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a b s t r a c t

We focus on the development of a Lyapunov-based economic model predictive control (LEMPC) method
for a class of switched nonlinear systems for which the mode transitions take place according to a
prescribed switching schedule. In contrast to steady-state operation of conventional model predictive
control (MPC) methods which use a quadratic objective function in their formulations, LEMPC utilizes a
general (non-quadratic) cost function which may directly address economic considerations andmay lead
to time-varying closed-loop operation. Appropriate stabilizability assumptions for the switched nonlinear
system are made and suitable constraints are imposed on the proposed LEMPC formulation to guarantee
closed-loop stability of the switched nonlinear system and ensure satisfaction of the prescribed switching
schedule policy while dictating time-varying operation that optimizes the economic cost function. The
proposed control method is demonstrated through a chemical process example described by a switched
nonlinear system.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The development of optimal operation and control policies for
chemical process systems aiming at optimizing process economics
has always been an important research subject with major
practical implications. Typically, in the context of process control
methodologies, the economic optimization considerations of a
plant are usually performed through a two-layer architecture [1]
which usually limits process operation around a steady-state. The
upper layer addresses the calculation of optimal process operation
set-points while considering economic constraints and taking
advantage of steady-state process models, while the lower layer
(i.e., process control layer) utilizes appropriate feedback control
laws to steer the process state to track the set-points computed
by the upper layer. Model predictive control (MPC) is usually
employed in the process control layer because of its ability to
satisfy manipulated input and state constraints in the context of
computing online an optimization-based solution. Generally, in
a conventional MPC setting, a quadratic performance index (cost
function), which penalizes the deviation of the predicted state
and input along the MPC prediction horizon from the optimal
set-points computed by the upper layer, is used which results in
steady-state operation [2]. In order to address general economic
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optimization considerations, the quadratic cost function used in
conventional MPC should be replaced by an economics-based cost
function which may result in closed-loop system time-varying
operation. Consequently, the conventional MPC scheme should
be re-formulated in an appropriate way to guarantee closed-loop
stability. Thus, optimizing closed-loopperformancewith respect to
general economic considerations for nonlinear systems results in a
tighter integration of the process economics and process control
layers and gives rise to the subject of economic MPC.

Recently, economicMPC has received considerable attention. In
particular, integration of linear MPC and steady-state optimization
layers [3], enforcing a terminal constraint in economic MPC
formulation to achieve closed-loop stability [4], economic MPC
of cyclic processes (including closed-loop stability analysis using
a suitable terminal constraint) [5], as well as energy reduction
in the context of economic MPC [6], have been studied. In a
previous work [7], we presented a two-mode Lyapunov-based
economicMPC (LEMPC) design for nonlinear systems which is also
capable of handling asynchronous and delayedmeasurements and
extended it in the context of output feedback [3] and distributed
MPC [8]. In this two-mode method, the first mode addresses
economic considerations by enforcing time-varying economically-
optimal operation while maintaining the closed-loop system state
in a predefined invariant set, and the second mode deals with
convergence to an economically optimal steady state.

On the other hand, in the context of control of switched non-
linear systems with scheduled mode transitions, mode transition
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situations need to be handled explicitly to achieve closed-loop sta-
bility. In the context of process control applications, mode tran-
sitions may arise due to feedback changes, phase changes and
actuator/sensor faults to name a few. In this direction, analysis and
control of switched systems have been studied using approaches
based on Lyapunov functions (e.g., [9–13]) as well as optimal con-
trol theory (e.g., [14,15]). MPC can also be utilized to follow a pre-
scribed switching schedule policy subject to input constraint [16].
However, economic model predictive control of switched nonlin-
ear systemswith scheduledmode transitions has not been studied.

Motivated by this, the current work presents an LEMPCmethod
for a broad class of nonlinear switched systems with scheduled
mode transitions. Appropriate stabilizability assumptions for the
switched nonlinear system are made and suitable constraints
are imposed on the proposed LEMPC formulation to guarantee
closed-loop stability of the switched nonlinear system and ensure
satisfaction of the prescribed switching schedule policy while
dictating time-varying operation that optimizes the economic cost
function. The proposed control method is demonstrated through
a chemical process example described by a switched nonlinear
system.

2. Preliminaries

2.1. Notation

The notation |·| is used to denote the Euclidean normof a vector.
A continuous functionα : [0, a) → [0, ∞) is said to belong to class
K if it is strictly increasing and satisfies α(0) = 0. The symbol Ωr
is used to denote the set Ωr := {x ∈ Rnx : V (x) ≤ r} where
V is a continuously differentiable, positive definite scalar function
and r > 0, and the operator ‘/’ denotes set subtraction, that is,
A/B := {x ∈ Rnx : x ∈ A, x ∉ B}. The symbol diag(v) denotes a
matrix whose diagonal elements are the elements of vector v and
all the other elements are zeros.

