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a  b  s  t  r  a  c  t

In  this  work,  we  consider  the  design  of  a network-based  distributed  model  predictive  control  system
using  multirate  sampling  for  large-scale  nonlinear  uncertain  systems  composed  of  several  coupled  sub-
systems.  Specifically,  we  assume  that  the  states  of  each  local  subsystem  can  be  divided  into  fast  sampled
states  (which  are  available  every  sampling  time)  and  slowly  sampled  states  (which  are  available  every
several  sampling  times).  The  distributed  model  predictive  controllers  are  connected  through  a  shared
communication  network  and  cooperate  in  an  iterative  fashion  at time  instants  in  which  full  system  state
measurements  (both  fast  and  slow)  are  available,  to  guarantee  closed-loop  stability.  When  local  subsys-
tem fast sampled  state  information  is  only  available,  the  distributed  controllers  operate  in  a decentralized
fashion  to improve  closed-loop  performance.  In  the proposed  control  architecture,  the controllers  are
designed  via  Lyapunov-based  model  predictive  control  techniques  taking  into  account  bounded  mea-
surement  noise,  process  disturbances  and  communication  noise.  Sufficient  conditions  under  which  the
state of  the  closed-loop  system  is  ultimately  bounded  in  an  invariant  region  containing  the  origin  are
derived.  The  theoretical  results  are  demonstrated  through  a  nonlinear  chemical  process  example.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

With the rapid growth in the area of network technology,
augmentation of local process control systems with additional net-
worked sensors and actuators has become a subject of increasing
importance. Such an augmentation can significantly improve the
efficiency, flexibility, robustness and fault tolerance of an indus-
trial control system (e.g., Refs. [1–3]) at the cost of coordination
and design/redesign of the various control systems employed in
the new control architecture. Motivated by this trend towards
network-based control systems in a variety of engineering applica-
tions, significant efforts over the last ten years have led to results on
analysis and design of networked control systems using centralized
control architectures (e.g., Refs. [4,5]).

Model predictive control (MPC) is an appropriate framework
to deal with the design and coordination of networked control
systems because of its ability to account for process/controller
interactions in the calculation of the control actions while han-
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dling input/state constraints. Typically, MPC  is studied within a
centralized control architecture in which all the manipulated inputs
are calculated in a single MPC  [6].  In the evaluation of MPC  con-
trol actions, the evaluation time of the MPC  strongly depends on
the number of manipulated inputs because online optimization
problems need to be solved. As the number of manipulated inputs
increases as it is the case in the context of networked control
systems, the evaluation time of a centralized MPC  increases sig-
nificantly. This may  impede the ability of networked centralized
MPC to carry out real-time calculations within the limits imposed
by process dynamics and operating conditions. Moreover, a cen-
tralized control system for large-scale systems may  be difficult to
organize and maintain and is vulnerable to potential process faults.
To overcome these issues, decentralized and/or distributed MPC
can be utilized. While in a decentralized control architecture [7],
individual controllers make their decisions based on local infor-
mation, in a distributed framework, controllers communicate with
each other to coordinate their actions.

Distributed MPC  (DMPC) has attracted a lot of attention in the
design of cooperative networked control systems. In a DMPC archi-
tecture, the manipulated inputs are computed by solving more
than one control (optimization) problems in separate processors
in a coordinated fashion. In the literature, several DMPC meth-
ods have been proposed; please see Refs. [8–14] for results in this
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area. Specifically, in Ref. [10], a DMPC scheme for coupled non-
linear systems subject to decoupled constraints was designed. In
Ref. [11], a robust DMPC design was developed for linear sys-
tems, and in Ref. [14], a cooperative DMPC scheme was  developed
for linear systems with guaranteed stability of the closed-loop
system and convergence of the cost to its corresponding, central-
ized optimal value. In our previous work [15,16], two different
DMPC architectures, namely, a sequential DMPC architecture and
an iterative DMPC architecture, were designed for nonlinear sys-
tems via Lyapunov techniques and were extended to account
for asynchronous and delayed measurements [17]. However, the
results in Refs. [15–17] were obtained under the assumptions of
noise-free communication and availability of noise-free measure-
ments of system states to all the distributed controllers at each
sampling time.

In the present work, we consider the design of a network-based
DMPC system using multirate sampling for large-scale nonlinear
uncertain systems composed of several coupled subsystems. This
problem formulation is important in the context of large-scale
networks of heterogeneous components that involve variables
that exhibit dynamics and are sampled in significantly different
time-scales, for example, energy/water networks as well as chem-
ical process networks. Specifically, we assume that the states of
each local subsystem can be divided into fast sampled states and
slowly sampled states. Furthermore, we assume that there is a
distributed controller associated with each subsystem and the
distributed controllers are connected through a shared communi-
cation network. We  propose to design the distributed controllers
via Lyapunov-based MPC  (LMPC) and coordinate their actions in an
iterative fashion to guarantee closed-loop stability when full sys-
tem state measurements (both fast and slow) are available. The
transmitted information over the shared communication network
is subject to communication channel noise. When only fast sam-
pled states are available, the distributed controllers operate in a
decentralized fashion to improve closed-loop performance. Suffi-
cient conditions under which the state of the closed-loop system
is ultimately bounded in an invariant region containing the ori-
gin are derived. The theoretical results are demonstrated through
a nonlinear chemical process example.

2. Preliminaries

2.1. Notation and class of nonlinear systems

The operator |· | is used to denote Euclidean norm of a vec-
tor while | · | Q refers to the square of the weighted Euclidean
norm, defined by |x | Q = xTQx.  A continuous function  ̨ : [0, a) → [0,
∞) is said to belong to class K if it is strictly increasing and
satisfies ˛(0) = 0. The symbol �r is used to denote the set
�r := {x ∈ Rnx : V(x) ≤ r} where V is a scalar positive definite, con-
tinuous differentiable function and V(0) = 0, and the operator ‘/’
denotes set subtraction, that is, A/B := {x ∈ Rnx : x ∈ A, x /∈ B}. The
symbol diag(v) denotes a square diagonal matrix whose diagonal
elements are the elements of vector v. We  consider a class of nonlin-
ear systems composed of m interconnected subsystems where each
of the subsystems can be described by the following state-space
model:

ẋi(t) = fi(x) + gsi(x)ui(t) + ki(x)wi(t) (1)

where i = 1, . . .,  m, xi(t) ∈ Rnxi denotes the vector of state variables
of subsystem i, ui(t) ∈ Rnui and wi(t) ∈ Rnw denote the set of control
(manipulated) inputs and disturbances associated with subsys-
tem i, respectively. The variable x ∈ Rnx denotes the state of the
entire nonlinear system which is composed of the states of the m

subsystems, that is x = [xT
1 · · ·xT

i
· · ·xT

m]
T ∈ Rnx . The dynamics of x can

be described as follows:

ẋ(t) = f (x) +
m∑

i=1

gi(x)ui(t) + k(x)w(t) (2)

where f = [f T
1 · · ·f T

i
· · ·f T

m]
T
, gi = [0T · · ·gT

si
· · ·0T ]

T
with 0 being the zero

matrix of appropriate dimensions, k is a matrix composed of ki
(i = 1, . . .,  m)  and zeros whose explicit expression is omitted for
brevity, and w = [wT

1 · · · wT
i
· · ·wT

m]
T

is assumed to be bounded, that
is, w(t) ∈ W with W:={w ∈ Rnw : |w| ≤ �, � > 0}. The m sets of inputs
are restricted to be in m nonempty convex sets Ui ⊆ Rmui , i = 1, . . .,
m,  which are defined as Ui:={ui ∈ Rnui : |ui| ≤ umax

i
} where umax

i
, i = 1,

. . .,  m, is the magnitude of the constraint on the inputs of the i-th
subsystem. We  will design m controllers to compute the m sets of
control inputs ui, i = 1, . . .,  m,  respectively. We  will refer to the con-
troller computing ui as controller i. We  assume that f, gi, i = 1, . . .,
m,  and k are locally Lipschitz vector functions and that the origin is
an equilibrium point of the unforced nominal system (i.e., system
of Eq. (2) with ui(t) = 0, i = 1, . . .,  m, w(t) = 0 for all t) which implies
that f(0) = 0.

