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The collection efficiency of particles in the nanosize range (5-100 nm) in a two stage parallel plate electrostatic
precipitator is studied by numerical simulation based on a fundamental model of the process. Specifically,
the particle charging process is based on Fuchs’ theory. For the collecting stage, the model employs an Eulerian
approach for the solid-gas flow and explicitly accounts for Brownian and eddy diffusion, turbulent flow,
and electrostatic migration. Calculation results indicate that particles in the nanosize range are not uniformly
charged. Ultrafine particles with diameter less than 20 nm seldom acquire more than one unit of elementary
charge. Larger particles (20-100 nm) may carry several units of charge, depending on the product of ion
concentration and charging time. The simulation results also indicate that there is a local maximum in the
collection efficiency in the nanosize range, a finding which is consistent with experimental observations
reported in the literature. The simulation also points out that the most efficient way to increase the collection
efficiency of particles in the ultrafine size range is to enhance the charging process. For particles with larger
size, both the parameters in the charging stage (the product of ion concentration and charging time) and those
in the collecting stage (electrostatic intensity and length and width of the collecting cell) have an important
effect on the overall collection efficiency.

1. Introduction

The environmental pollution has become, during the recent
years, a crucial problem of public concern, and the authorities
are requested to set increasingly more stringent limits for the
emissions from the industrial plants for solid particulate and
other gaseous pollutants. The electrostatic precipitator, as a
consequence, has become one of the most commonly employed
particulate control devices for collecting aerosols from utility
boilers, incinerators, and many other industrial processes.1

Furthermore, with the development of sophisticated nanoparticle
synthesis techniques, the electrostatic precipitator also provides
a powerful tool for collecting nanoparticles from an aerosol or
plasma reactor.2-4 The greatest advantage provided by an
electrostatic precipitator is that the electrostatic force of highly
charged particles under the influence of an external electrostatic
field is usually very large, as compared to gravitational, thermal,
and inertial forces. The electrostatic precipitation involves two
major physical processes: particle charging in an electric field
and turbulent transport of charged particles to the collection
surface under the electrostatic field. For coarse particles (larger
than 100 nm), experimental work has shown that the collection
efficiency is very high (usually larger than 99%).5 For particles
with diameter less than 100 nm, however, only moderate
collection efficiency can be achieved, which might be explained
by the low charging fraction of nanosize particles.6 A funda-
mental understanding, with the aid of numerical simulation, will
shed light onto the behavior of this process and help to improve
its design and operation.

Figure 1 shows a schematic of a typical two-stage plate
electrostatic precipitator. In the charging stage, high voltage is
applied to a wire to generate a corona discharge and the particles
suspended in the air are electrically charged as they are exposed
in the unipolar ions. In the collection stage, high voltage is

