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A B S T R A C T

In response to the next technological revolution, atomic layer processes have emerged to produce high-
performing, thin-film semiconductor materials. To overcome the long purging times required for conventional
atomic layer processes, spatial atomic layer processes have been recognized for their ability to reduce
processing times; however, they lack characterization and control. This research aims to construct two novel
run-to-run (R2R) control systems using a machine learning model with an artificial neural network (ANN)
and an exponentially weighted moving average (EWMA) method for the spatial thermal atomic layer etching
(SALE) of aluminum oxide thin films. The two R2R controllers are used in conjunction with a multiscale
computational fluid dynamics model of a SALE process with various disturbances to test their effectiveness.
Closed-loop simulation results demonstrate that the ANN-based R2R control system reduces etching per cycle
variability, maintains the process output within a small region around the setpoint, and outperforms the
traditional EWMA-based R2R control system in efficiency.
1. Introduction

Technological innovation in electronic devices has continued to
dominate in the global market as high-tech companies maintain their
platform by annually introducing technological enhancements to their
products. These technological innovations are made possible by the
integration of computationally efficient devices that are made possi-
ble by semiconductors. The improvements made on semiconductors
are consistent with the prediction of Moore’s Law (Moore, 1998) as
electronics are becoming more densely packed with semiconducting
materials; specifically, transistors, which are able to consistently output
more computing power while the sizes of these electronics are contin-
ually scaling down. For example, the Cerebras company has been able
to manufacture wafer-scale chips that are densely occupied with 1.2
trillion transistors (Burg and Ausubel, 2021). As transistors approach
near two-dimensional (2D) geometries, transistors are reaching their
physical limits (Li et al., 2019) due to the challenges and demands of
the fabrication process. One ramification of this stringent fabrication
process is the low production rate of these semiconductor devices,
which are essential components to most electronic devices, including
smart technology and autonomous vehicles. With the rising consumer
demand, the semiconductor industry is looking for an efficient and
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inexpensive method to increase the marketability of these atomic-scale
transistors in hopes that conventional, time-consuming processes can
be replaced by innovative production methods, thereby increasing their
global supply.

The architecture of semiconductor devices has continuously evolv-
ed, while semiconductor production specifications become stricter as a
consequence of the miniaturization of the transistors. FinFETs, or fin
field-effect transistors, became commonly used transistors that were
able to improve circuitry speed and preserve charge (Sairam et al.,
2007; Jurczak et al., 2009). Nevertheless, they are becoming increas-
ingly difficult to fabricate due to the limitations of the fin dimensions,
which are constrained to minimum thicknesses of 7 nm. The fab-
rication of the fin width to below the 7 nm threshold causes the
overall performance of the transistor to deteriorate due to mobility
losses and short-channel effects (Razavieh et al., 2019). Following the
FinFET era, gate all-around (GAA) transistors emerged to overcome
the challenges encountered in the semiconductor miniaturization trend
with the desire to maintain the aforementioned properties as well as
providing greater power efficiency and electrostatic properties (Guerfi
and Larrieu, 2016). Thus, GAA transistors are considered to be superior
to FinFETs due to their versatile design and capability of densely
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Fig. 1. Illustrations of a (a) FinFET (fin field-effect transistor) and a (b) GAA (gate all-around) transistor. FinFETs are bounded by a thickness of 7 nm as opposed to the nanosheets
in GAA transistors, which are able to continue the trend of thickness minimization. However, nanosheet thicknesses are dependent on the oxide film layer, which must be introduced
in precise dosages to maintain minimal thickness specifications.
occupying semiconductor wafers, which are attributed to their verti-
cally stacked channels that are the so-called nanosheets or nanowires
(also known as nanoribbons). These nanosheets are capable of reaching
dimensions below the 5 nm threshold, which offers an extension of
Moore’s Law. A comparison of the FinFET and GAA architectures
is illustrated in Fig. 1, which presents the GAA design that allows
nanosheet thicknesses below 5 nm. Despite the potential to overcome
the 5 nm threshold, it is difficult to manufacture these GAA transis-
tors because of the stringent quality specifications on the nanosheet
dimensions. Over the past decade, much experimentation has been
delegated to the precise control of nanosheet thin-film substrate thick-
nesses through a series of synergistic and self-limiting reactions through
atomic layer processes.

Thermal atomic layer etching (ALE), a process that is used in
semiconductor fabrication, etches active layers of a thin film substrate
with reactive species known as ‘‘precursors’’ that are introduced in
sequential pulses and provides greater control of the thin film thickness.
Thermal ALE is a subsequent processing solution of thermal atomic
layer deposition (ALD), which often encounters deposition growth on
non-growth areas causing the misalignment of transistors during the
stacking process as well as edge placement errors (Faraz et al., 2015;
Kanarik et al., 2015; Oehrlein et al., 2015). Current industrial applica-
tions for semiconductor fabrication employ thermal ALE to improve the
localization (selectivity) of thin-film deposition on growth areas due to
conventional ALD methods lacking a selective mechanism (Merkx et al.,
2020). When the reactive environment is combined with high operating
temperatures, this process allows for feasible etching rates (Kanarik
et al., 2015). Thermal ALE introduces two precursors in sequential
steps known as ‘‘half-cycles’’ that are separated by purging steps.
The purging steps use an inert gas to exhaust unreacted precursor
species and byproducts that may deteriorate the reaction progression
and the conformity of the thin film. These purging steps are required
for the removal of monolayers of surface material in each cycle to
exemplify a ‘‘self-limiting’’ process (Kanarik et al., 2018) by preventing
precursor intermixing, and in conventional ALE processes, the purging
steps are time-consuming. This self-limiting behavior is made possible
by purposefully selecting bulky precursor species that produce steric
hindrance during the adsorption process that inhibits the diffusion of
these species beyond the surface of the substrate, thereby exemplifying
as an impermeable wall (Keuter et al., 2015). Also, metal oxides in-
cluding Al2O3 act as diffusion barriers that also create an impermeable
boundary layer (Carrasco et al., 2004; Hirvikorpi et al., 2010). Thus, the
proper selection of the precursor species is a critical factor in ensuring
that the reactions produce conformal thin films with half-cycles that
are spontaneous in nature.

As mentioned previously, the fabrication of the oxide thin film
is difficult to accomplish and depends on the precursor and oxide
film selection. Several oxide films have already been studied and are
summarized by Fortunato et al. (2012), Faraz et al. (2015) and Sheng
et al. (2018). An ideal oxide film is characterized by an ability to
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produce ultra smooth surfaces (Fortunato et al., 2012) without re-
quiring high operating temperatures and costs (Ye et al., 2017; Ding
and Wu, 2020) and to produce high reaction rates. The oxide films
provide insulation between the semiconductor channels and the gate,
which is illustrated in Fig. 1 and serves to reduce current and electron
losses to a minimum due to the chemical bonding of oxide compounds
that inhibit electron mobility (Sang and Chang, 2020). The thickness
of the oxide films also depends on the quantum capacitance, which
increases with decreasing oxide film thickness (Sinha and Chaudhury,
2013). The selection of the oxide thin film varies depending on the
semiconductor device; however, the oxide film is generally chosen such
that the film can be produced with great feasibility from a kinetics and
thermodynamics perspective while minimizing the operating temper-
ature and the amount of precursor needed. The procedures required
to fabricate aluminum oxide (Al2O3) thin films are characterized by
the aforementioned characteristics due to the properties of aluminum,
which has a higher electropositivity and hence a stronger adherence to
strongly electronegative atoms such as fluorine and oxygen (Lee et al.,
2016). Thus, Al2O3 is selected for this work.

Despite thermal ALE being well-suited for the precise control of
the thicknesses of thin film substrates, these processes are also time-
consuming due to the long purging steps required to ensure that the
ideal reaction environment is reached so that a self-limiting nature is
obtained. To resolve this issue, the emergence of rapid atomic layer
deposition (ALD) (Zywotko et al., 2018) and spatial ALD (Poodt et al.,
2012; Faraz et al., 2015) processes have significantly shortened the
total process time while preserving thin film quality and conformity.
The most notable difference between rapid ALD and spatial ALD pro-
cesses is the inclusion of purging steps. Rapid ALD does not require
purging steps; rather, it introduces the two precursors sequentially,
which results in some intermixing of the precursors. Thus, rapid ALD
requires significantly higher precursor pressures in order to maintain
the self-limiting nature due to this intermixing (Zywotko et al., 2018).
On the other hand, spatial ALD has been proven to be more dependable
in producing conformal thin films (Levy et al., 2009). Spatial ALD
(SALD) does this by continuously introducing precursors and purging
species in physically isolated regions that are adjacent to one an-
other. The substrate travels through each zone for an exposure time
that depends on the substrate velocity (Muñoz-Rojas et al., 2019).
Fig. 2 illustrates the differences in the reactor model and processes for
conventional and spatial ALD/ALE reactors. Specifically, conventional
ALD/ALE processes inject precursor and purge species into the reaction
chamber in sequential steps, while spatial ALD/ALE processes allow
the substrate to move between reaction and purge zones while the
precursor and purge species are continuously introduced. In particular,
the sheet-to-sheet spatial ALD/ALE reactor (Freeman et al., 2010) is
presented in Fig. 2(b). This work aims to integrate the sheet-to-sheet
(S2S) spatial ALD/ALE reactor model for the thermal ALE of aluminum
oxide thin films.
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Fig. 2. Conventional (a) and spatial (b) ALD/ALE reactor diagrams illustrating their structural and operational differences. Conventional ALD/ALE reactors contain a stationary
wafer substrate that is exposed to the precursor and purge gases in sequential steps. Spatial ALD/ALE reactors feed precursor and purge species continuously in isolated zones
while the wafer substrate is driven through each zone at a constant velocity on a conveyor belt.
Although ALE reactions have been integrated into industry and
are abundantly used for semiconductor fabrication (Faraz et al., 2015;
Kanarik et al., 2015; Oehrlein et al., 2015), there is a limited under-
standing of how these reactions behave under a range of operating
conditions, and generally most experimental modeling has produced
limited data sets (Lee et al., 2016). It is difficult to develop procedures
that produce optimal results in a laboratory setting due to the reactions
being characterized as instantaneous (Rahman, 2021; Lill, 2021); thus,
this research adopts a computational modeling approach to overcome
the aforementioned challenges. This approach connects a microscopic
domain that consists of surface reaction kinetics and thermodynamics
to a macroscopic domain that consists of transport phenomena behavior
in the fluid phase. The microscopic model establishes a statistically
sporadic simulation of the thin film etching process through a kinetic
Monte Carlo (kMC) algorithm, while the macroscopic model numeri-
cally calculates spatiotemporal parameters through computational fluid
dynamics (CFD). The combination of the microscopic kMC simulation
and the macroscopic CFD model establishes the so-called ‘‘multiscale
computational fluid dynamics’’ model, which becomes a unique al-
gorithm that simultaneously computes the microscopic surface and
macroscopic fluid fields. This work will continue from prior work on
a two-dimensional (2D) multiscale CFD modeling of spatial thermal
ALE of a sheet-to-sheet reactor for aluminum oxide thin films (Yun
et al., 2022b) by establishing a control system to ensure that the process
operating conditions and output quality are maintained.

It is desired to implement a control system that ensures that the
process operation and control will be sustainable in the presence of
disturbances that impede the desired reaction rate and conformity of
the thin film substrate. The control system would minimize the number
of fluctuations observed in the etching per cycle (EPC) by adjusting
the input variables until the desired setpoint is reached. For etching
processes, there are many sources of shift and drift disturbances. For
instance, a wafer substrate that receives an etching process may con-
tribute to variable results in adjacent cycle runs or batches, which
can be caused by changes in the condition of the equipment used or
unknown irregularities (Moyne et al., 2018). Also, SALE processes can
deposit byproducts on the sidewalls of the reactor where the reaction
rate is controlled by the temperature of the chamber. The deposited
byproducts may affect the heat flux into the chamber, and thus, reduce
the reaction rate. With hundreds of process cycles being operated daily,
the process would drift as accumulated byproducts are deposited on the
walls of the reaction chamber. However, with a robust control system in
place, the manipulated inputs of the process would be continuously up-
dated to account for the changes in the reaction chamber environment
that could contribute to these disturbances while conforming to product
specifications, reducing variability, and maintaining process control.