2.2. Class of switched nonlinear systems

We consider switched nonlinear systems which are composed
of p modes (i.e., finite-number of switching modes) described by
the following state-space model:

ẋ(t) = fσ(t)(x) + gσ(t)(x)uσ(t)(t) (1)

where x(t) ∈ Rnx denotes the vector of state variables of the system
and uσ(t)(t) ∈ R is the control (manipulated) input affecting the
σ mode. σ : [0, ∞) → I denotes the switching signal which
is assumed to be a piecewise continuous from the right function
of time, i.e., σ(tk) = limt→t+k

σ(t) for all k, implying that only
a finite number of switches is allowed over any finite interval of
time. The switching signal takes its values in a finite index set
I = {1, 2, . . . , p}. The input is restricted to be in nonempty convex
sets Uσ(t) ⊆ R, which is defined as Uσ(t) := {uσ(t) ∈ R : |uσ(t)| ≤

umax
σ(t)}where umax

σ(t) is the magnitude of the input constraint. Wewill
design a controller to compute the control input uσ(t) andwill refer
to it as controller at mode σ(t). Through the rest of this paper,
tkinr and tkoutr

denote the time when, for the r th time, the system
of Eq. (1) has switched in and out of the kth mode, respectively,
i.e., σ(t+

kinr
) = σ(t−

koutr
) = k. So, for tkinr ≤ t < tkoutr

, the system of
Eq. (1) is represented by ẋ = fk(x) + gk(x)uk.

We assume that the vector functions fk(·) and gk(·)∀k ∈ I
are locally Lipschitz vector functions and that the origin is an
equilibrium point of the unforced system (i.e., system of Eq. (1)
with uk(t) = 0, for all t, k ∈ I) which implies that fk(0) =

0, ∀k ∈ I. We further assume that during the system operation
at mode k for r th time, i.e., tkinr ≤ t < tkoutr

, the system state
measurements are available and sampled at synchronous time
instants tq = tkinr + q∆kr , q = 0, 1, 2, . . . ,Nkr where ∆kr is the
sampling time. Without loss of generality, we assume that Nkr is a
positive integer.

2.3. Stabilizability assumption

Consider the systemof Eq. (1), at a fixed switchingmode σ(t) =

k where k ∈ I. We assume that there exists a feedback controller
uk = hk(x), which renders the origin of the closed-loop system at
mode k asymptotically stablewhile satisfying the input constraints
for all the states x inside a given stability region. Using converse
Lyapunov theorems [17,18], this assumption implies that there
exist class K functions αlk(·), l = 1, 2, 3, 4 and a continuously
differentiable Lyapunov function Vk(x) for the closed-loop system,
that satisfy the following inequalities:

α1k(|x|) ≤ Vk(x) ≤ α2k(|x|)
∂Vk(x)

∂x
(fk(x) + gk(x)hk(x)) ≤ −α3k(|x|)∂Vk(x)

∂x

 ≤ α4k(|x|)

hk(x) ∈ Uk

(2)

for all x ∈ Dk ⊆ Rnx where Dk is an open neighborhood of the
origin.We denote the regionΩρk ⊆ Dk as the stability region of the
closed-loop system at mode k under the controller hk(x). Using the
smoothness assumed for the fk(·) and gk(·), and taking into account
that the manipulated inputs uk is bounded, there exists a positive
constant Mk such that

|fk(x) + gk(x)uk| ≤ Mk (3)

for all x ∈ Ωρk , uk ∈ Uk and k ∈ I. In addition, by the continuous
differentiable property of the Lyapunov function Vk(x) and the
smoothness of fk and gk, there exist positive constants Lxk and Luk
such that∂Vk

∂x
fk(x) −

∂Vk

∂x
fk(x′)

 ≤ Lxk |x − x′
|∂Vk

∂x
gk(x) −

∂Vk

∂x
gk(x′)

 ≤ Luk |x − x′
|

(4)

for all x, x′
∈ Ωρk , uk ∈ Uk and k ∈ I.

