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Collection Efficiency of Nanosize Particles in a Two-Stage Electrostatic
Precipitator

Mingheng Li and Panagiotis D. Christofides*
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Los Angeles, California 90095-1592

The collection efficiency of particles in the nanosize rangel(@0 nm) in a two stage parallel plate electrostatic
precipitator is studied by numerical simulation based on a fundamental model of the process. Specifically,
the particle charging process is based on Fuchs’ theory. For the collecting stage, the model employs an Eulerian
approach for the solidgas flow and explicitly accounts for Brownian and eddy diffusion, turbulent flow,

and electrostatic migration. Calculation results indicate that particles in the nanosize range are not uniformly
charged. Ultrafine particles with diameter less than 20 nm seldom acquire more than one unit of elementary
charge. Larger particles (2000 nm) may carry several units of charge, depending on the product of ion
concentration and charging time. The simulation results also indicate that there is a local maximum in the
collection efficiency in the nanosize range, a finding which is consistent with experimental observations
reported in the literature. The simulation also points out that the most efficient way to increase the collection
efficiency of particles in the ultrafine size range is to enhance the charging process. For particles with larger
size, both the parameters in the charging stage (the product of ion concentration and charging time) and those
in the collecting stage (electrostatic intensity and length and width of the collecting cell) have an important
effect on the overall collection efficiency.

1. Introduction Groundedgolleclion plate

The environmental pollution has become, during the recent — — ﬁ u R
years, a crucial problem of public concern, and the authorites  — — TLX»
are requested to set increasingly more stringent limits for the — — . - TTTTTTTTTT T
emissions from the industrial plants for solid particulate and —= Corona wire —= High voltage symmetric line
other gaseous pollutants. The electrostatic precipitator, as a -
consequence, has become one of the most commonly employed : L |
particulate control devices for collecting aerosols from utility Charging stage Collecting stage

boilers, incinerators, and many other industrial processes. Figure 1. Schematic diagram of a typical two-stage electrostatic precipita-
Furthermore, with the development of sophisticated nanoparticle tor.
synthesis techniques, the electrostatic precipitator also provides
a powerful tool for collecting nanoparticles from an aerosol or applied in the middle of two grounded plates. When the air
plasma reactot-* The greatest advantage provided by an moves through the collection channel, the suspended particles
electrostatic precipitator is that the electrostatic force of highly migrate to the grounded plates as a result of the electrostatic
charged particles under the influence of an external electrostaticforces. Two fundamental models (i.e., laminar and Deutsch
field is usually very large, as compared to gravitational, thermal, models) are usually applied to estimate the collection efficiency
and inertial forces. The electrostatic precipitation involves two of particles in an electrostatic precipitator. Although both models
major physical processes: particle charging in an electric field make the assumption of plug flow (i.e., the velocity profile is
and turbulent transport of charged particles to the collection flat as the gas moves forward), they treat differently the turbulent
surface under the electrostatic field. For coarse particles (largerdispersion of particles in the gas field. In the Deutsch model
than 100 nm), experimental work has shown that the collection the transverse turbulent dispersion is considered to be infinite
efficiency is very high (usually larger than 99%ffor particles  so that there is no gradient of particle concentration across the
with diameter less than 100 nm, however, only moderate precipitator duct. As a result, the mass flux normal to the
collection efficiency can be achieved, which might be explained collecting plates is proportional to the longitudinal concentration
by the low charging fraction of nanosize particfea. funda- gradient and the particle concentration decays exponentially in
mental understanding, with the aid of numerical simulation, will the flow direction. In the so-called “laminar” model, however,
shed light onto the behavior of this process and help to improve the transverse turbulent dispersion is negligible, and the mass
its design and operation. flux to the collecting plates is uniform. Consequently, the

