÞÞ � Vkðx̂ðtkin

r
ÞÞe2q�k Nkr Dkr (10)

Since x̂ðtkin
r
Þ 2 X~qk

, we have

Vkðx̂ðtkout
r
ÞÞ � ~qke2q�k Nkr Dkr (11)

From Eq. 3, we can obtain jx̂ðtkout
r
Þj � a21

1k
ð~qke2q�k Nkr Dkr Þ. If

Eq. 9 is satisfied, using Eq. 3 for the Lyapunov-based con-
troller at mode f, it can be concluded that [Vf ðx̂ðtf in

w
ÞÞ � ~qf

which implies that x̂ðtf in
w
Þ 2 X~q f

. w

Assumption 1. Consider the closed-loop system state tra-
jectory of Eq. 6 and assume that x̂ðtkin

r
Þ 2 X~qk

Suppose, after
switching out from mode k for rth time, the system switches
to mode f for wth time, i.e., tkout

r
5tf in

w
. We assume that there

exists �� > 0 such that the closed-loop system state of Eq. 6
satisfies the following MLF constraint

Vf ðx̂ðtf in
w
ÞÞ �

Vf ðx̂ðtf in
w21
ÞÞ2�� ; w > 1; Vf ðx̂ðtf in

w21
ÞÞ > qminf

qminf
; w > 1; Vf ðx̂ðtf in

w21
ÞÞ � qminf

~qf ; w51

8<
:

(12)

where qminf
is defined in Proposition 1, Vf ðx̂ðtf in

w21
ÞÞ is the

value of the Lyapunov function of mode f when the system

switches into mode f for ðw21Þth time and Vf ðx̂ðtf in
w
ÞÞ is the

value of the Lyapunov function of mode f when the system
switches into mode f for wth time.

Assumption 1 implies that there exists a Lyapunov-based

controller corresponding to each switching mode that meets

the prescribed switching policy and at each mode the value

of the Lyapunov function of the corresponding mode

decreases to a certain level to ensure that when the system

switches out of this mode to enter the subsequent mode, the

closed-loop system state enters the stability region of the

corresponding switching mode and the Lyapunov-based con-

trollers of all the modes satisfy the MLF constraint.1

Remark 1. It should be emphasized that the stability
region X~qk

characterizes the set of initial conditions starting
from where, the closed-loop system state enters the
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corresponding stability region of the subsequent mode to pro-
ceed at the time of the switch. From a feasibility point of
view, the Lyapunov-based controller satisfying Assumption 1
yields a feasible solution to the prescribed switching policy. It
should be emphasized that the purpose of the MPC formula-
tion in this article (centralized or distributed) is to take
advantage of this feasible solution to improve closed-loop
performance.

Centralized MPC of switched systems

In this section, we briefly review the formulation of the cen-
tralized MPC for switched systems proposed in Ref. 14. For ini-
tialization purposes, we assume that xðt1in

1
Þ 2 X~q1

. We assume
that the system upon exiting from the mode k for the rth time
enters mode f for the wth time (i.e., tf in

w
5tkout

r
<1). Specifi-

cally, the centralized MPC at mode k is formulated as follows:

min
u1k

;:::;umk
2SðDkr Þ

ð ~T

0

j~xðsÞjQck
1
Xm

i51

juik ðsÞjRcik

" #
ds (13a)

st _~xðsÞ5fkð~xðsÞÞ1
Xm

i51

gik ð~xðsÞÞuik (13b)

uik ðsÞ 2 Uik ; i51;…;m (13c)

~xð0Þ5xðtqÞ (13d)

@VkðxðtqÞÞ
@x

gik ðxðtqÞÞuik ð0Þ �
@VkðxðtqÞÞ

@x
gik ðxðtqÞÞ

3hik ðxðtqÞÞ; i51;…;m (13e)

Vf ð~xðtf in
w
ÞÞ �

Vf ðxðtf in
w21
ÞÞ2�� ; w > 1; Vf ðxðtf in

w21
ÞÞ > qminf

qminf
; w > 1; Vf ðxðtf in

w21
ÞÞ � qminf

~qf ; w51

8<
:

(13f)

where ~x is the predicted state trajectory of the closed-loop
system, SðDkr

Þ is the family of piecewise continuous func-
tions over 0; ~T

� �
, Qck

and Rcik , i51;…;m, are positive defi-
nite weight matrices and ~T is the time interval corresponding
to prediction horizon and

~T5
tkout

r
2tq; if tkout

r
<1

Tdesign; if tkout
r

51

�
(14)

where 0 < Tdesign <1 is a design parameter. The transition
constraint of Eq. 13f ensures that if this mode is switched
out and then switched back in, then Vkðxðtkin

r11
ÞÞ < Vkðxðtkin

r
ÞÞ.

In general Vkðxðtkin
r
ÞÞ < Vkðxðtkin

r21
ÞÞ < � � � < ~qk. In other

words, this constraint enforces the MLF stability condition in
the switched system.

Remark 2. It should be emphasized that the centralized
MPC of Eq. 13 is not implemented in the context of conven-
tional receding horizon scheme. Based on the prescribed
switching schedule policy, at each time interval that the sys-
tem is supposed to operate in a specific mode, it uses a pre-
diction horizon from the current time until the time that the
system is supposed to switched out from that mode. Further-
more, if the system is supposed to operate in a single mode
for a specific time, it uses a fixed horizon Tdesign based on
Eq. 14.

The manipulated inputs of the centralized control design
of Eq. 13 at mode k are defined as follows:

uik ðtÞ5u�ik ðt2tqjtqÞ; i51;…;m; 8t 2 tq; tq11Þ
�

(15)

A potential drawback of the centralized MPC framework
is that its computational burden significantly increases as the
number of manipulated inputs and constraints grow, motivat-
ing the development of DMPC algorithms for switched
systems.