Proposition 1 characterizes the closed-loop stability properties
of the feedback controller hk(x) while Proposition 2 provides
sufficient conditions that ensure that the closed-loop system state
under implementation of the controller hk(·) in a sample-and-hold
fashion enters the corresponding stability region of the subsequent
mode once the system switches to that mode according to the
prescribed switching schedule policy. For the sake of simplicity and
without loss of generality, we define the following sampled state
trajectory when the controller hk(x) is applied in a sample-and-
hold fashion at mode k for t0 = tkinr ≤ τ < tkoutr

as follows

˙̂x(τ ) = fk(x̂(τ )) + gk(x̂(τ ))hk(x̂(tl)),

l = 0, 1, . . . ,Nkr − 1, x̂(t0) = x(tkinr ). (5)

Proposition 1 below ensures that if the closed-loop system atmode
k controlled by hk(x), implemented in a sample-and-hold fashion,
starts in Ωρk and stays in mode k for all times, then it is ultimately
bounded in Ωρmink

. It characterizes the closed-loop stability region
corresponding to each mode.
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Proposition 1 (C.f. [2]).Consider the closed-loop systemof Eq. (5) and
assume it operates at mode k for all times. Let ∆k, ϵsk > 0 and
ρ̃k > ρsk > 0 satisfy:

− α3k


α−1
2k

(ρsk)


+ (Lxk + Lukumax
k )Mk∆k ≤ −ϵsk/∆k. (6)

Then, if x̂(t0) ∈ Ωρk and ρmink < ρk where ρmink = max{Vk(x̂(t +

∆kr )) : Vk(x̂(t)) ≤ ρsk}, ∀∆kr ∈ (0, ∆k] the following inequality
holds: Vk(x̂(t)) ≤ Vk(x̂(tq)), ∀t ∈ [tq, tq+1) (q = 0, 1, . . .) and
Vk(x̂(tq)) ≤ max{Vk(x̂(t0))−qϵsk , ρmink}. Since Vk(·) is a continuous
function, Vk(x̂) ≤ ρmink implies |x̂| ≤ dk where dk is a positive
constant and therefore, lim supt→∞ |x̂(t)| ≤ dk.

For each mode k ∈ I, we assume there exist a set of initial con-
ditions Ωρk , which is estimated as the level set of the Lyapunov
function at mode k (Vk(·)) and a positive real number ρ∗

k such that
under implementation of the Lyapunov-based controller hk(·) in a
sample-and-hold fashion, the state of Eq. (5) satisfies

V̇k(x̂(τ )) ≤ −ρ∗

k Vk(x̂(τ )), x̂(τ ) ∈ Ωρk/ρsk
, tkinr ≤ τ < tkoutr

. (7)

Proposition 2. Consider the closed-loop sampled trajectory x̂(t) de-
fined in Eq. (5). Given that tkinr ≤ t < tkoutr

= tf inw , and x̂(tkinr ) ∈ Ωρk , if
there exist ρk > 0, ρ∗

k > 0,Nkr > 0 and ∆kr > 0∀k ∈ I such that

α2f (α
−1
1k

(ρk e−ρ∗
k Nkr ∆kr )) ≤ ρf , (8)

then x̂(tf inw ) ∈ Ωρf .

Proof. It can be obtained from Eq. (7) that

Vk(x̂(tkoutr
)) ≤ Vk(x̂(tkinr )) e−ρ∗

k Nkr ∆kr . (9)

Since x̂(tkinr ) ∈ Ωρk , we have

Vk(x̂(tkoutr
)) ≤ ρk e−ρ∗

k Nkr ∆kr . (10)

FromEq. (2)we can obtain |x̂(tkoutr
)| ≤ α−1

1k
(ρk e−ρ∗

k Nkr ∆kr ). If Eq. (8)
is satisfied, using Eq. (2) for the Lyapunov-based controller atmode
f , it can be concluded that Vf (x̂(tf inw )) ≤ ρf which implies that
x̂(tf inw ) ∈ Ωρf . �

Remark 1. Note that the stability region Ωρk characterizes the
set of initial conditions for the nonlinear switched system at
mode k ∈ I starting from where, the closed-loop system state
enters the corresponding stability region of the subsequent mode
according to the prescribed switching schedule policy at the time
of the switch. From a feasibility point of view, the Lyapunov-
based controller satisfying Eq. (8) yields a feasible solution to
the prescribed switching schedule. It should be emphasized that
the purpose of the LEMPC formulation in this paper is to take
advantage of this feasible solution to address optimization of an
economic (non-quadratic) cost function. Furthermore, a necessary
condition for Proposition 2 is that the stability regions of two
subsequent switching modes according to the switching schedule
policy (i.e., Ωρk and Ωρf ) should have a non-empty intersection;
otherwise, it is not possible to steer the state of the system to the
stability region corresponding to the subsequent switching mode.

