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ABSTRACT

In this work, we focus on multiscale modeling and control of a seeded batch crystallization process used
to produce ibuprofen crystals. For the modeling of the crystal growth process, we consider kinetic Monte
Carlo (kMC) simulations comprising of molecule adsorption, desorption, and migration type microscopic
surface events. To account for growth rate variability, we propose a model for growth rate dispersion
(GRD), based on the available experimental data, which will be applied at the individual crystal growth
level in the kMC simulations. Finally, a model predictive controller (MPC) is developed in order to control
the crystal size distribution of ibuprofen in the batch crystallization process and the MPC closed-loop
performance is compared against constant temperature control (CTC) and constant supersaturation
control (CSC) policies. The proposed MPC is able to deal with the constraints of the control problem, in
addition to minimizing the spread of the crystal size distribution in a superior fashion compared to the

Process simulation
Ibuprofen crystallization

other control methodologies, which improves the crystal product quality at the end of the batch.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Crystallization is a key separation process in the pharmaceu-
tical industry which is estimated to be over a $1 trillion per year
industry. It is used for drug purification, separation, and pre-
formulation. A key consideration in crystallization is that in order
to achieve desired crystal product quality, the process environ-
ment must be controlled appropriately. Otherwise, the target drug
could lose purity, stability, and bio-availability.

Simulation techniques are valuable tools that can be used in
crystal growth modeling which usually consist of equilibrium
Monte Carlo (MC) and kinetic Monte Carlo (kMC) simulations, as
well as molecular dynamics (MD) simulations (Lovette et al.,
2008). A well-written book by Frenkel and Smit (2002), in addition
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to a review by Rohl (2003), goes into detail about the development
of these simulation techniques. In regards to crystallization, MD
simulations are quite helpful when looking at how molecules
move and how they are incorporated into the crystal, however, the
length and time scales of MD simulations make them difficult to
use for process modeling (Lovette et al., 2008). On the other hand,
kMC simulations allow for more realistic length and time scales by
using rate equations that describe different microscopic phenom-
ena. To this end, kMC simulation methods have been widely used
to simulate molecular-level phenomena like crystal nucleation,
growth, and aggregation (Bortz et al., 1975; Dai et al., 2005, 2008;
Gillespie, 1976, 2007; Rathinam et al., 2003; Reese et al., 2001;
Snyder et al., 2005; Gilmer and Bennema, 1972; Kwon et al. 2013a,
b, 2014; Jolliffe and Gerogiorgis, 2015). Furthermore, kMC simula-
tion methods have been successfully applied to compute the net
crystal steady-state growth rate accounting for the dependence of
the desorption and migration rates on the local surface micro-
configuration. For that reason, we look to investigate the batch
crystal growth process of ibuprofen, one of the most widely used
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non-steroidal anti-inflammatory drugs (NSAID), via kMC simula-
tions in this work. Due to the lack of availability of primary
nucleation rate data, we will consider a seeded batch crystal-
lization process and keep the supersaturation at low enough levels
that the impact of nucleation and crystal fines formation will be
minimal compared to the amount of crystals seeded to the system.

Ibuprofen works by reducing prostaglandins, which are the
hormones causing inflammation and pain in the body. These are
usually referred to as local hormones since they only act close to
the location where they are produced. Although they are helpful
initially since swelling will restrict injured areas and increased
blood flow will assist in healing, longer term pain is undesirable.
Thus, many different types of painkillers are used, where ibupro-
fen is one of the most common and widely available choices. In the
US, ibuprofen brand Advil was the top over the counter (OTC)
brand by revenue in 2013 with just over $490 million.

More specifically, we first model the ibuprofen crystal growth
process. In order to do this, we investigate the growth rates of the
(001) and (011) faces via a kMC simulation model. To account for
variability in experimental crystal growth rate data, we develop a
model for growth rate dispersion (GRD) since this phenomenon is
known to affect ibuprofen crystal growth rates and this model is
applied at the individual crystal level. After that, a seeded batch
crystallizer will be considered, requiring the development of mass
and energy balances for the modeling of the continuous-phase
variables and this macroscopic model is combined with the
microscopic crystal growth model. Finally, the crystal size dis-
tribution will be controlled by a model predictive controller (MPC)
and compared against classical control strategies used in industry.