2.2. Modeling of measurements and communication

We  assume that the states of each of the m subsystems, xi (i = 1,
. . .,  m),  are divided into two parts: xf,i, states that can be measured
at each sampling time (e.g., temperatures and pressures) and xs,i,
states which are sampled at a relatively slow rate (e.g., species
concentrations). Specifically, we assume that xf,i, are available at
synchronous time instants tp = t0 + p�, p = 0, 1, . . .,  where t0 is the
initial time and � is the sampling time; and assume that xs,i, are
available every T sampling times (i.e., xs,i, are available at tk with
k = 0, T, 2T, . . .).  Note that, in order to simplify the development,
we assume that the slowly sampled states of different subsys-
tems are all available at the same time instants. This modeling
of measurements is relevant to systems involving heterogeneous
measurements, which have different sampling rates; please see the
example in Section 4. We  also assume that for each subsystem its
local sensors, actuators and controller are connected using point-
to-point links, which implies that xf,i and xs,i are available without
delay to controller i once they are measured and that the controllers
for different subsystems are connected through a shared commu-
nication network and communicate when the full (fast and slow)
system state is available. We  consider measurement noise and com-
munication network noise. Specifically, we  consider measurement
noise caused by the lack of complete accuracy of measurement sen-
sors. This type of noise is defined as the difference between the
reading value of a state from a sensor and the true value of the state.
We assume that the sensor reading values of states xf,i and xs,i are
x̌s

f,i
and x̌s

s,i
, respectively; and x̌s

f,i
and x̌s

s,i
are modeled as follows:

x̌s
f,i
= xf,i + ns

xf,i
, x̌s

s,i
= xs,i + ns

xs,i
where ns

xf,i
and ns

xs,i
are the mea-

surement noise terms associated with xf,i and xs,i, respectively. The
measurement noise is assumed to be bounded; that is, |ns

xf,i
| ≤ �s

xf,i

and |ns
xs,i
| ≤ �s

xs,i
with �s

xf,i
and �s

xs,i
being positive real numbers. It

should be mentioned that this assumption on the type of measure-
ment noise is meaningful from a practical standpoint due to the
limit on the accuracy of the measurement sensors and the fact that
measurement noise is usually modeled as a percentage of the actual
value.

At tk with k = 0, T, 2T, . . .,  when fast and slowly sampled states are
available to each controller, the distributed controllers exchange
information, which is subject to communication channel noise.

Specifically, we  assume that controller i sends x̌s
i
= [x̌s,T

f,i
x̌s,T

s,i
]
T

as
well as its control input trajectory ui to the other controllers; and
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Fig. 1. Distributed LMPC control architecture (solid line denotes fast state sampling
and/or point-to-point links; dashed line denotes slow state sampling and/or shared
communication networks).

the values received by controller j (j /= i), x̌j
i
and ǔj

i
, are modeled as

follows: x̌j
i
= x̌s

i
+ nc,j

xi
, ǔj

i
= ui + nj

ui
where nc,j

xi
and nj

ui
are the com-

munication noise terms. The communication noise terms are also
assumed to be bounded; that is, |nc,j

xi
| ≤ �c,j

xi
and |nj

ui
| ≤ �ui

with �c,j
xi

and �ui
being positive real numbers. According to the above mod-

eling, at time tk with k = 0, T, 2T, . . . when fast and slowly sampled
states are available, the state information received by controller i
(i = 1, . . .,  m)  is described as follows:

x̌i(tk) = [x̌i
1, . . . , x̌i

i−1, x̌s
i , x̌i

i+1, . . . , x̌i
m] = x(tk) + ni

x (3)

where ni
x ∈ Rnx denotes combined communication and measure-

ment noise and |ni
x| ≤ �i

x with �i
x being a suitable composition of

�s
xf,i

, �s
xs,i

and �c,i
xj

(j /= i). This class of systems is relevant to the
case of large-scale chemical processes that are controlled by dis-
tributed control systems that exchange information over a shared
communication network through which it is not cost-effective to
communicate at every sampling time. Instead, in order to achieve
closed-loop stability and good closed-loop performance, the con-
trollers communicate every several sampling times. Please see Fig. 1
for a schematic of such type of DMPC system with the local con-
trollers designed via Lyapunov-based MPC  techniques.

2.3. Lyapunov-based controller

We  assume that there exists a locally Lipschitz Lyapunov-based
controller h(x) = [hT

1(x) · · · hT
m(x)]

T
such that when the m control

inputs are determined as ui = hi(x), i = 1, . . .,  m,  the origin of the nom-
inal interconnected closed-loop system is asymptotically stable and
the input constraints are satisfied for all x inside a compact set. This
assumption implies that there exist a continuously differentiable
Lyapunov function V(x) for the nominal closed-loop system, a class
K function ˛1(·) which bounds the value of the Lyapunov function
from above and a class K function ˛2(·) which bounds the time
derivative of the Lyapunov function from above [18,19].  Specifi-
cally, from this assumption, we have the following inequalities:

V(x) ≤ ˛1(|x|), hi(x) ∈ Ui, i = 1, . . . , m

∂V(x)
∂x

(
f (x) +

m∑
i=1

gi(x)hi(x)

)
≤ −˛2(|x|) (4)

for all x ∈ �� where �� denotes the stability region of the closed-
loop system under h(x). The set �� is usually chosen to be a level
set of V(x).

Since the manipulated inputs ui, i = 1, . . .,  m, and the disturbance
w are bounded in closed sets and the vector fields f, gi, i = 1, . . .,  m,

k  are locally Lipschitz, we can have the following inequality for all
the states within the stability region (i.e., x ∈ ��):∣∣∣∣∣f (x) +

m∑
i=1

gi(x)ui + k(x)w

∣∣∣∣∣ ≤ M (5)

where M is a positive constant. Moreover, if we  take into account
the continuous differentiable property of the Lyapunov function
V(x), we can write the following inequalities:∣∣∣∣∂V(x)

∂x
f (x) − ∂V(x′)

∂x
f (x′)

∣∣∣∣ ≤ Lx|x − x′|

|f (x) − f (x′)| ≤ Cx|x − x′|∣∣∣∣∂V(x)
∂x

gi(x) − ∂V(x′)
∂x

gi(x
′)

∣∣∣∣ ≤ Lui
|x − x′|∣∣∣∣∂V(x)

∂x
k(x)

∣∣∣∣ ≤ Lw,

∣∣∣∣∂V(x)
∂x

gi(x)

∣∣∣∣ ≤ Cgi

|hi(x) − hi(x′)| ≤ Chi
|x − x′|, |gi(x)| ≤ Mgi

|gi(x) − gi(x′)| ≤ Cui
|x − x′|, |k(x)| ≤ Mw

(6)

with Lx, Lui
, Cx, Chi

, Cui
, Cgi

, Mgi
, Mw i = 1, . . .,  m,  and Lw being posi-

tive constants for all x, x′ ∈ �� , ui ∈ Ui, i = 1, . . .,  m,  and w ∈ W .  Note
that the inequalities of Eqs. (4)–(6) are derived from the basic
assumptions (i.e., Lipschitz vector fields and existence of stabi-
lizing Lyapunov-based controller) used in this work. The various
constants involved in the upper bounds are not assumed to be
arbitrarily small.

Remark 1. The construction of Lyapunov functions can be carried
out in a number of ways using techniques like, for example, sum-of-
squares methods. For broad classes of nonlinear systems arising in
the context of chemical process control applications, quadratic Lya-
punov functions are widely used and provide very good estimates
of closed-loop stability regions; please see example in Section 4.

3. Multirate DMPC

3.1. Multirate DMPC implementation strategy

In this work, the m controllers manipulating the m sets of inputs
will be designed through LMPC techniques. For the LMPC associated
with controller i, i = 1, . . .,  m,  we will refer to it as LMPC i. A schematic
of the control system is shown in Fig. 1. At a sampling time in
which slowly and fast sampled states are available, the distributed
controllers coordinate their actions and predict future input trajec-
tories which, if applied until the next instant that both slowly and
fast sampled states are available, guarantee closed-loop stability.
At a sampling time in which only fast sampled states are avail-
able, each distributed controller tries to further optimize the input
trajectories calculated at the last instant in which the controllers
communicated, within a constrained set of values to improve the
closed-loop performance with the help of the available fast sampled
states of its subsystem.

The proposed implementation strategy of the DMPC architec-
ture at time instants in which fast and slowly sampled states are
available is as follows:

1. At tk with k = 0, T, 2T, . . .,  all the controllers first broadcast their
local subsystem states to the other controllers and then evaluate
their future input trajectories in an iterative fashion with initial
input guesses generated by h(·).

2. At iteration c (c ≥ 1)
2.1. Each controller evaluates its own future input trajectory

based on x̌i(tk) (noisy version of x(tk)) and the last received
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control input trajectories (initial input guesses generated by
h(·) when c = 1).

2.2. All the distributed controllers exchange their latest future
input trajectories. Based on the input information, each con-
troller calculates and stores the corresponding value of the
cost.