DMPC of Switched Nonlinear Systems

In this section, we propose an iterative Lyapunov-based
DMPC scheme for switched nonlinear systems given a pre-
scribed switching sequence. We assume that there exists a
Lyapunov-based controller for each of the switched system
modes which satisfies Eqs. 3 and 8. The controller design
problem seeks to enforce appropriate Lyapunov-based stabil-
ity constraint in the DMPC formulation to achieve practical
stability in the closed-loop switched system. From a control
design perspective, DMPC forces the system state to evolve
at each switching mode such that at the time of switching
into the next mode, the closed-loop system state is within
the stability region of the new mode. One of the difficulties
in the implementation of DMPC in switched systems is the
enforcement of the MLF constraint (Eq. 13f) from a feasibil-
ity point of view; however, in this work, we take advantage
of the specified properties of the Lyapunov-based controller
(Eqs. 3 and 8) to provide a feasible solution to the optimiza-
tion problem of the DMPC for switched systems. Specifi-
cally, the implementation strategy of DMPC of switched
nonlinear systems can be described as follows:

1. At sampling time tq all of the distributed controllers
receive the state measurements xðtqÞ through sensors.

2. At each iteration c < cmax.
2.1. All of the distributed controllers exchange their

latest optimal input trajectories.
2.2. Each MPC evaluates its own future input trajec-

tory based on xðtqÞ and the latest received input trajec-
tories of all the other MPCs.

2.3. Using the computed input trajectories of all
DMPCs the constraint of Eq. 13f is checked. If this
constraint is satisfied go to Step 2.5; otherwise, go to
Step 2.4.

2.4. Provide the DMPCs a new initial guess by
slightly perturbing the latest feasible optimal solution
(if c51, this solution is hðxðtqÞÞ; for c > 1, it is the so-
lution obtained at iteration c21) and recalculate the
input trajectories of the DMPCs. If the new input tra-
jectories satisfy the constraint of Eq. 13f, go to Step
2.5; otherwise, recalculate the input trajectories of the
DMPCs by slightly perturbing the latest initial guess
and check if the constraint of Eq. 13f is satisfied. If a
new DMPC solution that satisfies the constraint of Eq.
13f cannot be found after a set number of evaluations,
if c51, use hðxðtqÞÞ as a solution, else, keep the solu-
tion obtained at iteration c21. Go to Step 2.5.

2.5. Set c c11 and return to Step 2.1.
3. After a number of iterations/evaluations that depend on

the sampling time, pick the input trajectories which yield the
minimum cost function and satisfy the constraint of Eq. 13f
over the iterations.

4. Each MPC controller sends the first step input value of
its optimal input trajectory to its actuators.

At each sampling time and at first iteration, the Lyapu-
nov-based controller of the corresponding mode is a feasible
solution for the optimization problem of each DMPC of
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Eq. 16 and also for the centralized MPC problem of Eq. 13;
this is consequence of Assumption 1 which imposes the exis-
tence of a feasible control input trajectory for the centralized
control problem for the switched systems and also because
hðxðtqÞÞ is a feasible solution for the DMPCs.

According to this implementation strategy, the DMPC for-
mulation of MPC j at iteration c is as follows:

min
ujk
2SðDkr Þ

ð ~T

0

j~xjðsÞjQck
1
Xm

i51

juik ðsÞjRcik

" #
ds (16a)

st _~x
jðsÞ5fkð~xjðsÞÞ1

Xm

i51

gik ð~xjðsÞÞuik (16b)

uik ðsÞ5u�;c21
ik
ðsjtqÞ; i 6¼ j (16c)

ujk ðsÞ 2 Ujk (16d)

~xjð0Þ5xðtqÞ (16e)

@VkðxðtqÞÞ
@x

gjkðxðtqÞÞujk ð0Þ �
@VkðxðtqÞÞ

@x
gjk ðxðtqÞÞhjk ðxðtqÞÞ

(16f)

Vf ð~xjðtf in
w
ÞÞ �

Vf ðxðtf in
w21
ÞÞ2�� ; w > 1; Vf ðxðtf in

w21
ÞÞ > qminf

qminf
; w > 1; Vf ðxðtf in

w21
ÞÞ � qminf

~qf ; w51

8<
:

(16g)

where u�;c21
ik
ðsjtqÞ are the optimal control input trajectories

from MPC i (i51;…;m, i 6¼ j) and ~xj is the predicted system

state trajectory while MPC j uses the optimal control input

trajectories of the rest of the controllers from iteration c21.

The constraint of Eq. 16f enforces that the amount of reduc-

tion in the value of the Lyapunov function by applying the

control inputs of the DMPCs is at least at the level achieved

by the Lyapunov-based controller when it is applied in a

sample-and-hold fashion. SðDkr
Þ is the family of piecewise

continuous functions over 0; ~T
� �

. ~T is the time interval cor-

responding to the prediction horizon which is chosen accord-

ing to Eq. 14. The transition constraint of Eq. 16g ensures

that if the f mode is switched out and then switched back in

for the wth time, then Vf ðxðtf in
w
ÞÞ < Vf ðxðtf in

w21
ÞÞ. In other

words, this constraint enforces the MLF stability constraint

in the switched system. If previously, the closed-loop system

state entered the final invariant set Xqminf
, it will stay there.

If it is the first time that the system switched to mode f, the

closed-loop system state is restricted to the set X~q f
.