Figure 1 shows a schematic of a typical two-stage plate particle concentration decays as a linear function of the
electrostatic precipitator. In the charging stage, high voltage is longitudinal coordinate. Referring to Figure 1, if one [ =
applied to a wire to generate a corona discharge and the particlest;eL/(RLb) be the Deutsch number, wherg is the particle
suspended in the air are electrically charged as they are exposeehigration velocity normal to the collecting platep is the
in the unipolar ions. In the collection stage, high voltage is average longitudinal velocity, arldandR are the length and
half width of each collection cell in the electrostatic precipitator,
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min{ De, 1} (Laminar model) (2) based on the r_nagnitude of the Knudsen nun#be(’Krj = _Ziionl
dp, wherelion is the mean free path of ions, which is about
When the diffusivity is finite, the collection efficiency will ~ 0.0145um under atmospheric pressure, ahds the particle
be bounded by the one predicted by laminar and Deutsch diameter). In the continuum regimkr{ < 1), where the particle
models. Leonard et dl.introduced a finite and uniformly  diameter is larger than 100 nm, the particle charging can be
distributed particle diffusivity into the governing transport determined by solving the macroscopic diffusion equations. In
equation and obtained an analytical solution to the collection the free molecule regimd( > 1), where the particle diameter
efficiency as a function of both the Deutsch number and the is less than 10 nm, the theory of Marlow and Bré&ckest
Peclet numberRe = c.R/Dy, whereD, is the particle diffusiv- predicts the charging process. In the transition regikre £
ity). When the diffusivity is close to zero (dPe — ), the 1), where the particle diameter is larger than 10 nm but less
collection efficiency tends to the one predicted by the laminar than 100 nm, approaches proposed by F&fcdrsd Marlow and
model, while for infinite diffusivity (orPe— 0), the collection Brock work well.
efficiency approaches the one predicted by the Deutsch model. For nanosize particlesd{ = 5-100 nm), the unipolar
However, the assumption of uniform diffusivity is not adequate charging process is described by the following set of dynamic
to describe the particle transport phenomena near the wall, wheresqyations:23.24
the diffusivity is significantly smaller than the one in the

_ {1 — exp(=De) (Deutsch model) diffusion charging, which can be divided into three regimes

turbulent core. More realistic assumptions toward the non- dn

uniform distribution of particle diffusivity were made in —0— —BoNionNo
subsequent research work. For example, the flow field was dt

divided into two zones and the particle diffusivity was taken to dn,

increase as a linear function of its distance from the collecting ot = BoNionNo — B1NionM.
wall in the boundary layer region and become constant in the

core regiorf 1% Moreover, because the flow field is not usually

uniformly distributed, the plug flow assumption also needs to dn

be modified®12 |n this sense, it is more reasonable to take = Bi—1NionNi—1 — BiNigaN,
into account the spatially distributed diffusivity and velocity. dt

With the development of more advanced computational tech- : (2)

nologies and facilities, the collection efficiency of particles in
an electrostatic precipitator was successfully simulated andwheren; is the concentration of particles carryingunits of
analyzed by state of the art computational fluid dynartics, charge andho, is the concentration of ions. The positive term
direct numerical simulations;'> and Monte Carlo simula-  at the right-hand side of each equation stands for the rate of
tions!216 The collection efficiency of polydisperse particles increase in the particle concentration and the negative term
using the method of moments was also repottéfiThe reader  stands for the rate of decrease. The combination coefficient
may refer to the work of Varonos et #lfor a discussion of g, which represents the valid collision rate of a particle
the various optimization issues of electrostatic precipitation carryingi units of charge with an ion is described by Fuchs’
processes. theory?2

Despite a plethora of analytical and numerical work on the
electrostatic precipitation process in the literature, the behavior
of nanosize particles in an electrostatic precipitator has been 71C,,,E0% exp[—¢(0)/KT]
rarely discussed. Different from coarse particles, particles in 3, = c 562
the nanosize range are not uniformly charged even if they are ion alo
monodisperse. Because the collection efficiency is not a linear 1+ exp[-¢(0)/kT] 4Di0naﬂ) explp(@/x)/kT] dx
function of the number of charges carried by a particle, )
prediction of the overall collection efficiency of monodisperse
particles in the nanosize range should take into account thewherek is the Boltzmann constan, is the temperaturep
charging distribution instead of using an average charging level.is the electrostatic potential between particles and ions,
In this paper, important issues of nanosize particles in electro- £ is the probability of collisionsy is the radius of the “limiting
static precipitation, such as unipolar charging, turbulent deposi- sphere”, andDj,, and Cio, are the diffusion coefficient and
tion of charged particles under the electrostatic field, and overall mean thermal velocity of the ions, respectively. All the
collection efficiency of particles accounting for charging parameters appearing in eq 3 can be calculated by the following
distribution in an electrostatic precipitator, are presented and equations24.25
analyzed numerically. By exploring the mechanism of the

particle removal underlying the electrostatic precipitation pro- & 3
cess, we aim to provide a fundamental insight into this process @) = k=1 a
and to point out several crucial factors that affect the overall Agre K+ 1or(r* — &)
collection efficiency.
5=
i ) ajfl 5 1 2 3, 2 22,5
2. Particle Charging Process Kn2[5(1 + Kn) 3(1 + Kn)(1+ Kn)® + 15(1 + Kn%)

