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Abstract

Two approaches for optimal control of diffusion-convection-reaction processes based on reduced-order models are presented. The approaches
differ in the way spatial discretization is carried out to compute a reduced-order model suitable for controller design. In the first approach, the
partial differential equation (PDE) that describes the process is first discretized in space and time using the finite difference method to derive a
large number of recursive algebraic equations, which are written in the form of a discrete-time state-space model with sparse state, input and
output matrices. Snapshots based on this high-dimensional state-space model are generated to calculate empirical eigenfunctions using proper
orthogonal decomposition. The Galerkin projection with the computed empirical eigenfunctions as basis functions is then directly applied to
the high-dimensional state-space model to derive a reduced-order model. In the second approach, a continuous-time finite-dimensional state-
space model is constructed directly from the PDE through application of orthogonal collocation on finite elements in the spatial domain. The
dimension of the derived state-space model can be further reduced using standard model reduction techniques. In both cases, optimal controllers
are designed based on the low-order state-space models using discrete-time and continuous-time linear quadratic regulator (LQR) techniques. The
effectiveness of the proposed methods are illustrated through applications to a diffusion-convection process and a diffusion-convection-reaction
process.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Distributed chemical processes are naturally described
by partial differential equations (PDEs) that are able to
describe the spatiotemporal evolution of the process dynam-
ics. Representative examples include chemical vapor deposition
of semiconductor materials (Armaou & Christofides, 1999;
Li, Sopko, & McCamy, 2006; Lin & Adomaitis, 2001;
Theodoropoulou, Adomaitis, & Zafiriou, 1998), thermal spray
processing of coatings (Li & Christofides, 2005, 2006) and fluid
flows (Baker, Armaou, & Christofides, 2000; Graham, Peraire,
& Tang, 1999; Park & Jang, 2000; Rowley, Colonius, &Murray,
2004). In order to develop accurate numerical solutions, the
PDEs are usually converted to and solved as ordinary differ-
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ential equations (ODEs) or algebraic equations using numerical
methods like finite element and finite volume, etc. (e.g. Ammar,
Ryckelynck, Chinesta, & Keunings, 2006; Broussely, Bertin, &
Lagonotte, 2003; Kalkkuhl & Doring, 1993; Liu & Jacobsen,
2004). Generally speaking, the resulting state-space model is of
high dimension in order to precisely describe the spatial char-
acteristics, especially when sharp gradients exist in the spatial
domain. In order to develop dynamic optimization algorithms or
feedback control systems suitable for real-time implementation,
advanced model reduction techniques such as Galerkin projec-
tion with empirical eigenfunctions, combination of Galerkin’s
method with approximate inertial manifolds, Krylov subspace
and balanced truncation have been proposed to derive low-
order ODEs with reasonable accuracy (Armaou & Christofides,
1999, 2000, 2002; Baker & Christofides, 2000; Baker et al.,
2000; Bendersky & Christofides, 2000; Christofides, 2001;
Christofides & Daoutidis, 1997; Park & Jang, 2000; Rowley
et al., 2004; Shvartsman & Kevrekidis, 1998). The controller is
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then designed based on the reduced-order models, resulting in a
significant reduction in the time needed to compute the control
action.
In this work, we will present two optimal control approaches

for diffusion-convection-reaction processes using reduced-order
models. In the first approach, the finite difference method is
initially used and the PDE is converted to a large number of
recursive algebraic equations. These algebraic equations are
written in the form of discrete-time state-space models with
sparse state, input and output matrices. Subsequently, snapshots
based on the high-dimensional state-space model are generated
to calculate empirical eigenfunctions using proper orthogo-
nal decomposition. The Galerkin projection with the empirical
eigenfunctions as basis functions is then directly applied to
the high-dimensional state-space model to derive a low-order
discrete-time state-space model. In the second approach, the
finite-element based orthogonal collocation is used. In this case,
a number of high-order Lagrange interpolation polynomials
are applied on a finite number of collocation elements in the
spatial domain to directly derive a low-dimensional differential-
algebraic equation (DAE) model (Quarteroni & Valli, 1997).
Such a DAE can be converted to a continuous-time state-space
model by incorporating the boundary conditions into the ODEs
in the spatial domain. If necessary and the properties of the
resulting ODE system allow, the dimension of the derived state-
space model can be further reduced using model reduction
techniques based on time-scale decomposition arguments. In
either case, the optimal control laws are designed based on the
low-dimensional state-space models or their linearized forms
using discrete-timeor continuous-time linear quadratic regulator
(LQR) control techniques.
The proposed methods are applied to two concentration tran-