applied in the middle of two grounded plates. When the air
moves through the collection channel, the suspended particles
migrate to the grounded plates as a result of the electrostatic
forces. Two fundamental models (i.e., laminar and Deutsch
models) are usually applied to estimate the collection efficiency
of particles in an electrostatic precipitator. Although both models
make the assumption of plug flow (i.e., the velocity profile is
flat as the gas moves forward), they treat differently the turbulent
dispersion of particles in the gas field. In the Deutsch model
the transverse turbulent dispersion is considered to be infinite
so that there is no gradient of particle concentration across the
precipitator duct. As a result, the mass flux normal to the
collecting plates is proportional to the longitudinal concentration
gradient and the particle concentration decays exponentially in
the flow direction. In the so-called “laminar” model, however,
the transverse turbulent dispersion is negligible, and the mass
flux to the collecting plates is uniform. Consequently, the
particle concentration decays as a linear function of the
longitudinal coordinate. Referring to Figure 1, if one letDe )
ceL/(Ru0) be the Deutsch number, wherece is the particle
migration velocity normal to the collecting plate,u0 is the
average longitudinal velocity, andL andR are the length and
half width of each collection cell in the electrostatic precipitator,
the collection efficiency in the above two cases can be described
as follows:
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Figure 1. Schematic diagram of a typical two-stage electrostatic precipita-
tor.
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When the diffusivity is finite, the collection efficiency will
be bounded by the one predicted by laminar and Deutsch
models. Leonard et al.7 introduced a finite and uniformly
distributed particle diffusivity into the governing transport
equation and obtained an analytical solution to the collection
efficiency as a function of both the Deutsch number and the
Peclet number (Pe) ceR/Dp, whereDp is the particle diffusiv-
ity). When the diffusivity is close to zero (orPe f ∞), the
collection efficiency tends to the one predicted by the laminar
model, while for infinite diffusivity (orPef 0), the collection
efficiency approaches the one predicted by the Deutsch model.
However, the assumption of uniform diffusivity is not adequate
to describe the particle transport phenomena near the wall, where
the diffusivity is significantly smaller than the one in the
turbulent core. More realistic assumptions toward the non-
uniform distribution of particle diffusivity were made in
subsequent research work. For example, the flow field was
divided into two zones and the particle diffusivity was taken to
increase as a linear function of its distance from the collecting
wall in the boundary layer region and become constant in the
core region.8-10 Moreover, because the flow field is not usually
uniformly distributed, the plug flow assumption also needs to
be modified.10-12 In this sense, it is more reasonable to take
into account the spatially distributed diffusivity and velocity.
With the development of more advanced computational tech-
nologies and facilities, the collection efficiency of particles in
an electrostatic precipitator was successfully simulated and
analyzed by state of the art computational fluid dynamics,13

direct numerical simulations,14,15 and Monte Carlo simula-
tions.12,16 The collection efficiency of polydisperse particles
using the method of moments was also reported.17,18The reader
may refer to the work of Varonos et al.19 for a discussion of
the various optimization issues of electrostatic precipitation
processes.

Despite a plethora of analytical and numerical work on the
electrostatic precipitation process in the literature, the behavior
of nanosize particles in an electrostatic precipitator has been
rarely discussed. Different from coarse particles, particles in
the nanosize range are not uniformly charged even if they are
monodisperse. Because the collection efficiency is not a linear
function of the number of charges carried by a particle,
prediction of the overall collection efficiency of monodisperse
particles in the nanosize range should take into account the
charging distribution instead of using an average charging level.
In this paper, important issues of nanosize particles in electro-
static precipitation, such as unipolar charging, turbulent deposi-
tion of charged particles under the electrostatic field, and overall
collection efficiency of particles accounting for charging
distribution in an electrostatic precipitator, are presented and
analyzed numerically. By exploring the mechanism of the
particle removal underlying the electrostatic precipitation pro-
cess, we aim to provide a fundamental insight into this process
and to point out several crucial factors that affect the overall
collection efficiency.

2. Particle Charging Process

Attachment of small ions via either field charging or diffusion
charging is one of the most commonly used mechanisms by
which aerosol particles can be charged.20 For particles falling
in the submicrometer size range, the dominant mechanism is

diffusion charging, which can be divided into three regimes
based on the magnitude of the Knudsen numberKn (Kn ) 2λion/
dp, whereλion is the mean free path of ions, which is about
0.0145µm under atmospheric pressure, anddp is the particle
diameter). In the continuum regime (Kn , 1), where the particle
diameter is larger than 100 nm, the particle charging can be
determined by solving the macroscopic diffusion equations. In
the free molecule regime (Kn . 1), where the particle diameter
is less than 10 nm, the theory of Marlow and Brock21 best
predicts the charging process. In the transition regime (Kn ≈
1), where the particle diameter is larger than 10 nm but less
than 100 nm, approaches proposed by Fuchs22 and Marlow and
Brock work well.

For nanosize particles (dp ) 5-100 nm), the unipolar
charging process is described by the following set of dynamic
equations:6,23,24

whereni is the concentration of particles carryingi units of
charge andnion is the concentration of ions. The positive term
at the right-hand side of each equation stands for the rate of
increase in the particle concentration and the negative term
stands for the rate of decrease. The combination coefficient
âi, which represents the valid collision rate of a particle
carrying i units of charge with an ion is described by Fuchs’
theory:22

where k is the Boltzmann constant,T is the temperature,φ
is the electrostatic potential between particles and ions,
ê is the probability of collisions,δ is the radius of the “limiting
sphere”, andDion and Cion are the diffusion coefficient and
mean thermal velocity of the ions, respectively. All the
parameters appearing in eq 3 can be calculated by the following
equations:6,24,25
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where a is the radius of a particle,e is the elementary
electrostatic charge,κ is the dielectric constant of a particle,
andε0 is the dielectric constant of free space. Apparently, the
combination coefficient varies with the size of the particle and
the number of elementary charges it carries.