Due to the high spontaneity of the reaction, it is difficult to archive
in-batch control of the real-time operation of the process. Thus, the use
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of run-to-run (R2R) or batch-to-batch control systems is employed in
this work to develop a methodology for updating the input variables
based on the target EPC. R2R control systems are typically used to com-
pensate for processes that naturally drift away from their setpoint and
processes that may have large variances in between runs. In response
to equipment fatigue and changes in input composition, a R2R control
system is structured to improve process stability for better process
performance and productivity by decreasing the variance in between
runs by optimizing input variables based on the previous batch run
data (Moyne et al., 2018). By implementing a R2R control system, the
variance of the output in between runs will decrease, which will allow
the process to stay within operable limits (Kotz and Johnson, 2002).
If the process has a naturally occurring shift or drift disturbance, then
a R2R control system will also allow the process to operate for longer
times in between input adjustments while maximizing production time
and improving the overall throughput.

The present work will perform input updates for multiple input
variables, including the precursor flow rates and substrate velocity
in response to a single output variable, EPC; thus, this R2R control
system is modeled based on a multiple-input-single-output (MISO)
model. The adjustment of the precursor flow rates and the substrate
velocity provides a greater understanding of the adjustments for each
input variable and their relation to the computed output variable after
each adjustment. Two separate R2R controllers are implemented in
conjunction to the multiscale CFD simulation with different methods
including the conventionally used exponentially weighted moving av-
erage (EWMA) for linear systems and a machine learning (ML) method
that is applicable for both linear and nonlinear systems. These two
methods will construct the so-called EWMA-based and artificial neural
network (ANN) based R2R controllers to determine their response to
various disturbances and to conclude which R2R controller is more
effective at mitigating these disturbances. The EWMA-based R2R con-
troller, which requires the specification of deterministic weights, will
also be implemented with two different weight parameters to determine
the effect of the weight parameters on the magnitude of the adjustment
on the input variables. It is also worth mentioning that prior research
has been accomplished in establishing a R2R control system with a
multiscale CFD model for conventional thermal ALE under the presence
of a pressure and kinetic shift disturbance (Yun et al., 2022d) to
maintain the output variable within a high-precision range as well
as ensuring product conformance. However, the aforementioned work
utilizes a two-loop single-input single-output (SISO) model to simulate
individual input and output variables independently without regard to
the coupling between the input and output variables. The present work
overcomes this issue and accounts for the coupling between multiple
inputs and a single output by developing both an ANN-based and an
EWMA-based R2R control system that adopts a robust MISO model for
control by accounting for the relations of the multiple input variables

and their influence on the output.
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2. Spatial ALE modeling

2.1. Microscopic surface domain

2.1.1. Surface kinetics description
Generally, in conventional atomic layer etching (ALE), two half-

reactions occur in a sequential manner so that the two precursors do
not intermix with one another within the reactor chamber. Effective
precursor separation is guaranteed by a purge cycle that uses an inert
gas such as N2 between each precursor half-cycle. Unlike conventional
ALE, the two precursors are separately and continuously dosed in
distinct locations at constant flow rates in a spatial atomic layer etching
(SALE) reactor and thus, isolating the half-reactions spatially. The sub-
strate alternates back and forth under a precursor injection assembly,
resulting in a significant reduction of purge time. Fig. 2(b) shows a
schematic illustration of a SALE process in which there are two half-
reaction zones that are situated between N2-enriched zones. A vacuum
port is located between each half-reaction and N2 zone to exhaust
residual precursors or byproducts produced from the half-reactions.
These vacuum ports are imperative for film quality and thickness
control due to their purpose in achieving self-limiting behavior.

The spatial atomic layer etching (SALE) of Al2O3 utilizes two pre-
cursors as reactants: hydrogen fluoride (HF) and trimethylaluminum
(TMA), Al(CH3)3. First, when a substrate moves into the HF reaction
zone, HF fluorinates the top surface of Al2O3 thin films to yield a
modified layer of AlF3. Theoretically, it is assumed that only a single
layer (monolayer) of Al2O3 is exposed to HF and is modified, which ex-
emplifies self-limiting behavior. Next, unconsumed species such as HF,
byproduct, H2O, and N2, are discharged through an adjacent vacuum
port when the substrate reaches the vacuum zone using N2 gas as the
carrier gas that is supplied in the N2-enriched zone. Then, the substrate
is introduced to the second precursor, TMA, when it arrives at the
adjoining TMA zone. TMA adsorbs onto the modified surface layer and
converts the AlF3 layer into a volatile layer of dimethylaluminum fluo-
ride (DMAF), AlF(CH3)2. The volatile DMAF is spontaneously desorbed
from the surface, resulting in the etching of the AlF3 layer. Finally,
the next vacuum port exhausts residual materials consisting of TMA,
DMAF, and N2. An additional adjacent N2 zone sweeps any remaining
traces of TMA and DMAF through the vacuum zone, thus preparing the
substrate for another cycle of the ALE process.

The aforementioned procedure proceeds by transferring the sub-
strate back and forth until the desired thickness is achieved. The overall
chemical reaction is described as follows:

Al2O3 (s) + 6HF (g) + 4Al(CH3)3 (g) → 6AlF(CH3)2 (g) + 3H2O (g)

Furthermore, each half-cycle is described by the following overall
reactions:

Al2O3 (s) + 6HF (g) → 2AlF3 (s) + 3H2O (g)

AlF3 (s) + 2Al(CH3)3 (g) → 3AlF(CH3)2 (g)

It is necessary to examine all possible intermediate reaction path-
ways for microscopic modeling; however, there are challenges in iden-
tifying the infinite number of possible reaction pathways. Thus, the
total number of reaction steps can be simplified by identifying critical
intermediate reaction pathways, also known as rate-determining steps,
which have a significant impact on the overall reaction time and are
described by Lee et al. (2016), Natarajan and Elliott (2018) and Yun
et al. (2022a,b) who proposed an elementary reaction pathway for the
half-cycles. Due to a lack of experimental data, the reaction pathways
were probed on the microscopic level by using density functional theory
(DFT) and electronic structure calculations, which were computed by
the open-source package, Quantum ESPRESSO (QE). A greater expla-
nation of the kinetic mechanism and its properties are detailed by Yun
et al. (2022a). Variables and their definitions for the microscopic model
discussion are summarized in Table 1.
4

Table 1
Definitions of variables used in the microscopic model.

Variable Definition

𝐴 Pre-exponential factor
𝐴𝑠𝑖𝑡𝑒 Surface area of an active reaction site
𝐸𝑎 Activation energy
EPC Etching per cycle
𝑓𝑐 Coverage fraction
𝑓𝑒 Etching fraction
ℎ Planck constant
𝑘 Reaction rate constant
𝑘𝐵 Boltzmann constant
𝑘𝑑,𝑎𝑑𝑠 Reaction rate constant of adsorption reaction
𝑘𝑖 Reaction rate constant of reaction, 𝑖
𝑘𝑠𝑢𝑚 Sum of the reaction constants
𝑚 Molar mass of adsorption species, HF and TMA
𝑁 Number of reaction pathways
𝑝 Reaction index number
𝑃 Operating pressure
𝑄 Partition function for the reactants
𝑄‡ Partition function for the transition state
𝑅 Universal gas constant
𝑡 Reaction time progress
𝑇 Operating temperature
𝑍 Coordination number
𝛥𝑡 Time interval
𝛤1 , 𝛤2 Random numbers where 𝛤1 , 𝛤2 ∈ (0, 1]
𝜎 Sticking coefficient for HF and TMA

Fig. 3. 𝜃-Al2O3 (2 0 1) crystal structure.

2.1.2. Lattice model of aluminum oxide
There are various crystal structures of Al2O3 that depend on the am-

bient operating conditions. A proper structure should be constructed,
since crystal structures considerably affect the quantum properties and
parameters of surface kinetics. Broas et al. (2017) reported that 𝜃-Al2O3
(2 0 1) was discovered on Si (1 0 0) after the atomic layer deposition
(ALD) of Al2O3. Therefore, in this work, 𝜃-Al2O3 (2 0 1), which is
visualized in Fig. 3, is used as a substrate for SALE. 𝜃-Al2O3 (2 0 1)
is approximated onto a lattice model that comprises a 300 × 300 grid
to simulate the surface kinetics; thus, the lattice model has 90,000
reaction sites, Al and O for Step A and Al and F for Step B, for each
monolayer, and the reaction sites are visualized in Yun et al. (2022a). It
is notable that increasing the size of the lattice grid would dramatically
increase the computation time, therefore, this work utilizes a 300 × 300
grid to improve the efficiency of the simulation of the surface reaction
kinetics while possibly sacrificing the accuracy of the computation. To
overcome this issue, a stochastic approach to exemplify the randomness
of surface kinetics is elucidated in the following section.

2.1.3. Kinetic Monte Carlo simulation
In general, surface reactions are described by macroscopic rate

equations such as reaction rate expressions and mass balances that
define the surface kinetics. However, this approach fails to integrate
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the stochastic behavior of surface kinetics at the microscopic level.
Therefore, this paper will use the kinetic Monte Carlo (kMC) method to
model the surface kinetics in great detail due to its ability to accurately
describe surface kinetics from a microscopic perspective. The kMC
method is a computing method that is used to simulate surface reac-
tions based on a fundamental principle that chemical reactions exhibit
stochastic behavior. Specifically, the modeling of surface kinetics in
various reaction mechanisms has been performed in a great deal of
research with kMC methods (Lou and Christofides, 2003; Fu et al.,
2008; Shirazi and Elliott, 2014; Weckman et al., 2018; Ding et al., 2019,
2020b; Yun et al., 2022a). In this work, the variable step size method,
also known as the Bortz–Kalos–Lebowitz (BKL) algorithm or the 𝑛-fold

ay, is used to model surface reactions at the molecular level.
To employ the kMC method, all reaction rate constants must be

pecified and computed using statistical thermodynamics and quantum
echanics principles. Various methods are selected based on the type

f reaction that is performed. The rate constants of surface reactions,
iffusion, and desorption are commonly computed with transition-state
heory (TST) as follows (Jansen, 2012):

= 𝐴 exp
(

−𝐸𝑎
𝑅𝑇

)

(1)

=
𝑘𝐵𝑇
ℎ

𝑄‡

𝑄
(2)

where 𝑘 represents the reaction rate constant, 𝐴 indicates the pre-
xponential factor, 𝐸𝑎 denotes the activation energy, 𝑅 is the gas

constant, 𝑇 is the temperature, 𝑘𝐵 is the Boltzmann constant, ℎ is the
Planck constant, 𝑄‡ is the quantum partition function of the transition
state, and 𝑄 is the quantum partition function of the reactants. The
ratios of the transition state and reactant quantum partition functions
are simplified to unity (Jansen, 2012). Previously, the activation ener-
gies of all reaction pathways were computed with the nudged elastic
band (NEB) calculation method (Yun et al., 2022a). The NEB method
locates a minimum energy path between the reactants and products
to identify saddle points (i.e., the transition state of reactants) and
calculates the activation energies of reactions (Berne et al., 1998).
Additionally, the reaction rate constants for adsorption reactions can
be calculated through collision theory (CT), which is derived from
Maxwell–Boltzmann statistics (Jansen, 2012).

𝑘𝑑,𝑎𝑑𝑠 =
2𝑃𝐴𝑠𝑖𝑡𝑒𝜎

𝑍
√

2𝜋𝑚𝑘𝐵𝑇
(3)

where 𝑍 represents the coordination number, 𝜎 is the sticking coeffi-
ient, 𝐴𝑠𝑖𝑡𝑒 is the area of an active reaction site, and 𝑚 is the mass of
he adsorption species. In this work, the sticking coefficients of HF and
MA are selected as 0.15 (Fontaine et al., 2012) and 0.02 (Schwille
t al., 2017), respectively.

The kMC simulation is conducted on the lattice model of Al2O3 as
iscussed in Section 2.1.2 in accordance with the following procedures:

1. The sum of all reaction constants, which is an integral parameter
to formulate the kMC algorithm, is first calculated to simulate
the surface reactions on the lattice model.

𝑘𝑠𝑢𝑚 =
𝑁
∑

𝑖=1
𝑘𝑖 (4)

where 𝑘𝑠𝑢𝑚 is the sum of all reaction constants, 𝑘𝑖 is the rate
constant of the reaction 𝑖, and 𝑁 is the total number of the
possible reaction pathways. 𝑘𝑠𝑢𝑚 is calculated whenever the
surface reactions proceed.