2. Ibuprofen crystal growth
2.1. Kinetic Monte Carlo modeling and simulation

In the present work, we will use kinetic Monte Carlo (kMC)
simulations in order to model the growth rates of ibuprofen crystal
faces since crystal growth is a non-equilibrium process. Unlike
equilibrium Monte Carlo simulations, KMC simulations add an
element of time by using rate equations representing different
microscopic phenomena. Furthermore, this allows modeling the
dependency of the crystal growth rates on the surface micro-
configuration, in addition to the ability to consider individual
crystals, thereby allowing for a more realistic model for growth
rate dispersion. Ibuprofen has unit cell parameters of a=14.397 A,
b=7.818 A, c=10.506 A, and $=99.70° with four molecules per
unit cell (Shankland, 1996; Shankland and Wilson, 1997). For this
work, we will consider an N x N lattice with one molecule per
lattice site and periodic boundary conditions. The types of micro-
scopic events we consider in our kMC simulations in order to
model the crystal growth are adsorption, desorption and migra-
tion. Nearest neighbor lists will be used to aid the computational
efficiency when calculating the total rates for each of the micro-
scopic phenomena (Christofides et al., 2008). The rate equations
considered in this work are set up similar to that of Durbin and
Feher (1991) for lysozyme, however, they have been modified to
account for available growth rate data of ibuprofen on the (001)
and (011) faces (Nguyen et al., 2014). Cano et al. (2001) reported
data for all three faces (i.e., (001), (011), and (100)), however, they
conducted their experiments at very low supersaturation
(6=0.013) which is much lower than the supersaturation range
of our study (0.68 < ¢ < 1.20), and thus, we were not able to use
their data for comparison purposes in the present study. If more
data becomes available in the future for the (100) face, then the
dynamics of the (100) face can easily be integrated into the
present kMC simulation model.

2.2. Rate equations

The per-site adsorption rate is defined as
ra =Kq0, (1
where K, is the adsorption coefficient and o is the relative
supersaturation of the system defined by the following equation:
I

o=E E @

where [ is the ibuprofen content, E is the ethanol content, and I*/E
is the solubility. The solubility will be taken from Rashid et al.
(2008, 2011) and is defined as

%
IE =0.497+0.001026T2, 3)

with temperature T defined in degrees Celsius. Since we consider
an N x N lattice model, the total rate of adsorption is simply

W, = N1, )

Unlike adsorption, the rates of desorption and migration will be
dependent on the local environment at each lattice site (i.e.,
number of nearest neighbors to this site). When a particle has a
high number of nearest neighbors, a lower desorption/migration
rate will be associated with this site due to the fact that the
particle is more stable in its current location. Likewise, when a
particle has very few or no nearest neighbors, that particle will
have a higher desorption/migration rate. Thus, we will use an
Arrhenius type equation for the per-site rate of desorption, ry,
which is defined as follows:

rq(i) = K exp ( - 1%) (5)

where Ky is the desorption coefficient, i is the number of nearest
neighbors for the current lattice site ranging from zero to four (N,
S, E, W directions), E,, is the binding energy per bond, kg is the
Boltzmann constant, and T is the temperature in Kelvin. In order to
find the total rate of desorption, we sum over the entire lattice.
This can be done in a simple way by taking advantage of the fact
that there are five different types of local environments, rather
than checking each individual lattice site requiring an O(N?)
calculation. Thus, the total rate of desorption is

4
Wo= Y Wy, Wy =My, (6)
i=o
where W is the total rate of desorption for lattice sites with i
nearest neighbors and M; is the number of lattice sites with i
nearest neighbors. Migration works in an analogous way and is
defined as follows:

N -pr
rm(i) = Kmexp<—lk'7>, (7)
4
Wm = Z Wm;a Wmi = Mirm(i)a (8)

i=0
where 1, is the per-site rate of migration, K, is the migration
coefficient, W, is the total rate of migration, and W, is the total
rate of migration for lattice sites with i nearest neighbors. Lastly,
the amount of time elapsed when an event occurs is defined in the
following way:

At = —lH(l—g)/Wtot, 9

where ¢ is a uniform random number, ie., {=[0,1), and
Wtot:Wa+Wd+Wm-
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A coarse-grained model could be adequate for the purpose of
computing the crystal growth rate. However, the kMC simulation
is employed to compute the net crystal growth rate accounting for
the dependence of surface migration and detachment rates on the
surface micro-configuration. Furthermore, the evolution of the
crystal shape, which is represented by the ratio between the
heights in the direction of the (011) and (001) faces, is modeled
through the kMC simulation. Lastly, the kMC simulation can be
used to predict the crystal growth dynamics at the operating
conditions where experimental data are not available.