Attachment of small ions via either field charging or diffusion
charging is one of the most commonly used mechanisms by r2 2[p(0) — ¢(r,)]
;<] 200} ]

which aerosol particles can be charg@dror particles falling
in the submicrometer size range, the dominant mechanism is 3KT
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kTZ,, order terms whose norms are sufficiently small. In this work,
ion =™ " g eq 7 is solved directly using the commarekpni in the Matlab
software package, which is based on a scaling and squaring
SkT algorithm with a Pade approximation. Theoretically, the dimen-
ion — M sion of the matrixA is infinity. However, as will be shown
1o later, as a result of the sharp decaySpthe highest number of

C

elementary charges a nanosize particle can carry is very small
=1 32922 KT Mg, Mgt 4) (generally less than 10 under the operating conditions of interest
on T e AL (M, + Mg N, in this work). Therefore, the dimension of matdxis small.

In the numerical calculation, the optimal dimensionfo{=p
where a is the radius of a particleg is the elementary + 1) is chosen such that a further increase bfs no effect on
electrostatic charge is the dielectric constant of a particle, the charging distribution.
ande is the dielectric constant of free space. Apparently, the
combination coefficient varies with the size of the particle and 3. Particle Collection Process
the number of elementary charges it carries.

Let = [no ny ... ny]T be the concentration distribution of
particles with different number of charges amdbe the
maximum number of charges a particle can carry (i.e.,/any
with i = p is zero); the equations to describe the charging
process can be rewritten in the following form:

The mass transport behavior of nanosize particles in a two-
stage parallel electrostatic precipitator is explored by numerical
simulations in this work. Generally speaking, the-gaslid flow
can be described in two ways, namely, the Lagrangian and the
Eulerian methods. In the Lagrangian approach, the gas phase
is treated as a continuum and the trajectory of each individual

dfi - particle is solved by momentum transfer equati&n$>27 In
o Angpn (5) the Eulerian approach, however, the continuum hypothesis is
made for both the particulate phase and the gas phésE:252829
whereA is a matrix of the following form In this paper, we employed the Eulerian approach to calculate
the distribution of the particle concentration. The readers may
=By O R 0 refer to our previous work for the modeling and control of a
variety of particulate process#&s.3°> Under the assumptions of
Bo P - . (1) steady state, (2) negligible axial diffusion, and (3) insig-
’ . nificant gravitational force, the particle transport equation in
0 B, B, - : the electrostatic precipitator and its corresponding boundary
A= . . ©6) conditions can be written as follows:
o(un) ach) a( an)
X d oyl Pa
ﬁp—z _ﬁp—l 0 Y y g
B.C.
0 0 ﬁp_l 0
n=n, 0Oy, x=0
The solution to eq 5 is given by
n=0, Ox, y=R
i(t) = expAn, i, W .
where explniont) is a matrix the same size asandriy = [n0 Dpay ten=0 0x y=0 (10)

... O]" (whereny is the initial concentration of particles without . ) . . L
charge). There are many ways to calculate the exponential of VNeré n is the particle concentratiory is the longitudinal
matrix Anoit. Referring to eq 6, one can easily find out that VElOCity, Ce is the migration velocity along thg direction,
the matrixA hasp + 1 distinct eigenvalues-fo < —f1 < ... determined byc. = [ieE/(37udp)]C, andDp = Dy + €. In the
< —By-1 < 0, and it can be diagonalized As= PAP~1, where previous equationd)y, is the Brownian diffusivity determined
A = diag[-Bo —B1 ... —Bp-1 0] and bothP andP~ are lower by the StoKesEinstein equgtiorDb =.[kT/(3:wdp)]§:, e is the
triangular matrixes that can be determined analytically. Ac- turbulent diffusivity, andC is the slip factor which can be

cording to linear systems theowe have calculated byC = 1 + Kn[1.257 + 0.4 exp1.1Kn)].1
As for the boundary conditions, it is assumed that the

() = P diag[exptAyniot) expEpBingt) .. collecting platgs behave as an ideal perfect siqk agd the particle
i concentration is zero. This assumption was justified by Park
eXp(_ﬂpflniont) 1P 1, (8) and Chun® Note that the assumption of zero concentration

gradient at the collecting wall was also made in other refer-
ences’17:36At the symmetric surfacey(= 0), a zero net flux is
assumed such that there is no accumulation of mass at the
symmetric surface, that is, the flux caused by the turbulent
dispersion cancels the one by electrostatic migration. The
particle wall interaction is not included in this work. The re-
which implies that the particles will all be charged pynits entrainment effect can be taken into account by modifying the
of charge after saturation. boundary condition8.