2. A reaction is then selected by picking a random number, 𝛤1 ∈
(0, 1], that satisfies the following algorithm:
𝑝−1
∑

𝑖=1
𝑘𝑖 ≤ 𝛤1𝑘𝑠𝑢𝑚 ≤

𝑝
∑

𝑖=1
𝑘𝑖 (5)

where 𝑝 is the reaction index. If the chosen 𝛤1 holds for Eq. (5),
the reaction 𝑝 is selected on the reaction site of the lattice model.
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3. The time interval, 𝛥𝑡, is computed to evolve the system clock
according to a random number, 𝛤2 ∈ (0, 1] after the kMC
algorithm has been performed on all of the reaction sites of the
lattice model.

𝛥𝑡 =
− ln𝛤2
𝑘𝑠𝑢𝑚

(6)

4. The system clock evolves, 𝑡 → 𝑡 + 𝛥𝑡.

Steps 1 through 4 (above) are repeated in a loop until a termination
condition is met. The kMC algorithm is governed by 𝑘𝑠𝑢𝑚, which is con-
tinuously updated. Thus, the reaction pathways that occur are enabled
and those that are not observed are ignored across the lattice model as
𝑘𝑠𝑢𝑚 is updated. From the kMC model, the fraction of substrate surface
that has been modified by HF, 𝑓𝑐 , and the fraction of substrate surface
that is etched by TMA, 𝑓𝑒, are calculated based on the occurrence
of reactions from Step 2. The etching per cycle (EPC) in Å/cycle is
calculated by multiplying the coverage and etching fractions by a
coefficient of 0.46 Å/cycle, which resembles the maximum amount of
EPC that can be produced and has been observed by Lee et al. (2016),
which is described by the following equation:

EPC = 0.46 × 𝑓𝑐 × 𝑓𝑒 (7)

where EPC ∈ [0, 0.46] such that 𝑓𝑐 , 𝑓𝑒 ∈ [0, 1].

Remark 2.1. The microscopic model may produce a disparity between
data results. One of the disadvantages of the microscopic kMC model is
that it utilizes a random number simulation such as a pseudo-random
number generator that may produce intrinsic variability in the results
with no way to determine the best and worst-case scenarios (Raychaud-
huri, 2008). As a result, the variance in the time evolution and the
calculation of the coverage and etching fractions will contribute to
fluctuations in the etching per cycle calculation. However, there is no
deterministic approach that can predict the outcome of the fluctuations
prior to initiating the simulation. The statistical error generated from
the kMC simulation is largely dependent on the input parameters,
such as the size of the lattice and the domain of the random number
generator, which must be specified carefully.

2.2. Macroscopic fluid domain

In the study of the macroscopic domain, it is necessary to simulate
the effects of the fluid distribution within the reactor and determine
their effect on the operation of the reactor. The design of the two-
dimensional (2D) spatial ALE reactor is first constructed using the
computer-aided design (CAD) software, Ansys SpaceClaim, and then
discretized into finite elements through meshing software via Ansys
Workbench. To simulate the macroscopic fluid domain, a finite element
difference method is used through Ansys Fluent to numerically simulate
the transport phenomena effects spatiotemporally.

The reactor assembly is modeled after a sheet-to-sheet (S2S) spatial
reactor consisting of injection and exhaustion ports that are assem-
bled adjacently, which is exemplified in Fig. 2(b). The spatial reactor
depicted in the schematic is designed through Ansys SpaceClaim and
meshed through Ansys Workbench, which is pictured in Fig. 4. The
mesh is produced by 2D triangular cells with the surface of the substrate
consisting of 18 nodal regions. A greater discussion of the characteris-
tics of the reactor design and mesh is provided in Yun et al. (2022b),
whose work proposed an optimal reactor design for preventing the
intermixing of precursor species. Thus, the reactor model is constructed
with a 0.25 mm gap distance between the substrate and the injection
dividers, a reactor length of 160 mm, and 9 injection ports of 10 mm
width each.

The mesh of the reactor geometry has a significant role in de-
termining the precision of the spatial distribution calculations in the

numerical simulation, especially for regions situated near the boundary
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Fig. 4. A 2D lateral view of the dynamic mesh for the spatial reactor design with 0.25 mm gap distance.
Table 2
Definitions of variables used in the macroscopic model.

Variable Definition

𝑑 Normalized boundary distance
𝐸 Internal energy of the system
⃖⃖⃗𝐹 External body force
⃖⃗𝑔 Acceleration due to gravity of Earth
ℎ𝑗 Sensible enthalpy for species, 𝑗
𝐽𝑗 Diffusion flux of species, 𝑗
𝑃 System pressure
𝑆ℎ Source term for heat transfer
𝑆𝑚 Source term for mass transfer
𝑡 Time
⃖⃗𝑢 Substrate or mesh displacement velocity
⃖⃗𝑣 Fluid velocity
𝛼 Diffusion parameter
𝛾 Diffusion coefficient
𝜌 Density of the fluid mixture
𝜏 Symmetric rank-two stress tensor

conditions. Finer discretized elements or cells produce more accurate
calculations with a trade-off of increasing the computational load in
comparison to that of coarser meshes. Also, to overcome the possibil-
ity of boundary conditions diverging and to reduce inaccuracies, the
parameters of the reactor mesh quality, which consist of skewness,
orthogonal quality, and aspect ratio, are calculated through Ansys
Workbench so that they fall within reasonable criteria ranges as rec-
ommended by ANSYS (2021). The mesh resolution, also called the
distribution of cells, has a substantial role in the calculations around
boundary conditions. A higher resolution generates meshes that are
densely composed of smaller-sized cells for better convergence and
accuracy.

The computational fluid dynamics (CFD) software, Ansys Fluent,
contains a coupled, pressure-based solver with steady-state and tran-
sient modes that are used to numerically calculate the momentum, en-
ergy, and mass transfer equations, which are described by the following
formulas:
𝜕𝜌
𝜕𝑡

+ ∇ ⋅
(

𝜌⃖⃗𝑣
)

= 𝑆𝑚 (8)

𝜕
(

𝜌⃖⃗𝑣
)

𝜕𝑡
+ ∇ ⋅

(

𝜌⃖⃗𝑣⃖⃗𝑣
)

= −∇𝑃 + ∇ ⋅
(

𝜏
)

+ 𝜌⃖⃗𝑔 + ⃖⃖⃗𝐹 (9)

𝜕
𝜕𝑡

(𝜌𝐸) + ∇
(

⃖⃗𝑣 (𝜌𝐸 + 𝑃 )
)

= −∇
(

𝛴ℎ𝑗𝐽𝑗
)

+ 𝑆ℎ (10)

where 𝜌 represents the fluid mixture density, ⃖⃗𝑣 is the fluid mixture
velocity, 𝑆𝑚 is the mass transfer source generation or consumption
term, 𝑃 is the static pressure, 𝜏 is the symmetric rank two stress tensor,
𝜌⃖⃗𝑔 is the gravitational body force of the fluid, ⃖⃖⃗𝐹 is the external body
force acting on the fluid, 𝐸 is the internal energy of the system, ℎ𝑗 is
the sensible enthalpy of the species 𝑗, 𝐽𝑗 is the diffusion flux of species
𝑗, and 𝑆ℎ is the heat transfer source generation or consumption term.
A summary of the complete list of variables and their definitions is
6

defined in Table 2.
To simulate the dynamic substrate in the spatial ALE reactor con-
figuration, a dynamic mesh is applied. Diffusion-based smoothing and
remeshing are two methods that are used to update the mesh at
each time step while maintaining the mesh quality and calculation
accuracy on the surface boundary conditions caused by the motion of
the substrate. When the substrate moves, the diffusion-based smoothing
method modifies the original mesh of the previous time step with the
following equation:

∇ ⋅
(

𝛾∇⃖⃗𝑢
)

= 0 (11)

where 𝛾 is the diffusion coefficient and ⃖⃗𝑢 is the mesh displacement
velocity. This method adjusts the mesh based on the boundary dis-
tances, which effectively restores the mesh quality around the surface
boundary layer of the moving substrate. The boundary distance-based
diffusion coefficient is calculated with the following equation:

𝛾 = 1
𝑑𝛼

, 𝛼 ∈ [0, 2] (12)

where 𝑑 is the normalized boundary distance and 𝛼 is the diffu-
sion parameter, which is defined with a value of 1.5 in this work.
The remeshing process is another mesh adjustment method that is
used in conjunction with diffusion-based smoothing, which updates the
surroundings of the dynamic mesh to maintain an acceptable mesh
skewness criterion.

The specified boundary conditions include a no-slip, laminar surface
boundary layer condition on the surfaces of the substrate and the walls
of the reactor. The inlet precursor flow is characterized by homoge-
neous flow as the precursor compound is assumed to be perfectly mixed
before being introduced into the reactor at a constant temperature of
573 K. The operating temperature inside the reactor is defined to be
573 K and the reactor wall is defined to have zero heat flux. Also, the
operating pressure of the reactor is assumed to remain constant at 300
Pa.

One of the assumptions made about the reactor model is that
the operating conditions of the reactor at time 𝑡 = 0 are at steady
state such that all precursor and purge gases are being continuously
fed until a steady-state operating condition is reached. A steady-state
simulation without substrate movement is conducted initially to simu-
late the steady-state operation environment. Following the steady-state
solver, the dynamic model is then simulated with a transient, coupled,
pressure-based solver with a constant substrate velocity specified with
a time step size of 5×10−4 s with a maximum of 200 iterations possible
for each time step. To make the interconnection between macroscopic
and microscopic domains, source terms for each species are specified
through user-defined functions (UDFs). From the CFD simulation, area-
averaged surface pressures of the species are collected and transferred
to the kMC model, where the kMC model calculates the source terms.
The generation and consumption source terms are calculated based
on the fraction of lattice sites that are modified or etched, which are
computed by microscopic simulation for a number of time steps during
the time evolution. A complete description of the architecture of this
interconnection between the macroscopic and microscopic domains is
discussed in Section 2.3.
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Remark 2.2. The presented macroscopic model uses a first-order
umerical transient solver method (the finite element method) that
imultaneously calculates the evolution of time and space-dependent
arameters. Numerical error is generated as a consequence of the spa-
ial and temporal discretizations. In addition, the macroscopic model
tilizes a simpler two-dimensional (2D) mesh as opposed to a three-
imensional (3D) mesh to reduce computational demand and simula-
ion time, which may influence the calculation of the area-averaged
recursor pressures, which are spatially dependent. Thus, the macro-
copic model contributes to the intrinsic variability of the coverage
nd etching fractions as well as the etching per cycle. As such, the
efinitions of the boundary conditions as well as the specification of
he solver methods and mesh will contribute to the overall modeling
rror.

.3. Two-dimensional multiscale computational fluid dynamics model struc-
ure

The integration of the microscopic substrate surface domain and
he macroscopic gas-phase domain establishes the multiscale compu-
ational fluid dynamics (CFD) model that simulates the evolution of
patial–temporal dynamics and microscale reaction kinetics, simultane-
usly. Previous research has been dedicated to two-dimensional (2D)
nd three-dimensional (3D) multiscale CFD simulations for atomic
ayer processes (Zhang et al., 2019; Ding et al., 2019; Zhang et al.,
020; Yun et al., 2021); however, the aforementioned works were
imited in the scope of combining the microscopic and macroscopic
omains such that the consumption and generation of species in the
acroscopic domain were not specified as a boundary condition for

he mass transfer source term. Yun et al. (2022c) were able to improve
he connection between the microscopic and macroscopic domains by
pecifying a constant consumption term while neglecting the generation
f byproducts of the precursor species as a surface boundary condition
n the substrate but was limited in integrating a precursor pressure-
ependent consumption term due to the fineness of the substrate mesh.
ecently, Yun et al. (2022b) were able to construct a 2D multiscale CFD
odel that provides the precursor pressure-dependent consumption

nd byproduct generation terms to provide an accurate pressure profile
f the macroscopic fluid domain. The aforementioned 2D multiscale
FD model is presented in Fig. 5, which describes the sequential path
aken to calculate the pressures of byproduct, inert, and precursor
pecies from the macroscopic CFD model and export the pressures to
he kMC microscopic model to calculate the updated source generation,
onsumption, and time evolution terms in the simulation loop for the
acroscopic CFD model, which are specified by user-defined functions

UDFs) in Ansys Fluent.
A complete discussion of the multiscale results as well as the impact

f operating conditions (substrate velocity, precursor and inert gas flow
ates, vacuum pressure) and the reactor design (gap distance) on the
tching rate and intermixing of species, respectively, are elaborated
y Yun et al. (2022b).