2.3. Growth rate dispersion

Growth rate dispersion (GRD) is a well-known phenomenon
where crystals of the same type, undergoing seemingly the same
conditions, grow at different rates. More specifically, growth rate
dispersion is defined as the variation in growth rates under fixed
thermodynamic and hydrodynamic conditions. The growth of
crystals is mainly caused by the transfer of solute molecules from
the bulk to the kink sites on the crystal surfaces. Therefore, the
growth rates of the different crystals are determined by the
interplay between the mechanism of kink site formation and the
transport of solute molecules to the crystal surface, both of which
are stochastic processes. Furthermore, the densities of kink sites
and their evolution are functions of the temperature and super-
saturation but also functions of the surface micro-configurations
(Garside, 1985; Zacher and Mersmann, 1995; Judge et al., 2010;
Randolph and White, 1977; Garside and Ristic, 1983; OMeadhra
and van Rosmalen, 1996). Previous models that describe this
process include the constant crystal growth (CCG) model
(Garside, 1985; Larson et al., 1985), the random fluctuation (RF)
model (Randolph and White, 1977), and the fast growers, slow
growers (FGSG) model (Daudey, 1987; Rusli et al., 1980; Garside
and Ristic, 1978). In the CCG model, a distribution of crystals has a
distribution of growth rates and individual crystals adhere to a
specific growth rate from that distribution during the entire period
of growth (Larson et al., 1985). The RF model requires individual
crystal growth rates to fluctuate around an average value. Lastly,
the FGSG model states that small crystals will grow at lower
growth rates compared to the larger ones. In the present work, we
account for GRD in a way that is similar to the constant crystal
growth (CCG) model by randomly giving each crystal a uniform
random number, {¢gp, at the start of the simulation of each crystal
growth process, which will be used to calculate the GRD factor for
each crystal. More specifically, GRD; for each crystal will be
computed separately in the following way:

GRDy = 27CG;D€GRD+ <1 —L?D), (10)

where Cgrp is the GRD constant and will be calculated to fit
experimental data of ibuprofen crystal growth rate dispersion. It is
noted that GRDy is dependent on ¢ due to the fact that error bars
became too small at lower supersaturation values and too large at
higher supersaturation values when fitting to experimental data
without having this dependence. The results of this fit are
presented in the next subsection. The GRD factor will affect the
rate of adsorption (i.e., each crystal will have a slightly different
rate of adsorption depending on the {¢gp assigned to that crystal
at the start of the simulation). This will allow for variation in the
growth rates in a manner consistent with the experimentally
computed values and it will be explicitly defined in the following
way in this work:

OGRD =GGRDf. (11)

It is noted that in order for this change to take place, ogrp Will
replace ¢ in Eq. (1) to give

qa = KqOGrp. (12)

We used the kinetic Monte Carlo model to describe the crystal
growth rate process determined by surface mechanisms such as
solute molecule adsorption, migration, and desorption processes.
Then, this microscopic model is integrated with the macroscopic
model such as mass and energy balance equations for the crystal-
lizer to construct the multiscale process model which is used to
simulate the batch crystallization process. Within this context,
the minor fluctuation in the protein solute concentration and the
temperature in the crystallizer due to Brownian motion are
disregarded. In the future, by adopting a molecular level approach,
we could directly model the growth rate dispersion in the crystal-
lizer at a molecular level. Comprehensive reviews on multiscale
modeling can be found in Weinan et al. (2003), Vlachos (2005),
Christofides et al. (2008), Ricardez-Sandoval (2011).