Another method to compute the exponential of the matrix ~ To account for the transverse particle velocity distribution,
Aniort is to apply Taylor's expansion and to truncate the high we applied the well-known “law of the wall” relationships in

When the productrioit) goes to infinity, the particle charging
will be saturated, and its charge distribution is given by

lim #(t) =P diag[00...0 1P, =[00...0n;]" (9)

Niont—



the viscous sublayer, the buffer region, the constant-stress layer
(logarithmic region), and the “power-law” regi¥n(pp 615~
638). We also changed the constant 4.9 to 5.0 for the velocity
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_,_ Joux ) ne Yl oy

=

Ji7u(x, Y) N, Y)lo

(16)

relationship in the logarithmic distribution region to make it

smoother. Specifically, which is calculated numerically. The overall collection efficiency

(17¢) is determined as the weighted sum of each single collection

’ Tyt <5 ) . . ;
yoy efficiency of the particles having different numbers of charges:
2.5In(1+ 0.4y") + 7.4[1— exp(~y*/11) — .

ut = exp(-0.33)y"/11],5<y" <30  (11) = ) nf; 7

2.441In¢") +5.0,30< y" <500
T, wheref; is the fraction of particles havingunits of charge.

i8'3® )"y =500 Although the collection efficiency based on the average number

of charges (usually nonintegers) might be used, we believe that
whereu” and they™ are the dimensionless velocity and distance thjs weighted collection efficiency is more meaningful because
defined byu* = w/u* andy™ = y'u*/v. Notey' = R— ybecause  the number of elementary charges a particle carries is usually
of the different coordinates. The other parameters are relatedan integer. Moreover, the collection efficiency is generally a
by u* = (tw/p)V2 f = 4r/(Y2piu?), LV/F = 2.0 log(/fRey,) — nonlinear function of the number of charges, and then, there
0.8, andRe,, is defined based on the hydraulic diamétet’ might be some difference between these two calculation

The turbulent dispersion coefficient was assumed to be methods.

uniform in the turbulent core of the flow and decay to zero at
the collection plate wall following a linear function, whichwas 4. simulation Results and Discussion
used in the literacturgl® Specifically, it takes the following
form

The parameters and constants used in this work are listed in
Table 1, if not otherwise specified. The models for the charging
and collecting stages, as presented in the previous sections, are
solved numerically using Matlab, and the main results are
highlighted below.

Figure 2 shows the first eight combination coefficienis
p7) of particles with positive ions based on the Fuchs' theory.

It is seen from this figure that the combination coefficient
decreases sharply as the particle acquires more and more ions.
For particles having the same number of elementary charges,
the larger the particle size, the larger the combination coefficient.
Also, it can be seen from this figure that oiflyis of importance

for particles with size less than 10 nm, which is consistent with

_J10y/R 0=y < 0.1R
€=1e 0.IR<y =R (12)
where ¢y is the turbulent dispersion coefficient within the
turbulent core of the flow which is estimated %

€,= 0.04*R (13)

Implementation of the expressions of spatially distributed
particle velocity (eq 11) and diffusivity (eqs 12 and 13) into
the particle transport equation (eq 10) yields

an an #n the experimental observation that particles in the ultrafine size
U-+a_-_=b— (14) range rarely acquire more than one unit of ch&rge.
ax dy 32}’ To demonstrate the unipolar charging behavior of particles

in the charging process, the charge distribution as a function of
the product of ion concentration and charging time, for two
particles of two different diameters, 20 nm (dashed lines) and
50 nm (solid lines) is shown in Figure 3. Figure 3 indicates
that the charging fraction is not uniformly distributed for
particles in the nanosize range, as a result of the dynamic
nitl = interplay of different combination coefficients. Becausgy <
! i : . —f1 < ... < —fp-1 <0, there is typically a peak in the charging
(a+pn_y + (1 —oa—28)n +pny, (if > 0)

wherea = ¢ce + 10¢¢/R andb = Dy + 10¢(R — y)/Rif ¥ <
0.IRanda = ccandb =Dy + ¢ if y > 0.1R.