The connection between the microscopic and macroscopic domains
s achieved by coupling Ansys Fluent’s CFD modeling software with a
ython kMC programming script with a Linux Bash Shell script with
6 compute cores and 192 GB of random access memory (RAM). This
resent work will continue to use the 2D multiscale model in Yun
t al. (2022b) to continue the simulation work with varying input
arameters to generate a diverse data set, which is desired for achieving
n accurate and robust regression model and this model will serve as
he foundation for the run-to-run control system for the spatial ALE
eactor.
7

3. Run-to-run control system

In practice, there are many external factors that can influence
the quality of the wafers produced in a fabrication plant. From pro-
cess drifts caused by equipment fatigue to noise caused by variance
and other process disturbances, identifying the sources of error and
implementing corrections are time-consuming and costly. A more in-
dustrially relevant solution is to develop control systems that can
make adjustments that compensate for these changes and minimize
statistical variation in between runs. Due to the spontaneous nature of
the half-cycle thermal ALE reactions, there are challenges associated
with establishing real-time process control; however, ex situ process
controllers have emerged to resolve the latter issue.

Run-to-run (R2R) or batch-to-batch controllers are an example of
such control systems and are commonly used to improve closed-loop
stability and decrease process variability by using data from the pre-
vious run to modify the inputs ex situ. The adjustments made to the
inputs between successive batch runs depend on the method used. The
exponentially weighted moving average (EWMA) method interpolates
between two bias terms, a weighted bias computed from the previous
batch run and a bias evaluated from a linear regression model, using
a deterministic weight that requires extensive process knowledge. The
limitations of the EWMA algorithm, such that the method is constrained
to linear regression models and requires a user-defined weight, can be
resolved by adopting an artificial neural network algorithm that is ap-
plicable for nonlinear systems and does not require the specification of
a weight parameter. Therefore, in this work, two control architectures
are employed in conjunction with the multiscale CFD model discussed
in Section 2.3: the exponentially weighted moving average (EWMA)
based R2R controller and the artificial neural network (ANN) based
R2R controller. Both methods provide greater insight into controller
selection for linear and nonlinear systems and raise questions about the
influence of weights on the controller response to disturbances.

The architectures of the EWMA-based and ANN-based R2R con-
trollers are illustrated in Fig. 6. The EWMA-based R2R controller
adjusts the inputs based on an exponentially weighted bias term, while
the ANN-based R2R controller modifies the inputs based on the de-
viation of the output from the target value. The output, which is
the etching per cycle, EPC, is typically measured by the amount of
mass loss in real-time using a sensitive weighing equipment such as
a Quartz Crystal Microbalance (QCM). However, for the spatial reactor
configuration, the QCM cannot be used to measure mass loss in real-
time while the substrate is in motion. The QCM is instead used to
measure the amount of mass loss off-line (outside the spatial reactor
environment and when the substrate is stationary) in order to perform
the necessary correction to the inputs. The input parameters consist
of the precursor (HF and TMA) flow rates and the substrate velocity,
which are manipulated using valves and an actuator, respectively. It
is also assumed that all input parameters are constant for the entire
duration of the batch run. A summary of the list of variables and their
definitions in this section is provided in Table 3. This section will
be organized first by discussing the EWMA-based R2R controller and
followed by an analysis of the ANN-based R2R controller.

3.1. EWMA-based R2R controller

The EWMA-based R2R controller is a statistical process control
method that is used widely for run-to-run control. An EWMA-based R2R
control system operates with the aid of a linearized model by adjusting
a process input based on the output of prior batch runs. The controller
manipulates each input by monitoring changes in the output from the
setpoint specification. This modification of the inputs is conducted by
purposefully favoring newer process run data over older batch data to
monitor more recent changes in the process environment through a
weighing parameter. The algorithm used to update the inputs can be
determined analytically, which reduces the need for numerical solvers,



Computers and Chemical Engineering 168 (2022) 108044M. Tom et al.
Fig. 5. A process diagram depicting the multiscale CFD model that connects the macroscopic and microscopic domains to simultaneously compute pressure and temperature
spatially in the macroscopic domain and reaction kinetics in the microscopic domain through each kMC time update. The connection of the macroscopic and microscopic models
is made possible through a Linux Bash Shell script.
Fig. 6. Schematic R2R control diagrams of an (a) EWMA-based controller and an (b)
ANN-based controller. The ‘‘process’’ is the multiscale CFD model, 𝐱 denotes the input
vector, 𝑦 represents the output variable, 𝜏 is the setpoint or target value, 𝑐 is the bias
for the previous batch run, 𝑛−1, and the current batch run, 𝑛, and 𝛥𝑦 is the deviation
of the output computed from the multiscale CFD simulation from the setpoint, 𝜏.

and is simple to integrate into R2R control systems. However, the
selection of the fixed weight parameter is a tedious task that requires
a diverse data set to determine the optimal weighing parameter that
reduces the output variability generated by oscillatory input adjust-
ments and that offers output stability around the setpoint. In addition,
the EWMA weight is constrained to particular disturbances based on
their impact on the product conformity. Also, the EWMA-based R2R
controller is a linear control system; thus, it is of paramount importance
to ensure the data regression is linear.

Previous work has been conducted in the analysis of EWMA-based
R2R controllers for atomic layer deposition and etching processes
(Crose et al., 2017, 2019; Ding et al., 2020a; Zhang et al., 2020;
8

Table 3
Definitions of variables used in the R2R control system.

Variable Definition

𝐚 Vector of coefficients for the linear regression model
𝐛 Bias for the input layer to the hidden layer
𝑐𝑛 Intercept or bias of the EWMA model for the 𝑛th batch number
𝐄 Vector of residuals
𝑓 Activation function for the ANN
𝐈 Square identity matrix
𝐉 Column vector of ones
𝑙 Number of input parameters
𝐿 Lagrange multiplier function 𝐿(𝐱𝑛 ,𝜦) for the 𝑛th batch number
𝑚 Total number of batch runs
𝑀𝑆𝐸 Mean square error
𝑛 Batch run number
𝑝 Total number of neurons in the hidden layer
𝑆 Residual sum of squares
𝐰1 Vector of weight of neurons from input layer to the hidden layer
𝐰2 Vector of weight of neurons from hidden layer to the output layer
𝐱 Vector of the inputs
𝐗 Aggregate vector of the offline input data
𝑦 Output computed by the multiscale CFD model
�̂� Predicted output computed by the multiscale CFD model
𝐘 Aggregate vector of the offline output data
𝑧 Sample size of data points
𝛥𝐱 Input deviation
𝛥𝑦 Output deviation
𝜀 Bias for output layer
𝜆 EWMA weight factor
𝛬 Lagrange multiplier
𝝈 Gradient vector of the input-hidden layer activation function
𝜏 Etching per cycle target or setpoint

Yun et al., 2021, 2022d); however, the aforementioned works have
not conducted R2R control with an advanced multiscale CFD model
that simulates spatio-temporally in conjunction with time and pressure-
dependent surface kinetics. Also, prior works have not investigated
multivariate input and single input R2R control systems. This research
aims to construct an EWMA-based R2R controller for a previously
developed multiscale CFD model (Yun et al., 2022b) for spatial thermal
atomic layer etching using a multiple-input-single-output (MISO) sys-
tem that consists of three input variables, precursor (HF and TMA) flow
rates and substrate velocity, and one output variable, etching per cycle
(EPC). This section on the EWMA-based R2R controller formulation is
organized by discussing the MISO multiple linear regression develop-
ment followed by an overview of the EWMA method and lastly, the
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procedures of the input model update are elucidated and the analytical
derivation is provided in detail.

3.1.1. MISO linear regression model
The EWMA method utilizes a linear model that relates the input ar-

guments to the output term. A linear regression is desired for the EWMA
model, which updates the bias or intercept of the linear regression
equation through each batch run. It is notable that the EWMA-based
controller is restricted to linear regression models for updating the bias
term through successive batch runs and for reducing computational
demand. The use of a linear regression model also is beneficial for ob-
taining explicit, analytical solutions for updating the inputs for the next
batch run without requiring tedious numerical approximation methods
such as the Newton–Raphson Method to evaluate the updated inputs.
For the EWMA-based R2R controller, a multiple linear regression model
will be developed to ensure an analytical solution is obtainable for the
input update.

For multiple linear regression fitting, a generic linear equation is
defined as follows:

�̂�𝑛 = 𝐚𝑇 𝐱𝑛 + 𝑐𝑛 (13)

here �̂� ∈ R is the scalar-valued output that is evaluated by the linear
egression model for batch number 𝑛, 𝐚 ∈ R𝑙 is the coefficient vector
𝑎1 𝑎2 ⋯ 𝑎𝑙

]𝑇 that is independent of the batch run and is therefore
onstant, 𝑙 is the number of input variables, 𝐱𝑛 ∈ R𝑙 is the input vector
𝑥1,𝑛 𝑥2,𝑛 ⋯ 𝑥𝑙,𝑛

]𝑇 at a batch run of 𝑛, and 𝑐𝑛 ∈ R is the intercept or
ias for a batch run of 𝑛. It is notable that the initial regression model
roduced from offline data is for 𝑛 = 0, thus the initial bias determined
y multiple regression modeling will be designated as 𝑐0. The output, �̂�
f the regression model is the etching per cycle (EPC) in Å/cycle. Also,
n this regression model, a total of 𝑙 = 3 scalar inputs in the input vector,
𝐱𝑛 will be used and are constrained to be in the following ranges:

𝑥1,𝑛 ∈ [20, 100] , 𝑥2,𝑛 ∈ [20, 100] , 𝑥3,𝑛 ∈ [10, 100]

where 𝑥1,𝑛 is the HF flow rate in sccm, 𝑥2,𝑛 is the TMA flow rate in sccm,
and 𝑥3,𝑛 is the substrate velocity in mm∕s for a batch number of 𝑛. This
regression model is composed of multiple inputs and a single output,
which establishes the so-called multiple-input-single-output (MISO) sys-
tem. For the remainder of this work, the convention of subscript 𝑛 is
used to denote the batch number. All vectors of the form R𝑙 or R𝑝 are
olumn vectors unless otherwise noted. Vectors that have a superscript
f 𝑇 , for instance, 𝐚𝑇 in Eq. (13), refers to the transpose of the vector.

The generation of the linear regression model utilizes a sample of
= 270 data points that are collected for a combination of inputs, which
re defined in the multiscale CFD model to compute each successive
utput. The outputs are evaluated offline for HF flow rates, 𝑥1,𝑛, from

20 to 100 sccm in intervals of 20 sccm, TMA flow rates, 𝑥2,𝑛, from 20
to 100 sccm in intervals of 10 sccm, and substrate velocities from 10
to 100 mm∕s in intervals of 20 mm∕s for the range of 20 to 100 mm∕s.
Results of the multiscale CFD simulation data set are presented in Fig. 7
in iso-contours of the HF flow rate of 20 sccm, TMA flow rate of 40
sccm, and substrate velocity of 80 mm∕s, which illustrates the effects
of these manipulated variables on the etching per cycle.