It should be emphasized that at the first iteration (c51),
hðxðtqÞÞ is a feasible solution to the DMPC and each MPC
assumes that the rest of the MPCs apply the Lyapunov-based
controller at the current mode. The manipulated inputs of the
proposed control design of Eq. 16 at mode k are defined as
follows:

uik ðtÞ5u�ik ðt2tqjtqÞ; i51;…;m; 8t 2 tq; tq11Þ:
�

(17)

Remark 3. Referring to the implementation of the DMPC
of Eq. 16 with the objective of ensuring that the computed
optimal solution satisfies the transition constraint of the cen-
tralized MPC of Eq. 18 at each sampling time, we can take
advantage of a sequential implementation strategy at the cost
of increasing the computational time of the DMPC calcula-
tion because in this case the computational time at each sam-
pling time will be the sum of the computational times of all

DMPCs involved in the sequential implementation. In the se-
quential architecture, if we evaluate MPCs in an increasing
order and pass optimal solutions to the adjacent controller,
ðh1ðxðtqÞÞ;…; hmðxðtqÞÞÞ is a feasible control input used for
MPC 1, ðu�1ðtqÞ; h2ðxðtqÞÞ;…; hmðxðtqÞÞÞ is a feasible control
input used for MPC 2, where u�1ðtqÞ is the optimal manipu-
lated input obtained by MPC 1 at sampling time tq and so
on.

Remark 4. In this work, we consider that the subsystems
are fully coupled through the entire system state. In this
case, it is necessary that each controller has access to the
entire system state measurements. However, it is possible to
only use some of the states in certain distributed controllers
by explicitly taking into account the system topology and
interactions between subsystems.

Stability Analysis

The following theorem characterizes the stability proper-
ties of the DMPC design of Eq. 16.

Theorem 1. Consider the system of Eq. 2 in closed-loop
under the DMPC of Eqs. 16 and 17 and assume that there
exists Lyapunov-based controllers hkð�Þ, 8k 2 I satisfying
Eq. 3 and Assumption 1. Let 0 < Tdesign <1 be a design
parameter, ~T satisfy Eq. 14 and tkin

r
� t < tkout

r
5tf in

w
for some

f , k 2 I . Then, given a positive real number dmax, if there
exist Dk; �sk

> 0, ~qk > qsk
> 0 and �wk

> 0 (8k 2 I ) such
that Eqs. 7 and 9 are satisfied and Dkr

2 ð0;D�� where D�5
min k2IDk, then x(t) is bounded and lim sup t!1
jxðtÞj � dmax.

Proof. First we prove that the optimization problem of
Eq. 16 is feasible at all times and then we proceed with the
closed-loop stability analysis. Since the Lyapunov-based
controller through implementation in a sample-and-hold
fashion satisfies the MLF constraint of Eq. 13f and at the
end of each switching mode it constraints the system state to
enter the stability region of the subsequent mode, it follows
that at each iteration hjk ð�Þ is a feasible solution for the opti-
mization problem of Eq. 16.

Given the radius of the ball around the origin, dmax, the
values of qmink

and Dk 8k 2 K are computed based on Prop-
ositions 1 and 2. Then, for the purpose of DMPC implemen-
tation, a value of Dkr

2 ð0;D�� is chosen where
D�5min k2IDk and tkout

r
2tkin

r
5lkr

Dkr
for some integer lkr

> 0
(note that given any two positive real numbers tkout

r
2tkin

r
and

D�, one can always find a positive real number Dkr
� D�

such that tkout
r

2tkin
r
5lkr

Dkr
for some integer lkr

> 0).
Part 1: First, consider the case when the switching is infi-

nite. Let t be such that tkin
r
� t < tkout

r
and tf in

w
5tkout

r
<1.

Consider the active mode k. If VkðxÞ > qmink
, the continued

feasibility of the constraint of Eq. 16f implies that
Vkðxðtkout

r
ÞÞ < Vkðxðtkin

r
ÞÞ. The transition constraint of Eq. 16g

ensures that if this mode is switched out and then switched
back in, then Vkðxðtkin

r11
ÞÞ < Vkðxðtkin

r
ÞÞ. In general

Vkðxðtkin
r
ÞÞ < Vkðxðtkin

r21
ÞÞ < � � � < ~qk. Under the feasibility of

the constraints of Eqs. 16f and 16g for all future times, the
value of VkðxÞ continues to decrease. If the mode of this
Lyapunov function is not active, there exists at least some
z 2 I such that mode z is active and Lyapunov function Vz

continues to decrease until the time that Vz � qminz
(this hap-

pens because there is a finite number of modes, even if the
number of switches may be infinite). From this point
onwards, Proposition 1 ensures that Vz continues to be less

864 DOI 10.1002/aic Published on behalf of the AIChE March 2013 Vol. 59 No. 3 AIChE Journal



than or equal to qminz
. Due to continuity of Lyapunov func-

tions, there exists dmax such that lim sup t!1 jxðtÞj � dmax.
Part 2: For the case of a finite switching sequence, consider

a t such that tkin
r
� t < tkout

r
51. Following a similar argument,

Vkðxðtkin
r
ÞÞ < Vkðxðtkin

r21
ÞÞ < � � � < ~qk. At the time of the switch

to mode k, therefore, xðtkin
r
Þ 2 X~qk

. From this point onwards,
the DMPC is applied without any switching constraint, i.e., the
constraint of Eq. 16g is removed. Since the DMPC at mode k
is stabilizing, it follows that lim sup t!1 jxðtÞj � dmax. This
completes the proof of Theorem. w

Remark 5. The purpose of Theorem 1, is to clarify under
appropriate assumptions which include (I) existence of Lya-
punov-based controllers corresponding to each mode that can
asymptotically stabilize the closed-loop system at that
switching mode, (II) satisfaction of the prescribed switching
schedule by the Lyapunov-based controllers, and (III) pick-
ing appropriate finite prediction horizon according to Eq. 14,
that the closed-loop system state under the DMPC of Eq. 16
is bounded in a final invariant set.