2.3. If a termination condition is satisfied, each controller sends
its entire future input trajectory corresponding to the small-
est value of the cost to its actuators; if the termination
condition is not satisfied, go to step 2.1 (c ← c + 1).

The proposed implementation strategy of the DMPC architec-
ture at time instants when only local fast sampled states are
available is as follows:

1. Controller i, i = 1, . . .,  m, receives its local fast sampled states, x̌s
f,i

.
2. Each controller i estimates the current full system state and eval-

uates its future input trajectory and sends the first step input
value to its actuators.

3.2. Multirate DMPC formulation

Before presenting the design of the LMPCs, we define a nomi-
nal sampled trajectory for each subsystem xi

h
(�|tk), k = 0, T, 2T, . . .,

which will be employed in the construction of the stability con-
straint of LMPC i (i = 1, . . .,  m).  This nominal sampled trajectory is
obtained by integrating recursively, for t ∈ [tk, tk+T) and k = 0, T, 2T,
. . .,  the following equation:

ẋi
h(�|tk) = f (xi

h(�|tk)) +
m∑

i=1

gi(x
i
h(�|tk))hi(x

i
h(l�|tk)),

∀� ∈ [l�,  (l + 1)�)  (7)

with initial condition xi
h
(0|tk) = x̌i(tk) where l = 0, . . .,  T − 1, x̌i(tk) is

the system state received by controller i at tk. Based on this sampled
trajectory, we define the following input trajectories:

ui
h,j(�|tk) = hj(x

i
h(l�|tk)), ∀� ∈ [l�,  (l + 1)�)  (8)

where j = 1, . . .,  m. This sampled trajectory, xi
h
(�|tk), will be used in

the LMPC i formulation.
At time tk, k = 0, T, 2T, . . .,  the LMPCs are evaluated in an itera-

tive fashion to obtain the future input trajectories. Specifically, the
optimization problem of LMPC j at iteration c is as follows:

min
uj ∈ S(�)

∫ N�

0

[
|x̃j(�)|Qc +

m∑
i=1

|ui(�)|Rci

]
d� (9a)

s.t. ˙̃x
j
(�) = f (x̃j(�)) +

m∑
i=1

gi(x̃
j(�))ui (9b)

ui(�) = ǔ∗,c−1
i

(�|tk), ∀i /= j (9c)∣∣∣uj(�) − u∗,c−1
j

(�|tk)
∣∣∣ ≤ �uj, ∀� ∈ [0,  T�] (9d)

uj(�) ∈ Uj (9e)

x̃j(0) = x̌j(tk) (9f)

∂V(x̃j(�))
∂x

(
1
m

f (x̃j(�)) + gj(x̃
j(�))uj(�)

)
≤ ∂V(xj

h
(�|tk))

∂x

×
(

1
m

f (xj
h
(�|tk)) + gj(x

j
h
(�|tk))uj

h,j
(�|tk)

)
, ∀� ∈ [0,  T�] (9g)

where S(�) is the family of piece-wise constant functions with sam-
pling period �,  N is the prediction horizon, Qc and Rci, i = 1, . . .,  m,  are

positive definite weight matrices, the state x̃j is the predicted tra-
jectory of the nominal system with uj computed by the LMPC of Eq.
(9) and all the other inputs are received from the other controllers
(i.e., ǔ∗,c−1

i
(�|tk) which is a noisy version of u∗,c−1

i
(�|tk)). The opti-

mal  solution to this optimization problem is denoted by u∗,c
j

(�|tk)
which is defined for � ∈ [0, N�). Accordingly, we define the final
optimal input trajectory of LMPC j (that is, the optimal trajectories
computed at the last iteration) as u∗,f

j
(�|tk) which is also defined

for � ∈ [0, N�). Note that for the first iteration of each distributed
LMPC, the input trajectories defined in Eq. (8) are used as the initial
input trajectory guesses; that is, u∗,0

i
= uj

h,i
with i = 1, . . .,  m.

The constraint of Eq. (9d) imposes a limit on the input change
between two consecutive iterations. Note that this constraint does
not restrict the input to be in a small region and as the iteration
number increases, the final optimal input could be quite differ-
ent from the initial guess. This constraint is enforced to make sure
that the predicted future evolutions of the system state in the
distributed controllers are close enough so that their actions are
coordinated and they work together to improve the closed-loop
performance. For LMPC j (i.e., uj), the magnitude of input change
between two consecutive iterations is restricted to be smaller
than a positive constant �uj. The constraint of Eq. (9g) is used to
guarantee the closed-loop stability. The manipulated inputs of the
proposed control design for t ∈ [tk, tk+1) (k = 0, T, 2T, . . .) are defined
as follows:

ui(t) = u∗,f
i

(t − tk|tk), i = 1, . . . , m. (10)

For the iterations in the design of Eq. (9), the number of iterations
c may  be restricted to be smaller than a maximum iteration number
cmax (i.e., c ≤ cmax) or/and the iterations may  be terminated when a
maximum computational time is reached. In order to improve the
performance, between two slow sampling times, each controller
uses the available local fast sampled measurements to adjust its
control input based on the calculated optimal input trajectory for
the current time obtained at the last time instant in which fast and
slowly sampled states were available. In order to guarantee closed-
loop stability, the maximum deviation of the adjusted inputs from
the optimal input trajectory at each time step is bounded. Between
two slow sampling times, each controller estimates the current full
system state using an observer based on the system model and
the available information. Specifically, the observer for controller i
takes the following form for t ∈ [tl−1, tl):

˙̂x
i
(t) = f (x̂i(t)) +

m,j /= i∑
j=1

gj(x̂
i(t))ǔ∗,i

j
(t − tk|tk) + gi(x̂

i(t))u∗i (t) (11)

with initial condition x̂i(tl−1) = xi
e(tl−1) where x̂i is the state of

this observer, ǔ∗,i
j

(�|tk) is the optimal input trajectory of LMPC j
(j = 1, . . .,  m,  j /= i) received by LMPC i, u∗

i
(t) is the actual input

that has been applied to subsystem i, and xi
e(tl−1) is the full state

estimate obtained at tl−1. The state estimate xi
e(tl), l /= 0, T, 2T,

. . .,  is a combination of the state of the observer of Eq. (11) and
of the available local state information x̌s

f,i
(tl) as follows: xi

e(tl) =
[x̂i

1(tl)
T · · ·x̌i(tl)

T · · ·x̂i
m(tl)

T ]
T

where x̌i(tl)
T = [x̌s,T

f,i
x̂T

s,i
]. The optimiza-

tion problem of LMPC j for a time instant tl, l /= 0, T, 2T, . . . is as
follows:

min
uj ∈ S(�)

∫ N�

0

[
|x̃j(�)|Qc +

m∑
i=1

|ui(�)|Rci

]
d� (12a)

s.t. ˙̃x
j
(�) = f (x̃j(�)) +

m∑
i=1

gi(x̃
j(�))ui (12b)
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ui(�) = ǔ∗,j
i

(tl − tk + �|tk), ∀i /= j,

� ∈ [0,  tk + N� − tl)
(12c)

ui(�) = hi(x̃j(�)), ∀i /= j,

� ∈ [tk + N� − tl, N�)
(12d)

∣∣∣uj(�) − u∗,f
j

(tl − tk + �|tk)
∣∣∣ ≤ �uj,

� ∈ [0, tk + N� − tl)
(12e)

uj(�) ∈ Uj (12f)

x̃j(0) = xj
e(tl) (12g)

where tk is the last time instant in which both fast and slowly sam-
pled states are available, the state x̃j is the predicted trajectory of
the nominal system with uj computed by the LMPC of Eq. (12) and
all the other inputs are determined by the constraints of Eqs. (12c)
and (12d). In this optimization problem, the input uj is restricted to
be within a bounded region around the reference input trajectories
given by u∗,f

i
(�|tk) and h(x). The optimal solution to this optimiza-

tion problem is denoted by u∗,l
j

(�|tl) which is defined for � ∈ [0, N�).
The manipulated inputs of the control design of Eq. (12) for t ∈ [tl,
tl+1) (l /= 0, T, 2T, . . .)  are defined as follows:

ui(t) = u∗,l
i

(t − tl|tl), i = 1, . . . , m.  (13)

In the design of Eqs. (9) and (10) and (12) and (13), the closed-
loop stability of the system of Eq. (2) is guaranteed by the design
of Eqs. (9) and (10) at each sampling time tk, k = 0, T, 2T, . . .,  when
the full state measurements are available. The design of Eqs. (12)
and (13) takes advantage of the predicted input trajectories u∗,f

i
,

i = 1, . . .,  m,  at sampling times tk, k = 0, T, 2T, . . .,  and the additional
available fast-sampling state measurements to adjust the predicted
inputs, u∗,f

i
, to improve the closed-loop performance.