With the data collection defined, the linear regression model is
optimized using the least squares linear multiple regression method
that determines the ideal regression that minimizes the distance or
residual between the predicted outputs evaluated from the regression
model and the actual outputs evaluated from the multiscale CFD model
to construct a best fitting regression line. In other words, it is desired
to select the vector of coefficients, 𝐚, such that 𝐄, which represents
the magnitude of the deviation of the linear model prediction from
the multiscale simulation data, is minimized. Hence, the following
minimization problem on the sum of squares of the data residuals is
introduced:

2

9

min ‖𝐄‖ (14a) p
s.t. 𝐄 = 𝐘 − 𝐗𝐚 − 𝑐0𝐉 (14b)

where ‖⋅‖ is the 𝑙2-norm, 𝐄 ∈ R𝑧 is the residual data sample vector
𝑒1 𝑒2 ⋯ 𝑒𝑧

]𝑇 , 𝐘 ∈ R𝑧 is the data sample output vector
[

𝑦1 𝑦2 ⋯ 𝑦𝑧
]𝑇

omputed by the multiscale CFD simulation, 𝐗 ∈ R𝑧×𝑙 is the data
ample input vector,

𝑥11 𝑥12 ⋯ 𝑥1𝑙
𝑥21 𝑥22 ⋯ 𝑥2𝑙
⋮ ⋮ ⋱ ⋮
𝑥𝑧1 𝑥𝑧2 ⋯ 𝑥𝑧𝑙

⎤

⎥

⎥

⎥

⎥

⎦

here 𝑙 is the number of inputs, 𝐚 ∈ R𝑙 is the coefficient vector
𝑎1 𝑎2 ⋯ 𝑎𝑙

]𝑇 , 𝑐0 is the initial bias or intercept for batch 𝑛 = 0, and
∈ R𝑧 is a column vector of 𝑧 ones [1 1 ⋯ 1]𝑇 . The sum of the squares
f the residuals, ‖𝐄‖2 is expanded and then minimized to determine the
oefficient vector of the inputs, 𝐚, and the initial intercept, 𝑐0, which
re as follows:

= 10−3
[

0.0121 0.346 −1.84
]𝑇

0 = 0.478

he coefficient matrix, 𝐚, and the intercept, 𝑐0, are substituted into
q. (13) to produce the multiple linear regression model of the offline
ata:

�̂� = 10−3
(

0.0121𝑥1,𝑛 + 0.346𝑥2,𝑛 − 1.84𝑥3,𝑛 + 478
)

(15)

he accuracy of the linear regression model, Eq. (15) is presented
n Fig. 8 in iso-contours of HF flow rate of 20 sccm, TMA flow rate
f 40 sccm, and substrate velocity of 80 mm∕s, which illustrates the
agnitude of the deviation of the linear regression model from the
ultiscale CFD results in Fig. 8. The linear regression model has a mean

quared error (MSE) that is computed using Eq. (23) and is determined
o have an MSE of 4.236 × 10−4 Å/cycle, which suggests that the
eviation of 270 data points estimated by the linear regression model
rom the multiscale CFD model simulation results is low. Fig. 8(b)
eveals the possibility that the linear model strongly deviates from the
ultiscale CFD data results in regions of high substrate velocity and

ow HF flow rate. Fig. 8(a), which is presented by an iso-contour of
F flow rate at 20 sccm, confirms the observation that lower HF flow

ates produce greater deviation from the multiscale CFD data results.
enerally, lower TMA flow rates in Fig. 8(c) produce greater deviation

rom the multiscale CFD data results. Thus, the linear regression model
roduces a regression that accurately reflects the trend of the actual
ultiscale CFD data results; however, one may deduce that there is
isagreement between the predicted and multiscale CFD model results
or lower TMA flow rates and higher substrate velocities, which may
ffect the reliability of the results and input update. To overcome this
ssue, a large domain for each input that is previously defined in this
ection was purposefully chosen in the event that large input changes
re required to correct major disturbances; however, the formulation in
ection 3.1.3 highlights a methodological approach to ensure that input
hanges between successive batch runs are minimized. Also, a greater
iscussion on the limitations of the disturbances for EWMA-based R2R
ontrollers will be discussed in Section 4.

.1.2. Bias update using the EWMA method
Disturbances in atomic layer processes are attributed to several

actors such as continual equipment fatigue and byproduct formation
uring the reaction half-cycles. As a result, the measured outputs of a
rocess become dependent on the results of the prior run and some
f these characteristics are inherited in the subsequent batch run.
lthough older data is useful, newer data would need to be weighed
ore to produce a greater influence on the upcoming batch run. To

esolve this issue, the exponentially weighted moving average (EWMA)
tatistical model is integrated into the R2R controller. An advantageous
roperty of the EWMA approach is through the application of a weight

arameter that continuously decreases exponentially as the data ages.
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Fig. 7. Multiscale CFD simulation results of the etching per cycle represented by iso-contours of (a) HF flow rate of 20 sccm, (b) TMA flow rate of 40 sccm, and (c) substrate
velocity of 80 mm∕s.
However, the selection of the fixed weight parameter is of utmost
importance as the magnitude of the weight parameter dictates the
amount of noise generated by modifying the inputs, which concurrently
affects the measured output. Process control becomes susceptible to
the overadjustment of process inputs as well as the measured output
deviating greatly from the setpoint subject to larger weights. Although
self-tuning methods have been proposed to modify weights ex situ (Del
Castillo and Hurwitz, 1997; Da et al., 2002; Su and Hsu, 2004), these
proposals are computationally demanding for the multiscale CFD simu-
lation and require an abundance of data to understand the relationship
between the EWMA weight and the level of stability and product
conformance that is achieved for particular disturbances. Thus, this
work aims to study the influence of the weight on the stability of
the input adjustment and the recorded output for EWMA-based R2R
controller models that have the same controller architecture through
two weight parameters.

One of the disadvantages of the EWMA statistical approach is that
the data is constrained to linearized regression models. For a nonlinear
input–output relationship, the severity of the nonlinearity may result in
non-smooth control actions and greater deviations from the setpoint.
Several areas of research are dedicated to resolving the challenges
associated with nonlinear processes. For instance, Del Castillo and Yeh
(1998) developed an optimizing adaptive quality controller (OAQC) us-
ing quadratic-based models to achieve comparable controller response
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with linear-based controllers. Yun et al. (2022d) proposed a normal-
ization method to improve linearity using a sigmoidal-like function to
achieve stronger linear regression fitting for a linear EWMA-based con-
troller. Artificial neural networks (ANN) based R2R controllers (Wang
and Mahajan, 1996) have also emerged to regress nonlinear systems.
Nonetheless, a linear regression model will characterize this EWMA-
based controller to reduce computational demand and to facilitate the
process for evaluating the analytical solution for multiple inputs.

The EWMA-based controller model is formulated by weighing the
bias term, 𝑐𝑛, in Eq. (13). The next bias term is weighed based on the
prior weighted batch run bias, 𝑐𝑛−1, and the computed bias from the
linear regression model in Eq. (13) upon the rearrangement of terms to
solve for 𝑐𝑛. The resulting EWMA expression for calculating the updated
bias, 𝑐𝑛 is described as follows:

𝑐𝑛 = 𝜆
(

𝑦𝑛 − 𝐚𝑇 𝐱𝑛−1
)

+ (1 − 𝜆) 𝑐𝑛−1, where 𝜆 ∈ (0, 1] (16)

where 𝑐𝑛 ∈ R is the weighted bias term at batch run 𝑛, 𝑦𝑛 ∈ R is
the output of the multiscale CFD model corresponding to the input
vector, 𝐱𝑛−1, 𝐚 ∈ R𝑙 is the coefficient vector

[

𝑎1 𝑎2 ⋯ 𝑎𝑙
]𝑇 of the linear

regression model from Eq. (13), 𝑙 is the number of inputs, 𝐱𝑛−1 ∈ R𝑙 is
the input vector

[

𝑥1,𝑛−1 𝑥2,𝑛−1 ⋯ 𝑥𝑙,𝑛−1
]𝑇 , and 𝜆 ∈ R is the weighting

coefficient. The EWMA of the bias term, 𝑐𝑛, which is updated across
consecutive batch runs, has a substantial role in the calculation of the
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Fig. 8. Linear regression model etching per cycle deviation from the multiscale CFD data in Fig. 7 represented by iso-contours of (a) HF flow rate of 20 sccm, (b) TMA flow rate
of 40 sccm, and (c) substrate velocity of 80 mm∕s. The MSE of the linear regression model is 4.236 × 10−4 Å/cycle.
inputs of the next batch through the EWMA-based R2R control system,
which is discussed in Section 3.1.3.

The EWMA equation, Eq. (16), can also be expanded into a non-
recursive form (Montgomery, 2013) by replacing 𝑐𝑛−1 with the equation
for the previous iteration and repeating this until all instances of 𝑐 have
been replaced with 𝑦 and 𝐱 on the right-hand side of the equation. Then,
𝑐𝑛 will be a function of only 𝜆, 𝑦, and 𝐱 with the following form:

𝑐𝑛 =
𝑛−1
∑

𝑖=0

[

(1 − 𝜆)𝑖 𝜆
(

𝑦𝑛−𝑖 − 𝐚𝑇 𝐱𝑖
)

+ (1 − 𝜆)𝑛𝑐0
]

, where 𝜆 ∈ (0, 1] (17)

where 𝑛 represents the current batch number. The non-recursive EWMA
equation illustrates that (1 − 𝜆) < 1 and that the older biases are
assigned exponentially smaller weights in comparison to the more
recent biases, which have larger weights. This preferential weighing of
more recent data allows the controller to adapt to more recent changes
in the process while maintaining some knowledge of the older batch
runs. To understand the effects of the EWMA weight, two weights
will be specified to the same EWMA-based R2R controller and run in
parallel to determine the differences in the adjustments made to the
inputs and their effect on the output. For this work, a lower weight
of 𝜆 = 0.3 and a larger weight of 𝜆 = 0.7 will be specified for two
separate simulations for the same EWMA-based R2R controller that
are run in parallel simulations. The following section will describe the
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implementation of the bias update for an underdetermined system of
linear equations to determine the ideal input update.

3.1.3. Input update of EMWA
The established linear model in Eq. (15) illustrates the need for a

formulation to determine an optimal input update such that the change
to the inputs to overcome the effects of the disturbance is minimized as
discussed in Section 3.1.1 while ensuring that the resulting update will
produce an output that is proximal to the setpoint. This particular linear
system is characterized by an underdetermined system that consists
of more dependent variables (3) than equations (1). As a result, a
minimum least squares summation method is proposed on the deviation
of the next batch, 𝑛, and previous batch, 𝑛−1, inputs while constrained
by the new input resulting in the desired setpoint, as follows:

min
𝐚𝑇 𝐱𝑛=𝛽𝑛

‖

‖

𝐱𝑛 − 𝐱𝑛−1‖‖
2 (18a)

s.t. 𝛽𝑛 = 𝜏 − 𝑐𝑛 (18b)

where ‖⋅‖ is the 𝑙2-norm, 𝐚 ∈ R𝑙 is the vector
[

𝑎1 𝑎2 ⋯ 𝑎𝑙
]𝑇 of

coefficients for the inputs, 𝑙 is the number of inputs, 𝐱𝑛 ∈ R𝑙 is the
vector

[

𝑥1,𝑛 𝑥2,𝑛 ⋯ 𝑥𝑙,𝑛
]𝑇 for the following batch run 𝑛, 𝐱𝑛−1 ∈ R𝑙 is the

vector
[

𝑥1,𝑛−1 𝑥2,𝑛−1 ⋯ 𝑥𝑙,𝑛−1
]𝑇 for the preceding batch run 𝑛−1, 𝜏 ∈ R

is the setpoint or target of the output, and 𝑐 ∈ R is the exponentially
𝑛
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weighted bias evaluated from Eq. (16). This minimization problem is
then solved by utilizing a Lagrange function, 𝐿(𝐱𝑛, 𝛬), defined as

𝐿(𝐱𝑛, 𝛬) =
(

𝐱𝑛 − 𝐱𝑛−1
)𝑇 (

𝐱𝑛 − 𝐱𝑛−1
)

+ 𝛬(𝐚𝑇 𝐱𝑛 − 𝛽𝑛) (19a)

where 𝛬 is a Lagrange multiplier. First, the partial derivatives of 𝐿 with
respect to 𝐱𝑛 and 𝛬 are taken and equated to zero to yield, respectively,
the equations,

∇𝐱𝑛𝐿 = 2
(

𝐱𝑛 − 𝐱𝑛−1
)

+ 𝛬𝐚 = 0 (19b)

∇𝛬𝐿 = 𝐚𝑇 𝐱𝑛 − 𝛽𝑛 = 0 (19c)

where the systems of equations are solved to yield the following
equation to perform the input vector update, 𝐱𝑛:

𝐱𝑛 = 𝐱𝑛−1 − 𝐚
(

𝐚𝑇 𝐚
)−1 (𝐚𝑇 𝐱𝑛−1 − 𝛽𝑛

)

(19d)

Eq. (19d) is the fundamental and analytical solution for an underdeter-
mined linear system that will be integrated with the input modification
process. The procedural steps for conducting the EWMA-based R2R
controller input update are summarized as follows:

1. A linear regression model of the general form in Eq. (13) is
constructed with offline data to determine the vector of input
coefficients, 𝐚, and the initial bias, 𝑐0.