3. LEMPC of switched nonlinear systems

In this section, we consider the design of Lyapunov-based
economic MPC (LEMPC) for nonlinear switched systems. When
there is an economic cost function which directly addresses
economic considerations of the system (e.g., Le(x(t), u(t))), steady-
state operation may not yield optimal economic closed-loop
performance. For the sake of clarity in presentation and without
loss of generality, we assume that over the operation period [t0, t ′),
we deal with economic considerations in LEMPC design through
different switching modes while after time t ′, when the system
operates in a specific switching mode z ∈ I∀t ≥ t ′, we deal with
enforcing closed-loop stability in terms of convergence to a steady-
state point at switching mode z. In operation period [t0, t ′) and
at each switching mode k ∈ I, the predicted system state along
the finite prediction horizon is maintained in the corresponding
stability region Ωρk while it allows the system state to optimize
the economic cost function by dictating a possible time-varying
operation; however, due to the fact that the system switches
through different modes according to the prescribed switching
schedule policy, an appropriate constraint needs to be included in
the LEMPC formulation to make sure that the closed-loop system
state at the end of each switching interval enters the stability
region corresponding to the subsequent switching mode. Thus,
it can take advantage of the closed-loop stability properties of
the Lyapunov-based controller of every specific mode. It should
be mentioned that it has been assumed that at the beginning of
the prescribed switching schedule that the initial system state is
within the stability region of the first switching mode according to
the prescribed switching schedule policy.

3.1. Implementation strategy

At sampling time tq ∈ [t0, t ′) where tkinr ≤ tq < tkoutr
= tf inw ,

sampled state feedback x(tq) is received through measurement
sensors. The predicted system state is maintained at the stability
region Ωρk while the LEMPC formulation enforces appropriate
constraint to ensure that at the end of the current switching
interval the closed-loop system state enters the stability region
of the subsequent mode Ωρf . If tq ≥ t ′, the LEMPC enforces
appropriate constraint to make sure it achieves practical closed-
loop stability by steering the closed-loop system state in a small
neighborhood of the origin corresponding to the switchingmode z
(i.e., z is the active mode at t = t ′). The implementation strategy
of the proposed LEMPC can be summarized as follows:

1. At sampling time tq, the state measurement x(tq) is received. If
tq ∈ [t0, t ′) go to step 2; otherwise, go to step 3.

2. The LEMPCmaintains the predicted system state in the stability
region Ωρk while it makes sure that at the end of the current
switching mode interval, the system state enters the stability
region Ωρf where tkinr ≤ tq < tkoutr

= tf inw .
3. The LEMPC steers the closed-loop system state to a small

neighborhood of the origin at switching mode z.

3.2. LEMPC formulation

Depending on sampling time tq, there are two LEMPC formula-
tions. Specifically, if tq ∈ [t0, t ′) and tkinr ≤ tq < tkoutr

= tf inw , the
LEMPC is formulated as follows:

max
uk∈S(∆kr )

 tkoutr

tq
Le(x̃(τ ), uk(τ )) dτ (11a)

s.t. ˙̃x(τ ) = fk(x̃(τ )) + gk(x̃(τ ))uk(τ ) (11b)
uk(τ ) ∈ Uk, τ ∈ [tq, tkoutr

) (11c)

x̃(tq) = x(tq) (11d)

Vk(x̃(τ )) ≤ ρk, ∀τ ∈ [tq, tkoutr
) (11e)

Vf (x̃(tkoutr
)) ≤ ρf (11f)

where x̃ is the predicted state trajectory of the system with
control input calculated by the LEMPC of Eq. (11) and S(∆kr ) is
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the set of piecewise constant functions with period ∆kr . Eq. (11b)
uses a nominal system model at switching mode k ∈ I to
predict the future evolution of the system state initialized at x(tq)
Eqs. (11c) and (11d) denotes the constraint on the manipulated
input at switching mode k. The constraint of Eq. (11e) maintains
the predicted system state along the prediction horizon in the
invariant set Ωρk , and within this set, the LEMPC addresses
economic considerations by optimizing the economic cost function
of Eq. (11a). The constraint of Eq. (11f) ensures that the closed-
loop system state at the end of the switching interval [tkinr , tkoutr

)

enters the stability region Ωρf corresponding to switching mode f .
It should be emphasized that at every sampling time tq the finite

prediction horizon Nkr is chosen in a way that Nkr =
tkoutr

−tq

∆kr
.

The optimal solution to this optimization problem is denoted by
u∗

k(t|tq), which is defined for t ∈ [tq, tkoutr
). The manipulated input

of the LEMPC of Eq. (11) is defined as follows:

uk(t) = u∗

k(t|tq), ∀t ∈ [tq, tq+1). (12)

If tq ≥ t ′, the system operates at switching mode z ∈ I and the
LEMPC is formulated as follows:

max
uz∈S(∆)

 tq+N

tq
Le(x̃(τ ), uz(τ )) dτ (13a)

s.t. ˙̃x(τ ) = fz(x̃(τ )) + gz(x̃(τ ))uz(τ ) (13b)
uz(τ ) ∈ Uz, τ ∈ [tq, tq+N) (13c)

x̃(tq) = x(tq) (13d)
∂Vz(x(tq))

∂x
gz(x(tq))uz(tq)