Remark 2. Note that in the case of linear systems and flawless
communication, at each iteration, the input given by LMPC j of Eq.
(9) may  be defined as a convex combination of the current optimal
input trajectory and the previous one; for example,

uc
j (�|tk) =

m,i /=  j∑
i=1

wiu
c−1
j

(�|tk) + wju
∗,c
j

(�|tk) (14)

where
∑m

i=1wi = 1 with 0 < wi < 1, u∗,c
j

is the current solution

given by the optimization problem of Eq. (9) and uc−1
j

is the convex
combination of the solutions obtained at iteration c − 1. By doing
this, it is possible to prove that the optimal cost of the distributed
LMPC of Eq. (9) converges to its optimal value [20,14]. We  also note
that in this case, the constraint of Eq. (9d) can be removed and the
stability of the proposed DMPC architecture is still ensured. Please
see Corollary 1 below. We  further note that for nonlinear systems
it is not possible to prove the convergence of the optimal cost of
the distributed optimization problem of Eq. (9) to the cost of the
centralized LMPC [21] because the distributed LMPC does not solve
the centralized LMPC in a distributed fashion due to the way  the
Lyapunov-based constraint of the centralized LMPC is broken down
into constraints imposed on the individual LMPCs (i.e., Eq. (9g)).

Remark 3. Note that when there is no measurement noise or com-
munication noise, the implementation strategy at tk (k = 0, T, 2T, . . .)
guarantees that at each sampling time the optimal cost of the dis-
tributed optimization of Eq. (9) is upper bounded by the cost of the
Lyapunov-based controller h(·).

3.3. Stability analysis

The stability of the closed-loop system is achieved due to the
constraints of Eq. (9g) incorporated in each LMPC. The stability
property is presented in Theorem 1 below. To prove this theorem,
we need the following definitions and propositions. Specifically,
we first define the stability region of the closed-loop system
under Lyapunov-based control, and certain state trajectories of
the closed-loop system accounting for the effect of noise. Subse-
quently, we state four propositions that bound the discrepancy
between various closed-loop system solutions for finite-time under
Lyapunov-based control that will be used to state the conditions
and prove the closed-loop stability result under multirate DMPC of
Theorem 1.

Definition 1. We define ��n as follows:

�n = max{V(x) : (x + n) ∈ ��, |n| ≤ �x} (15)

where �x = max1≤i≤m{�i
x} defines the upper bound on the noise n.

The region ��n will be used as the stability region of the system
under the Lyapunov-based controller h(x) in the presence of mea-
surement noise, process disturbances and communication noise.

Definition 2. The closed-loop state trajectory of the nominal sys-
tem for t ∈ [tk, tk+1) under h(x) based on actual system state, x(tk),
and applied in sample and hold fashion is denoted by xh,2(t) which
is obtained by integrating, for t ∈ [tk, tk+1), the following equation:

ẋh,2(t) = f (xh,2(t)) +
m∑

i=1

gi(xh,2(t))hi(xh,2(tk)) (16)

where xh,2(tk) ∈ ��n .

Definition 3. The closed-loop state trajectory of the nominal sys-
tem for t ∈ [tk, tk+1) under h(x) based on noisy system states and
applied in sample and hold fashion is denoted by xh(t) which is
obtained by integrating, for t ∈ [tk, tk+1), the following equation:

ẋh(t) = f (xh(t)) +
m∑

i=1

gi(xh(t))hi(x̌h(tk)) (17)

where xh(tk) ∈ ��n , x̌h(tk) = xh,2(tk) + n(tk), |n | ≤ �x.

Proposition 1 below bounds the difference between the state
trajectories starting from two different initial conditions in ��n

(which is in the stability region �� of the control law h(x)) under
noise with control inputs generated by h(x).

Proposition 1. Consider the systems:

ẋa(t) = f (xa(t)) +
m∑

i=1

gi(xa(t))hi(x̌a(0))

ẋb(t) = f (xb(t)) +
m∑

i=1

gi(xb(t))hi(x̌b(0))

where the initial states xa(0), xb(0) ∈ ��n , |xa(0) − xb(0) | ≤ �ab,
|xa(0) − x̌a(0)|  ≤ �a and |xb(0) − x̌b(0)|  ≤ �b. If 0 < �n < �, then there
exists a function fE(· , · , · , ·) such that |xa(t) − xb(t) | ≤ fE(�ab, �a, �b,
t) for all xa(t), xb(t) ∈ ��n with fE(�ab, �a, �b, t) = (�ab + L2

L1
)eL1t − L2

L1
where L1, L2, �ab, �a and �b are positive real numbers.

Proof. If we define e(t) = xa(t) − xb(t), then the derivative
of e(t) can be calculated as ė(t) = ẋa − ẋb. Adding/subtracting∑m

i=1gi(xa(t))hi(x̌b(0)) to/from the expression of ė(t) and using the
conditions defined in Eq. (6) obtained by the local Lipschitz proper-
ties and the fact that hi(·) satisfies input constraints, we can obtain



Author's personal copy

1236 M. Heidarinejad et al. / Journal of Process Control 21 (2011) 1231– 1242

the following inequality:

|ė(t)| ≤ Cx|xa(t) − xb(t)| +
m∑

i=1

Mgi
Chi
|x̌a(0) − x̌b(0)|

+
m∑

i=1

umax
i Cui

|xa(t) − xb(t)|. (18)

Using that |x̌a(0) − x̌b(0)|  ≤ �a + �b + �ab and defining L1 = Cx +∑m
i=1umax

i
Cui

and L2 = (�a + �b + �ab)
∑m

i=1Mgi
Chi

, we obtain |ė(t)| ≤
L1|e(t)| + L2. Integrating |ė(t)| with initial condition |e(0) | ≤ �ab, we
can obtain |e(t)| ≤ (�ab + L2

L1
)eL1t − L2

L1
which proves Proposition 1.

�

The following proposition provides sufficient conditions that
ensure that h(·) can achieve closed-loop stability of the nominal sys-
tem in the presence of bounded measurement and communication
noise.

Proposition 2. Consider the closed-loop nominal sampled trajectory
xh(t) of the system of Eq. (2) as defined in Definition 3. Let �,  �s, �x > 0
and 0 < �s < �n < � satisfy:(

Lx +
m∑

i=1

umax
i Lui

)(
fE(0,  0, �x, �)  + M�

)
+ �x

m∑
i=1

Cgi
Chi
− ˛2

(
˛−1

1 (�s)
)
≤ −�s/�.  (19)

where fE is defined in Proposition 1. For any k, if xh(tk) ∈��n /��s ,
then V(xh(tk+1)) ≤ V(xh(tk)) − �s and V(xh(t)) ≤ V(xh(tk)) for t ∈ [tk,
tk+1). Also, if �min ≤ �n where �min = max  {V(xh(t + �))  : V(xh(t)) ≤ �s}
and xh(t0) ∈ ��n , then we also have V(xh(tk)) ≤ max  {V(xh(t0)) − k�s,
�min} and V(xh(t)) ≤ max  {V(xh(tk)), �min} for t ∈ [tk, tk+1).

Proof. Following Definition 3, the time derivative of
the Lyapunov function along the nominal sampled tra-
jectory xh(t) of the system of Eq. (2) for t ∈ [tk, tk+1)
is given by V̇(xh(t)) = ∂V(xh(t))

∂x
ẋh(t). Adding/subtracting

∂V(xh,2(tk))
∂x

(
f (xh,2(tk)) +

∑m
i=1gi(xh,2(tk))hi(xh,2(tk))

)
to/from the

expression describing V̇(xh(t)), and then adding/substracting
∂V(xh(t))

∂x

∑m
i=1gi(xh(t))hi(xh,2(tk)) to/from the resulting inequality,

we can obtain the following inequality by the conditions of Eqs.
(4) and (6):

V̇(xh(t)) ≤
(

Lx +
m∑

i=1

umax
i Lui

)
|xh(t) − xh,2(tk)|

+
m∑

i=1

Cgi
Chi
|x̌h(tk) − xh,2(tk)| − ˛2

(
˛−1

1 (�s)
)

(20)

for all xh,2(tk) ∈ ��n /��s . Using the triangular inequality, we obtain
|xh(t)− xh,2(tk) | ≤ | xh(t) − xh,2(t) | + | xh,2(t) − xh,2(tk) | for t ∈ [tk, tk+1).
Taking into account the condition of Eq. (5),  the continuity of
xh,2(t), the fact that |x̌h(tk) − xh,2(tk)| ≤ �x, and applying Proposition
1, we obtain from Eq. 20 the following bound on the time deriva-
tive of the Lyapunov function for t ∈ [tk, tk+1), for all initial states
xh(tk) ∈ ��n /��s :

V̇(xh(t)) ≤ �x

m∑
i=1

Cgi
Chi
− ˛2

(
˛−1

1 (�s)
)

+
(

Lx +
m∑

i=1

umax
i Lui

)(
fE(0,  0, �x, �)  + M�

)
. (21)

If the condition of Eq. (19) is satisfied, then V̇(xh(t)) ≤
−�s/�. Integrating this bound on t ∈ [tk, tk+1), we  obtain

that V(xh(tk+1)) ≤ V(xh(tk)) − �s and V(xh(t)) ≤ V(xh(tk)).
Applying this result recursively, it is easy to ver-
ify that V(xh(tk)) ≤ max  {V(xh(t0)) − k�s, �min} and
V(xh(t)) ≤ max  {V(xh(tk)), �min}. �

Proposition 2 ensures that if the nominal system under the con-
trol h(x) implemented in a sample-and-hold fashion starts in ��n ,
then it is ultimately bounded in ��min .