Distributed Optimization Considerations

In this section, we address the question of convergence of
the solution of the DMPC to the one of the centralized
MPC. It should be emphasized that for general nonlinear
systems it is not possible to prove convergence of the itera-
tions of the DMPC to the optimal centralized MPC cost at
each sampling time due to the way the Lyapunov-based con-
straint of the centralized MPC is broken down into con-
straints imposed on the individual MPCs. However, under
appropriate assumptions which include linear model, quad-
ratic Lyapunov functions corresponding to each mode and an
appropriate update rule in the DMPC iterations, it can be
shown that the MPC optimization problem is convex and
under a sufficiently large number of iterations, the optimal
value of the objective function under the DMPC converges
to the optimal value of the corresponding centralized MPC
at each sampling time.

Specifically, we consider a class of switched, linear time-
invariant systems with a state-space description of the form
at mode k 2 I :

_xðtÞ5AkxðtÞ1
Xm

i51

Bik uik ðtÞ (18)

where Ak and Bik (i51;…;m) are constant matrices with
appropriate dimensions. We assume, in accordance with
Assumption 1, that there exist a set of quadratic Lyapunov
functions Vk5xTPkx, 8k 2 I , where Pk, are positive definite
matrices, and a set of explicit feedback controllers uik 5Kik x,
where Kik is a constant coefficient matrix, meet the pre-
scribed switching schedule defined in section Preliminaries.
We also assume that the input used as the initial guess in the
optimization problem of MPC at iteration c11 is computed
according to the following expression

uc
jk
ðsjtkÞ5ð12 ~wjk

Þuc21
jk
ðsjtkÞ1 ~wjk u

�;c
jk
ðsjtkÞ (19)

where
Xm

j51
~wjk 51 with 0 < ~wjk < 1, u�;cjk

is the optimal so-
lution of controller j (j51;…;m) at iteration c and uc21

jk
is

the input trajectory assumed by the rest of controllers for
controller j at iteration c and mode k.

Corollary 1. Consider the switched, linear system of Eq.
18, assume that the conditions of Assumption 1 hold with

Vk5xTPkx and uik 5Kik x and let the input to the optimization
problem of MPC i of Eq. 16 at mode k (using Vk5xTPkx,
hik 5Kik x where i51;…;m and the linear model of Eq. 18)
at iteration c be defined according to Eq. 16. Let also
xðtqÞ 2 X~qk

. Then, if the iteration number c!1, the opti-
mal cost of the distributed optimization problem of Eqs. 16–
19, at sampling time tq converges to the optimal cost of the
corresponding centralized MPC. Furthermore, if the corre-
sponding centralized MPC asymptotically stabilizes the ori-
gin of the closed-loop system, the DMPC of Eq. 16 also
asymptotically stabilizes the origin of the closed-loop system
and the closed-loop cost of the DMPC converges to the one
given by the centralized control system.

Proof. We first prove that the optimization problems for
both the centralized and the DMPC are convex. Specifically,
the optimization problem for the centralized MPC of Eq. 13
with Vk5xTPkx and hik ðxÞ5Kik x at sampling time tq takes
the following form:

min
u1k

;…;umk
2SðDkr Þ

ð ~T

0

j~xðsÞjQck
1
Xm

i51

juikðsÞjRcik

" #
ds (20a)

st _~xðsÞ5Ak~xðsÞ1
Xm

i51

Bik uik (20b)

uik ðsÞ 2 Uik ; i51;…;m (20c)

~xð0Þ5xðtqÞ (20d)

@VkðxðtqÞÞ
@x

Bik uik ð0Þ �
@VkðxðtqÞÞ

@x
BiKik xðtqÞ; i51;…;m

(20e)

Vf ð~xðtf in
w
ÞÞ �

Vf ðxðtf in
w21
ÞÞ2�� ; w > 1; Vf ðxðtf in

w21
ÞÞ > qminf

qminf
; w > 1; Vf ðxðtf in

w21
ÞÞ � qminf

~qf ; w51

8<
:

(20f)

Specifically, the constraint of Eq. 20e takes the following
form:

ðuikð0Þ
TBT

ik
PkxðtqÞ1xðtqÞTPkBik uik ð0ÞÞ

� ððKik xðtqÞÞ
TBT

ik
PkxðtqÞ1xðtqÞTPkBik Kik xðtqÞÞ

(21)

which is linear in terms of uik (i51;…;m). If we take into
account that the input trajectories are piecewise constant
and that ~xðsÞ5eAs~xðtqÞ1

Ð s
0

eAðs2sÞPm
i51ðBik uik ðsÞÞds, for

s 2 0; ~T
� �

, and quadratic Lyapunov functions are used, it can
be verified that all the constraints are convex in terms of the
control inputs. Since Uik is also convex for i51;…;m, it can
be concluded that the switched centralized MPC optimiza-
tion problem of Eq. 20 is convex. Since the centralized MPC
optimization problem for switched linear systems is convex
and it has been initialized by a feasible solution hik ðxðtqÞÞ5
Kik xðtqÞ under Assumption 1 and the fact that xðtqÞ 2 X~qk

, it
has a unique optimal solution u�k5ðu�1k

;…; u�mk
Þ which yields

Jðu�kÞ at sampling time tq, where Jð�Þ is the quadratic cost
function of the optimization problem (see Eq. 20a). Follow-
ing a similar argument, it can be proved that the DMPC
optimization problem of MPC j (j51;…;m) at mode k is
also convex. Next, we prove that the optimal inputs and the
cost of the DMPC converge to the ones of the centralized
MPC at a fixed sampling time as c!1. The proof follows
similar arguments to the proofs presented in Refs. 23, 24.
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Defining uc
k5ðuc