≤
∂Vz(x(tq))

∂x
gz(x(tq))hz(x(tq)). (13e)

The constraint of Eq. (13e) ensures that the amount of reduction
in the value of the Lyapunov function at switching mode z is at
least at the level when the Lyapunov-based controller at mode z
is applied in a sample-and-hold fashion. It should be emphasized
that ∀tq ≥ t ′, LEMPC is formulated with a fixed horizon N and
sampling time ∆ at switching mode z. The optimal solution to this
optimization problem is denoted by u∗

z (t|tq), which is defined for
t ∈ [tq, tq+N). The manipulated input of the LEMPC of Eq. (13) is
defined as follows:

uz(t) = u∗

z (t|tq), ∀t ∈ [tq, tq+1). (14)

Remark 2. Note that there are two types of state constraints in the
LEMPC formulation of Eq. (11). The constraint of Eq. (11e) ensures
that through the system operation at switching mode k ∈ I,
the closed-loop system state is maintained in the corresponding
invariant set Ωρk to address economic optimization by allowing
the switched system to operate in a possible time-varying fashion
while it inherits the boundedness properties of the sampled
state trajectory of the Lyapunov-based controller hk(·) when it
is applied in a sample-and-hold-fashion. On the other hand, to
ensure that the subsequent switching mode according to the
prescribed switching schedule policy can also take advantage
of the Lyapunov-based controller at the subsequent switching
mode, the constraint of Eq. (11f) has been included in the
LEMPC formulation of Eq. (11). Thus, it ensures that economic
considerations for the subsequent switching mode will be
addressed. It should be emphasized that these type of constraints
are different from multiple Lyapunov function (MLF) constraints
which were incorporated to ensure closed-loop stability of the
switched systems in an asymptotic sense [14,16].
Remark 3. The constraint of Eq. (13e) in the LEMPC formulation
of Eq. (13) ensures certain level of reduction in the value of
the Lyapunov function corresponding to the last switching mode
according to the prescribed switching schedule policy. It should
be mentioned that once the switched system enters the last mode
according to the switching schedule, it will operate thereafter
with a finite fixed prediction horizon to address practical closed-
loop stability through steering the closed-loop system state to
an invariant small neighborhood of the origin corresponding to
the last switching mode z ∈ I. Note that depending on the
prescribed switching schedule policy, the system may switch in
and switch out to mode z before the last time that it enters the
mode z to address economic optimization considerations. Please
see Section 4 for an example of this scenario.

Remark 4. It should be emphasized that the LEMPC of Eq. (11) is
not implemented in the context of conventional receding horizon
scheme. Based on the prescribed switching schedule policy, at each
time interval that the system is supposed to operate in a specific
mode, it uses a prediction horizon from the current time until the
time that the system is supposed to switched out from that mode.
However, for the LEMPC of Eq. (13), since the system operates in
the switching mode z ∈ I ∀t ≥ t ′, a fixed prediction horizon is
utilized.

3.3. Closed-loop stability

The following theorem characterizes the closed-loop stability
properties of the proposed LEMPC of Eqs. (11) and (13).

Theorem 1. Consider the system of Eq. (1) in closed-loop under the
LEMPC of Eqs. (11) and (13) and assume that there exists Lyapunov-
based controllers hk(·), ∀k ∈ I satisfying Eqs. (2) and (7). Then,
given a positive real number dmax, if there exist ∆k, ϵsk > 0 and
ρk > ρsk > 0 ∀k ∈ I such that Eqs. (6) and (8) are satisfied and
∆kr ∈ (0, ∆∗

] where ∆∗
= mink∈I ∆k, then x(t) is bounded and

lim supt→∞ |x(t)| ≤ dmax.

Proof. First we prove that the optimization problems of Eqs.
(11) and (13) are feasible and then we proceed with the closed-
loop stability analysis. Regarding the optimization problem of
Eq. (11), the Lyapunov-based controller hk(x̃(tq + l∆kr)) where
l = 0, 1, . . . ,Nkr − 1 is a feasible solution. It satisfies the control
input constraint of Eq. (11c) due to Eq. (2) while the constraints of
Eqs. (11e) and (11f) are satisfied through the Eq. (6) in Proposition 1
and Eq. (8) in Proposition 2. On the other hand, the Lyapunov-based
controller hz(x̃(tq + l∆kr)) where l = 0, 1, . . . ,N − 1 is feasible
solution for the optimization problem of Eq. (13). It satisfies the
control input constraint of Eq. (13c) due to Eq. (2) while it satisfies
the constraint of Eq. (13e).