Let nb ) [n0 n1 ... np]T be the concentration distribution of
particles with different number of charges andp be the
maximum number of charges a particle can carry (i.e., anyâi

with i g p is zero); the equations to describe the charging
process can be rewritten in the following form:

whereA is a matrix of the following form

The solution to eq 5 is given by

where exp(Aniont) is a matrix the same size asA andnb0 ) [nT0
... 0]T (wherenT is the initial concentration of particles without
charge). There are many ways to calculate the exponential of
matrix Aniont. Referring to eq 6, one can easily find out that
the matrixA hasp + 1 distinct eigenvalues-â0 < -â1 < ...
< -âp-1 < 0, and it can be diagonalized asA ) PΛP-1, where
Λ ) diag[-â0 -â1 ... -âp-1 0] and bothP andP-1 are lower
triangular matrixes that can be determined analytically. Ac-
cording to linear systems theory,26 we have

When the product (niont) goes to infinity, the particle charging
will be saturated, and its charge distribution is given by

which implies that the particles will all be charged byp units
of charge after saturation.

Another method to compute the exponential of the matrix
Aniont is to apply Taylor’s expansion and to truncate the high

order terms whose norms are sufficiently small. In this work,
eq 7 is solved directly using the command “expm” in the Matlab
software package, which is based on a scaling and squaring
algorithm with a Pade approximation. Theoretically, the dimen-
sion of the matrixA is infinity. However, as will be shown
later, as a result of the sharp decay ofâ, the highest number of
elementary charges a nanosize particle can carry is very small
(generally less than 10 under the operating conditions of interest
in this work). Therefore, the dimension of matrixA is small.
In the numerical calculation, the optimal dimension ofA ()p
+ 1) is chosen such that a further increase ofp has no effect on
the charging distribution.

3. Particle Collection Process

The mass transport behavior of nanosize particles in a two-
stage parallel electrostatic precipitator is explored by numerical
simulations in this work. Generally speaking, the gas-solid flow
can be described in two ways, namely, the Lagrangian and the
Eulerian methods. In the Lagrangian approach, the gas phase
is treated as a continuum and the trajectory of each individual
particle is solved by momentum transfer equations.12-15,27 In
the Eulerian approach, however, the continuum hypothesis is
made for both the particulate phase and the gas phase.10,11,17,25,28,29

In this paper, we employed the Eulerian approach to calculate
the distribution of the particle concentration. The readers may
refer to our previous work for the modeling and control of a
variety of particulate processes.30-35 Under the assumptions of
(1) steady state, (2) negligible axial diffusion, and (3) insig-
nificant gravitational force, the particle transport equation in
the electrostatic precipitator and its corresponding boundary
conditions can be written as follows:

where n is the particle concentration,u is the longitudinal
velocity, ce is the migration velocity along they direction,
determined byce ) [ieE/(3πµdp)]C, andDp ) Db + ε. In the
previous equations,Db is the Brownian diffusivity determined
by the Stokes-Einstein equationDb ) [kT/(3πµdp)]C, ε is the
turbulent diffusivity, andC is the slip factor which can be
calculated byC ) 1 + Kn[1.257 + 0.4 exp(-1.1/Kn)].1

As for the boundary conditions, it is assumed that the
collecting plates behave as an ideal perfect sink and the particle
concentration is zero. This assumption was justified by Park
and Chun.10 Note that the assumption of zero concentration
gradient at the collecting wall was also made in other refer-
ences.7,17,36At the symmetric surface (y ) 0), a zero net flux is
assumed such that there is no accumulation of mass at the
symmetric surface, that is, the flux caused by the turbulent
dispersion cancels the one by electrostatic migration. The
particle wall interaction is not included in this work. The re-
entrainment effect can be taken into account by modifying the
boundary conditions.8