1k
;…; uc

mk
Þ and the cost function by Jðuc

kÞ at
iteration c and mode k, where the update rule is defined in
Eq. 19 while considering the fact that

uc11
k 5 ~w1k

ðu�;c11
1k

; uc
2k
;…; uc

mk
Þ1 � � �1 ~wmk

ðuc
1k
;…; uc

ðm21Þk
; u�;c11

mk
Þ

(22)

we can obtain

Jðuc11
k Þ5Jð~w1k

ðu�;c11
1k

; uc
2k
;…; uc

mk
Þ1 � � �1 ~wmk

ðuc
1k
;…; uc

ðm21Þk
; u�;c11

mk
ÞÞ

<~w1k
Jðu�;c11

1k
; uc

2k
;…; uc

mk
Þ1 � � �1 ~wmk

Jðuc
1k
;…; uc

ðm21Þk
; u�;c11

mk
Þ

� ~w1k
Jðuc

1k
; uc

2k
;…; uc

mk
Þ1 � � �1 ~wmk

Jðuc
1k
;…; uc

ðm21Þk
; uc

mk
Þ5Jðuc

kÞ

(23)

where the first inequality is the result of strict convexity

of the cost function Jð�Þ and the second one arises from
optimality of the control inputs u�;cik

at iteration c where

i51;…;m. So, through iterations over a fixed sampling
time, the value of the cost function decreases. Since the

cost function is positive definite and strictly convex and it
is bounded from above by the value achieved by the Lya-

punov-based controller, we can conclude that the value of
the cost function converges to some value �J as c!1.

Since the cost function Jð�Þ is strictly convex and the
level sets of the cost function are compact, there is a limit

point ~uk5ð~u1k
;…; ~umk

Þ where �J5Jð~ukÞ. We choose an
index set Z � 0; 1; 2;…f g such that the sequence uz

k

� �
z2Z

converges to ~uk. Furthermore, all iterations uz
k are in the

intersection of U1k
3U2k

3…Umk
, where 3 denotes carte-

sian product, and the level set J � Jðu0
kÞ. Thus,

lim z2Z;z!1 Jðuz
kÞ5�J . Note that the optimal solution u�k of

the centralized problem of Eq. 20 is also a feasible solu-
tion to the DMPC problem. Subsequently, we prove that if

c!1, then ~uk ! u�k . Using contradiction, assume
~uk 6¼ u�k . Since Jð�Þ is a strict convex function we can

write

rJð~ukÞTðu�k2~ukÞ � Jðu�kÞ2Jð~ukÞ � DJðukÞ < 0 (24)

From Eq. 24 and using contradiction, if we define

D~u�
T

i 5ð0;…; 0; ðu�ik 2~uik Þ
T ; 0Þ (25)

where 0 are vector columns of zeros with appropriate dimen-
sions, it can be easily shown that the following equation is
satisfied for at least one i where i51;…;m

rJð~ukÞTD~u�i �
DJðukÞ

m
< 0 (26)

Suppose it holds for i51. Using Taylor’s expansion around
~uk for �k 2 ð0; 1Þ, dk 2 ð0; �Þ, c!1 and taking advantage
of Eq. 26, we can write

Jð~u1k
1�kðu�1k

2~u1k
Þ; ~u2k

;…; ~umk
Þ5Jð~ukÞ1�krJð~ukÞTD~u�1

1
1

2
�2

kD~u�
T

1 r2Jð~u1k
1�kðu�1k

2~u1k
Þ; ~u2k

;…; ~umk
ÞD~u�1

� Jð~ukÞ1
�k

m
DJðukÞ11k�

2
k < Jð~ukÞ

(27)

if �k is small enough such that �k

m Duk11k�
2
k is negative (this

is always possible since DJðukÞ < 0) and 1k is independent

of c and �k. Since the iterative algorithms converges to Jð~ukÞ
we can write

Jð~ukÞ5 lim
c!1

Jðu�;c1k
; uc

2k
;…; uc

mk
Þ (28)

Also, from optimality of u�;c1k
, if c!1, we can obtain

lim c!1 Jðu�;c1k
; uc

2k
;…; uc

mk
Þ � Jð~u1k

1�kðu�1k
2~u1k

Þ; ~u2k
;…; ~umk

Þ (29)

It should be emphasized that for c!1, uc
ik
! ~uik where

i51;…;m. Considering Eqs. 27–29, we can obtain

Jð~ukÞ5 lim c!1 Jðu�;c1k
; uc

2k
;…; uc

mk
Þ

� Jð~u1k
1�kðu�1k

2~u1k
Þ; ~u2k

;…; ~umk
Þ < ~Jð~ukÞ

(30)

Therefore, Jð~ukÞ < Jð~ukÞ which is a contradiction. Therefore,
the assumption ~uk 6¼ u�k was not true. It can be concluded that
~uk5u�k when c!1 and Jð~ukÞ5Jðu�kÞ. If xðtqÞ 2 X~qk

and the
centralized MPC can asymptotically stabilize the origin of the
closed-loop system, using the above arguments recursively for
each sampling time, if c!1 for each sampling time, it fol-
lows that the DMPC also asymptotically stabilizes the origin
of the closed-loop system and the closed-loop cost converges
to the one given by the centralized control system.

Remark 6. Note that a suitable partition of the control loops
to the various distributed controllers may improve the possibility
of convergence of the DMPC solution to the centralized MPC
solution for the nonlinear case,25 and further, it may be possible
to derive convex approximations of the DMPC formulation for
nonlinear systems for which it is possible to prove convergence
of the DMPC solution to the centralized solution.