Given the radius of the ball around the origin, dmax, the values of
ρmink and ∆k∀k ∈ K are computed based on Propositions 2 and 1.
Then, for the purpose of LEMPC implementation, a value of ∆kr ∈

(0, ∆∗
] is chosen where ∆∗

= mink∈I ∆k and tkoutr
− tkinr = lkr ∆kr

for some integer lkr > 0.
Regarding the boundedness of the closed-loop system state, up

to time t ′, at each switching mode k ∈ I, the closed-loop system
state is bounded in the invariantΩρk . After time t ′, since the system
operates at switchingmode z ∈ I, we canwrite the time derivative
of the Lyapunov function along the state trajectory x(t) of system
of Eq. (1) in t ∈ [tq, tq+1) as follows:

V̇z(x(t)) =
∂Vz(x)

∂x
(fz(x(t)) + gz(x(t))u∗

z (tq|tq)). (15)
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Adding and subtracting ∂Vz (x(tq))
∂x (fz(x(tq)) + gz(x(tq))u∗

z (tq|tq)) to
the right-hand-side of Eq. (15) and taking Eq. (2) into account, we
obtain the following inequality:

V̇z(x(t)) ≤ −α3z (|x(tq)|)

+
∂Vz(x)

∂x
(fz(x(t)) + gz(x(t))u∗

z (tq|tq))

−
∂Vz(x(tq))

∂x
(fz(x(tq)) + gz(x(tq))u∗

z (tq|tq)). (16)

From Eq. (4) and the inequality of Eq. (16), the following inequality
is obtained for all x(tq) ∈ Ωρz \ Ωρsz :

V̇z(x(t)) ≤ −α3z (α
−1
2 (ρsz ))

+ (Lxz + Luzu∗

z (tq|tq))|x(t) − x(tq)|. (17)

Taking into account Eq. (3) and the continuity of x(t), the following
bound can be written for all t ∈ [tq, tq+1), |x(t) − x(tq)| ≤ Mz∆

where ∆ ∈ (0, ∆∗
]. Using this expression, we obtain the following

bound on the time derivative of the Lyapunov function for t ∈

[tq, tq+1), for all initial states x(tq) ∈ Ωρz \ Ωρsz :

V̇z(x(t)) ≤ −α3z (α
−1
2z (ρsz )) + (Lxz + Luzumax

z )Mz∆.

Since the condition of Eq. (6) is satisfied, then ∀x(tq) ∈ Ωρz \ Ωρsz
we can obtain:

V̇z(x(t)) ≤ −ϵsz/∆, ∀t = [tq, tq+1).

Integrating this bound on t ∈ [tq, tq+1), we obtain that:

Vz(x(tq+1)) ≤ V (x(tq)) − ϵsz

Vz(x(t)) ≤ Vz(x(tq)), ∀t ∈ [tq, tq+1)
(18)

for all x(tq) ∈ Ωρz \ Ωρsz . Using Eq. (18) recursively, it can be
proved that, if x(tq) ∈ Ωρz \ Ωρsz , the state converges to Ωρsz in
a finite number of sampling times without leaving the stability re-
gion. Once the state converges to Ωρsz ⊆ Ωρminz

, it remains inside
Ωρminz

for all times. This statement holds because of the definition
of ρminz . This proves that the closed-loop system under the LEMPC
design is ultimately bounded in Ωρminz

from which it follows that
lim supt→∞ |x(t)| ≤ dmax. �

Remark 5. Note that the Lyapunov-based controllers hk(·)∀k ∈

I as a feasible solution to the LEMPC of Eqs. (11) and (13)
satisfy the prescribed switching schedule policy. The purpose of
the LEMPC is to take advantage of these feasible solutions to
address economic considerations as well as closed-loop stability.
Thus, LEMPC closed-loop performance is lower bounded by the
closed-loop performance of the set of Lyapunov-based controllers
corresponding to different switching modes.

Remark 6. Referring to the issue of output feedback implementa-
tion of the proposed economicMPC scheme,wenote that high-gain
observers may be used to compute estimates of unmeasured pro-
cess states from output measurements assuming certain structure
on the modes of the switched nonlinear system (e.g., feedback lin-
earizable). In this direction, one possible approach is to separately
design high-gain observers for each switchingmode; however, de-
tailed development is outside of the scope of this work.

4. Application to a chemical process example

Consider a well-mixed, non-isothermal continuous stirred tank
reactor (CSTR) where an irreversible, second-order, endothermic
reaction A → B takes place, where A is the reactant and B is
the desired product. The operation schedule requires switching
between two available inlet streams consisting of pure reactant
Table 1
Parameter values.