To account for the transverse particle velocity distribution,
we applied the well-known “law of the wall” relationships in

∂(un)
∂x
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∂(cen)
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) ∂
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∂n
∂y)
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-Dp
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niontf∞
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the viscous sublayer, the buffer region, the constant-stress layer
(logarithmic region), and the “power-law” region37 (pp 615-
638). We also changed the constant 4.9 to 5.0 for the velocity
relationship in the logarithmic distribution region to make it
smoother. Specifically,

whereu+ and they+ are the dimensionless velocity and distance
defined byu+ ) u/u* andy+ ) y′u*/ν. Notey′ ) R- y because
of the different coordinates. The other parameters are related
by u* ) (τw/F)1/2, f ) 4τw/(1/2Ffu0

2), 1/xf ) 2.0 log(xfReDh) -
0.8, andReDh is defined based on the hydraulic diameter.10,17

The turbulent dispersion coefficient was assumed to be
uniform in the turbulent core of the flow and decay to zero at
the collection plate wall following a linear function, which was
used in the literacture.9,10 Specifically, it takes the following
form

where ε0 is the turbulent dispersion coefficient within the
turbulent core of the flow which is estimated by9,10

Implementation of the expressions of spatially distributed
particle velocity (eq 11) and diffusivity (eqs 12 and 13) into
the particle transport equation (eq 10) yields

wherea ) ce + 10ε0/R andb ) Db + 10ε0(R - y)/R if y′ e
0.1R anda ) ce andb ) Db + ε0 if y′ > 0.1R.

Using the upwind finite difference scheme, the particle
concentration at each grid point in the electrostatic precipitator
can be calculated by the following iterative formulas

for i ) 1, ...,M and j ) 2, ...,K

whereR(y) ) a∆x/(u∆y), â(y) ) b∆x/(u∆2y), andM + 1 and
K + 1 are the total number of nodes alongx andy directions,
respectively.

The collection efficiency of particles havingi units of charge
is given by the following formula:

which is calculated numerically. The overall collection efficiency
(ηt) is determined as the weighted sum of each single collection
efficiency of the particles having different numbers of charges:

where fi is the fraction of particles havingi units of charge.
Although the collection efficiency based on the average number
of charges (usually nonintegers) might be used, we believe that
this weighted collection efficiency is more meaningful because
the number of elementary charges a particle carries is usually
an integer. Moreover, the collection efficiency is generally a
nonlinear function of the number of charges, and then, there
might be some difference between these two calculation
methods.

4. Simulation Results and Discussion

The parameters and constants used in this work are listed in
Table 1, if not otherwise specified. The models for the charging
and collecting stages, as presented in the previous sections, are
solved numerically using Matlab, and the main results are
highlighted below.

Figure 2 shows the first eight combination coefficients (â0-
â7) of particles with positive ions based on the Fuchs' theory.
It is seen from this figure that the combination coefficient
decreases sharply as the particle acquires more and more ions.
For particles having the same number of elementary charges,
the larger the particle size, the larger the combination coefficient.
Also, it can be seen from this figure that onlyâ0 is of importance
for particles with size less than 10 nm, which is consistent with
the experimental observation that particles in the ultrafine size
range rarely acquire more than one unit of charge.6

To demonstrate the unipolar charging behavior of particles
in the charging process, the charge distribution as a function of
the product of ion concentration and charging time, for two
particles of two different diameters, 20 nm (dashed lines) and
50 nm (solid lines) is shown in Figure 3. Figure 3 indicates
that the charging fraction is not uniformly distributed for
particles in the nanosize range, as a result of the dynamic
interplay of different combination coefficients. Because-â0 <
-â1 < ... < -âp-1 < 0, there is typically a peak in the charging

ηi ) 1 -
∫0

R
u(x, y) n(x, y)|x)L dy

∫0

R
u(x, y) n(x, y)|x)0 dy

(16)

ηt ) ∑
i)0

∞

ηifi (17)