Proposition 3. Consider the systems

ẋa(t) = f (xa(t)) +
m∑

i=1

gi(xa(t))uc
i (t)

ẋb(t) = f (xb(t)) +
m,i /=  j∑

i=1

gi(xb(t))ǔc−1
i

(t) + gj(xb(t))uc
j (t)

where ǔc−1
i

(t) = uc−1
i

(t) + nui
with initial states xb(t0) = xa(t0) +

nj
x ∈ �� , xa(t0) ∈ ��n , |nj

x| ≤ �j
x and |nui

| ≤ �ui
. There exists a function

fX,j(· , ·) such that

|xa(t) − xb(t)| ≤ fX,j(�
j
x, t − t0) (22)

for all xa(t), xb(t) ∈ �� , and uc
i
(t), uc−1

i
∈ Ui and |uc

i
(t) − ǔc−1

i
(t)| ≤ �ui,

i = 1, . . .,  m and fX,j(�) =
(

C2,j
C1,j
+ �j

x

)
eC1,j(�) − C2,j

C1,j
with C2,j and C1,j are

positive constants.

Proof. Let e(t) = xa(t) − xb(t). The derivative of e(t) can
be calculated as ė(t) = ẋa(t) − ẋb(t). Adding/subtracting∑m,i /= j

i=1 gi(xa(t))ǔc−1
i

(t) to/from the expression of e(t), and then

using the fact ǔc−1
i

(t) ≤ umax
i
+ �ui

and the conditions defined in
Eq. (6),  we obtain the following inequality:

|ė(t)| ≤
(

Cx + umax
j

Cuj
+

m,i /=  j∑
i=1

(umax
i +�ui

)Cui

)
|e(t)| +

m,i /=  j∑
i=1

Mg,i�ui

Defining C1,j = Cx + umax
j

Cuj
+
∑m,i /=  j

i=1 (umax
i
+ �ui

)Cui
and C2,j =∑m,i /= j

i=1 Mgi
�ui, from the above inequality, we  have |ė(t)| ≤

C1,j|e(t)| + C2,j . Since the initial condition, e(t0), satisfies |e(t0)| ≤ �j
x

(recall xb(t0) = xa(t0) + nj
x where |nj

x| ≤ �j
x), we  can obtain |e(t)| ≤(

C2,j
C1,j
+ �j

x

)
eC1,j(t−t0) − C2,j

C1,j
. This proves Proposition 3. �

Proposition 3 bounds the difference between the nominal state
trajectory under the optimized control inputs and the predicted
nominal state trajectory generated in each LMPC optimization
problem.

Proposition 4. Consider the systems

ẋa(t) = f (xa(t)) +
m∑

i=1

gi(xa(t))ui(t) + k(xa(t))w(t)

ẋb(t) = f (xb(t)) +
m∑

i=1

gi(xb(t))ui(t)

with initial states xb(tk) = xa(tk) + n ∈ �� , xa(tk) ∈ �� , and |n | ≤ �x.
There exists a function fW(· , ·) such that

|xa(t) − xb(t)| ≤ fW (�x, t − tk), (23)

for all xa(t), xb(t) ∈ �� and all w(t) ∈ W with fW (�x, �) =(
�x + 	2

	1

)
e	1� − 	2

	1
where 	1, 	2 are positive real numbers.
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Proof. Define e(t) = xa(t) − xb(t), then ė(t) = ẋa(t) − ẋb(t). Using the
condition of Eq. (6),  we obtain the following inequality:

|ė(t)| ≤
(

Cx +
m∑

i=1

umax
i Cui

)
|e(t)| + Mw�. (24)

Defining 	1 = Cx +
∑m

i=1umax
i

Cui
and 	2 = Mw�, and accounting

for that |e(tk) | ≤ �x, we obtain |e(t)| ≤
(

�x + 	2
	1

)
e	1(t−tk) − 	2

	1
. This

proves Proposition 4. �

Proposition 4 provides an upper bound on the deviation of
the state trajectory obtained using the nominal model, from the
actual state trajectory when the same control actions are applied.
Proposition 5 bounds the difference between the magnitudes of the
Lyapunov function of two states in �� .

Proposition 5 (c.f. [16]). Consider the Lyapunov function V(·) of the
system of Eq. (2).  There exists a quadratic function fV(·) such that
V(x) ≤ V(x′) + fV(| x − x′ |) for all x, x′ ∈ �� .

In Theorem 1 below, we provide sufficient conditions under
which the DMPC of Eqs. (9) and (10) and (12) and (13) guarantees
that the state of the closed-loop system is ultimately bounded in
a region that contains the origin. To simplify the proof of Theorem
1, we define new functions fH(�) and fX(�) based on fE and fX,i (i = 1,
. . .,  m),  respectively, as follows:

fH(�) =
m∑

i=2

(
1
m

Lx + Mgi
Chi
+ umax

i Lui

)(
1
L1

fE(�i
x + �1

x , 0, 0, �) − L2� + �i
x + �1

x

L1

)
,

fX (�) =
(

1
m

Lx + Lu1 umax
1

)(
1

C1,1
fX,1(0,  �) − C2,1

C1,1
�

)
+

m∑
i=2

(
1
m

Lx + Lui
umax

i

)(
1

C1,i
fX,i(�

i
x + �1

x , �) − C2,i

C1,i
� − �i

x + �1
x

C1,i

)
.

It is easy to verify that fH(�) and fX(�) are strictly increasing and
convex functions of their arguments.

Theorem 1. Consider the system of Eq. (2) in closed-loop with the
DMPC design of Eqs. (9) and (10) and (12) and (13) based on the
controller h(x) that satisfies the conditions of Eq. (4) with class K func-
tions ˛i(·), i = 1, 2. If there exist � > 0, �s > 0, �x > 0, � > �n > �min > 0,
� > �n > �s > 0 and N ≥ T ≥ 1 that satisfy the conditions of Eq. (19) and
the following inequality:

fX (T�) + fV (fW (�x, T�)) + fV (fW (�x, 0)) + fH(T�)

+
m∑

i=1

Cg,i�ui(T − 1)� − T�s < 0, (25)

and if the initial state of the closed-loop system x(t0) ∈ ��n , then x(t)
is ultimately bounded in ��b

⊆ ��n where

�b = �min + fV (fW (�x, 0))ui(T − 1)�

+
m∑

i=1

Cg,i� + fH(T�) + fV (fW (�x, T�)) + fX (T�).

Proof. We  first consider two consecutive time instants in which
both fast and slowly sampled states are available: tk and tk+T (k = 0,
T, 2T, . . .).  We  will prove that the Lyapunov function of the system
is decreasing from tk to tk+T. In the following, we  denote the tra-
jectory of the nominal system of Eq. (2) under the DMPC of Eqs.
(9) and (10) and (12) and (13) starting from x̌1(tk) (which is the
state received by LMPC 1 at tk) as x̃, and we also denote the pre-
dicted nominal system trajectory in the evaluation of the LMPC
of Eq. (9) at the final iteration as x̃j with j = 1, . . .,  m.  It should be
mentioned that the initial condition for the nominal sampled tra-

jectory x̃ under the implementation of u∗
i

can be x̃(tk) = xi
h
(0|tk)

for any i = 1, . . .,  m.  Without loss of generality, we  assume that
x̃(tk) = x̌1(tk) = x1

h
(0|tk); use of any i = 2, . . .,  m in x̃(tk) = xi

h
(0|tk)

would simply require an appropriate modification in the definitions
of fX(·) and fH(·).