2. The EPC output from the multiscale CFD simulation is evaluated
and substituted into Eq. (16) to determine an exponentially
weighted bias, 𝑐𝑛, for the upcoming batch run, 𝑛.

3. The upcoming weighted bias, 𝑐𝑛, is substituted into 𝛽𝑛 in Eq.
(18b) to calculate the vector of input parameters in Eq. (19d),
𝐱𝑛, for the next batch run 𝑛.

4. Steps 2 and 3 are repeated for 𝑚 number of batch runs where 𝐚
is constant and 𝑐𝑛 is updated through each batch run.

3.2. ANN-based R2R control

Overcoming nonlinear behavior is challenging as some atomic layer
processes have nonlinear relationships (Smith and Boning, 1997). Sev-
eral methods can be accomplished to integrate nonlinear input–output
relationships into R2R control models. For instance, Yun et al. (2022d)
were able to linearize a nonlinear data set generated offline with a
sigmoidal-like, median-effect equation, which transformed the nonlin-
ear data into an apparent linear model. This section entails a machine
learning approach for R2R control of nonlinear systems.

Recently, machine learning (ML) algorithms, in particular artificial
neural networks (ANNs), have emerged as promising tools for process
modeling, optimization, and control in various engineering fields. Ow-
ing to the development of high-performance computing resources, ML
has been widely applied in diverse research subjects. For example, ML
was used to build a real-time controller (Wu et al., 2021; Alhajeri et al.,
2022), to model engineering processes (Ding et al., 2021; Abdullah
et al., 2021a,b; Yun et al., 2022a; Abdullah et al., 2022), and to
improve an empirical model for an electrochemical reactor (Luo et al.,
2022). In particular, ANNs have been extensively employed to lessen
the computational demand and to improve the accuracy of model
approximation, especially for nonlinear systems. Wang and Mahajan
(1996) first suggested using an ANN-based run-to-run (R2R) controller,
and their results illustrated that the ANN-based R2R controller had a
comparable performance to that of an EWMA-based R2R controller.
An ANN model for R2R control as a distinct control algorithm from
the conventional EWMA algorithm to determine a new input at every
batch run under a disturbance was trained. However, due to a lack of
computing resources, the ANN-based filter of the R2R controller was
limited to a single neuron.

The ANN-based R2R controller is an alternative solution to the
EWMA-based R2R controller, which is limited to linear systems. One of
the advantages of the ANN-based R2R controller is that this controller
formulation does not require the specification of a deterministic weight
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factor in the case of the EWMA-based R2R controller. The weight fac-
tors are instead obtained through the process of training a feed-forward
neural network (FNN) model. Also, ANN-based R2R controllers can
operate under nonlinear systems, which are regressed during the data
training process and do not require bias updates. After the predictive
model is established, the update of the inputs is conducted using an
optimization technique to tune the input variables minimally through
each successive batch run.

In this work, the framework for the ANN-based R2R controller is
adopted from Wang and Mahajan (1996) and the algorithm is then
further expanded with more neurons to achieve the best fit model.
First, the same data set described in Section 3.1, which was used to
formulate a multiple-input-single-output (MISO) regression model for
the EWMA-based R2R control, is used to train an ANN model with
the lowest mean square error. Then, a numerically approximated input
update is constructed in accordance with the trained ANN model, which
updates the inputs from the deviation of the output from the target.
Finally, the developed ANN-based R2R controller is integrated with
the multiscale computational fluid dynamics (CFD) model to deal with
disturbances such as shift and drift disturbances. The schematic flow
diagram is illustrated in Fig. 6(b), and the following sections elucidate
the ANN-based R2R method in greater detail.

3.2.1. ANN model training
Figs. 7 and 8 illustrate the possibility of nonlinearity in the linear

regression model for the EWMA-based R2R controller due to slight
variations in output prediction for lower TMA flow rates and higher
velocities. Thus, a separate ANN-based R2R controller is developed
for establishing a nonlinear predictive model for the offline data set.
The generation of the nonlinear predictive model first begins with
a feed-forward neural network (FNN), which handles nonlinear data
efficiently and reliably through a robust process of training and testing
the data. Despite FNNs being practical for nonlinear systems, FNNs may
come at a cost when defining an optimal number of neurons and hidden
layers, which will affect the accuracy of the predictive model and
may promote the curse of dimensionality or overfitting. Also, the FNN
structure also depends on the type of activation function, which will
decide the usefulness of particular data to the predictive model. The
specification of the delegation of data for training and testing will also
have a substantial role in the accuracy of the model. However, despite
the aforementioned disadvantages in using deterministic specifications
to characterize the FNN, the testing and training of the predictive model
resolves the latter to ensure the reliability of the results. The training
and testing of this FNN are conducted through TensorFlow’s Keras, an
established application programming interface (API) through a Python
script.

The ANN-based R2R control model comprises three types of layers,
the input, hidden, and output layers, which are illustrated in Fig. 9. A
single hidden layer is specified to prevent the overfitting and mapping
of multiple inputs to a single output, which is expressed as follows:

�̂� = 𝐹 (𝐱) = 𝑓
(

𝐰 𝑇
2 𝐡 + 𝜀

)

where 𝐡 = 𝑓
(

𝐰1𝐱 + 𝐛
)

(20a)

= 𝑓
(

𝐰 𝑇
2 ⋅ 𝑓

(

𝐰1𝐱 + 𝐛
)

+ 𝜀
)

(20b)

where �̂� ∈ R is the predicted output computed by the ANN regression
model, 𝐹 is the artificial neural network mapping function of the input
vector, 𝑓 is the activation function, 𝐰2 ∈ R𝑝 is the weight vector
[

𝑤1,2 𝑤2,2 ⋯ 𝑤𝑝,2
]𝑇 from the hidden layer to the output layer, 𝑝 is the

total number of neurons in the hidden layer, 𝜀 ∈ R is the bias for the
output �̂�, 𝐱 ∈ R𝑙 is the input vector

[

𝑥1 𝑥2 ⋯ 𝑥𝑙
]𝑇 , 𝑙 is the number of

input variables, 𝐰1 ∈ R𝑝×𝑙 is the weight matrix

𝐰1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑤11,1 𝑤12,1 ⋯ 𝑤1𝑙,1
𝑤21,1 𝑤22,1 ⋯ 𝑤2𝑙,1
⋮ ⋮ ⋱ ⋮

𝑤𝑝1,1 𝑤𝑝2,1 ⋯ 𝑤𝑝𝑙,1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

𝐰 𝑇
1,1

𝐰 𝑇
2,1

⋮
𝑇

⎤

⎥

⎥

⎥

⎥

⎥

(21)
⎣

𝐰𝑝,1 ⎦
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Fig. 9. An artificial neural network architecture consisting of an input, output, and hidden layer. In this work, the input layer has 𝑙 = 3 inputs (𝑥1, 𝑥2, and 𝑥3), the hidden layer
is defined with 𝑝 = 20 neurons (ℎ𝑗 for 𝑗 = 1, 2,… , 𝑝), and the output layer consists of one output (�̂�).
from the input layer to the hidden layer, and 𝐛 ∈ R𝑝 is the bias vector
[

𝑏1 𝑏2 ⋯ 𝑏𝑝
]𝑇 from the input layer to the hidden layer. The weight

matrix, 𝐰1 can be divided into 𝑝 row vectors where 𝐰 𝑇
𝑖,1 ∈ R𝑙 for the

space
[

𝑤1𝑖,1 𝑤2𝑖,1 ⋯ 𝑤𝑙𝑖,1
]

for 𝑖 = 1, 2,… , 𝑝 is the 𝑖th row vector. To
validate the trained ANN model, 𝑧 = 270 data points collected offline
from the multiscale CFD model are divided into a training set consisting
of 80% and a testing set of 20% of the total data points. The input layer
has 3 input nodes (𝑙 = 3), which are the HF flow rate (𝑥1) in sccm, TMA
flow rate (𝑥2) in sccm, and substrate velocity (𝑥3) in mm∕s. The hidden
layer consists of 𝑝 = 20 neurons in which interconnect computations
are processed. The output layer has one output node, �̂�, which is the
etching per cycle (EPC) in Å/cycle. The activation function, 𝑓 , will
use the rectified linear unit (ReLU), which facilitates the process for
updating the input in Section 3.2.2 and is generalized as follows:

𝑓 (𝑥) =
{

0 if 𝑥 < 0
𝑥 if 𝑥 ≥ 0

(22)

Thus, the activation function 𝑓 passes the summed weight-adjusted
input variables to yield the value of each neuron in the hidden layer.
Likewise, the activation function 𝑓 also passes the summed weight-
adjusted node variables in the hidden layer to calculate the output in
the same manner.

The ANN model is trained using 20 neurons in the hidden layer until
a low mean square error (MSE) is achieved. The MSE is expressed as

𝑀𝑆𝐸 = 1
𝑧

𝑧
∑

𝑗=1
(𝑦 − �̂�)2 (23)

where 𝑧 is the number of offline data points, which is 270 points,
𝑦 ∈ R is the reference output variable obtained from the multiscale
CFD simulation, and �̂� ∈ R is the predicted output variable from the
trained ANN model. From the FNN training, a MSE of 2.251 × 10−4

Å/cycle is observed, which indicates that the average deviation of the
predicted ANN results from the actual multiscale CFD results is low in
magnitude. From the low MSE value, it is demonstrated that the ANN
model predicts the trends of the multiscale CFD results reasonably and
improves the regression from the linear model in Fig. 8. The predicted
results of the ANN model are presented in Fig. 10 with predicted EPC
results being similar to the multiscale CFD EPC results in Fig. 7
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3.2.2. Input update from ANN
An artificial neural network (ANN) method has been extensively

used to predict an output based on a trained data set due to its ability
to tolerate nonlinear input–output relationships. However, Wang and
Mahajan (1996) devised an approach to adopt an ANN model for
run-to-run (R2R) control using the process sensitivity of the output
deviation, which is the derivative of the mapping function, 𝐹 (𝐱) = �̂�
with respect to the inputs, 𝐱𝑛, at batch run of 𝑛. To navigate around
the nonlinearity of the predicted model, a first-order Taylor Series ex-
pansion about the previous input vector, 𝐱𝑛−1 on the mapping function,
𝐹 (𝐱) = �̂�, in Eq. (20b) is used as follows:

�̂�𝑛 = �̂�𝑛−1 + ∇𝐱𝑛 �̂�
|

|

|𝑥𝑛=𝑥𝑛−1
⋅
(

𝐱𝑛 − 𝐱𝑛−1
)

where �̂�𝑛 = 𝜏, �̂�𝑛−1 = 𝑦𝑛−1 (24a)

𝑦𝑛−1 − 𝜏 = 𝛥𝑦 = ∇𝐱𝑛 �̂�
|

|

|𝑥𝑛=𝑥𝑛−1
⋅
(

𝐱𝑛−1 − 𝐱𝑛
)

= �̂�||
|𝑥𝑛=𝑥𝑛−1

𝛥𝐱 (24b)

where 𝛥𝑦 = 𝑦𝑛−1 − 𝜏, 𝛥𝐱 = 𝐱𝑛−1 − 𝐱𝑛
where 𝑦𝑛 ∈ R and 𝑦𝑛−1 ∈ R are the outputs evaluated by the multiscale
CFD simulation for the next batch run, 𝑛, and the preceding batch
run 𝑛 − 1, respectively, �̂�𝑛 ∈ R and �̂�𝑛−1 ∈ R are the predicted
outputs evaluated by the ANN model for the next batch run, 𝑛, and the
preceding batch run 𝑛 − 1, respectively, 𝐱𝑛 ∈ R𝑙 is the updated input
vector

[

𝑥1,𝑛 𝑥2,𝑛 ⋯ 𝑥𝑙,𝑛
]𝑇 for the next batch run 𝑛, 𝐱𝑛−1 ∈ R𝑙 is the

preceding input vector
[

𝑥1,𝑛−1 𝑥2,𝑛−1 ⋯ 𝑥𝑙,𝑛−1
]𝑇 for the previous batch

run 𝑛 − 1, 𝑙 is the number of inputs, 𝜏 is the setpoint or target value
of the output, 𝛥𝑦 is the output deviation term from the setpoint, and
𝛥𝑥 is the input deviation term. Eq. (24b) sets 𝑦𝑛 = 𝜏 as a constraint by
assuming that the input update is sufficient to produce the setpoint for
the following batch run. For the ReLU activation function in Eq. (22),
∇𝐱𝑛 �̂�𝑛−1

|

|

|𝑥𝑛=𝑥𝑛−1
equates to the following:

∇𝐱𝑛 �̂�
|

|

|𝑥𝑛=𝑥𝑛−1
= ∇𝐱𝑛𝑓

(

𝐰 𝑇
2 ⋅ 𝑓

(

𝐰1𝐱𝑛 + 𝐛
)

+ 𝜀
) |

|

|

|𝑥𝑛=𝑥𝑛−1
(25a)

= ∇𝐱𝑛𝑓
(

𝐰1𝐱𝑛 + 𝐛
)

|

|

|𝑥𝑛=𝑥𝑛−1
⋅ ∇𝐱𝑛𝑓

(

𝐰 𝑇
2 𝐡 + 𝜀

)

|

|

|𝐡=𝑓(𝐰1𝐱𝑛−1+𝐛)
(25b)

The input term for the hidden to the output layer must always be
greater than zero in order to generate a predictive model; thus, the
derivative of the hidden-output layer ReLU function must be equal to
𝐰2.