Table 1. Parameters Used in the Process Model

temperature (K) 292
particle diameter,dp (nm) 5-100
mean thermal mobility of positive

ions,Cion (m2/V‚s)
1.4× 10-4

specific dielectric constant of NaCl aerosols,κ 6.12
ion concentration,nion (s/m3) 8.0× 1013

molecular weight of positive ion,Mion (kg/mol) 0.109
molecular weight of air,Mair (kg/mol) 2.89× 10-2

mean free path of air,λair (m) 6.5× 10-8

Avogadro’s numberNa (1/mol) 6.0238× 1023

elementary electrostatic charge,e (C) 1.6021× 10-19

dielectric constant,ε0 (F/m) 8.855× 10-12

Boltzman constant,k (J/K) 1.3806× 10-23

viscosity of air,µ (kg/m‚s) 18.1× 10-6

kinetic viscosity of air,ν (m2/s) 1.506× 10-5

length of collecting cell,L (m) 0.197
half width of collecting cell,R (m) 5.9× 10-3

particle mean velocity,u0 (m/s) 3.0
electrostatic intensity (103 V/cm) 5.0

u+ ) {y+, y+ < 5

2.5 ln(1+ 0.4y+) + 7.4[1- exp(-y+/11) -

exp(-0.33y+)y+/11], 5e y+ < 30

2.44 ln(y+) + 5.0, 30e y+ < 500

8.3(y+)1/7, y+ g 500

(11)

ε ) {10ε0y′/R, 0 e y′ e 0.1R
ε0, 0.1R < y′ e R (12)

ε0 ) 0.04u*R (13)

u
∂n
∂x

+ a
∂n
∂y

) b
∂

2n

∂
2y

(14)

nj
i+1 )

{(R + â)nj-1
i + (1 - R - 2â)nj

i + ânj+1
i (if R > 0)

ânj-1
i + (1 + R - 2â)nj

i + (â - R)nj+1i (if R e 0)

n1
i )

Dp

Dp + ce∆y
n2

i, for i ) 2, 3, ...,M + 1

nK+1
i ) 0, for i ) 2, 3, ...,M + 1

nj
1 ) n0, for j ) 1, 2, ...,K + 1 (15)
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fraction f1 - fp-1, while f0 is continuously decreasing andfp is
steadily increasing. However, the average number of elementary
charges the particles acquire is always increasing asniont
increases, as shown in Figure 4. It is also seen that the number
of charges that nanosize particles acquire is quite limited. When
niont ) 8 × 1013 s/m3, particles of size 10 nm acquire an average
number of 0.998 (less than 1) unit of charge, while particles of
size 100 nm acquire an average number of 6.296 units of charge.
Under the same value ofniont, the average number of charges
the particles carry is nearly a linear function of particle size.
For example, whenniont ) 8 × 1013 s/m3, the relationship can

be expressed by 0.059× (dp/1 nm) + 0.371. Also shown in
Table 2 is the charging fraction of particles of different sizes
as a function ofniont and a comparison with experimental data6

in terms of the overall charged fraction. This comparison
indicates that the Fuchs’ theory might overestimateâ0 for
particles in the nanosize range. The deviation becomes smaller
asdp or niont becomes larger.

Figure 5 demonstrates a typical concentration profile of
particles in the electrostatic field. Upon entering the charging
stage, the particle concentration is uniformlyn0, although the
charging fraction is nonuniform (even for monodisperse par-
ticles). As the suspended particles with the carrier air pass
through the electrostatic precipitator, the particles migrate to
the grounded collection plates because of the electrostatic force
and the particle concentration drops near the collection plate.
However, it is seen that the maximum particle concentration is
not on the symmetric surface but somewhere between this
surface and the collecting plates. This is because there is no
accumulation of particles at the symmetric surfacey ) 0 where
the mass flux due to the negative concentration gradient cancels
the migration rate.

Figure 6 demonstrates the single collection efficiency as a
function of the particle size and the number of elementary

Figure 2. Combination coefficients of NaCl nanosize particles with positive
ions.

Figure 3. Charging fraction as a function of charging time (nion ) 8 ×
1013/m3) for two different particle sizes (dashed curves,dp ) 20 nm, and
solid curves,dp ) 50 nm).