sition problems in an isothermal dispersed tubular reactor. The
concentration transition problem is an important subject at the
interface of reactor engineering and process control. This type
of problem arises in modern chemical plants which generally
make various products that differ in composition only in order
to satisfy the needs of different customers. Representative indus-
trial examples include grade transition in a polyethylene plant
(e.g. Cervantes, Tonelli, Brandolin, Bandoni, & Biegler, 2002;
Lo & Ray, 2006; McAuley & MacGregor, 1992) and colored
glass product transition in a glass plant (e.g. Trier, 1987). In
certain circumstances, a product transition may take days or
weeks if the reactor is huge and the residence time of the reac-
tor is large. A reduction of the transition time, which can be
solved as an optimal control problem, can bring about signifi-
cant economic benefits (Li & Christofides, 2007). In this work,
we will focus on a type of concentration transition problem in
which the grade of the final product is regulated through the con-
centration of a key component that is fed at the entrance of the
reactor, e.g. the transition of one colored glass product to another
by regulating the colorant agent (key component) in the batch
material which is then incorporated in the glass melt before exit-
ing (Trier, 1987). If the key component to be controlled is not
involved in any reactions, the transition process is described as
a diffusion-convection process. If it does participate in any reac-
tion, the process is a diffusion-convection-reaction process. In

the remainder, we first focus on a diffusion-convection process
and design an optimal controller on the basis of a reduced-order
model constructed through Galerkin projection with empirical
eigenfunctions as basis functions. Subsequently, we focus on
a diffusion-convection-reaction process and design an optimal
controller on the basis of a reduced-order model constructed
through orthogonal collocation.

2. Optimal control of diffusion-convection processes

2.1. Control problem formulation

In this section, we focus on an isothermal dispersed tubular
reactor in which the key component concentration is described
by a parabolic PDE subject to the so-called Danckwerts bound-
ary conditions (Danckwerts, 1953):

∂U(z, t)

∂t
= −v∂U(z, t)

∂z
+D∂

2U(z, t)

∂z2
, s.t.

vU(0−, t) = vU(0+, t)−D ∂U(z, t)
∂z

∣∣∣∣
z=0+

,
∂U(z, t)

∂z

∣∣∣∣
z=L

= 0
(1)

whereU(0−, t) = u(t) is the inlet concentration (input variable),
U(L, t) = y(t) is the outlet concentration (output variable), t is
the time, v is the fluid velocity in the reactor, L is the length of
the reactor andD is the diffusion coefficient (or, more generally,
dispersion coefficient). The control problem is to minimize the
following functional:

min
u(t)

J =
∫ ∞

0
(y(t)− yf )2 dt + ε2

∫ ∞

0
(u(t)− uf )2 dt (2)

subject to the process dynamics described in Eq. (1), where uf
and yf are the steady-state concentration of the key component
at the inlet and outlet of the reactor after transition, and ε rep-
resents the weight on the control action during the transition
process. Due to the linear nature of the process and the fact that
all the molecules fed to the process will eventually flow out, the
concentration transition problem can be converted to a dimen-
sionless form in which the dimensionless concentration before
and after transition is 0 and 1, respectively (Li & Christofides,
2007).

2.2. Spatial and temporal discretization of the PDE model

We first employ a standard finite difference discretization
of the PDE of Eq. (1) in both time and space to obtain an
accurate solution. Specifically, using the explicit finite differ-
ence approach with the forward time and center space (FTCS)
scheme, the PDE of Eq. (1) can be written as the following set
of algebraic equations:

U(zi, tj+1)− U(zi, tj)
�t

= −vU(zi+1, tj)− U(zi−1, tj)
2�z
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+DU(zi+1, tj)− 2U(zi, tj)+ U(zi−1, tj)
(�z)2

,

i = 1, . . . , N + 1; vU(z1, tj) = vu+DU(z2, tj)−U(z0, tj)
2�z

,

0 = DU(zN+2, tj)− U(zN, tj)
2�z

(3)

where N + 1 is the total number of nodes in the spatial domain
(with nodes 1 andN + 1 represent the left and right boundaries),
and i and j are the spatial and temporal indices, respectively.Note
that two fictitious points (z0 and zN+2) are used to approximate
∂U/∂z on the boundaries. The values of the variable at these
fictitious points can be expressed through boundary conditions
as

U(z0, tj) = −γU(z1, tj)+ U(z2, tj)+ γu,
U(zN+2, tj) = U(zN, tj) (4)

where γ = 2v�z/D. Sorting and combining terms in Eq. (3)
yields

U(zi, tj+1) = (α+ β)U(zi−1, tj)+ (1− 2β)U(zi, tj)
+ (β − α)U(zi+1, tj), i = 2, . . . , N;

U(z1, tj+1) = [1− 2β − (α+ β)γ]U(z1, tj)+ 2βU(z2, tj)
+ [(α+ β)γ]u;

U(zN+1, tj+1) = 2βU(zN, tj)+ (1− 2β)U(zN+1, tj) (5)

where α = (v�t)/(2�z) and β = (D�t)/(�z)2.
Let x(k) = [U(z1, tk), U(z2, tk), . . . , U(zN, tk)]T, b =

[(α+ β)γ, 0, . . . , 0]T, c = [0, 0, . . . , 1]T, y(k) = U(zN+1, tk)
and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k1 2β

α+ β 1− 2β β − α
. . .