Using the upwind finite difference scheme, the particle
concentration at each grid point in the electrostatic precipitator
can be calculated by the following iterative formulas

Table 1. Parameters Used in the Process Model

B + (1 +a—28)n'+ (B — 0)n+1' (if a < 0)

temperaturek) 292
. . article diameterd, (nm 5-100
fori=1,..,Mandj=2,..K &ean thermal mopbi(lity z))f positive 1.4x 104
D ions, Cion (MP/V+S)
P p i . specific dielectric constant of NaCl aerosads, 6.12
ng = D+ CeAynz' fori=2,3,.M+1 ion concentrationpion (S/n®) 8.0x 1013
p molecular weight of positive iorilion (kg/mol) 0.109
) molecular weight of airMa;r (kg/mol) 2.89x 1072
Nesy =0, fori=2,3,..M+1 mean free path of aifa; (M) 6.5x 1078
Avogadro’s numbeN; (1/mol) 6.0238x 1072
. elementary electrostatic chargg(C 1.6021x 10719
nj1 =n, forj=1,2..K+1 (15) dielectric cyonstanzo (F/m) #C) 8.855x 10712
Boltzman constank (J/K) 1.3806x 1023
wherea(y) = aAx/(uAy), 5(y) = bAx/(uA?y), andM + 1 and viscosity of airu (kg/m:s) 18.1x 1076
K + 1 are the total number of nodes alongndy directions, kinetic viscosity of airy (m?/s) 1.506x 107
respectively Iength_ of collecting _ceIIL (m) 0.197
" . . .. . half width of collecting cellR (m) 5.9x 1073
The collection efficiency of particles havinginits of charge particle mean velocityo (m/s) 30
is given by the following formula: electrostatic intensity (£0v/cm) 5.0
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Combination coefficient

10
Particle diameter (nm)

Figure 2. Combination coefficients of NaCl nanosize particles with positive
ions.

Charging fraction

0.4
Charging time (s)

0.6 0.8 1

Figure 3. Charging fraction as a function of charging tinmg,{ = 8 x
10¥/md) for two different particle sizes (dashed curvds= 20 nm, and
solid curvesd, = 50 nm).

ge number of charges

Averal

Figure 4. Average number of charges as a function of particle diameter
and the product of ion concentration and charging time & 8 x 104/

m3).

fractionf, — fp—1, while fo is continuously decreasing affigis

steadily increasing. However, the average number of elementary

charges the particles acquire is always increasingnas

increases, as shown in Figure 4. It is also seen that the number

of charges that nanosize particles acquire is quite limited. When
Niont = 8 x 1013 s/n?, particles of size 10 nm acquire an average
number of 0.998 (less than 1) unit of charge, while particles of

size 100 nm acquire an average number of 6.296 units of charge.

Under the same value oi,t, the average number of charges
the particles carry is nearly a linear function of particle size.
For example, whemjoit = 8 x 10 s/, the relationship can

Table 2. Charged Fraction as a Function of Particle Size anahiont,
Predicted by Model and Experiment$

db
(nm) fo f1 fo f3 fa f5 fccalc fcexp dev.
(@) Niont = 2.75x 102 s/m?
13 0.726 0.274 0.274 0.233 18%
18 0.595 0.402 0.003 0.405 0.303 34%
24 0.454 0.530 0.016 0.546 0.436 25%
32 0.305 0.637 0.058 0.695 0.567 23%
42 0.178 0.663 0.156 0.003 0.822 0.683 20%
56 0.081 0.558 0.334 0.027 0.919 0.890 3%
75 0.027 0.338 0.496 0.132 0.008 0.973 0912 7%
(b) Niont = 6.68 x 102 s/m?
13 0.460 0.541 0.541 0.400 35%
18 0.283 0.702 0.015 0.717 0.547 31%
24 0.147 0.784 0.069 0.853 0.711 20%
32 0.056 0.733 0.209 0.003 0.944 0.834 13%
42 0.015 0.522 0.436 0.027 0.985 0.923 7%
56 0.002 0.227 0.607 0.158 0.006 0.998 0.976 2%
75 0.045 0.427 0.444 0.081 0.003 1.000 0.995 0%
(€) niont = 9.53 x 1012 s/
13 0.330 0.670 0.670 0.502 34%
18 0.166 0.808 0.026 0.835 0.665 25%
24 0.065 0.822 0.113 0.935 0.803 16%
32 0.016 0.664 0.313 0.006 0.984 0916 7%
42 0.003 0.376 0.566 0.055 0.001 0.998 0.969 3%
56 0.106 0.611 0.269 0.015 1.000 0.994 1%
75 0.010 0.270 0.543 0.167 0.010 1.000