T01 = 300, T02 = 295 K F = 5 m3

h

V = 1.0 m3 E = 5 × 103 kJ
kmol

k0 = 13.93 1
h ∆H = 1.15 × 104 kJ

kmol

Cp = 0.231 kJ
kg K R = 8.314 kJ

kmol K

ϱ = 1000 kg
m3 CAs1 = 2, CAs2 = 1.53 kmol

m3

Ts1 = 350, Ts2 = 378.54 K CA0s1 = 4, CA0s2 = 2.86 kmol
m3

Q = 1.73 × 105 KJ
h

at different flow rates, concentrations and temperatures. At mode
σ = 1, 2, the feed to the reactor consists of pure A at flow rate
F , temperature T0σ and molar concentration CA0σ . Due to the non-
isothermal nature of the reactor, a jacket is used to provide heat
to the reactor. The dynamic equations describing the behavior of
the reactor, obtained through material and energy balances under
standard modeling assumptions, are given below:

dCA

dt
=

F
V

(CA0σ − CA) − k0 e
−E
RT C2

A (19a)

dT
dt

=
F
V

(T0σ − T ) +
−∆H
ϱCp

k0 e
−E
RT C2

A +
Q

ϱCpV
. (19b)

A detailed description of this chemical process example can be
found in [3]. The values of the process parameters used in the
simulations are shown in Table 1. The process model of Eq. (19) is
numerically simulated using an explicit Euler integration method
with integration step hc = 10−3 h.

The process model has one stable steady-state in the operating
range of interest at each switching mode. The control objective is
to optimize the process operation in a region around the stable
steady-state (CAsσ , Tsσ ) to maximize the average production rate
of B through manipulation of the concentration of A in the inlet
to the reactor, CA0σ . The steady-state input value associated with
the steady-state point is denoted by CA0sσ . The process model of
Eq. (19) belongs to the following class of nonlinear systems:

ẋ(t) = fσ (x(t)) + gσ (x(t))uσ (t)

where xT = [x1 x2] = [CA − CAsσ T − Tsσ ] is the state, u =

CA0 − CA0sσ is the input, and fσ = [f1σ f2σ ]
T and gσ = [g1σ g2σ ]

T

are vector functions. The inputs at different switching modes are
subject to constraints as follows: |u1| ≤ 3.5 kmol/m3 and |u2| ≤

4 kmol/m3. The economic measure considered in this example is
as follows [19]:

Le(x, uσ ) =
1
tN

 tN

0
k0 e

−
E

RT (τ ) C2
A (τ ) dτ (20)

where tN = 1 h is the time duration of the reactor operation. This
economic objective function highlights the maximization of the
average production rate over process operation for tN = 1 h (of
course, different, yet finite, values of tN can be chosen). The fact that
inlet streams contain pure species A means that they include only
species A and not any other species, in particular, species B which
is the product of the reaction taking place in the reactor. The fact
that the two inlet streams contain only species A does not mean
that the concentration of A (i.e., howmany moles of A are included
in a liter of inlet stream) in these streams cannot be varied with
time; this is actually often done in practice and this is why CA0σ is
chosen here as the manipulated input.

In terms of the Lyapunov-based feedback controller, we use a
proportional controller in the form of uσ = −γ1σ x1−γ2σ x2 subject
to input constraints and a quadratic Lyapunov function Vσ (x) =

xTPσ x where γ11 = 1.6, γ12 = 5.9, γ21 = 0.01, γ22 = 0.05, P1 =

diag([110.11 0.12]), P2 = diag([63.69 0.02]), ρ1 = 430 and ρ2 =
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Fig. 1. Ωρ1 , Ωρ2 and state trajectories of the process under LEMPC and initial state

(CA(0), T (0)) =


3 kmol

m3 , 340 K

. The symbols ◦ and × denote the initial (t = 0 h)

and final (t = 1 h) state of this closed-loop system trajectories, respectively.
Steady-state points corresponding to both switching modes are denoted by ⋆

symbols.

105. It should be emphasized thatΩρσ has been estimated through
evaluation of V̇σ when we apply the proportional controller. We
assume that the full system state x = [x1 x2]T at both switching
modes is measured and sent to the LEMPC at synchronous time
instants tk = k∆, k = 0, 1, . . . , with ∆ = 0.01 h = 36 s. As a
scheduling policy, we assume that from time t = 0 to t = 0.24 h,
the system operates at mode 1 while from time t = 0.24 h to
t = 0.39 h it operates at mode 2 and from time t = 0.39 h to
t = 1 h it stabilizes the system at the steady-state of mode 2. The
simulations were carried out using Java programming language in
a Pentium 3.20 GHz computer. The optimization problems in MPC
were solved using the open-source interior point optimizer Ipopt.