. . .
. . .

α+ β 1− 2β β − α
2β 1− 2β

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where k1 = 1− 2β − (α+ β)γ , the system of Eq. (5) can be
converted to the following discrete-time state-space form:

x(k + 1) = Ax(k)+ bu(k), y(k) = cx(k) (6)

Because A is a high-dimensional sparse matrix and b is
a high-dimensional sparse vector, a large amount of compu-
tational cost might be needed to carry out controller design
and subsequent real-time implementation on the basis of the
model of Eq. (6). To circumvent this problem, the Galerkin
projection is applied on the discrete-time high-dimensional
state-space model of Eq. (6) to derive a reduced-order model
(see, for example, Wilcox & Peraire, 2002). First, we define
the ensemble of U(z, t) except for the points on the boundaries
using the snapshots generated by the open-loop simulation of

Eq. (6)(Sirovich, 1987):

U :=

⎡
⎢⎢⎢⎢⎣

U(z1, t1) U(z1, t2) · · · U(z1, tK)

U(z2, t1) U(z2, t2) · · · U(z2, tK)
...

...
...

U(zN+1, t1) U(zN+1, t2) · · · U(zN+1, tK)

⎤
⎥⎥⎥⎥⎦

A singular value decomposition (SVD) of U yields that U =∑K
i=1φiλiψ

T
i , where

φTi φj =
{
0, i �= j
1, i = j and λ1 ≥ λ2 ≥ · · · ≥ 0

LetΦ (Φ = [φ1,φ2, . . . ,φr]) be thematrix composed by empir-
ical eigenfunctions (φi) corresponding to the first r singular
values of matrix composed by the ensemble of U, it can be
shown that x(k) ≈ Φa(k), and a(k) ≈ ΦTx(k). Therefore, Eq.
(6) can be converted to the following form:

ΦTΦa(k + 1) = ΦTAΦa(k)+ΦTbu(k), y(k) = cΦa(k)
(7)

Note that ΦTΦ = I is an identity matrix. By construction, a
reduced-order discrete-time model can be derived as

a(k + 1) = Ara(k)+ bru(k), y(k) = cra(k) (8)

where Ar = ΦTAΦ, br = ΦTb, and cr = cΦ.
As a result, the (N + 1)st order state-space model is reduced

to an r th order model through the Galerkin projection; this
reduced-order model will be used for controller design and real-
time implementation. The accuracy of the reduced-order model
increases with its dimension, however, the computational cost
increases accordingly. In practice, the order of the reduced-order
model is chosen such that at least 99.5% of the energy embedded
in the ensemble of the state variable of Eq. (6) is captured by the
empirical eigenfunctions.
The optimal control problem represented byEq. (2), ifwritten

in terms of the discretized model of Eq. (8), takes the form

min
ũ
J =

∞∑
n=1
(ãTQã+ ũTRũ) (9)

whereQ = cTr cr = ΦTcTcΦ, R = ε2, and the tilde sign stands
for the deviation of the variable from its steady-state value. The
solution of this LQR problem is given by the state feedback law:

ũ = −Kã, whereK = (bTr Sbr + R)
−1
(bTr SAr), and S is deter-

mined by the discrete-time Riccati equation (Arnold & Laub,
1984):

ATr SAr − S − (ATr Sbr)(bTr Sbr + R)
−1
(bTr SAr)+Q = 0

(10)

Remark 1. In the present work, an explicit scheme is used for
both the temporal and spatial discretization.When an implicit or
semi-implicit scheme is used to improve the numerical stability
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Table 1
Parameters used in the simulation of the diffusion-convection process

v 0.5
l 1
D 0.01
N 200
tf 4
�z 0.005
�t 0.001

of the algorithm, the state-space model will be of the following
form:

A1x(k + 1) = A2x(k)+ bu(k), y(k) = cx(k) (11)

whereA1 andA2 are sparsematrices. The optimal control design
can proceed in a similar fashion on the basis of the model of Eq.
(11).