The derivative of the Lyapunov function of the nominal system
of Eq. (2) under the DMPC of Eqs. (9) and (10) and (12) and (13)
from tk to tk+T can be expressed as follows:

V̇(x̃(�)) = ∂V(x̃(�))
∂x

(
f (x̃(�)) +

m∑
i=1

gi(x̃(�))u∗i (�)

)
(26)

where x̃(tk) = x̌1(tk) = x1
h
(0|tk) and u∗

i
(�) is the actual input applied

to the system and defined as follows:

u∗i (�) =
{

u∗,f
i

(�|tk), � ∈ [0,  �)
u∗,l

i
(�|tl), � ∈ [0,  �), l = k + 1, . . . , k + T − 1.

Combining Eq. (26) and the inequality constraints
of Eq. (9g) (i = 1, . . .,  m), and adding/subtracting
∂V(x1

h
(�|tk))

∂x

(
f (x1

h
(�|tk)) +∑m

i=1gi(x1
h
(�|tk))u1

h,i
(�|tk)

)
to/from the

righthand side of the resulting inequality, we can obtain the

following inequality for all � ∈ [0, T�] by taking into account the
conditions of Eq. (6):

V̇(x̃(�)) ≤ V̇(x1
h
(�|tk)) +

m∑
i=1

Cgi

(
u∗i (�) − u∗,f

i
(�|tk)

)
+
(

1
m

Lx + Lu1 u∗,f1 (�|tk)
)∣∣x̃(�) − x̃1(�)

∣∣+ . . .

+
(

1
m

Lx + Lum u∗,fm (�|tk)
)∣∣x̃(�) − x̃m(�)

∣∣
+
(

1
m

Lx + umax
2 Lu2

)∣∣x2
h
(�|tk) − x1

h
(�|tk)

∣∣+ . . .

+
(

1
m

Lx + umax
m Lum

)∣∣xm
h

(�|tk) − x1
h
(�|tk)

∣∣
+Mg2 Ch2

∣∣x2
h
(�|tk) − x1

h
(�|tk)

∣∣+ . . .

+Mgm Chm

∣∣xm
h

(�|tk) − x1
h
(�|tk)

∣∣

(27)

Applying Propositions 3 and 1 to the inequality of Eq. (27), and
then integrating the resulting inequality from � = 0 to � = T� and
taking into account that x̃(tk) = x1

h
(0|tk), the constraints of Eqs. (9d)

and (12e) and the definitions of fX(·), fH(·) and u∗(�), the following
inequality can be obtained:

V(x̃(tk+T )) ≤ V(x1
h(T�|tk))+fX (T�)+fH(T�) +

m∑
i=1

Cg,i�ui(T − 1)�.

(28)

Since V(x1
h
(T�|tk)) ≤ max{V(x1

h
(0|tk)) − T�s, �min} from

Proposition 2, x̃(tk) = x1
h
(0|tk) and |V(x̃(tk)) − V(x(tk))| ≤

fV (fW (�x, 0)) and |V(x̃(tk+T )) − V(x(tk+T ))| ≤ fV (fW (�x, T�)) from
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Propositions 4 and 5, we can obtain the following inequality from
Eq. (28):

V(x(tk+T )) ≤ max{V(x(tk)) − T�s, �min} + fX (T�) + fH(T�)

+fV (fW (�x, T�)) + fV (fW (�x, 0)) +
m∑

i=1

Cg,i�ui(T − 1)�.
(29)

If there exist � > 0, �s > 0, �x > 0, � > �n > �min > 0, � > �n > �s > 0
and N ≥ T ≥ 1 that satisfy the conditions of Eqs. (19) and 25,  then
there exists �w > 0 such that the following inequality holds

V(x(tk+T )) ≤ max{V(x(tk)) − �w, �b} (30)

which implies that if x(tk) ∈ ��n /��b
, then V(x(tk+T)) < V(x(tk)), and

if x(tk) ∈ ��b
, then V(x(tk+T)) ≤ �b.

Because the upper bound on the difference between the Lya-
punov function of the actual trajectory x and the nominal trajectory
x̃ (see Eq. (30)) is a strictly increasing function of T, the inequality
of Eq. (30) also implies that:

V(x(t)) ≤ max{V(x(tk)) − �w, �b}, ∀t ∈ [tk, tk+T ]. (31)

Using the inequality of Eq. (31) recursively, it can be proved
that if x(t0) ∈ ��n , then the closed-loop trajectories of the system
of Eq. (2) under the proposed DMPC design stay in ��n for all times
(i.e., x(t) ∈ ��n for all t). Moreover, if x(t0) ∈ ��n , the closed-loop
trajectories of the system of Eq. (2) under the proposed iterative
DMPC design satisfy limsup t→∞V(x(t)) ≤ �b. This proves Theorem
1. �

In addition to the stability result of Theorem 1, we  note that
because the closed-loop states of the system of Eq. (2) under the
proposed DMPC scheme are guaranteed to be bounded in a compact
set containing the origin and the manipulated inputs are bounded
for all times (this follows from the practical stability of the closed-
loop system), the cost along the closed-loop system trajectory over
finite time (which only depends on the absolute values of the
magnitude of the system states and the manipulated inputs) is
also bounded. We  also note that in the context of linear systems
and noise-free measurements and communication, the distributed
optimization problem of Eq. (9) is convex. Furthermore, if the inputs
of the distributed controllers are defined as convex combinations
of their current and previous solutions as described in Eq. (14),
as the iteration number c increases, the optimal cost given by the
distributed optimization problem of Eq. (9) converges to its corre-
sponding centralized optimal value. This property is summarized
in the following Corollary 1.

Corollary 1. Consider a class of linear time-invariant systems:

ẋ(t) = Ax(t) + Bu(t) (32)

with

ẋi = Aiixi +
∑
j /=  i

Aijxj + Biui(t) (33)

where A, B, Aii, Aij and Bi are constant matrices with appropriate
dimensions. If we define the inputs of the distributed controllers at
iteration c as in Eq. (14), then at a sampling time tk, as the itera-
tion number c→ ∞,  the optimal cost of the distributed optimization
problem of Eq. (9) converges to the optimal cost of the corresponding
centralized control system. If x(0) ∈ �� and the corresponding cen-
tralized MPC  asymptotically stabilizes the origin of the closed-loop
system, the DMPC of Eq. (9) also asymptotically stabilizes the origin of
the closed-loop system and the closed-loop performance of the DMPC
converges to the one given by the centralized control system.

Proof. In this proof, we focus on a simplified case: (1) a linear
system composed of two subsystems, and (2) full state feedback, x,
is available every sampling time. We  first prove that, at each sam-
pling time, the optimal cost of the distributed optimization problem

of Eq. (9) converges to the optimal cost of the corresponding cen-
tralized control system as the iteration number increases, and then
prove that if the corresponding centralized MPC  asymptotically sta-
bilizes the origin of the closed-loop system, then the DMPC of Eq.
(9) also asymptotically stabilizes the origin of the closed-loop sys-
tem. This proof can be extended in a straightforward manner to
include general linear systems with measurements available every
T (T ≤ N) sampling times.

For a linear system, it is easy to verify that the constraints of Eqs.
(9a)–(9f) are convex. We  will focus on the proof of the convexity of
the constraint of Eq. (9g). Specifically, using a quadratic Lyapunov
function V(x) = xTPx where P is a positive definite symmetric matrix,
the constraint of Eq. (9g) takes the following form:(

1
2

x̃j(�)T AT + uj(�)T BT
j

)
Px̃j(�) + x̃j(�)T P

(
1
2

Ax̃j(�) + Bjuj(�)
)

≤
(

1
2

xj
h
(�|tk)T AT + uj

h,j
(�|tk)T BT

j

)
Px̃j

h
(�|tk)

+xj
h
(�|tk)T P

(
1
2

Axj
h
(�|tk) + Bju

j
h,j

(�|tk)
)

(34)

where j = 1, 2, � ∈ [0, �]  and x̃j is the predicted trajectory of the nom-
inal system with uj computed by the LMPC of Eq. (9) and the other
input is received from the other controller. The right hand side of
Eq. (34) has no dependence on uj or x̃j and can be considered as
a constant. If we  take into account that the input trajectories are
piece-wise constant and that x̃j(�) = eA� x̃j(0) +