Application to a Chemical Process Network

The process considered in this study is a three vessel, re-
actor–separator system consisting of two continuously stirred
tank reactors (CSTRs) and a flash tank separator shown in
Figure 1.26 The operation schedule requires switching
between two available inlet streams consisting of pure reac-
tant at different flow rates, concentrations, and temperatures.
At mode r5 1; 2f g a feed stream to the first CSTR F10r con-
tains the reactant A which is converted into the desired prod-
uct B. The effluent of the first CSTR along with additional
fresh feed F20r makes up the inlet to the second CSTR. The
reactions A!B and A!C (referred to as 1 and 2, respec-
tively) take place in the two CSTRs in series before the
effluent from CSTR 2 is fed to a flash tank. The overhead
vapor from the flash tank is condensed and recycled to the
first CSTR, and the bottom product stream is removed. A

Figure 1. Two CSTRs and a flash tank with recycle
stream.
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small portion of the overhead is purged before being
recycled to the first CSTR. All the three vessels are assumed
to have static holdup. The dynamic equations describing the
behavior of the system at mode r, obtained through material
and energy balances under standard modeling assumptions,
are given below:

dT1

dt
5

F10r

V1

ðT10r2T1Þ1
Fr

V1

ðT32T1Þ1
2DH1

qCp
k1e

2E1
RT1 CA1

1
2DH2

qCp
k2e

2E2
RT1 CA11

Q1r

qCpV1

ð31aÞ

dCA1

dt
5

F10r

V1

ðCA10r2CA1Þ1
Fr

V1

ðCAr2CA1Þ

2k1e
2E1
RT1 CA12k2e

2E2
RT1 CA1 (31b)

dCB1

dt
5

2F10r

V1

CB11
Fr

V1

ðCBr2CB1Þ1k1e
2E1
RT1 CA1 (31c)

dCC1

dt
5

2F10r

V1

CC11
Fr

V1

ðCCr2CC1Þ1k2e
2E2
RT1 CA1 (31d)

dT2

dt
5

F1

V2

ðT12T2Þ1
ðF20rÞ

V2

ðT20r2T2Þ

1
2DH1

qCp
k1e

2E1
RT2 CA21

2DH2

qCp
k2e

2E2
RT2 CA21

Q2r

qCpV2

(31e)

dCA2

dt
5

F1

V2

ðCA12CA2Þ1
ðF20rÞ

V2

ðCA20r2CA2Þ

2k1e
2E1
RT2 CA22k2e

2E2
RT2 CA2 (31f)

dCB2

dt
5

F1

V2

ðCB12CB2Þ2
ðF20rÞ

V2

CB21k1e
2E1
RT2 CA2 (31g)

dCC2

dt
5

F1

V2

ðCC12CC2Þ2
ðF20rÞ

V2

CC21k2e
2E2
RT2 CA2 (31h)

dT3

dt
5

F2

V3

ðT22T3Þ2
HvapFr

qCpV3

1
Q3r

qCpV3

(31i)

dCA3

dt
5

F2

V3

ðCA22CA3Þ2
Fr

V3

ðCAr2CA3Þ (31j)

dCB3

dt
5

F2

V3

ðCB22CB3Þ2
Fr

V3

ðCBr2CB3Þ (31k)

dCC3

dt
5

F2

V3

ðCC22CC3Þ2
Fr

V3

ðCCr2CC3Þ (31l)

Each of the tanks has an external heat input/removal actu-
ator. The model of the flash tank separator is derived under
the assumption that the relative volatility for each of the spe-
cies remains constant within the operating temperature range
of the flash tank. This assumption allows calculating the
mass fractions in the overhead based upon the mass fractions
in the liquid portion of the vessel. It has also been assumed
that there is a negligible amount of reaction taking place in
the separator. The following algebraic equations model the
composition of the overhead stream relative to the composi-
tion of the liquid holdup in the flash tank:

CAr5
aACA3

K
; CBr5

aBCB3

K
; CCr5

aCCC3

K

K5aACA3

MWA

q
1aBCB3

MWB

q
1aCCC3

MWC

q
1aDxDq

(32)

where xD is the mass fraction of the solvent in the flash tank
liquid holdup and is found from a mass balance. The defini-
tions for the variables used in Eqs. 31 and 32 can be found
in Table 1, with the parameter values given in Table 2.

Table 1. Process Variables

CA1, CA2, CA3 Concentrations of A in vessels 1, 2, 3
CB1, CB2, CB3 Concentrations of B in vessels 1, 2, 3
CC1, CC2, CC3 Concentrations of C in vessels 1, 2, 3
CAr, CBr, CCr Concentrations of A, B, C in the recycle
T1, T2, T3 Temperatures in vessels 1, 2, 3
T10r , T20r Feed stream temperatures to vessels 1, 2 at

mode r5{1, 2}
F1, F2, F3 Effluent flow rates from vessels 1, 2, 3
F10r , F20r Feed stream flow rates to vessels 1, 2 at

mode r5{1, 2}
CA10r , CA20r Concentrations of A in the feed stream to

vessels 1, 2 at mode r5{1, 2}
Fr Recycle flow rate
V1, V2, V3 Volumes of vessels 1, 2, 3
u1, u2, u3 Manipulated inputs
E1, E2 Activation energy for reactions 1, 2
k1, k2 Preexponential values for reactions 1, 2
DH1, DH2 Heats of reaction for reactions 1, 2
Hvap Heat of vaporization
aA, aB, aC, aD Relative volatilities of A, B, C, D
MWA, MWB, MWC Molecular weights of A, B, C
Q1, Q2, Q3 Heat inputs into vessels 1, 2, 3
Cp, R, q Heat capacity, gas constant, and solution

density

Table 2. Parameter Values

T101
5300, T201

5300 K
T102

5301, T202
5327 K

F101
55, F201

55, Fr51:9
m3

h

F102
55, F202

55
m3

h

CA101
54, CA201

53
kmol

m3

CA102
54:69, CA202

53:25
kmol

m3

V151:0, V250:5, V351:0 m3

E155E4, E255:5E4
kJ

kmol

k153E6, k253E6
1

h

DH1525E4, DH2525:3E4
kJ

kmol

Hvap55
kJ

kmol

Cp50:231
kJ

kgK

R58:314
kJ

kmolK

q51000
kg

m3

aA52, aB51, aC51:5, aD53 Unitless

MWA550, MWB550, MWC550
kJ

kmol
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This process is divided into three subsystems correspond-
ing to the first CSTR, the second CSTR, and the separator,
respectively. For the three subsystems, we will refer to them
as subsystem 1, subsystem 2, and subsystem 3, respectively.
The state of subsystem 1 is defined as the deviations of the
temperature and species concentrations in the first CSTR
from the desired, operating steady state; that is,
xT