Remark 2. The proposed method might be extended to other
numerical schemes, such as the finite volumemethod used in the
computational fluid dynamics. However, further development
is needed for this approach to be extended to PDEs that are
nonlinear. In the subsequent section, we will discuss the control
of a PDE with nonlinear terms (e.g. reactions of second order)
using orthogonal collocation.

2.3. Results and discussion

2.3.1. Open-loop simulations
The open-loop simulations (with u(t) ≡ 1) are made using

the parameters listed in Table 1. The spatiotemporal profile of
the concentration is shown in Fig. 1. Note that since the Robin
(mixed) boundary condition is applied at the entrance of the
reactor, the concentration at z = 0+ is not fixed at 1. Instead,
it takes a time period (�t = 0.6) for the concentration at the
inlet to reach its steady-state value. Moreover, the concentration
increases monotonically in both space and time, which is some-
what different from the dynamic behavior of the closed-loop
system to be shown later in which the input varies with time.
To verify the finite difference solution of Eq. (1), we car-

ried out a comparison of the finite difference numerical solution

Fig. 1. Diffusion-convection process: open-loop concentration profile.

Fig. 2. Diffusion-convection process: cumulative residence time distribution
solved from numerical simulation of a high-dimensional state-space model and
an analytic solution with approximate boundary conditions.

with an analytic solution in which the boundary conditions are
slightly modified. It has been shown that Eq. (1) can be solved
analytically with the following boundary conditions: U(ψ =
−∞) = 1 and U(ψ = ∞) = 0, where ψ = (z− vt)/(√4Dt)
(see, for example, Rawlings & Ekerdt, 2002). Specifically, the
original PDE of Eq. (1) with these boundary conditions can be
converted to an ODE of the form:

d2U

dψ2
+ 2ψdU

dψ
= 0 (12)

If the original boundary conditions are approximated by
U(ψ = −∞) = 1 andU(ψ = ∞) = 0, an analytic solution can
be obtained as follows:

U(ψ) = 1

2
erfc(ψ) (13)

where erfc(ψ) is the complementary error function defined by
erfc(ψ) = 1− (2)/(√π) ∫ ψ0 e−t2 dt. The cumulative residence
time distribution with these approximate boundary conditions is
then derived as

P(t) = U(L, t)

1
= 1

2
erfc

(
L− vt√
4Dt

)
(14)

A comparison of the cumulative residence time distribution
(a function that connects the input and output from a viewpoint
of process control) solved by the numerical method and the ana-
lytical method with approximate boundary conditions is shown
in Fig. 2. It can be seen that these two approaches yield almost
the same result despite some minor difference when the step
change passes through the outlet.
We now turn to the computation of a reduced-order model

suitable for optimal controller design and implementation. First,
the SVD is applied to an ensemble of the open-loop solutions of
the state variable x and 4001 snapshot profiles are used. There-
fore, the matrix is 201× 4001. The singular values are sorted in
a descending order and the normalized cumulative sum of eigen-
values (

∑r
i=1λi/

∑∞
i=1λi) is shown in Fig. 3. It is seen that 69%
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Fig. 3. Diffusion-convection process: cumulative sum of eigenvalues for ensem-
ble constructed from the high-dimensional model.

of the energy of the ensemble of x is embedded in the first eigen-
function, 16% in the second eigenfunction, and so on. Further,
the first 10 eigenfunctions capture 99.8%of the ensemble energy
(
∑∞
i=1λi). If the number of eigenfunctions increases to 15 or to

30, the amount of energy captured is 99.98% or 99.99998%,
respectively. Therefore, by applying the Galerkin projection
to the PDE model, we can derive a 10–30th order state-space
model to capture the dominant process characteristics of the
original 201st order state-space model with very reasonable
accuracy.
The first five eigenfunctions corresponding to the five largest

eigenvalues are shown in Fig. 4. It can be easily seen that φi(z)
crosses the horizontal axis i− 1times, or it has i− 1 zeros. For
example, the first eigenfunction has no zero, the second one has
one zero, and the third one has two zeros and so on. The evo-
lution of the Fourier coefficients ai corresponding to the first
five eigenfunctions is shown in Fig. 5. Also, ai(t) has i− 1 local
maxima or minima (excluding the final stabilized value). More-
over, the norm of ai(t) decreases gradually as i increases, which
is consistent with the magnitude of the eigenvalues. When the

Fig. 4. Diffusion-convection process: first five empirical eigenfunctions for
ensemble constructed from the high-dimensional model.