be expressed by 0.059 (dy/1 nm)+ 0.371. Also shown in
Table 2 is the charging fraction of particles of different sizes
as a function ofient and a comparison with experimental data

in terms of the overall charged fraction. This comparison
indicates that the Fuchs’ theory might overestimatefor
particles in the nanosize range. The deviation becomes smaller
asdy or nont becomes larger.

Figure 5 demonstrates a typical concentration profile of
particles in the electrostatic field. Upon entering the charging
stage, the particle concentration is unifornmy although the
charging fraction is nonuniform (even for monodisperse par-
ticles). As the suspended particles with the carrier air pass
through the electrostatic precipitator, the particles migrate to
the grounded collection plates because of the electrostatic force
and the particle concentration drops near the collection plate.
However, it is seen that the maximum particle concentration is
not on the symmetric surface but somewhere between this
surface and the collecting plates. This is because there is no
accumulation of particles at the symmetric surfgee O where
the mass flux due to the negative concentration gradient cancels
the migration rate.

Figure 6 demonstrates the single collection efficiency as a
function of the particle size and the number of elementary

Figure 5. Typical particle concentration profile in the electrostatic
precipitator ¢, = 50 nm,i = 2).
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Figure 7. Theoretical prediction of collection efficiency due to constant . . . .
diffusion. Figure 8 shows the relationship between the overall collection

efficiency and the particle diameter for thregit levels (8 x
charges. It is obvious that ultrafine particles tend to be removed 10'? s/n?, 4 x 10'2 s/m¥, and 8x 10'3 s/mP). It can be seen
by the electrostatic precipitator much more easily than larger that under the samgt product, the overall collection efficiency
ones if they carry the same number of elementary charges, whichusually goes up first, reaching a peak, and then decreases as
can be explained by the higher migration velocity of smaller the particle diameter increases from 5 nm to 100 nm. This
particles under the same electrostatic force. Moreover, underphenomenon results from the interplay of the increasing charging
the current simulation settings, the collection efficiency for fraction (refer to Figure 4) and the decreasing electrostatic
ultrafine particles is almost the same (close to unity) as long as mobility (refer to Figure 6). Because particles in the ultrafine
they are charged, no matter how many units of charge they carrysize range usually have very high electrostatic migration
(although they seldom carry more than one unit of charge). For velocity, the overall collection efficiency is close to unity when
larger particles, however, the collection efficiency is dependent Nt is large enough and the particles are almost fully charged
on the number of charges they acquire. Furthermore, the largerby acquiring one ion. However, agqt decreases, the collection
the number of charges, the higher the collection efficiency. For efficiency for very small particles drops significantly (because
uncharged particles, some of them might also be collected onof decreased charging fraction) and the peak in the collection
the grounded plate as a result of diffusion. Generally speaking, efficiency shifts to the right.
the collection efficiency of nanosize particles due to diffusion ~ Figure 9 demonstrates the overall collection efficiency as a
is a weak function of particle size, and it is relatively small as function of particle diameter and the electrostatic intensity. It
compared to the one due to electrostatic precipitation, as showncan be seen from this figure that an increase in the electrostatic
in Figure 6. In fact, under the assumption of constant dispersion, intensity usually results in an increase in the overall collection
an analytic expression for the collection efficiency can be efficiency because the migration velocity increases. But for

derived as particles in the ultrafine size range, the electrostatic intensity
has almost no effect on the overall collection efficiency. This

g > 1 (2i — 1)2772Dp is because the collection efficiency for these particles is almost
n=1—-—Y——exg———L 100% if they acquire just one unit of charge (or the collection
=120 — 1) AR%u is limited by the charging fraction), and a further increase in

the electrostatic migration velocity due to enhanced electrostatic
(see the appendix for details). Theoretical collection efficiency intensity does not improve the collection efficiency.
due to constant diffusion is shown in Figure 7 as a function of  The peak in the collection efficiency of nanoparticles as a
DpL/R?U, which is typically small becausByL/R?U is on the function of particle size was reported by experimental work in
order of 102 or even smaller. the literature. For example, in the work of Yoo et #lthe
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maximum of the collection efficiency for nanosize NaCl 9 °n