1 5 T12T1sr CA12CA1sr CB12CB1sr CC12CCsr½ �T for the sys-
tem at mode r. Similarly, we define the state of subsystems
2 and 3. Accordingly, the state of the whole process is
defined as a combination of the states of the three subsys-
tems; that is, xT5 xT

1 xT
2 xT

3

� �
.

The process has one unstable and two stable steady states.
The control objective is to regulate the process at the unsta-
ble steady-state xs2

corresponding to the operating point
defined by Q1s5Q2s5Q3s50 kJ

h (which are the same for
both process operating modes), respectively. The values of
the operating steady states corresponding to each mode are
shown in Tables 3 and 4. Each of the tanks has an external
heat input which is the control input associated with each
subsystem, that is, u1r5Q12Q1s, u2r5Q22Q2s, and
u3r5Q32Q3s for r51; 2. For mode 1, the inputs are subject
to constraints as follows: ju11

j � 1:53105 kJ=h,
ju21
j � 1:53105 kJ=h, and ju31

j � 23105 kJ=h, whereas in
mode 2 ju12

j � 105 kJ=h, ju22
j � 105 kJ=h, and

ju32
j � 1:333105 kJ=h. Three DMPC controllers (controller

1, controller 2, and controller 3) will be designed to manipu-
late each one of the three inputs in the three subsystems,
respectively. Furthermore, we assume that the system state,
x, is available at synchronous time instants
tq5qD; q50; 1;…, with D50:001 h53:6 s to all the con-
trollers. The process model belongs to the following class of
nonlinear systems:

_xðtÞ5frðxðtÞÞ1
X3

i51

girðxðtÞÞuirðtÞ

where the explicit expressions of fr, gir (i51; 2; 3 and
r5 1; 2f g), are omitted for brevity.

In the simulations, we consider a quadratic Lyapunov
function VrðxÞ5xTPrx with P15diagð 1010310310320103

�
10310310103103103�Þ and P25diagð 1010310310310103103

�
10310103103103�Þ. We design the Lyapunov-based controller
hrðxÞ following the continuous bounded control law
design21,27 as follows:

ur5 u1ru3r u3r½ �T5hrðxÞ52prðxÞðLGr VrÞT (33)

where

prðxÞ5
Lfr Vr1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLfrVrÞ21ðumax jLGr VT

r jÞ
4

q
jLGr VT

r j
2

11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11ðumaxjLGr VT

r jÞ
2

q	 
 ; LGr Vr 6¼ 0

0; LGr Vr50

8>>><
>>>:

with Lfr Vr5 @Vr
@x frðxÞ and LGr Vr5 @Vr

@x GrðxÞ, where
Gr5 g1r g2r g3r½ � being the Lie derivatives of the scalar func-
tion Vr with respect to fr and Gr, respectively. Note that
G15G2 in this example. To estimate the stability region X~qr

,
extensive simulations were carried out to get an estimate of
the region of the closed-loop system under Lyapunov-based
control hrðxÞ where the time-derivative of the Lyapunov
function is negative, and then X~qr

is defined as a level set of
the Lyapunov function VrðxÞ embedded within this region.

To carry out the closed-loop performance evaluation, we
have computed the total cost of each simulation based on an
index of the following form:

J5
XM

i50

xðtiÞTQcr xðtiÞ1
X3

j51

ujrðtiÞ
TRcjr ujrðtiÞ

" #
(34)

where t050 is the initial time of the simulations, tM50:1 h
is the end time of the simulations, and ti115ti1D for
i50; 1;…. In the design of the controllers, the weighting

Table 3. Steady-State Values for xs1

CA1s1
3.31

kmol

m3

	 

CA2s1

2.75
kmol

m3

	 

CA3s1

2.88
kmol

m3

	 


CB1s1
0.17

kmol

m3

	 

CB2s1

0.45
kmol

m3

	 

CB3s1

0.50
kmol

m3

	 


CC1s1
0.04

kmol

m3

	 

CC2s1

0.11
kmol

m3

	 

CC3s1

0.12
kmol

m3

	 


T1s1
369.53 [K] T2s1

435.25 [K] T3s1
435.25 [K]

Table 4. Steady-State Values for xs2

CA1s2
3.32

kmol

m3

	 

CA2s2

2.69
kmol

m3

	 

CA3s2

2.91
kmol

m3

	 


CB1s2
0.34

kmol

m3

	 

CB2s2

0.70
kmol

m3

	 

CB3s2

0.85
kmol

m3

	 


CC1s2
0.08

kmol

m3

	 

CC2s2

0.17
kmol

m3

	 

CC3s2

0.20
kmol

m3

	 


T1s2
370.98 [K] T2s2

429.65 [K] T3s2
429.64 [K]

Figure 2. Lyapunov function trajectory of the closed-
loop system under the implementation of the
Lyapunov-based controller (dashed–dotted
line) in a sample-and-hold fashion and of the
centralized MPC (solid line) at mode one.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

868 DOI 10.1002/aic Published on behalf of the AIChE March 2013 Vol. 59 No. 3 AIChE Journal



matrices are chosen to be Qc1
5Qc2

5diag
ð 101031031032010310310310103103103
� �

Þ and R11
5R21

5R31

5R12
5R22

5R32
51028. We set the number of iterations

between controllers cmax52. The simulations were carried
out using Java programming language in a Pentium 3.20
GHz computer. The optimization problems in MPC were
solved using the open-source interior point optimizer Ipopt.