Fig. 5. Diffusion-convection process: evolution of the first five Fourier coeffi-
cients in the open-loop system.

process approaches to its steady state, all the coefficients become
constants.
The deviation of the spatiotemporal profile of the concen-

tration in the open-loop system obtained by the reduced-order
models with r = 10, 15, and 30 from the one using the high-
order model is shown in Fig. 6. It is seen that the largest
deviations occur near the inlet of the reactor at time close to
zero. This is an inevitable behavior of a series solution to a
PDE. As time increases, the deviation tends to decrease and the
series solution is closer to the actual solution. Furthermore, a
more accurate description of the concentration profile can be
described by using more eigenfunctions, which is explained by
|Ured − U| =

∑∞
i=r+1|φiλiψTi | =

∑∞
i=r+1λi.

2.3.2. Closed-loop simulations
The design of the optimal controllers is based on the reduced-

ordermodels and the control actions are applied to the high-order
approximation of the process. In all closed-loop simulations, the
weight on the control action (R) is set to be 0.25. The optimal
profiles of manipulated input based on reduced-order models of
different dimensions and the controlled output from the high-
dimensional model are shown in Figs. 7 and 8. It is seen that
the optimal trajectories of the input variable and the output vari-
able are almost identical between r = 10, 15 and 30. Different
from the open-loop system, where a steady increase in the out-
put concentration can be observed, the output concentration in
the closed-loop system oscillates and reaches one peak and one
valley before it stabilizes at one. The input concentration also
oscillates before it reaches a constant value.
The deviation of the spatiotemporal concentration profile

in the closed-loop system obtained using the reduced-order
models from the one using the high-order model with the
same control action is shown in Fig. 9. As compared to those
in the open-loop system, the deviation of the reduced-order
model from the high-order model is larger but still within an
acceptable range. A smaller deviation is expected when more
empirical eigenfunctions are used in the reduced-order model.
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Fig. 6. Diffusion-convection process: deviation of the open-loop concentration profile calculated from the reduced-order models from the high-order model (a,
r = 10; b, r = 15; c, r = 30).

The spatiotemporal profile of the concentration in the closed-
loop system with control action calculated from a 30th order
model is shown in Fig. 10. Different from the one in the open-
loop system, the concentration profile is more skewed. Although
the concentration is continuously decreasing from the inlet of

Fig. 7. Diffusion-convection process: manipulated input profile—controller
designed on the basis of the reduced-order model with different number of basis
functions.

the reactor to the outlet in the beginning, the concentration in
the middle of the reactor might be larger than the one at the
inlet during the transition process, or the diffusion flux is in
the opposite direction of the convection. Based on the closed-
loop concentration profile, the evolution of the first five Fourier

Fig. 8. Diffusion-convection process: controlled output from the high-
dimensional state-space model based on the control action calculated on the
basis of the reduced-order models.
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Fig. 9. Diffusion-convection process: deviation of the concentration profile derived from the reduced-order models from the high-dimensional model with the same
control action in the closed-loop system (a, r = 10; b, r = 15; c, r = 30).

coefficients is calculated and is shown in Fig. 11. Compared to
the one in the open-loop system, the normof ai in the closed-loop
system is larger, but it reaches its steady-state in a shorter time.

Remark 3. In a previous work (Li & Christofides, 2007), we
proposed an input/output approach to the optimal control of con-
centration transition in distributed chemical reactors with input

Fig. 10. Diffusion-convection process: concentration profile in the closed-loop
system with control action calculated from a 30th order model.

constraints. The control problem was formulated as the one of
minimizing the following functional:

min
u(t)

J =
∫ ∞

0
(y(t)− yf )2 dt + ε2

∫ ∞

0
(u(t)− uf )2 dt,

s.t. umin ≤ u(t) ≤ umax (15)

Fig. 11. Diffusion-convection process: evolution of the first five Fourier coeffi-
cients in the closed-loop system.
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Fig. 12. Diffusion-convection process: optimal trajectory of manipulated input
solved using the input/output approach and the state-space approach.

where yf = uf = 1 is the target concentration of the input and
output at the steady state, and ε = 0.5 to match the cost function
in the current work. It has been shown that this problem can be
converted to an equivalent least square minimization problem of
the form (Li & Christofides, 2007):

min
u
J = ||Au− b||2, s.t. umin ≤ u(t) ≤ umax (16)

where A =
[
�P

εI

]
, b =

[
e

εe

]
, e = [ 1 1 . . . 1 ]T, and

�P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1 0 . . . . . . 0

P2 − P1 P1
. . .

...
...

. . .
. . .

. . .
...

...
. . . P1 0

Pk − Pk−1 . . . . . . P2 − P1 P1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

with Pi = P(i�t) is the cumulative residence time distribution
at t = i�t. The final time tf = k�t is chosen such that a near
steady state has been reached at tf in the closed-loop system.
The same optimal control problem is solved by both the state-
space approach and the input/output approach and the results are
shown in Figs. 12 and 13. It is seen that the input/output approach
based on the concept of residence time distribution derived from
the high-order model and the state-space approach based on
the reduced-order model (r = 30) derived from the Galerkin
projectionwith empirical eigenfunctions as basis functions yield
the same optimal control trajectory.