∫ �

0
eA(�−s)Bu(s)ds,

for � ∈ [0, �],  we can obtain that:

x̃j(�) = Cj(tk, �) + Dj(tk, �)uj (35)

where Cj(tk, �) and Dj(tk, �) are matrices that depend only on �. As it
can be seen from Eq. (35), uj appears linearly. Taking into account
Eq. (35) and the fact that the right hand side of Eq. (34) can be
considered as a constant, we  can re-write Eq. (34) in a quadratic
form with respect to uj as follows:

uT
j Ej(tk, �)uj + Fj(tk, �)uj ≤ Gj(tk, �) (36)

where Ej(tk, �), Fj(tk, �) and Gj(tk, �) are matrices that depend only
on �. This proves that the constraint of Eq. (34) is convex. Therefore,
the optimization problem of Eq. (9) for the linear system with two
subsystems is convex. If the inputs of the distributed controllers
at each iteration c are defined as in Eq. (14), then the convergence
of the cost given by the distributed optimization problem to the
corresponding centralized control system can be proved following
similar strategies used in Refs. [20,14] for a specific sampling time
tk. If x(0) ∈ �� and the centralized MPC  can asymptotically stabilize
the origin of the closed-loop system, using the above arguments
recursively for each sampling time, if c→ ∞ for each sampling time,
it follows that the DMPC also asymptotically stabilizes the origin of
the closed-loop system and the closed-loop cost converges to the
one given by the centralized control system. �

Remark 4. Referring to the open-loop nature of the estimator of
Eq. (11), it is important to note that it does not pose any restrictions
on the open-loop stability of the processes in which the proposed
multirate DMPC method can be applied. The reason is that this
estimator is used to provide “short-term” (within the slow sam-
pling period upper bound) estimates of plant states which are used
in the fast sampling-time DMPCs applied in the various subsys-
tems; therefore, if the upper bound on the slow sampling time is
sufficiently small as required by Theorem 1, the stability of the
closed-loop system under the proposed multirate DMPC scheme
is guaranteed.
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Table  1
Disturbance parameters.


p � �p 
p � �p

CA1 0.1 0.7 0.09 CA2 0.1 0.7 0.09
CB1 0.02 0.7 0.01 CB2 0.1 0.7 0.03
CC1 0.02 0.7 0.01 CC2 0.1 0.7 0.01
T1 10 0.7 1.17 T2 10 0.7 1.35
CA3 0.1 0.7 0.09 CB3 0.1 0.7 0.02
CC3 0.02 0.7 0.01 T3 10 0.7 1.35

Remark 5. Even though the conditions of Theorem 1 are conser-
vative in nature in order to guarantee closed-loop stability, they do
provide insight into the relationship between the various variables
characterizing the controller, process and measurement sampling
components of the closed-loop system and can be used to properly
tune the overall control system. The degree of conservativeness of
the conditions of Theorem 1 can be assessed in practice via closed-
loop simulations.

Remark 6. Note that if all the distributed controllers have access
to the whole system state vector measurements at each slow sam-
pling instant, the controllers do not have to communicate and
can make their calculation in a decentralized fashion without loss
of the closed-loop stability because of the design of the stability
constraints. The communication and iteration of the distributed
controllers, however, can improve the overall closed-loop sys-
tem performance significantly. It is also important to note that
the DMPC system operating at the slow sampling time can uti-
lize alternative communication strategies between the distributed
controllers like, for example, sequential communication or local
(nearest-neighbor) communication, provided appropriate condi-
tions are satisfied that ensure stability of the closed-loop system in
each case. Furthermore, ideas from the quasi-decentralized control
framework for multi-unit plants developed in Ref. [12] where suit-
able models are used in each controller to estimate state variables of
the other subsystems, can be adopted in the proposed DMPC frame-
work. Finally, we note that if measurements of some of the state
variables are not available, networked state estimation schemes
[22] may  be used within the proposed multirate DMPC framework.

4. Application to a chemical process

The process considered in this study is a three vessel, reactor-
separator system consisting of two continuously stirred tank
reactors (CSTRs) and a flash tank separator. The reactions A → B
and A → C (referred to as 1 and 2, respectively) take place in
the two CSTRs before the effluent from CSTR 2 is fed to a flash
tank. The detailed description and modeling of the process can
be found in Ref. [23]. The process is numerically simulated using
a standard Euler integration method. Process noise was  added to
simulate disturbances/model uncertainty and it is generated as
autocorrelated noise of the form wk = �wk−1 + �k where k = 0, 1,
. . . is the discrete time step of 0.001 h, �k is generated by a nor-
mally distributed random variable with standard deviation 
p,
and � is the autocorrelation factor and wk is bounded by �p, that
is |wk| ≤ �p. Table 1 contains the parameters used in generating
the process noise. The process is divided into three subsystems
corresponding to the first CSTR, the second CSTR and the sep-
arator, respectively. For the three subsystems, we will refer to
them as subsystem 1, subsystem 2 and subsystem 3, respectively.
The state of subsystem 1 is defined as the deviations of the tem-
perature and species concentrations in the first CSTR from their
desired steady-state; that is, xT

1 = [xT
f,1, xT

s,1] where xf,1 = T1− T1s

and xT
s,1 = [CA1 − CA1s CB1 − CB1s CC1 − CCs] denote fast sampled and

slowly sampled measurements of subsystem 1, respectively. Due
to the simplicity of temperature measurement at each sampling

Table 2
Steady-state values for xs .

CA1s 3.31 [kmol/m3] CA2s 2.75 [kmol/m3]
CB1s 0.17 [kmol/m3] CB2s 0.45 [kmol/m3]
CC1s 0.04 [kmol/m3] CC2s 0.11 [kmol/m3]
T1s 369.53 [K] T2s 435.25 [K]
CA3s 2.88 [kmol/m3] CB3s 0.50 [kmol/m3]
CC3s 0.12 [kmol/m3] T3s 435.25 [K]

time, we denote the temperature as the fast sampled measure-
ment of each subsystem. The states of subsystems 2 and 3 are
defined similarly; they are xT

2 = [T2 − T2s CA2 − CA2s CB2 − CB2s CC2 −
CC2s] and xT

3 = [T3 − T3s CA3 − CA3s CB3 − CB3s CC3 − CC3s]. The values
of the desired steady state are shown in Table 2. Accordingly, the
state of the whole process is defined as a combination of the states
of the three subsystems; that is, xT = [xT

1 xT
2 xT

3].
The process has one unstable and two  stable steady states. The

control objective is to regulate the process at the unstable steady
state xs corresponding to the operating point defined by Q1s = 0 kJ/h,
Q2s = 0 kJ/h and Q3s = 0 kJ/h, respectively. Each of the tanks has an
external heat input which is the control input associated with
each subsystem, that is, u1 = Q1− Q1s, u2 = Q2− Q2s and u3 = Q3− Q3s.
The inputs are subject to constraints as follows: |u1 | ≤ 5 ×104 kJ/h,
|u2 | ≤ 1.5 × 105 kJ/h, and |u3 | ≤ 2 × 105 kJ/h. Three distributed MPC
controllers (controller 1, controller 2 and controller 3) will be
designed to manipulate each one of the three inputs in the three
subsystems, respectively. The process model (see Ref. [23]) belongs
to the following class of nonlinear systems:

ẋ(t) = f (x(t)) +
3∑

i=1

gi(x(t))ui(t) + w(x(t))

where the explicit expressions of f, gi (i = 1, 2, 3), are omitted for
brevity. We  assume that xf,1, xf,2, xf,3 are measured and sent to
controller 1, controller 2 and controller 3, respectively, at syn-
chronous time instants tl = l�,  l = 0, 1, . . .,  with � = 0.01 h = 36 s
while we assume that each controller receives xs,i every T = 4
sampling times. The three subsystems exchange their states at
tk = kT�,  k = 0, 1, . . .;  that is, the full system state x is sent to
all the controllers every T = 4 sampling times. In the simula-
tions, we consider a quadratic Lyapunov function V(x) = xTPx with
P = diag([20 103 103 103 20 103 103 103 20 103 103 103]). We  design
the Lyapunov-based controller h(x) following the continuous
bounded control law [24,19] as follows:

h(x) = −p(x)(LGV)T (37)

where

p(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Lf V +

√(
Lf V
)2 +

(
umax|LGVT |

)4

|LGVT |2
[

1 +
√

1 +
(

umax|LGVT |
)2
] , LGV /= 0

0, LGV = 0

with Lf V = ∂V
∂x

f (x) and LGV = ∂V
∂x

G(x) where G = [g1 g2 g3] being the
Lie derivatives of the scalar function V with respect to the vector
fields f and G, respectively. To estimate the stability region �� ,
extensive simulations were carried out to get an estimate of the
region of the closed-loop system under Lyapunov-based control
h(x) where the time-derivative of the Lyapunov function is nega-
tive, and then �� is defined as a level set of the Lyapunov function
V(x) embedded within this region.