Figure 4. Average number of charges as a function of particle diameter
and the product of ion concentration and charging time (nion ) 8 × 1013/
m3).

Table 2. Charged Fraction as a Function of Particle Size andniont,
Predicted by Model and Experiments6

dp

(nm) f0 f1 f2 f3 f4 f5 fccalc fcexp dev.

(a)niont ) 2.75× 1012 s/m3

13 0.726 0.274 0.274 0.233 18%
18 0.595 0.402 0.003 0.405 0.303 34%
24 0.454 0.530 0.016 0.546 0.436 25%
32 0.305 0.637 0.058 0.695 0.567 23%
42 0.178 0.663 0.156 0.003 0.822 0.683 20%
56 0.081 0.558 0.334 0.027 0.919 0.890 3%
75 0.027 0.338 0.496 0.132 0.008 0.973 0.912 7%

(b) niont ) 6.68× 1012 s/m3

13 0.460 0.541 0.541 0.400 35%
18 0.283 0.702 0.015 0.717 0.547 31%
24 0.147 0.784 0.069 0.853 0.711 20%
32 0.056 0.733 0.209 0.003 0.944 0.834 13%
42 0.015 0.522 0.436 0.027 0.985 0.923 7%
56 0.002 0.227 0.607 0.158 0.006 0.998 0.976 2%
75 0.045 0.427 0.444 0.081 0.003 1.000 0.995 0%

(c) niont ) 9.53× 1012 s/m3

13 0.330 0.670 0.670 0.502 34%
18 0.166 0.808 0.026 0.835 0.665 25%
24 0.065 0.822 0.113 0.935 0.803 16%
32 0.016 0.664 0.313 0.006 0.984 0.916 7%
42 0.003 0.376 0.566 0.055 0.001 0.998 0.969 3%
56 0.106 0.611 0.269 0.015 1.000 0.994 1%
75 0.010 0.270 0.543 0.167 0.010 1.000

Figure 5. Typical particle concentration profile in the electrostatic
precipitator (dp ) 50 nm,i ) 2).
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charges. It is obvious that ultrafine particles tend to be removed
by the electrostatic precipitator much more easily than larger
ones if they carry the same number of elementary charges, which
can be explained by the higher migration velocity of smaller
particles under the same electrostatic force. Moreover, under
the current simulation settings, the collection efficiency for
ultrafine particles is almost the same (close to unity) as long as
they are charged, no matter how many units of charge they carry
(although they seldom carry more than one unit of charge). For
larger particles, however, the collection efficiency is dependent
on the number of charges they acquire. Furthermore, the larger
the number of charges, the higher the collection efficiency. For
uncharged particles, some of them might also be collected on
the grounded plate as a result of diffusion. Generally speaking,
the collection efficiency of nanosize particles due to diffusion
is a weak function of particle size, and it is relatively small as
compared to the one due to electrostatic precipitation, as shown
in Figure 6. In fact, under the assumption of constant dispersion,
an analytic expression for the collection efficiency can be
derived as

(see the appendix for details). Theoretical collection efficiency
due to constant diffusion is shown in Figure 7 as a function of
DpL/R2U, which is typically small becauseDpL/R2U is on the
order of 10-2 or even smaller.

Figure 8 shows the relationship between the overall collection
efficiency and the particle diameter for threeniont levels (8×
1012 s/m3, 4 × 1012 s/m3, and 8× 1013 s/m3). It can be seen
that under the sameniont product, the overall collection efficiency
usually goes up first, reaching a peak, and then decreases as
the particle diameter increases from 5 nm to 100 nm. This
phenomenon results from the interplay of the increasing charging
fraction (refer to Figure 4) and the decreasing electrostatic
mobility (refer to Figure 6). Because particles in the ultrafine
size range usually have very high electrostatic migration
velocity, the overall collection efficiency is close to unity when
niont is large enough and the particles are almost fully charged
by acquiring one ion. However, asniont decreases, the collection
efficiency for very small particles drops significantly (because
of decreased charging fraction) and the peak in the collection
efficiency shifts to the right.