3. Optimal control of diffusion-convection-reaction
processes

3.1. Process model and spatial discretization

Consider an isothermal dispersed tubular chemical reactor
with simultaneous convection, diffusion and a generic reaction.

Fig. 13. Diffusion-convection process: optimal trajectory of controlled output
solved using the input/output approach and the state-space approach.

The evolution of concentration is described by the following
PDE subject to the so-called Danckwerts boundary conditions
(Danckwerts, 1953):

∂U(z, t)

∂t
= −v∂U(z, t)

∂z
+D∂

2U(z, t)

∂z2
+ Ra(U(z, t)), s.t.

vU(0−, t) = vU(0+, t)−D ∂U(z, t)
∂z

∣∣∣∣
z=0+

,
∂U(z, t)

∂z

∣∣∣∣
z=L

= 0
(18)

where U(0−, t) = u(t) is the input variable, U(L, t) = y(t) the
output variable and Ra(z, t) is the reaction term.
We solve the model of Eq. (18) using orthogonal collocation.

By applying the orthogonal collocation on N finite elements
within the spatial domain, the primary variable U(z, t) can be
expressed as U(z, t) =∑N

i=1li(z)U(zi, t) at time t, where li(z)
is the Lagrange interpolation polynomial of (N − 1) th order:

li(z) =
N∏

j=1,j �=i

z− zj
zi − zj (19)

which satisfies

li(zj) =
{
0, i �= j
1, i = j (20)

Another important property of the Lagrange interpolation
polynomials used in the orthogonal collocation approach is that
they are orthogonal to each other, i.e.

∫ 1

0
li(z)lj(z) dz =

{
0, i �= j
1, i = j (21)

Therefore, a small number of collocation points are required
to obtain an accurate solution.
Based on the orthogonal collocation scheme, the collocation

elements (zi) and the Lagrange interpolation polynomial can be
determined a priori without information from the structure of
the PDE. Therefore, the partial derivatives of U with respect to
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the spatial coordinate can be expressed as follows:

∂U(z, t)

∂z
=

N∑
i=1
U(zi, t)

dli(z)

dz
(22)

∂U2(z, t)

∂z2
=

N∑
i=1
U(zi, t)

d2li(z)

dz2
(23)

Defining the two matrices:

A =
{
Ai,j = dlj(zi)

dz
; i, j = 1, 2, . . . , N

}
(24)

and

B =
{
Bi,j =

dl2j (zi)

dz2
; i, j = 1, 2, . . . , N

}
(25)

the original PDE of Eq. (18) can be converted to a set of ODEs:

dU(z2, t)

dt
= −v

N∑
j=1
A2,jU(zj, t)+D

N∑
j=1
B2,jU(zj, t)

+Ra(U(z2, t))
...

dU(zN−1, t)
dt

= −v
N∑
j=1
AN−1,jU(zj, t)

+D
N∑
j=1
BN−1,jU(zj, t)+ Ra(U(zN−1, t))

(26)

subject to the following boundary conditions:

vu(t) = vU(z1, t)−D
N∑
j=1
A1,jU(zj, t),

N∑
j=1
AN,jU(zj, t) = 0 (27)

The system of Eqs. (26)–(27) is a DAE of index one which
can be further simplified by incorporating the boundary condi-
tions into the ordinary differential equation. First, we rewrite the
equations describing the boundary conditions in the following
form:

(v−DA1,1)U(z1, t)−DA1,NU(zN, t)

= D
N−2∑
j=2

A1,jU(zj, t)+ vu(t),

AN,1U(z1, t)+ AN,NU(zN, t) = −
N−2∑
j=2

AN,jU(zj, t) (28)

and then define the following matrices and vectors:

Ad = {Ari,j = Ai+1,j+1; i, j = 1, 2, . . . , N − 2},
Bd = {Bri,j = Bi+1,j+1; i, j = 1, 2, . . . , N − 2},

Ab =

⎡
⎢⎢⎣

A2,1 A2,N

...
...

AN−1,1 AN−1,N

⎤
⎥⎥⎦ , Bb =

⎡
⎢⎢⎣

B2,1 B2,N

...
...