2.4. Fitting the kMC model parameters to experimental results

For a given set of simulation conditions comprised of tempera-
ture, ibuprofen content, ethanol content, and water content, the
kMC simulation methodology and GRD model described earlier in
this section result in growth rate values of ibuprofen for the (001)
and (011) faces over a range of supersaturations. In Fig. 1, ibupro-
fen crystal growth rates are modeled at 95% ethanol, I/E =2, and a
relative supersaturation range of 0.68<6<1.20. The growth rates at
each point in the kMC are produced by averaging 640 independent
crystal runs with the error bars representing the standard devia-
tion. Results are compared to experimental growth rates at 95%
ethanol from Nguyen et al. (2014), as well as a best fit line given by
Rashid et al. (2012) which has the equation G = ks, where k¢ = 15
and s = (I/E)—(I*/E). While Rashid et al. (2012) give an overall
growth rate for the crystals, Nguyen et al. (2014) present the
growth rate data in the direction of the (001) and (011) faces
separately.

The model parameters used for the kMC simulations are listed
in Table 1. Additionally, Ccrp was found to be 0.07 resulting in an
average coefficient of variation (CV) for the kMC simulation data to
be 0.14, compared to 0.12 given in Nguyen et al. (2014). Also, the
kMC growth rate data for the (001) and (011) faces were fit using a
least squares linear regression model which will be used later in
the model predictive controller. The results of this fit are

Goor = 24.8436—15.564, (13)
25 T T T T T T

N 3t ]
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Fig.1. Growth rate versus supersaturation for the (001) and (011) faces for the kMC
model. Additionally, the experimental results from Nguyen et al. (2014) and the
trendline from Rashid et al. (2012) are shown.
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and
Go1 =24.4126—7.2772. 14)

It is noted that size effects of the lattice were considered and results
from N=15 and larger were consistent and showed no change in
results. So, for this work N was set to 20 in order to ensure consistency
without being too large, thereby causing an exponential increase in
required simulation time. In this work, the effect of lattice size used in
the kMC simulation on the crystal growth rate is minimal in
comparison to the effect of lattice sized used in the kMC on the
surface roughness of the crystal surface (a variable that is not of
interest in the present work; the interested readers may find more
information in Hu et al., 2009). Therefore, we can disregard the finite
size effect of the lattice size on the growth rate.

3. Batch crystallization
3.1. Energy and mass balance equations
The energy and mass balance equations which calculate the

change in temperature, T, and ibuprofen content, I, are given by
the following ordinary differential equations:

dT _ pCAHC dVC UJA]

ar_ _ SV T—T)), T@©O)=T,,
dt /)slurrycpvslurry dt pslurrycpvslurry( ]) ( ) 0
15)
dl dv.
dt= —Pcﬁs 1(0) = I, (16)

where p. is the density of the crystal phase, AH, is the enthalpy of
crystallization, pg,, is the density of the slurry phase, C, is the
specific heat capacity, Vg is the volume of the slurry phase, V. is
the total volume of all the crystals, t is the time, U; and A; are the
overall heat transfer coefficient and area between the jacket
stream and the crystallizer, respectively, and T; is the temperature
of the jacket stream. Additionally, To and Ip are the starting
temperature and ibuprofen content of the batch system, respec-
tively. The values for these parameters are given in Table 2.

Adding an energy balance equation in order to take into
account the jacket temperature dynamics would not significantly
modify the practical implementation of the controller.

Table 1
Parameters for faces (001) and (011) at I/E =2.

Parameter Value Units
Epp/ks (001) 17.47 K
Epp/kp (011) 125.20 K

K, 380 st
Ky 270 s!
Kin 300 s1

Table 2

Parameters for faces (001) and (011) at I/E = 2. Note that the ranges are given for
the slurry density and specific heat capacity since they are calculated by composi-
tion of the slurry throughout the entire simulation. The model parameters are
adopted from Shi et al. (2006) and Nguyen et al. (2014).

Parameter Description Value Units

pe Crystal density 1030 mg/cm®
AH, Enthalpy of crystallization —112.95 KJ/kg
Psturry Slurry density 485-510 mg/cm®
G Specific heat capacity 1.85-2.0 J/gK

A;j Surface area of crystallizer wall 0.25 m?