∇ �̂�|| = 𝝈𝑇 ⋅ 𝐰 where 𝝈𝑇 = ∇ 𝑓
(

𝐰 𝐱 + 𝐛
)

|

| (25c)
𝐱𝑛
|𝑥𝑛=𝑥𝑛−1

2 𝐱𝑛 1 𝑛
|𝑥𝑛=𝑥𝑛−1
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Fig. 10. Artificial neural network model etching per cycle deviation from the multiscale CFD data in Fig. 7 represented by iso-contours of (a) HF flow rate of 20 sccm, (b) TMA
flow rate of 40 sccm, and (c) substrate velocity of 80 mm∕s. The MSE of the ANN model is 2.251 × 10−4 Å/cycle.
The input term for the hidden to the output layer must always be
greater than zero in order to generate a predictive model; thus, the
derivative of the hidden-output layer ReLU function must be equal to
𝐰2. 𝝈 ∈ R𝑝×𝑙 is the derivative matrix of the activation function from
the input to the hidden layer and is defined as the following:

𝝈 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜎11 𝜎12 ⋯ 𝜎1𝑙
𝜎21 𝜎22 ⋯ 𝜎2𝑙
⋮ ⋮ ⋱ ⋮
𝜎𝑝1 𝜎𝑝2 ⋯ 𝜎𝑝𝑙

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝝈 𝑇
1

𝝈 𝑇
2

⋮
𝝈 𝑇
𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎦

computed from ∇𝐱𝑛𝑓
(

𝐰1𝐱𝑛 + 𝐛
)

|

|

|𝑥𝑛=𝑥𝑛−1
since the activation function,

𝑓 , is ReLU; thus, the 𝑖th row vector, 𝝈 𝑇
𝑖 ∈ R1×𝑙 for the space

[

𝜎1𝑖 𝜎2𝑖 ⋯ 𝜎𝑙𝑖
]

is calculated by:

𝝈 𝑇
𝑖 =

{

𝟎 if 𝐰 𝑇
𝑖,1 ⋅ 𝐱𝑛−1 + 𝐛 < 0

𝐰 𝑇
𝑖,1 if 𝐰 𝑇

𝑖,1 ⋅ 𝐱𝑛−1 + 𝐛 ≥ 0
for 𝑖 = 1, 2,… , 𝑝 (26)

where 𝑝 is the number of the neurons in the hidden layer, 𝟎 ∈ R𝑙 is a
vector of zeros, and 𝐰 𝑇

1,𝑖 ∈ R𝑙 is the 𝑖th row vector of the weight matrix,
𝐰1, as shown in Eq. (21). Eq. (25) represents the process sensitivity of
the output deviation and depends on the weights computed by the FNN
where 𝐰1 ∈ R𝑝×𝑙 and 𝐰2 ∈ R𝑝. From Eq. (24b), it is desired to find 𝐱𝑛
that has the setpoint value as an output.
14
Following the first-order Taylor Series expansion of the predicted
model, a minimal input update is needed to ensure that deviations from
the standard operating conditions are minimized. This optimization is
conducted using the projection theorem. Essentially, a projection of the
coordinate input axes

(

𝑥1, 𝑥2,… , 𝑥𝑙
)

in the R𝑙+1 Euclidean space for 𝑙
inputs is made onto the solution plane generated in Eq. (24b), which
calculates the deviation of the next input, 𝐱𝑛, from the prior input, 𝐱𝑛−1
and is expressed as follows:

𝛥𝐱 =
(

∇𝐱𝑛𝐱𝑛
)𝑇

∇𝐱𝑛𝛥𝑦
|

|

|𝑥𝑛=𝑥𝑛−1

[

(

∇𝐱𝑛𝛥𝑦
|

|

|𝑥𝑛=𝑥𝑛−1

)𝑇
∇𝐱𝑛𝛥𝑦

|

|

|𝑥𝑛=𝑥𝑛−1

]−1

𝛥𝑦

(27a)

where ∇𝐱𝑛𝛥𝑦 ∈ R𝑙 represents the unit vector that is orthogonal to the
solution plane, 𝛥𝑦, and ∇𝐱𝑛𝐱𝑛 is the unit vector of the coordinate axes

of the inputs. The gradient of the coordinate axes
(

∇𝐱𝑛𝐱𝑛
)𝑇

∈ R𝑙×𝑙

produces a square identity matrix, 𝐈 ∈ R𝑙×𝑙. Combining Eqs. (25c)
and (27a) yields the following expression for updating the inputs for
the next batch run:

𝐱𝑛 = 𝐱𝑛−1 − 𝐈
(

𝝈𝑇𝐰2
)

[

(

𝝈𝑇𝐰2
)𝑇 (

𝝈𝑇𝐰2
)

]−1
(

𝑦𝑛−1 − 𝜏
)

(27b)

where 𝑦𝑛−1 ∈ R is the output computed by the multiscale CFD sim-
ulation from the previous batch run 𝑛 − 1, 𝜏 is the setpoint value for
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the output, 𝐰1 ∈ R𝑝×𝑙 is the weight vector from the input layer to the
idden layer in the FNN, 𝐰2 ∈ R𝑝 is the weight vector from the hidden
ayer to the output layer in the FNN, 𝑝 is the number of neurons in the
idden layer, 𝑙 is the number of inputs, 𝐱𝑛 ∈ R𝑙 is the updated input
ector for the next batch 𝑛, and 𝐱𝑛−1 ∈ R𝑙 is the previous input vector
or batch run 𝑛 − 1. Also, the unit vector of 𝛥𝑦 in Eq. (24b) is equal to
he gradient of �̂� in Eq. (25c) with respect to 𝐱𝑛 at 𝐱𝑛−1. Eq. (27b) is an
ptimal procedure for computing the update for the next inputs. It is
otable that the coefficient of 𝑦𝑛−1−𝜏 in Eq. (27b) represents the process
ensitivity made to the adjustment of the input vector. The magnitude
f the adjustment is strictly related to the weights of the neurons
omputed by the ANN model and does not require a specification of
deterministic weight, namely, in the case of the EWMA-based R2R

ontroller. In summary, the input parameter update for the ANN-based
2R controller is as follows:

1. A collection of offline data is separated into two groups dele-
gated to the training and testing of the FNN model in Eq. (20b),
which is defined by a particular number of neurons, hidden
layers, and the activation function.

2. Step 1 is repeated until a low MSE is evaluated in Eq. (23) is
observed to produce a predictive model.

3. A first-order Taylor Series expansion is performed on the predic-
tive model to determine an equation that relates the deviation
of inputs from the previous and next batch runs in Eq. (24b).

4. The projection theorem in Eq. (27b) is used to evaluate the input
update for the next batch run.

5. Steps 3 and 4 are repeated for 𝑚 total number of batch runs.

. Multiscale CFD and R2R controller performance analysis

The semiconductor manufacturing processes are routinely subjected
o occasional shifts and deterministic or nondeterministic drifts, which
ave an impact on the product quality. The loss of product quality is
ostly compared to the costs of an established control system. There-
ore, in general, run-to-run (R2R) control is used to regulate process
ariables to maintain product quality under disturbances including
ariability, shift, and drift (Moyne et al., 2018). Variability of the
esults are attributed to stochastic behavior if the input parameters
re not specified correctly and to the definitions made on the bound-
ry and mesh in the numerical CFD solver. Sudden shifts or offsets
re attributed to a maintenance operation or a change of production
pecifications. Furthermore, equipment aging effects or systematic de-
erioration cause equipment-related drifts, leading to a deviation from
he conformal output quality. Therefore, an appropriate controller is
rucial to achieve an ideal product quality. In this work, three different
xternal disturbances, referred to as ‘‘kinetic’’ disturbances, due to the
isturbances being multiplied by reaction rate constants, are considered
o evaluate the developed control strategies: mild shift, severe shift, and
ondeterministic drift. The shift and drift disturbances are constrained
o particular situations in order to adopt the EWMA and ANN-based
2R algorithms for the R2R control system such that the process cannot
rift rapidly and that the process can experience occasional drifts (Del
astillo and Hurwitz, 1997). Thus, two shifts are introduced by mul-
iplying shift factors to the reaction rate constants in the microscopic
odel to produce a time lag in the surface kinetics. A drift is introduced

y multiplying the reaction rate constant with a drift factor, resulting in
gradual reduction in the reaction rate for each batch. In general, drifts
re attributed to the aforementioned immeasurable external influences,
uch as equipment aging, which slow down the process over time from
kinetics perspective. A kinetic disturbance, analogous to the defined

hifts, can be regarded as a drift that steadily reduces the reaction rate
rom batch to batch. As a result, the selected disturbances serve as
15

xcellent examples of process disturbances in industry. t
.1. Intrinsic variance

The multiscale CFD model simulates the thermal ALE reactions
sing a stochastic approach that resembles the occurrence of reaction
inetics in the real world. However, this simulation may generate
ntrinsic variance, a principle that chemical processes produce some
ariability as a consequence of this stochastic property. For the mul-
iscale CFD model, there are two sources of intrinsic variance: different
olutions to the CFD reactor configuration and the stochastic behavior
f the kMC simulation. With the two sources of variance stemming from
hese connected macroscopic and microscopic models, the sources of
rror can combine to yield results that fluctuate if the boundary condi-
ions and input parameters are not specified carefully. When comparing
wo otherwise identical runs, the natural variance in the CFD calcu-
ations will affect the precursor concentrations on the surface of the
ubstrate, which will subsequently affect the reaction rate calculated
y the kMC model. This reaction rate is also specified by the user-
efined function (UDF) substrate surface boundary condition in the CFD
imulation, which is a source of error that is retained through each time
tep. Additionally, the simplicity of the CFD model is caused by the
irst-order numerical simulation method that can compute parameters
hat deviate from one another. As a result, the calculated precursor
ressures from the CFD simulation, which are used to calculate the time
volution, coverage and etching fractions, etching per cycle (EPC), and
he surface consumption and generation rates will also fluctuate. In this
anner, the two models interact, which can cause each simulation run

o have differing results.
In order to guarantee the acceptability of the computed results

rom the multiscale CFD simulation, an error calculation is needed to
easure the variability and stochastic behavior of the EPC results. This

tochastic behavior is attributed to the numerical approach to solve
he governing equations, which are shown in Eqs. (8) through (10).
he equations are solved using numerical methods such as the finite
lement method for the spatial and temporal discretization. Inevitably,
ccompanied numerical errors are generated within the defined conver-
ence criteria, resulting in the bounded (but small) stochastic behavior
hat we observe in our calculations. To quantify the numerical error of
he calculations from the multiscale CFD model is tedious; therefore,

statistical analysis is performed. The multiscale CFD model was
imulated with constant reactor operation settings to collect a sample
ize of multiscale CFD results for constant input conditions to determine
he percentage of data points that deviate from the mean value of
he sample size. A collection of 50 sample multiscale CFD computed
PC data results were collected with a HF flow rate of 20 sccm, TMA
low rate of 40 sccm, and substrate velocity of 80 mm∕s without the
nfluence of any kinetic disturbances. Histograms of the aggregate
esults of the coverage fraction, etching fraction, and EPC are presented
n Fig. 11, which illustrates the number of data points that deviate in
actors of standard deviation, 𝜎, from the mean value, 𝜇, of the sample
ize.