BN−1,1 BN−1,N

⎤
⎥⎥⎦ ,

M =
[
v−DA1,1 −DA1,N
AN,1 AN,N

]
, V =

[
v

0

]
,

N =
[
DA1,2 · · · DA1,N−1
−AN,2 · · · −AN,N−1

]
, H = [ 0 1 ],

x = [U(z2, t) U(z3, t) · · · U(zN−1, t)]T,
d = [U(z1, t) U(zN, t)]T,
f = [Ra(U(z2, t)) Ra(U(z3, t)) · · · Ra(U(zN−1, t))]T (29)

Using the above definitions, we have that

d =M−1Nx+M−1Vu (30)

provided thatM is nonsingular. Using the above notation, Eqs.
(26)–(27) can be then written as

ẋ = (−vAd +DBd)x+ (−vAb +DBb)d + f (x)
= [(−vAd +DBd)+ (−vAb +DBb)M−1N]x+ f (x)
+ (−vAb +DBb)M−1Vu (31)

and

y = HM−1Nx+HM−1Vu (32)

which is in the standard state-state form of a nonlinear dynamic
process:

ẋ = Acx+ Bcu+ f (x), y = Ccx+Dcu (33)

where Ac = [(−vAd +DBd)+ (−vAb +DBb)M−1N],Bc
= (−vAb +DBb)M−1V ,Cc = HM−1N,Dc = HM−1V .

3.2. Optimal control using LQR

The optimal control problem for the nonlinear ODE system
of Eq. (33) can be solved using control vector parametriza-
tion or nonlinear programming of the discretized system (see,
for example, Varshney & Armaou, 2006). To circumvent the
computational complexity, we focus on the linearized system
around the open-loop steady-state. The linearized system works
as a state estimator based on which the control action is cal-
culated. Because both the open-loop nonlinear system and the
linearized system are stable, the observer gain is set to be zero
for simplicity.
Let x̃ = x− xs, ũ = u− us, and ỹ = y − ys, the nonlinear

system can be written as follows:

˙̃x = Acx̃+ Bcũ+ f (x̃+ xs)− f (xs), ỹ = Ccx̃+Dcũ (34)
which can be linearized around the steady-state using the Jaco-
bian matrix Al = (∂f (x))/(∂x)|x=xs to obtain:
˙̃x = (Ac +Al)x̃+ Bcũ, ỹ = Ccx̃+Dcũ (35)
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The LQR problem is to minimize the following functional:

min
u(t)

J =
∫ ∞

0
(ỹ2 + ε2ũ2) dt (36)

and the solution is given by the state feedback law: ũ = −Kx̃,
whereK = R−1(BTS +GT), andS is determined by theRiccati
equation (Arnold & Laub, 1984):

(Ac +Al)TS + S(Ac +Al)− (SBc +G)R−1(BTc S +GT)
+Q = 0 (37)

whereQ = CTc Cc,G = CTc Dc, and R = DTc Dc + ε2.
Typically, the dimensionof an approximate state-spacemodel

formulated using orthogonal collocation is substantially smaller
than the one obtained by finite difference and can be used for
controller design. Moreover, in case a large number of colloca-
tion points are needed, model reduction techniques can be used
to derive a low order state-space model from the orthogonal col-
location model and the controller can be synthesized using that
reduced-order model. Following a similar approach presented
in Section 2, Eq. (35) can be converted to the following form:

˙̃a = Arã+ Brũ, ỹ = Crã+Drũ (38)

where Ar = ΦT(Ac +Al)Φ,Br = ΦTBc, and Cr = CΦ, and
Dr = Dc. Therefore, the (N − 2) nd state-space model is
reduced to an r th one through the Galerkin projection, which
can be then used for controller design. The solution of this LQR
problem is given by the state feedback law ũ = −Krã follow-
ing a similar approach to the one presented on the basis of the
high-order model.

3.3. Results and discussion

The control problem is to make an optimal transition of the
concentration at the exit of the reactor from 0.2 to 0.5. The
parameters used in the simulations are listed in Table 2. The
reaction term is assumed to be Ra = −2kU2. To determine the
concentration profile within the reactor before and after transi-
tion, the steady state form of Eq. (33) is solved:

0 = Acxs + Bcus + f (xs), ys = Ccxs +Dcus (39)

and the results are shown in Figs. 14 and 15. The collocation
elements are not uniformly distributed along the spatial domain,
as seen in Fig. 16. Instead, they are highly clustered in the region
close to the boundaries. The nonlinearity of the problem can be
easily verified by checking the steady-state profiles of the con-
centration before and after transition, which are not proportional
to each other. A calculation of the input variable also shows that

Table 2
Parameters used in the simulation of the diffusion-convection-reaction process

v 0.2
L 1
D 0.02
N 50
k 0.05

Fig. 14. Diffusion-convection-reaction process: steady-state spatial profiles of
the concentration before transition and after transition.

Fig. 15. Diffusion-convection-reaction process: spatiotemporal distribution of
the concentration during transition in the open-loop system.