Figure 9 demonstrates the overall collection efficiency as a
function of particle diameter and the electrostatic intensity. It
can be seen from this figure that an increase in the electrostatic
intensity usually results in an increase in the overall collection
efficiency because the migration velocity increases. But for
particles in the ultrafine size range, the electrostatic intensity
has almost no effect on the overall collection efficiency. This
is because the collection efficiency for these particles is almost
100% if they acquire just one unit of charge (or the collection
is limited by the charging fraction), and a further increase in
the electrostatic migration velocity due to enhanced electrostatic
intensity does not improve the collection efficiency.

The peak in the collection efficiency of nanoparticles as a
function of particle size was reported by experimental work in
the literature. For example, in the work of Yoo et al.,38 the

Figure 6. Single collection efficiency as a function of particle size (5-
100 nm) and number of elementary charges.

Figure 7. Theoretical prediction of collection efficiency due to constant
diffusion.

Figure 8. Overall collection efficiency as a function ofniont and particle
size.

Figure 9. Overall collection efficiency as a function of electrostatic intensity
and particle diameter (niont ) 4 × 1013 s/m3).

η ) 1 -
8

π2
∑
i)1

∞ 1

(2i - 1)2
exp[-

(2i - 1)2π2Dp

4R2u
L]
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maximum of the collection efficiency for nanosize NaCl
particles in the nanosize range occurred arounddp ) 40-50
nm in a two-stage electrostatic precipitator under the experi-
mental settings of interest and was explained by the partial
charging effect fordp e 30 µm. In the work of Zhuang et al.,25

the peak occurred between 60 nm and 80 nm for silica particles,
under two different voltages in the collection stage. It was also
shown that, under higher voltage, the collection efficiency
increased for coarse particles (larger than about 60 nm) only
and retained almost the same value for finer particles (smaller
than about 60 nm). Moreover, the peak shifted to the right when
the voltage in the collection stage increased. These phenomena
are consistent with the model predictions in the current work
and can be explained accordingly.

5. Concluding Remarks

The collection efficiency for particles in the nanosize range
(5-100 nm) in a two-stage parallel electrostatic precipitator is
studied by numerical simulation in this paper. The charging
process is based on the theories of Fuchs. For the collecting
stage, the mass transfer model includes Brownian and eddy
diffusion, turbulent flow, and migration. Calculation results
indicate the following:

(1) The particle charging fraction is not uniformly distributed
in the nanosize range. Ultrafine particles with diameter less than
20 nm seldom acquire more than one unit of charge. Large
particles with diameter larger than 20 nm might acquire several
units of charge, depending on the product of ion concentration
and charging time.

(2) The average number of charges a particle acquires
increases with the particle size and the product of ion concentra-
tion and charging time. Particles in the size range between 5
and 100 nm can seldom capture more than 10 units of charge
if the product of ion concentration and charging time is less
than 8× 1013 s/cm3.

(3) There is usually a peak in the particle size and collection
efficiency profile, which is caused by the higher electrostatic
mobility of the ultrafine particles and the higher charging
probabilities of the coarser particles. This peak might vary
depending on the parameters in the charging and collecting
stages. Similar experimental observations have been reported
in the literature.

(4) Particles with diameter less than 20 nm have more
electrostatic mobility than bigger ones. Therefore, the most
efficient way to increase their collection efficiency is to increase
the product of charging time and ion concentration. For particles
with larger size, both the parameters in the charging stage (the
product of ion concentration and charging time) and those in
the collection stage (electrostatic intensity, length, and width)
may have an important effect on the collection efficiency.
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Appendix: Analytic Solution to Collection Efficiency for
Particles Due to Constant Diffusion

The partial differential equation (PDE) that describes the
transport phenomena in an electrostatic precipitator with constant
dispersion and no electrostatic migration is given by

subject to the boundary conditions

When Laplace transformation is used, the above PDE can be
converted into an ordinary differential equation of the form

whose solution is of the following form

By referring to standard Laplace transformation tables,39 the
following is found:

and, thus, eq 22 yields

The average concentration at the outlet of the container can be
computed by

Therefore, the analytic expression to calculate the collection
efficiency for particles without charge is
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