Based on the Lyapunov-based controller h(x) and V(x), we  design
the three LMPCs following Eqs. (9) and (10) and (12) and (13)
and refer to them as LMPC 1, LMPC 2 and LMPC 3. For each
LMPC, we  also design a state observer following Eq. (11). In the
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design of the LMPC controllers, the weighting matrices are cho-
sen to be Qc = diag([20 103 103 103 20 103 103 103 20 103 103 103]),
R1 = R2 = R3 = 10−6. The prediction horizon for the optimization
problem is N = 5 with a sampling time of � = 0.01 h. In the
simulations, we  put a maximum iteration number cmax on the
DMPC evaluation and the maximum iteration number is cho-
sen to be cmax = 2. Also, we set �ui as 10% percent of umax

i
(i = 1, 2, 3). The optimization problems are solved by the open
source interior point optimizer Ipopt [25]. The initial condition
which is utilized to carry out simulations is x(0)T = [360.69 3.19
0.15 0.03 430.91 2.76 0.34 0.08 430.42 2.79 0.38 0.08]. We  set the
bound on the measurement noise to be 1% of the instantaneous
value of the signal measured by sensors. The communication
channel noise is generated using gaussian random variables with
variances 
n and 
u bounded by �n and �u for state values and
control inputs, respectively. These values are shown in Table 3.

We first carried out simulations to illustrate that the proposed
multirate DMPC achieves practical closed-loop stability. Fig. 2
shows the temperature and concentration trajectories of the pro-
cess under the DMPC design of Eqs. (9) and (10) and (12) and (13),
respectively. As it can be seen from the figure, the proposed DMPC
system can steer the system state to a neighborhood of the desired

Table 3
Communication noise parameters.


n �n 
n �n

CA1 1 0.033 CA2 1 0.027
CB1 1 0.001 CB2 1 0.004
CC1 1 0.001 CC2 1 0.001
T1 10 3.695 T2 10 4.352


n �n 
u �u

CA3 1 0.028 u1 10 7.39
CB3 1 0.005 u2 30 22.17
CC3 1 0.001 u3 40 29.56
T3 10 4.352

steady state. It should be emphasized that the inequalities of Eqs.
(19) and (25) have been confirmed through simulations (Fig. 3).

We also carried out a set of simulations to demonstrate the opti-
mality of the closed-loop performance of the proposed multirate
DMPC compared with different control schemes. Specifically, we
compared the proposed multirate DMPC with five different control
schemes from a performance point of view for the case in which
there is no communication and measurement noise. The five con-
trol schemes considered are as follows: (1) the proposed DMPC
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Fig. 2. State trajectories of the process under the DMPC design of Eqs. (9) and (10) and (12) and (13) with noise.
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Fig. 3. Manipulated input trajectories under the DMPC design of Eqs. (9) and (10) and (12) and (13) with noise.
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Table 4
Total performance cost comparison along the closed-loop system trajectories in 10
different runs under: (1) the proposed multirate DMPC design; (2) a DMPC design
with LMPCs formulated as in Eq. (9) evaluated only at time instants in which full
system states are available and the inputs are implemented in open-loop fashion
between two full system state measurements; (3) the proposed DMPC design but
without communication between the distributed controllers and each controller
estimating the full system states and the actions of the other controllers based on the
process model and h(x); (4) the DMPC design as in (2) but without communication
between the distributed controllers and each controller estimating the full system
states and actions of the other controllers based on the process model and h(x); (5)
h(x)  applied in sample-and-hold; (6) the centralized LMPC [26].

(1) (2) (3) (4) (5) (6)

43963 633589 72200 812903 1116578 27057
21512 606628 28079 743874 1095819 7370
23041 604148 27407 706319 1084445 15112
24681 613289 30211 720131 1104045 8838
31440 618649 36290 723598 1106508 18654
21775 654268 25950 859380 1079984 15287
28553 667143 34209 879852 1109976 13168
28974 659250 34565 865643 1109363 13424
28228 672756 33949 891549 1110884 12991
23929 668499 29688 887300 1106623 11903

design of Eqs. (9) and (10) and (12) and (13); (2) a DMPC design with
LMPCs formulated as in Eq. (9) which are only evaluated at time
instants in which full system states are available and the inputs are
implemented in open-loop fashion between two  full system state
measurements (in this case, the additional fast sampled measure-
ments are not used to improve the closed-loop performance); (3)
the proposed DMPC design but without communication between
the distributed controllers and each controller estimating the full
system states and the actions of the other controllers based on the
process model and h(x) (in this case, a distributed LMPC in the DMPC
design takes advantage of both fast and slowly sampled measure-
ments of its own local subsystem but does not receive any input or
state information from the other subsystems); (4) the DMPC design
as in (2) but without communication between the distributed con-
trollers and each controller estimating the full system states and
actions of the other controllers based on the process model and
h(x); (5) h(x) applied in sample-and-hold; (6) the centralized LMPC
[26]. We  perform these simulations under different initial condi-
tions and different process noise/disturbances. To carry out this
comparison, we have computed the total cost of each simulation
based on the index of the following form:

J =
M∑

i=0

⎡⎣x(ti)
T Qcx(ti) +

3∑
j=1

uj(ti)
T Rcjuj(ti)

⎤⎦
where t0 = 0 is the initial time of the simulations and tM = 1 h is the
end of the simulations. Table 4 shows the total cost computed for
10 different closed-loop simulations under the six different control
schemes. From Table 4, we see that the centralized LMPC gives the
best performance and the proposed DMPC design gives the second
best performance in all the simulations. Also, Table 4 demonstrates
that when there is communication between controllers or there is
MPC  implementation when there is only partial state information
in each controller (fast sampled state), the closed-loop performance
is improved. It should be mentioned that the Lyapunov-based con-
troller is a feasible solution to the DMPC problem; however, the
DMPC solution can substantially improve closed-loop performance
while it inherits closed-loop stability from the Lyapunov-based
controller. All of the DMPC designs yield improvement in perfor-
mance compared to the Lyapunov-based controller.

In the final set of simulations, we demonstrated that the pro-
posed multirate DMPC has a reduced computational complexity
with respect to a corresponding centralized scheme. Specifically,
we compared the evaluation time of the centralized LMPC [26]

with the one of the proposed DMPC design in the case that there
is no noise in communication or measurements. We consider the
case where each controller evaluates the input trajectories every
T = 4 sampling times (both in the centralized and the distributed
architectures) and evaluate the computational time of the LMPC
optimization problems for 2500 independent closed-loop simula-
tion runs. We  consider only the sampling times in which controllers
have access to full system states including fast and slowly sampled
states. We  found that the mean evaluation time of the central-
ized LMPC is 0.267 s and the mean evaluation time of the DMPC
is 0.235 s which is the maximum time among the three distributed
controllers (LMPC 1: 0.215 s, LMPC 2: 0.235 s and LMPC 3: 0.206 s).
From this set of simulations, we  see that the proposed DMPC design
leads to about 12% reduction in the controller evaluation time.

5. Conclusions

In this work, we  designed a DMPC system using multirate sam-
pling for large-scale nonlinear uncertain systems composed of
several coupled subsystems. In the proposed control architecture,
the controllers were designed via LMPC techniques taking into
account bounded measurement and communication noise and pro-
cess disturbances. Sufficient conditions under which the state of the
closed-loop system is ultimately bounded in an invariant region
containing the origin were derived. Finally, the applicability and
performance of the proposed DMPC scheme were demonstrated
through a nonlinear chemical process example.
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[17] J. Liu, D. Muñoz de la Peña, P.D. Christofides, Distributed model predictive con-
trol of nonlinear systems subject to asynchronous and delayed measurements,
Automatica 46 (2010) 52–61.

[18] Y. Lin, E.D. Sontag, Y. Wang, A smooth converse Lyapunov theorem for robust
stability, SIAM Journal on Control and Optimization 34 (1996) 124–160.

[19] P.D. Christofides, N.H. El-Farra, Control of Nonlinear and Hybrid Process Sys-
tems: Designs for Uncertainty, Constraints and Time-Delays, Springer-Verlag,
Berlin, Germany, 2005.

[20] D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation, Athena
Scinetific, Belmont, Massachusetts, 1997.



Author's personal copy

1242 M. Heidarinejad et al. / Journal of Process Control 21 (2011) 1231– 1242

[21]  P. Mhaskar, N.H. El-Farra, P.D. Christofides, Predictive control of switched
nonlinear systems with scheduled mode transitions, IEEE Transactions on
Automatic Control 50 (2005) 1670–1680.

[22] Y. Sun, N.H. El-Farra, A quasi-decentralized approach for networked state esti-
mation and control of process systems, Industrial & Engineering Chemistry
Research 49 (2010) 7957–7971.
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