Figs. 1–3 display the closed-loop state and manipulated input
profiles for the proposed LEMPC design. From time t = 0 to
t = 0.24 h and from time t = 0.24 h to t = 0.39 h, the
LEMPC obtains its optimal manipulated input trajectory according
to the optimization problem of Eq. (11). It dictates a time-varying
operation to maximize the economic cost function while it forces
Fig. 4. Ωρ1 , Ωρ2 and state trajectories of the process under LMPC and initial state

(CA(0), T (0)) =


3 kmol

m3 , 340 K

. The symbols ◦ and × denote the initial (t = 0 h)

and final (t = 1 h) state of this closed-loop system trajectories, respectively.
Steady-state points corresponding to both switching modes are denoted by ⋆

symbols.

the state trajectory to enter the stability region Ωρ2 at the end
of operation in mode 1 (t = 0.24 h). From time t = 0.24 h to
t = 0.39 h, the closed-loop system state is maintained at Ωρ2
to maximize the economic cost function through a time-varying
operation enforced by the LEMPC of Eq. (11) while after t =

0.39 h, steady-state operation is enforced to steer the closed-loop
system state to a small neighborhood of the steady-state point
corresponding to mode 2 by the LEMPC of Eq. (13).

Also, we compare the time-varying operation of the proposed
LEMPC and the closed-loop operation under the Lyapunov-based
MPC (LMPC) method of [16] from an economic cost function point
of view. The LMPC scheme at mode k ∈ I employs a quadratic
cost function Ls(x̃(τ ), uk(τ )) (instead of economic cost function
Le(x̃(τ ), u(τ ))) in MPC formulation as follows

Ls(x̃(τ ), uk(τ )) = x̃T (τ )Q x̃(τ ) + uk(τ )Ruuk(τ ) (21)

where Q and Ru denote the weighting matrix and the weighting
factor employed to penalize the deviation of the predicted state
Fig. 2. State trajectories of the process under LEMPC and initial state (CA(0), T (0)) =


3 kmol

m3 , 340 K

.

Fig. 3. Manipulated input trajectory under LEMPC and initial state (CA(0), T (0)) =


3 kmol

m3 , 340 K

.
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Fig. 5. State trajectories of the process under LMPC and initial state (CA(0), T (0)) =


3 kmol

m3 , 340 K

.

Fig. 6. Manipulated input trajectory under LMPC and initial state (CA(0), T (0)) =


3 kmol

m3 , 340 K

.

and input from their corresponding steady-state values, respec-
tively, and T denotes matrix transpose operator. The LMPC at each
switching mode enforces appropriate Lyapunov-based constraint
in the LMPC formulation to achieve a steady-state operation while
according to the prescribed switching schedule policy, it forces the
state of the system to enter the stability region of the subsequent
mode. For a detailed description, please refer to [16]. To carry out
this comparison, we have computed the total cost of each operat-
ing scenario based on an index of the following form:

J =
1

t100

100
i=0


k0 e

−
E

RT (ti) C2
A (ti)


(22)

where t0 = 0 h and t100 = 1 h. Furthermore, we assume Q =

diag([1 0.01]) and Ru = 1. The LMPC method is implemented as
follows: From time t = 0 to t = 0.24 h, it operates at mode 1 in a
steady-state manner and it forces the closed-loop system state to
enter Ωρ2 at time t = 0.24 h while after t = 0.24 h, steady-state
operation is enforced by steering the closed-loop system state to
a small neighborhood of the steady-state point corresponding to
mode 2. Figs. 4–6 display the closed-loop state and manipulated
input profiles for the LMPC [16]. The proposed LEMPC achieves an
economic cost function value 10217.930 while the LMPC attains
7966.235, according to the cost defined in Eq. (22). This comparison
indicates that through time-varying operation achieved by the pro-
posed LEMPC design, the optimal cost has been approximately 28%
improved for this chemical process example compared to the op-
eration under the LMPC scheme. Regarding economic performance
improvement with respect to steady-state operation through tak-
ing advantage of economic MPC, the proposed design maintains
the system state in an invariant set while it does not force the pro-
cess state to settle to a steady-state and allows for time-varying
operation. Thus, it provides more degrees of freedom to the evolu-
tion of process state to meet economic optimization criteria.

5. Conclusions

This work focused on the design of an LEMPC scheme for a class
of switched nonlinear systems which are capable of optimizing
closed-loop performance with respect to a general objective func-
tion that may directly address economic considerations subject to
a prescribed switching schedule policy. Under appropriate stabi-
lizability assumptions, the proposed LEMPC designs may dictate
time-varying operation to optimize an economic (typically non-
quadratic) cost function in contrast to conventional LMPC designs
which typically include a quadratic objective function and regu-
late a process at a steady-state. The proposed scheme incorporated
appropriate Lyapunov-based constraint in its formulation to meet
the switching schedule. Up to a certain amount of time, the LEMPC
deals with economic optimization while after that time it enforces
convergence to a steady-state. A chemical process example was
used to demonstrate the proposed LEMPC scheme.
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