U; Heat transfer coefficient of crystallizer wall 1800 kJ/m? h K

3.1.1. Volume calculation

In order to properly calculate the mass and energy balance
terms that require volume change information, we first need to
accurately estimate the volume of the ibuprofen crystals. In order
to do this, we need to know the height for all three faces (i.e.,
(001), (011), and (100)), along with the interfacial angle a. Since
we explicitly model the growth rates for the (001) and (011) faces,
we can easily determine the heights of the (001) and (011) faces.
On the other hand, for the (100) face, we will use visual
approximation from Rasenack and Miiller (2002) to estimate its
relative height. The results of this approximation show that the
(100) face is roughly 4-8 times slower growing than the (001)
face. Thus, we will assume:

h]oo = ho%, (‘l 7)
where hjgp and hgg; are the heights of the (100) and (001) faces,
respectively. Second, we will use the images provided in Nguyen
et al. (2014) in order to measure the interfacial angle, a, as a
function of supersaturation. Using these images, we found the
following relationship:

a=—-14368°c+105.41°. (18)

With the use of Egs. (17) and (18), the volume of each crystal (see
e.g., Fig. 2) can now be calculated in the following way:

Verystal = %E?x]) <2h011 —hgo1 cos (%) ) higo. (19)

We used the kMC model to describe the crystal growth rate
process at the microscopic level accounting for surface mechan-
isms such as solute molecule adsorption, migration, and deso-
rption processes, as well as accounting for growth rate dispersion.
Then, this microscopic model was integrated with the macroscopic
model such as mass and energy balance equations to construct the
multiscale process model which is used to simulate the batch
crystallization process.

4. Model predictive control

In the seeded batch crystallization process of ibuprofen, kMC
simulations are considered for the crystal growth process via
adsorption, desorption, and migration type microscopic surface
events. The growth rates produced by these simulations are

(100) (001)

(011)

Fig. 2. Geometry of the ibuprofen crystal. Labels show the (100), (001), and (011)
faces, as well as the interfacial angle, a.
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directly related to the supersaturation of the system, which can be
modified by changing the temperature of the jacket which is in
contact with the batch reactor. In this section, a model predictive
controller (MPC) is presented for seeded batch ibuprofen crystal-
lization control. MPC is used in order to provide optimality,
robustness, and constraint handling in the batch crystallization
process (Shi et al., 2006, 2005; Kwon et al., 2014). In particular, the
objective of the MPC will focus on minimizing the crystal size
distribution by computing a set of optimal jacket temperatures
over the length of the prediction horizon. The main reason for
shape control is not directly considered in this work due to the fact
that the shape of ibuprofen crystals is more dependent on the
solvent choice rather than the batch temperature. Additionally, an
actuator constraint on the rate of change of the jacket temperature
is imposed, as well as a constraint on the temperature and
supersaturation of the system so that crystallization will take
place in an appropriate environment to avoid damaging the
crystal. Furthermore, the growth rates will be modeled via Egs.
(13) and (14) in the MPC. Lastly, the energy and mass balance
equations are considered (i.e., Egs. (15) and (16)). The formulation
for the MPC developed in this work is as follows:

p

minimize Z ((Vset —M—;> / Vset)®

I,l»---»T]_[ ««««« Tj.p i=1

subject to dd%: GyoMo, Mg =5 x 10°

Goo1 = 24.8436—15.564, Goy1 = 24.4126—7.2772

Goo1
6
I*

I
- — ¢
o=k E, IE: 0.497 +0.001026T

G100 =

4hoo1)

an %)

(hiy = (hi(ti— 1))+ G A

Vaystal) = <2<h011>* (hoo1) cos (g) ) (h100)

dr pAH:  dM; UA;
e~ - T—T;), T@O)=T
0= PawnCoVaury . PamnCoVaumy 0 1) TO=To
dl dM;
= Pegr 1=l
Tiiv1—Tji )
Tmin <T < Tmax, A = 2.0 °C/min
Omin < 0 < Omax
i=12,...,p, ke{001,011,100} 20)