particles in the nanosize range occurred arodne= 40—50 Crvi ng (18)
nm in a two-stage electrostatic precipitator under the experi-

mental settings of interest and was explained by the partial

charging effect fod, < 30 um. In the work of Zhuang et af®, subject to the boundary conditions

the peak occurred between 60 nm and 80 nm for silica particles, n=n, 0Oy, x=0

under two different voltages in the collection stage. It was also

shown that, under higher voltage, the collection efficiency n=0, Ox y=0

increased for coarse particles (larger than about 60 nm) only ' '

and retained almost the same value for finer particles (smaller an

than about 60 nm). Moreover, the peak shifted to the right when _Dp@ =0, Ix y=R (19)

the voltage in the collection stage increased. These phenomena

are consistent with the model prediCtionS in the current work When Lap|ace transformation is used’ the above PDE can be
and can be explained accordingly. converted into an ordinary differential equation of the form

. 2=
5. Concluding Remarks u(sn— ng) = Dpa_yzn
The collection efficiency for particles in the nanosize range 9
(5—100 nm) in a two-stage parallel electrostatic precipitator is st
studied by numerical simulation in this paper. The charging

process is based on the theories of Fuchs. For the collecting

n=0, Ox, y=0
stage, the mass transfer model includes Brownian and eddy y
diffusion, turbulent flow, and migration. Calculation results an
indicate the following: —Dp@ =0, Dx y=R (20)

(1) The particle charging fraction is not uniformly distributed
in the nanosize range. Ultrafine particles with diameter less thanwhose solution is of the following form
20 nm seldom acquire more than one unit of charge. Large

particles with diameter larger than 20 nm might acquire several us

units of charge, depending on the product of ion concentration N, Ny CosiA/ DY

and charging time. A=————— L% (21)
(2) The average number of charges a particle acquires s 3 cosr( U_SR)

increases with the particle size and the product of ion concentra- D,

tion and charging time. Particles in the size range between 5

and 100 nm can seldom capture more than 10 units of chargeBY referring to standard Laplace transformation taBfethe
if the product of ion concentration and charging time is less following is found:

than 8 x 10 s/cn?.

(3) There is usually a peak in the particle size and collection . cosh@«/;)
efficiency profile, which is caused by the higher electrostatic L "|—————

mobility of the ultrafine particles and the higher charging SCOSh@.\/;)

probabilities of the coarser particles. This peak might vary N 5 o

depending on the parameters in the charging and collecting 42 (1) (2n—1)yn (2n — )mz
stages. Similar experimental observations have been reported ;n_ on—1 exp— TX co 2—a

in the literature.
(4) Particles with diameter less than 20 nm have more (22)

electrostatic mobility than bigger ones. Therefore, the most ]

efficient way to increase their collection efficiency is to increase @nd. thus, eq 22 yields

the product of charging time and ion concentration. For particles

with larger size, both the parameters in the charging stage (the" ) =

product of ion concentration and charging time) and those in 4° (-1 2 — 1)2Jt2Dp (2i — Dy
the collection stage (electrostatic intensity, length, and width)  ng —Z - exg——— x| coq——
may have an important effect on the collection efficiency. n&er2i -1 4R 2R

(23)
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Appendix: Analytic Solution to Collection Efficiency for ﬁﬁ’ N dy =ny - . ZGX - L
Particles Due to Constant Diffusion =120 — 1) 4R 24)
4

The partial differential equation (PDE) that describes the
transport phenomena in an electrostatic precipitator with constant Therefore, the analytic expression to calculate the collection
dispersion and no electrostatic migration is given by efficiency for particles without charge is
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n o (2 — 1)27[2D (19) Varonos, A. A.; Anagnostopoulos, J. S.; Bergeles, G. C. Prediction
. ave 8 1 P of the cleaning efficiency of an electrostatic precipitathrElectrostatics
n=1l-—=l-—>)——exp-—— L 2002 55, 111-133
24 2 R y : . . .
No =120 — 1) 4Ru (20) Yeh, H. C. Electrical Techniques. Arerosol MeasuremeriVilleke,
(25) K., Baron, P. A., Eds.; Van Nostrand Reinhold: New York, 1993.
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