Fig. 16. Diffusion-convection-reaction process: distribution of the collocation
elements in the spatial domain.
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Fig. 17. Diffusion-convection-reaction process: spatiotemporal distribution of
the concentration during transition in the closed-loop system.

us increases from 0.22 to 0.66 in order to make an increase of
ys from 0.2 to 0.5.
The closed-loop spatiotemporal profile of the concentration

during the transition process solved using ε2 = 0.01 is shown in
Fig. 17. One apparent difference between the open-loop system
(Fig. 15) and the closed-loop system (Fig. 17) is that the con-
centration at the inlet of the reactor is not increasing all the time
under optimal control. Instead, it increases initially and then
decreases after reaching a peak. This behavior is very similar
to the one observed for the diffusion-convection process. As we
discussed before, because the original steady-state of both the
original system and the linearized system is stable, the difference
between these two states approaches zero as the time exceeds
a certain value, which is shown in Fig. 18. The profiles of the
manipulated input and of the controlled output under optimal
control are shown in Figs. 19 and 20. It is seen that the transition
time in the closed-loop system is significantly less than the one
in the open-loop system.
In case the dimension of the finite-dimensional model for-

mulated using the orthogonal collocation is high in order to

Fig. 18. Diffusion-convection-reaction process: deviation of the closed-loop
concentration profile calculated from the linearized model from the nonlinear
system with the same control action.

Fig. 19. Diffusion-convection-reaction process: optimal trajectory of themanip-
ulated input based on the high-dimensional state-space model derived from
orthogonal collocation.

Fig. 20. Diffusion-convection-reaction process: optimal trajectory of the con-
trolled output using optimal control action calculated on the basis of the
high-dimensional state-space model derived from orthogonal collocation.

Fig. 21. Diffusion-convection-reaction process: cumulative sum of eigenvalues
for ensemble constructed from the high-dimensional model.
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Fig. 22. Diffusion-convection-reaction process: first five empirical eigenfunc-
tions for ensemble constructed from the high-dimensional model.

Fig. 23. Diffusion-convection-reaction process: evolution of thefirst fiveFourier
coefficients in the open-loop system.

Fig. 24. Diffusion-convection-reaction process: optimal trajectory of manipu-
lated input solved based on the reduced-order state-space model.

Fig. 25. Diffusion-convection-reaction process: optimal trajectory of controlled
output using the control action computed on the basis of the reduced-order
state-space model.

accurately describe the process, a reduced-order model might
be derived using proper orthogonal decomposition techniques
for controller design. Following a similar procedure used in the
control of the diffusion-convection process, the SVD is first
applied to an ensemble of the state variable x (a 48 × 101
matrix) to derive empirical eigenfunctions. The singular values
are sorted in a descending order and the normalized cumulative
sum of eigenvalues (

∑r
i=1λi/

∑∞
i=1λi) is shown in Fig. 21. It is

seen that the process can be described using about 10 empiri-
cal eigenfunctions with very reasonable accuracy. The first five
eigenfunctions corresponding to the five largest eigenvalues λi
and the evolution of thefirst fiveFourier coefficientsai are shown
in Figs. 22 and 23. Similar to the diffusion-convection process,
the magnitude of ai decreases as i increases, which is consistent
with the magnitude of the eigenvalue λi. The LQR problem is
solved based on a 10th order model and the control action is fed
to the high order nonlinear ODEmodel. The optimal trajectories
of the manipulated input and controlled output are shown to be
very close to those in which the control action is solved based on

Fig. 26. Diffusion-convection-reaction process: deviation of the closed-loop
spatiotemporal concentration profile calculated using the reduced-order model
(r = 10) from thehigh-dimensionalmodel (r = 48)with the samecontrol action.
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the high-order model (see Figs. 24 and 25). A comparison of the
spatiotemporal profile of the concentration based on the control
action solved using the high-order model and the reduced-order
model indicates that there is some small difference in the region
close to the boundary in the beginning of the transition and in
the whole region during the transition. However, even such a
small difference becomes negligible when the process reaches
steady state (see Fig. 26).

4. Summary

We presented in this work two computationally efficient
approaches for the optimal control of diffusion-convection-
reaction processes described by parabolic PDEs subject to
Danckwerts boundary conditions. The central idea of the pro-
posed approaches is to construct a finite-dimensional state-space
model through numerical discretization (such as finite differ-
ence and orthogonal collocation, etc.) and proper orthogonal
decomposition techniques, based on which the optimal con-
troller can be designedwith affordable computational effort. The
effectiveness of the proposed methods were illustrated through
applications to a diffusion-convection process and a diffusion-
convection-reaction process in which both the input and the
output are on the boundaries.
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