where p=10 is the length of the prediction horizon, A=40 is the
sampling time in seconds, Vs is the desired average volume set
point, (V) is the average volume of the crystal distribution, T;
is the jacket temperature, T;; is the jacket temperature at the ith
prediction step, ¢hy) is the average height on face k, and My and M;
are the zeroth and first moments of the crystal size distribution,
respectively. My represents the total number of crystals and M;
represents the total volume of the crystals. It is noted that since we
consider a seeded batch crystallizer without nucleation, My will be
constant for this work. If nucleation data were available, then it
follows that My would need to be a variable in the control problem
given by Eq. (20) and more considerations would be taken to
attempt to minimize the presence of crystal fines. Additionally,
Gyor 1S the volumetric growth rate and is calculated by finding the
change in average crystal volume. Finally, values of o, =0.6,
Omax = 1.3, Trin = 10 °C, and Trax =40 °C are used for this work.
The set of optimal jacket temperatures along the prediction
horizon is obtained by solving Eq. (20) in a receding horizon
fashion with IPOPT, an open source software package for large-
scale nonlinear optimization. The first value, Tj;, is then applied to

the system until the next sampling time when a new set of optimal
jacket temperatures is calculated.

The interested readers may find more detailed analysis and
handling of the effect of model parameter uncertainty on the
optimal jacket temperature trajectories in Rasoulian and Ricardez-
Sandoval (2014, 2015) and Kwon et al. (2015).

5. Closed loop simulations

For the seeded batch crystallization simulations, we investigate
the crystal size and shape distributions. The same initial condi-
tions, other than starting temperature, are used in every simula-
tion to ensure consistency. For this work, the initial conditions of
the seeded batch reactor are Vyyen: =400 mL (95% ethanol),
I/E=2, Istart = 6 x 10° mg, and My =5 x 10°. Each of the simula-
tions is completed when the average crystal volume reaches the
set point, Ver = (150 pm)> = 3.375 x 10° pm?3.

Due to the nature of the batch process and the dependence of
the growth rate on the supersaturation and temperature trajec-
tories, the time to finish each simulation will vary. To deal with
this, we will consider a normalized time to compare the different
simulations, i.e., 0 at the start of the simulation and 1 when the
batch has reached V. Also, it is noted that the kMC simulations
are run with constant batch parameters (i.e., temperature, ibupro-
fen content, and supersaturation) for 0.333 s. At that point, Egs.
(15) and (16) are calculated, all system parameters are updated,
and this process is repeated until the end of the simulation.

5.1. MPC performance

In this subsection, we investigate the closed-loop performance
of the proposed MPC scheme to regulate the volume and shape
distributions of ibuprofen crystals produced from a seeded batch
crystallization process. Specifically, we look at the effect of
different initial temperatures and growth rate dispersion on the
size and shape distributions of ibuprofen crystals. We consider
starting temperatures ranging from 15 °C to 30 °C with a step size
of 5°C. The crystal volume distribution for each of the cases is
shown in Fig. 3. What can be noticed is that the lower starting
temperatures lead to a slightly more narrow size distribution. This
is due to the fact that lower temperatures correspond to higher
supersaturation values, and at these higher supersaturation values
the relative effect of the GRD is less compared to the effect of GRD
on lower supersaturation values (see e.g., Fig. 1). The differences in
each of the starting conditions become much more noticeable in
Fig. 4 which shows the crystal shape distribution. We define the

I ) I ) I
| —15°C |4
02— E: start I5C
g AnO,
g - E: start 20¢ -
= K o
E 0.15 E start ZS‘C
- g o |—
a ’ E_ M san = 30°C
o | n = 4
o B
ol £
GN) 0.1 B —
= £
g : ]
B 7
B /
5 005k G P . —
= By v ’ /!
By v %
L =/ v /) 4
By v /|
=1/ v Y
1 B A Y / ]
0
3e+07 5e+07

crystal volume distribution ( um3 )

Fig. 3. Crystal volume distribution for MPC showing results for starting tempera-
tures 15 °C, 20 °C, 25 °C, and 30 °C.
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BT, =15°C|T]
g T, =20°C| -
T,.=25°C |4
1 o T,.,=30C| |

normalized population

Lol

1.4 1.5 1.6 1.7 1.8
crystal shape distribution ( <h,, >/ <h,; >)

Fig. 4. Crystal shape distribution for MPC showing results for starting temperatures
15 °C, 20 °C, 25 °C, and 30 °C.