We first carried out simulations to illustrate that the
Lyapunov-based controller and the centralized MPC
scheme achieve practical closed-loop stability in each
mode of operation, respectively. Figures 2 and 3 show the
Lyapunov function trajectory in the closed-loop system
under the Lyapunov-based controller implemented in a
sample-and-hold fashion and the centralized MPC scheme
at mode one and two, respectively. As it can be seen
from these two figures, both control schemes at each
mode achieve practical closed-loop stability, while the
centralized MPC requests more aggressive moves to steer

the closed-loop system state to the origin. From a closed-
loop performance point of view, the centralized MPC out-
performs the Lyapunov-based controller by 30% at mode
one and 28% at mode two, respectively, in terms of the
performance metric of Eq. 34.

As a scheduling policy, we assume that at time
t50:004 h, the process switches from mode 1 to mode 2. It
should be emphasized that after the system enters mode 2, it
stays there until the end of the simulation time (tf 50:1 h),
and the MPC/DMPC of mode 2 is used. Figure 4 compares
the Lyapunov function trajectory of the closed-loop system
under the Lyapunov-based controller implemented in a sam-
ple-and-hold fashion, the centralized MPC of Eq. 13 and the

Figure 3. Lyapunov function trajectory of the closed-
loop system under the implementation of the
Lyapunov-based controller (dashed–dotted
line) in a sample-and-hold fashion and of the
centralized MPC (solid line) at mode two.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 4. Lyapunov function trajectory of the closed-
loop system under the implementation of the
Lyapunov-based controller (solid line) in a
sample-and-hold fashion, centralized MPC of
Eq. 13 (*) and DMPC of Eq. 16 (dashed–dot-
ted line) for the given switching policy; the
line composed of the (*) and the dashed–dot-
ted line overlap.

From t50 to 0.004 h, the lines show V1ðxÞ and from

t50.004 to 0.1 h, the lines show V2ðxÞ. [Color figure can

be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 5. State trajectories of the closed-loop system under the implementation of the DMPC system of Eq. 16.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

AIChE Journal March 2013 Vol. 59 No. 3 Published on behalf of the AIChE DOI 10.1002/aic 869



DMPC of Eq. 16 for a given switching policy, respectively.
It illustrates that the Lyapunov-based controller can meet the
given schedule by steering the closed-loop system state to
the stability region of mode 2 at the time of the switch. So,
for the given switching policy, the Lyapunov-based control-
ler provides a feasible solution. Figure 4 shows the Lyapu-
nov function trajectory of the closed-loop system under the
implementation of the centralized MPC scheme subject to
the switching constraint. As it can be seen from Figure 4,
the MPC (both centralized and distributed) design enforces
the appropriate constraint to steer the closed-loop system
state at mode 1 to the stability region of mode 2 at the time
of the switch. In Figure 4, the Lyapunov function is com-
puted for each mode, independently. It should be emphasized

that the MPC designs require more aggressive control actions
to enter the stability region of mode 2 and subsequently sta-
bilizing the plant compared to the Lyapunov-based control-
ler, which yields improvement in terms of closed-loop
performance.

Figures 5 and 6 depict the state and manipulated inputs in
the closed-loop system under the DMPC design of Eq. 16
subject to the same switching schedule, respectively. Figure
5 shows the deviation of the state trajectories from their cor-
responding steady-state values at each mode. As it can be
seen in these figures, the proposed DMPC design enforces
the appropriate constraints to steer the closed-loop system
state to the stability region of mode two at the time of the
switch and subsequently, achieves practical closed-loop

Figure 6. Manipulated input trajectories computed by the DMPC of Eq. 16.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 7. Temperature trajectories of the closed-loop system under the implementation of the DMPC system of
Eq. 16.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 8. Concentration trajectories of the closed-loop system under the implementation of the DMPC system of
Eq. 16.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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stability. Note that the DMPC is able to drive the states to
their steady-state values as shown in Figures 7 and 8. From
a closed-loop performance point of view based on Eq. 34,
the centralized MPC formulation of Eq. 13 yields 236447.02
in cost function value J, whereas the DMPC design of Eq.
16 yields 236446.87. Therefore, the DMPC achieves nearly
the centralized MPC closed-loop performance.

Finally, we compare centralized MPC and DMPC from a
control action evaluation time point of view. We set the ho-
rizon of MPC to N530. We compute the average evaluation
time of the MPC formulation at mode 1 (40 times) which
includes the switching constraint and the MPC after we
switch to mode 2 (960 times) in both centralized and DMPC
formulations. For the DMPC design, we add the simulation
time of two iterations and since the three controllers opti-
mize in parallel, we consider the maximum time of the com-
putational time of the distributed controllers as the
computational time of the DMPC. The result indicates that
for mode 1 there is an almost 36% improvement
(max 10418; 38:27; 16429f g s vs. 259.50 s) and for mode 2
there is an almost 39% improvement
(max 3170; 32:99; 3768f g s vs. 63.41 s) in computational
time when we use the DMPC framework compared to the
centralized MPC while the closed-loop performance remains
nearly the same.

Conclusions

This work focused on the design of DMPC systems for a
class of switched nonlinear systems subject to a prescribed
switching policy. Under appropriate stabilizability assump-
tions, the proposed DMPC systems ensure closed-loop stabil-
ity and satisfaction of the switching policy. Convergence of
the DMPC optimal solution to the corresponding centralized
MPC optimum was established for the linear case. A chemi-
cal process network example was used to demonstrate the
proposed DMPC design method.
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