Results from Fig. 11 show an asymmetric distribution of data results,
hich illustrates the stochastic behavior of both the kMC random
umber generator and the numerical method of the CFD simulation. All
istograms produce a single outlier point that is more than 3 standard
eviations away from the mean value. Despite the inherent stochastic
ehavior, 70% to 74% of the 50 data points fall within 1 standard
eviation of the mean value; thus, these data points exemplify statistical
ignificance and illustrate the consistency of the results produced from
he multiscale CFD model. Therefore, the effects of intrinsic variation
n the multiscale CFD model are negligible in comparison to the effects
f any shift or drift disturbances and will not influence the response of

he run-to-run controller.
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Fig. 11. Histograms depicting the distribution of the coverage fraction (a), etching fraction (b), and etching per cycle (c) for a sample size of 50 multiscale CFD data points for
20 sccm HF flow rate, 40 sccm TMA flow rate, and 80 mm∕s substrate velocity without the influence of disturbances. Each bar represents a standard deviation, 𝜎, from the mean,
𝜇, of the data set.
4.2. Shift disturbances

As mentioned in Section 3, R2R controllers equipped with a MISO
(multiple-input-single-output) model and an ANN (artificial neural net-
work) model are simulated under Shift-1 (smaller offset) and Shift-2
(larger offset). In addition, the EWMA (exponentially weighted moving
average) based R2R controller is simulated with two different weights
of 0.3 and 0.7. The inputs and output changes in accordance with
the controllers under Shift-1 are outlined in Fig. 12. The result with
the higher EMWA weight (𝜆 = 0.7) displays large overshoots and
undershoots in the output response and causes the output to oscillate
rigorously around the target, but the oscillation is moderated after the
fourth batch number. In addition, the result of the higher EMWA weight
(𝜆 = 0.7) exhibits a larger noise, in contrast to the results of both
the lower EMWA weight (𝜆 = 0.3) and the ANN-based R2R controller,
despite approaching the target line as shown in Fig. 12(d). It is observed
that the EWMA-based R2R controller with a lower EWMA weight
demonstrates a better controller response than that with a higher one
such that there is no severe overshoot or undershoot. However, the R2R
controller with the lower EWMA weight displays some variance, but the
variance is relatively small around the target. Meanwhile, the ANN-
based R2R demonstrates the most robust controller response among
the controllers since it reaches the target in lesser batch runs and
generates minimal variance. To quantitatively evaluate the controller
performance, the mean square error function is employed, which is
expressed as follows:

𝑀𝑆𝐸 = 1
𝑧

𝑧
∑

𝑘=1

(

𝑦𝑘 − 𝜏
)2 (28)

where MSE denotes the mean square error, 𝑧 is the number of data
samples, 𝑦 is the output of the sample 𝑘, and 𝜏 is the output setpoint
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𝑘

or target. The mean square errors for the three controllers with various
disturbances are summarized in Table 4. The MSE values of the EMWA
weight of 0.3 and 0.7, and the ANN are 1.22×10−5 Å2/cycle2, 1.12×10−4
Å2/cycle2, and 6.21 × 10−6 Å2/cycle2, respectively. It is concluded that
the higher EMWA weight offsets exceedingly from the setpoint against
a small shift disturbance and produces a larger amount of variance.
On the other hand, the ANN-based controller outperforms under Shift-
1 by producing a robust response within 2 batch runs while minimizing
variance. This initial response is reflected by the predictive model
to compensate for the nonlinear behavior in Fig. 7, which illustrates
that the EPC has a greater dependency on the HF and TMA flow
rates in contrast to the linear regression model presented in Fig. 8.
The compensation for the effects of the disturbance using the first-
order Taylor Series method suggests that the rate of convergence to
an output proximal to the setpoint occurs much faster than that of
the EWMA-based method. The progression of input updates through
each batch run for the R2R control response is shown in Fig. 12(a)
through Fig. 12(c). The simulation results of Shift-2 are illustrated in
Fig. 13. The higher EMWA weight (𝜆 = 0.7), as with the results under
the smaller shift (Shift-1), intensively reacts to the disturbance and
generates oscillatory behavior in the first few batches. However, the
lower EMWA weight (𝜆 = 0.3) yields a small overshoot at the second
batch number and smoothly reaches the target line. It was observed
that the results of the ANN-based R2R controller marginally fluctuates
around the target and approaches closer to the target line than that
of the EWMA-based R2R controllers for both weights. As shown in
Table 4, the MSE values of the EMWA weight of 0.3 and 0.7, and the
ANN are 1.70 × 10−5 Å2/cycle2, 7.46 × 10−4 Å2/cycle2, and 9.56 × 10−5

Å2/cycle2, respectively. The EWMA-based controller with the lower
EWMA weight demonstrates the most robust performance, whereas the
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Fig. 12. Graphical illustrations depicting the influence of various R2R controller algorithms on an environment that is introduced to a mild kinetic shift disturbance of 0.8 on the
input parameters including the (a) HF flow rate, (b) TMA flow rate, (c) substrate velocity, which are computed from the output variable, (d) etching per cycle (EPC).
ANN-based R2R controller response is comparable to the results of the
lower EWMA weight controller.

For both shift disturbances, the EWMA-based R2R controllers for
both EWMA weights of 0.3 and 0.7 update the HF and TMA flow
rates in a small range. A consequence of the minimization problem in
Eq. (18a) limits the magnitude of the input change from the previous
batch run, providing substantial control of the process environment.
As opposed to the EWMA-based R2R controller, the ANN-based R2R
controller makes a larger correction to the precursor flow rates causing
a substantial inflation of the standard precursor flow rates compared to
that of the adjustments made by the EWMA-based R2R controller. This
robust response is made possible by the algorithm used to determine
the minimum deviation from the prior run, which is accomplished
through a projection problem that is first constructed from a first-order
Taylor Series approximation that appears to overestimate the initial
response. However, the corrective action to reduce the magnitude of
the initial response demonstrates a reduction in the rate of convergence,
which illustrates that the ANN-based R2R controller locates convergent
solutions in lesser batch runs compared to that of the EWMA-based R2R
controllers, which fluctuate greatly with no apparent reduction in the
rate of convergence. As pictured in Fig. 8, the EWMA model does not
capture the effect of the precursor flow rates such that the EPC for each
slice is almost the same. However, given that the ANN model consider-
ably correlates the CFD data set to conform to nonlinear relationships,
there is a stronger relationship between the precursor flow rates and
the EPC, which is presented in Fig. 10. Therefore, despite the EWMA-
based and the ANN-based R2R controllers successfully compensate for
both shifts, the lower weight of 0.3 for the EWMA-based R2R controller
optimally performs under a severe shift, while the ANN-based R2R
controller functions reasonably under a mild shift.

The effects of the spatiotemporal behavior of the production of
DMAF when subjected to a shift disturbance of factor 0.60 is illustrated
in Fig. 14, respectively, for the sheet-to-sheet (S2S) spatial reactor with
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Table 4
Mean square error (Å2/cycle2) comparison for various disturbances and R2R control
systems.

Algorithm Shift-1 Shift-2 Drift

EWMA (𝜆 = 0.3) 1.22 × 10−5 1.70 × 10−5 6.18 × 10−5

EWMA (𝜆 = 0.7) 1.12 × 10−4 7.46 × 10−4 6.47 × 10−5

ANN 6.21 × 10−6 9.56 × 10−5 2.94 × 10−5

and without the integration of a R2R control system at batch number
10. The generation of DMAF is representative of the consumption of
AlF3 surface sites where higher DMAF concentrations are indicative of
greater etching rate. Fig. 14(a) illustrates that the integration of the
R2R control system produces greater DMAF generation on the substrate
surface in contrast to results without a control system in Fig. 14(b),
which suggests that the control system increases the etching rate and
overcomes the influence of shift disturbances, maintaining the desired
etching per cycle rate.

4.3. Drift disturbance

A drift disturbance is also introduced to the microscopic model
to monitor the effectiveness of various R2R control algorithms as
described in Section 4. The drift disturbance is simulated by multiplying
the reaction rate constant by a factor that changes through each batch
number. The progression of the factor is calculated with the expression
1 − 0.02 × 𝑛, where 𝑛 is the batch number, to provide a gradual
reduction of the reaction rate constant in compliance to the suggestions
from Del Castillo and Hurwitz (1997). The controller response to the
drift disturbance is presented in Fig. 15 where Fig. 15(a) to Fig. 15(c)
illustrate the updates to the inputs and Fig. 15(d) shows the output,
which is calculated from the multiscale CFD model. From Fig. 15(d), the
EWMA-based R2R controller with two different weights and the ANN-
based R2R controller situate around the target line and never follow
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Fig. 13. Graphical illustrations depicting the influence of various R2R controller algorithms on an environment that is introduced to a severe kinetic shift disturbance of 0.6 on
the input parameters including the (a) HF flow rate, (b) TMA flow rate, and (c) substrate velocity, which are computed from the output variable (d) etching per cycle (EPC).

Fig. 14. Multiscale CFD pressure data of the generation of DMAF in the TMA injection region (a) with and (b) without an EWMA-based R2R control system for 𝜆 = 0.3 when
subjected to a shift disturbance of 0.6 at the 10th batch run.
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Fig. 15. Graphical illustrations depicting the influence of various R2R controller algorithms on an environment that is introduced to a kinetic drift disturbance on the input
parameters including the (a) HF flow rate, (b) TMA flow rate, and (c) substrate velocity, which are computed from the output variable (d) etching per cycle (EPC).
the path of the ‘‘no control’’ line, which indicates that the adjustments
made to the input variables maintain the quality conformance for the
amount of EPC on the substrate. Table 4 reveals that the ANN-based
R2R controller produces the lowest MSE compared to the EWMA-based
R2R with the weight of 0.3 and 0.7, which suggests that the ANN-
based R2R controller is more robust at reducing fluctuations around the
target line. However, the results from Fig. 15(a) and Fig. 15(b) indicate
that the ANN-based R2R controller produces greater weights for the
precursor flow rates compared to that of the EWMA-based R2R with the
weight of 0.3 and 0.7 while the weights for the velocity are relative to
the EWMA-based R2R controller with the weight of 0.3. Contrary to the
shift disturbance, the deviation of the ANN-based R2R controller inputs
for the precursor flow rates from the standard operating conditions
expands through each batch run, which is suggestive that minimal
changes in the disturbance cause dramatic overshooting caused by the
first-order Taylor Series approximation, which will rapidly overesti-
mate the update. From an optimization perspective, the ANN model
does not optimize the input parameters but performed the control
actions on the basis of the ANN-based model as discussed in Section 4.2.

5. Conclusion

A novel R2R control design was developed using an artificial neural
network (ANN) model. This model was trained from the data of a mul-
tiscale computational fluid dynamics (CFD) simulation for the spatial
thermal atomic layer etching process consisting of one hidden layer
with of 20 nodes. The ANN model has three input variables in the
input layer, which are the HF and TMA precursor flow rates and the
substrate velocity, 20 nodes in the hidden layer, and the output variable
in the output layer, which is the etching per cycle (EPC). To evaluate
the performance of the ANN-based R2R controller in comparison with
existing approaches, an EWMA-based R2R controller, which has been
widely used in the semiconductor industry, was simulated under re-
alistic disturbances. The results revealed that the performance of the
19
ANN-based R2R controller was superior to that of the EWMA-based
R2R controller. Specifically, a lower EWMA weight worked efficiently
under the shift disturbances by minimizing noise and variance but
failed to reach the target specification when simulated with a nonde-
terministic drift disturbance. Meanwhile, the ANN-based R2R controller
successively eliminated the effects of mild shift, severe shift, and drift
disturbances. In contrast with the EWMA-based R2R controller using a
fixed tuning parameter, the ANN-based R2R utilizes a self-determining
tuning approach that routinely weights the parameter (i.e., the process
sensitivity). This benefit makes the ANN-based R2R controller perform
robustly in comparison with the EWMA-based R2R controller that
requires the selection of the tuning parameter. Therefore, the capability
of the proposed ANN-based R2R controller to various disturbances has
been assessed and verified through the multiscale CFD simulation for
the spatial atomic layer etching of Al2O3. It was also demonstrated that
the developed ANN-based R2R controller is readily implementable due
to the self-determined tuning unlike the EWMA-based R2R controller.
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