crystal shape to be the relative average height of the (011) face to
the (001) face since the (100) face is determined by Eq. (17). The
crystal shape distribution not only becomes wider as the starting
temperature gets higher, but also it shifts to the right meaning that
the crystals become more elongated. Again, when looking at Fig. 1,
it is evident that the ratio between the (011) and (001) faces is
greater at lower values of supersaturation (i.e., higher values of
temperature) which results in an elongated crystal shape for the
higher starting temperatures in Fig. 4. Looking at Fig. 5, we can
infer a more detailed view of the dynamics of the batch crystallizer
conditions. What is important to notice is that MPC is able to
successfully deal with the constraints of the system (e.g.,
Tstare = 15 °C or 30 °C where the supersaturation starts outside of
the supersaturation constraint region). Furthermore, after the MPC
has changed the batch temperature from the initial starting
temperature, each of the different simulations follows a path that
resembles crystallizer cooling. This is done since as the crystal-
lization progresses, ibuprofen content will go from the slurry
phase to the crystal phase causing a decrease in concentration
(i.e, I/E). In order to balance this effect and keep the super-
saturation from falling to very low values, the temperature is
lowered in order to keep the crystal growth progressing.

5.2. Comparison of MPC performance with other control strategies

In order to compare the performance of the proposed MPC, we
performed additional simulations using constant temperature
control (CTC) and constant supersaturation control (CSC) strate-
gies. For these simulations, we chose the starting temperature
Tstart =20 °C for CTC, CSC, and MPC which corresponds to a
starting supersaturation ¢ =~ 1.2. This starting point was chosen
to ensure both CTC and CSC would be in a valid operating region
accounting for the desired supersaturation and temperature
ranges since these control methods are unable to deal with
constraints. The crystal volume distribution can be seen in Fig. 6.
It is clear that CTC leads to the most broad crystal size distribution
and it can be seen that MPC gives a slightly more narrow
distribution than CSC. Similar behavior is seen in Fig. 7 for the
shape distribution where CSC and CTC shift the crystal shape
distribution to the right compared to the MPC. MPC produces the
most narrow crystal size distribution due to the jacket tempera-
ture trajectory it chooses and due to its ability to work within a
constrained region. Additionally, the way the MPC goes about
minimizing the volume distribution also happens to produce the
most narrow crystal shape distribution.

The differences in each of these policies are highlighted when
looking at the dynamics of the batch reactor in Fig. 8. As expected,
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Fig. 6. Crystal volume distribution for CTC, CSC, and MPC at the end of the batch.
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Fig. 7. Crystal shape distribution for CTC, CSC, and MPC at the end of the batch.
Note that one bar from CSC has been placed in front of MPC due to the fact that it
was completely covered by the MPC bars.

CTC holds the jacket temperature at 20 °C throughout the entire
simulation, however, it is noted that the supersaturation drops
significantly below 1.2 in the CSC policy. This is due to the actuator
constraint on T; thereby limiting the maximum rate of change and
causing the supersaturation to drop. It is also interesting to note
that MPC and CSC take nearly identical pathways in terms of
concentration to reach the desired set-point. Overall, MPC is able
to outperform other techniques since it is able to “plan ahead” and
predict what will happen next which is especially important when
there is significant concentration drop in the system.

GRD of individual crystal faces, which is modeled as a function
of supersaturation by using the coefficient of variation of the
corresponding facet growth rate, decreases with an increase in
supersaturation. Therefore, when the controller primary objective
is to lessen the influence of GRD on the final CSD (by explicitly
penalizing the GRD in the cost function), the ibuprofen batch
crystallization process is operated constantly by the controller in
high supersaturation regime. The operating strategy of such an
MPC however is identical to that of the MPC used in the present
work whose primary objective is to achieve the shortest operating
time that leads to the desired average crystal size. Furthermore, in
this work, due to the lack of ibuprofen primary nucleation rate
data, the maximum allowable supersaturation level inside the
batch crystallizer is determined to be 1.3 in order to minimize the
primary nucleation and its impact on the CSD. It is also worth
mentioning that due to the exponential decay dependence of the
GRD of the (001) face on the supersaturation, the GRD of the (001)
face can change significantly with a small fluctuation in super-
saturation. Due to this fact and the operating constraint of how
quickly temperature of the crystallizer can be adjusted, and the
fact that larger crystals deplete the solute concentration in con-
tinuous phase faster than smaller crystals, the MPC penalizing GRD
explicitly in its cost function becomes more sensitive to the size of
the sampling time interval because a slight change in the super-
saturation level during sampling time can have a significant
impact on the value of the cost function. Simulation data (not
reported here for brevity) confirm that changing the cost function
to add penalty on GRD would only make the controller more
sensitive to sampling time and more complicated without leading
to a different operational behavior that would reduce CSD poly-
dispersity further.

5.3. Computational performance and scaling

To close out this section, it is important to note the computa-
tional performance and scaling for this work. In order to make this
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Fig. 8. Concentration, supersaturation, and temperature versus normalized time
for CTC, CSC, and MPC. For the temperature plot, the dotted lines represent the
jacket temperature, Tj, for each of the runs. Additionally, it is noted that both CSC
and MPC follow a very similar path in the concentration plot until the very end.

comparison, we ran the same seeded batch crystallization simula-
tion and initial conditions with different random seeds on the
Texas Advanced Computing Center's Stampede cluster. The code
was optimized using Message Passing Interface (MPI) over the
crystal growth stage since it was determined to be the bottleneck
of this simulation. Specifically, at the start of the simulation,
crystals are assigned to one of the available cores. Next, the
growth process runs while the batch system parameters remain
constant until it is time to update the crystallizer conditions. After
these parameters are updated, the crystals will go back into the
growth stage on their assigned core. This process is repeated until
the end of the simulation. The results of these simulations for
varying number of cores are shown in Fig. 9 and the data points
are given in Table 3. What can be seen from Fig. 9 is that there is a
significant decrease in time required to complete the batch
simulation as the number of cores are increased. Looking at
Table 3, it is evident that as the number of cores is doubled, the
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R? =0.9982.

Table 3

The time to finish each simulation for varying number of cores and the correspond-
ing speedup and strong scaling. Note that the speedup is defined as (t; —tn)/t1,
where t; is the time the process takes on 1 core and t, is the time the process takes
on n cores.

Cores Time (h) Speedup (%) Strong scaling (%)
1 35.82 0.0 100.0
2 17.95 49.9 99.8
4 8.98 74.9 99.7
8 4.50 87.4 99.4
16 234 93.5 95.6
32 1.30 96.4 86.2
64 0.75 97.9 74.8

simulation time goes down by about half. In order to further
analyze the scalability of this parallel process, it is useful to
analyze the strong scaling behavior, which is defined as

t

>
ncores tﬂ

Sstrong = (21)
where t; is the time the process takes on 1 core, ncoes iS the
number of cores, and ¢, is the time the process takes on n cores.
Strong scaling is good for analyzing systems like this one that are
CPU bound, showing how well the process can be parallelized
without adding too much wasted time in overhead costs. From
Table 3, it can be seen that the strong scaling stays above 90%
when using 16 or fewer cores and drops down afterwards. This is
likely due to the fact that simulations were run on compute nodes
which had 16 cores per node (two 8-core CPUs) and when going
over 16 cores, communication must then take place between
multiple nodes, thus adding overhead costs. Overall, it is clear
from both Fig. 9 and Table 3 that the batch crystallization process
of ibuprofen is greatly benefiting from the use of MPI for the kMC
process.

6. Conclusions

In this work, we studied the seeded batch crystallization
process of ibuprofen. First we used kMC simulations to develop a
growth rate model which also accounts for GRD. Next, we
proposed an MPC strategy in order to control the crystal size

distribution. Lastly, we compared the proposed MPC strategy to
CTC and CSC policies. We found that the MPC is able to deal with
constraints and a wide variety of starting conditions for ibuprofen
crystal growth. Additionally it was found that MPC produced more
narrow volume and shape distributions compared to the other
control strategies which is important because the product quality
is directly determined by the final crystal size and shape distribu-
tions. It is important to note that the growth rate dispersion is
mainly responsible for the wide distribution ranges seen in this
work. Lastly, we found an extreme benefit in the use of MPI for this
work due to heightened CPU time requirements.
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