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Abstract: Semiconducting materials require stringent design specifications that make their fabrication
more difficult and prone to flaws that are costly and damaging to their computing and electrical
properties. Area-selective atomic layer deposition is a process that addresses concerns associated
with design imperfections but requires substantial monitoring to ensure that process regulation is
maintained. This work proposes a run-to-run controller with an exponentially weighted moving
average method for an area-selective atomic layer deposition rotary reactor by adjusting the rotation
speed of the substrate to control the growth per cycle of the wafer, which is calculated through
a multiscale model with machine learning integration for pressure field generation and kinetic
Monte Carlo simulations to increase computational efficiency. Results indicate that the run-to-run
controller was able to bring the process to the setpoint when subjected to moderate pressure and
kinetic shift disturbances.

Keywords: run-to-run control; semiconductor manufacturing; area-selective atomic layer deposition;
multiscale modeling; machine learning

1. Introduction

With the emergence and modernization of high-performance electronics, the avail-
ability and feasibility of this technology has transformed the socioeconomic life of people
globally. For example, semiconductors are found in a plethora of applications in the vehicu-
lar [1], solar cells [2], telecommunications and smart technology [3,4], and the bioelectronics
and medical industries [4,5]. However, the fabrication of these electronics requires a surplus
of semiconducting materials, which are an integral component for these devices to perform
computationally efficient tasks with stronger energy coherence. By correcting various
design flaws, including short-channel effects and current leakage [6,7], gate-all-around
(GAA) transistor structures have improved the robustness and performance of modern-day
technology [8] within nanoscale thicknesses that approach two-dimensional attributes.
However, a consequence of this miniaturization of feature sizes generates obstacles for
transistor fabrication: efficiency and accuracy.

The preponderance of high-performance semiconducting materials in advanced elec-
tronics is a motivation for increasing their supply and improving inefficient manufacturing
practices with processes that yield greater semiconductor quantity and have higher ac-
curacy. For example, the aftermath of semiconductor shortages following the COVID-19
pandemic [9,10] and the looming political implications [11] regarding the dependence of
national security on semiconductors, led to increased government investment toward the
strengthening of semiconductor yield and quality through the development of innovative
fabrication processes [12]. These investments have been fruitful for increasing semiconduc-
tor supply and quality following the rise of atomic layer deposition (ALD) [13,14], atomic
layer etching (ALE) [15,16], and area-selective atomic layer deposition (AS-ALD) [17–19]
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processes, which possess significant roles in the construction of transistors with nanoscale
dimensions by precisely depositing or etching monolayers of substrate material in sequen-
tial and cyclical procedures. Recently, research has been conducted on achieving film
uniformity for AS-ALD methods without requiring post-processing steps such as ALE to
ensure self-alignment during the transistor stacking procedure. AS-ALD has been previ-
ously experimented through in silico, atomistic-mesoscopic and multiscale computational
fluid dynamics (CFD) modeling to study the spatiotemporal behavior of the process in a
spatial, rotary reactor configuration [20–22]. Although AS-ALD is characterized by a high
accuracy deposition rate, such a process requires regulatory monitoring to ensure that qual-
ity conformance is maintained, thereby mitigating the risk of semiconductor performance
degradation and nonconformance to product criteria.

To ensure process monitoring in short timescale intervals, semiconductor manufactur-
ing industries propose ex situ or offline control referred to as run-to-run (R2R) control [23],
which performs controller adjustments after each batch run or in this case, after the com-
pletion of one cycle of AS-ALD. For example, Critical Manufacturing uses an integrative
manufacturing execution system (MES) to regulate semiconductor manufacturing processes
for etching and lithography by adopting run-to-run control algorithms that implement
suitable control actions [24]. Past works have established run-to-run control for atomic
layer etching (ALE) processes conducted in a stationary plate and spatial sheet-to-sheet
reactor configuration [25,26], for plasma-enhanced atomic layer deposition (PEALD) in
an inductively coupled plasma (ICP) reactor [27], and for thermal atomic layer deposition
(ALD) in a furnace reactor (PEALD) [28]. This work aims to implement R2R controller
action on an AS-ALD rotary reactor in an in silico experiment that regulates the output,
growth per cycle, of a multiscale computational fluid dynamics (CFD) simulation when
perturbed by pressure and kinetic shift disturbances by performing feedback after each
cycle of the AS-ALD process. To reduce the computational demand for the highly complex
multiscale simulation, machine learning and C programming language are substituted in
place of CFD and the kinetic Monte Carlo simulations to facilitate the generation of output
data for the R2R controller. This work will first examine the development of the multiscale
CFD model in Section 2, the implementation of machine learning to generate pressure field
data in place of the CFD simulation is discussed in Section 3, and the integration of the R2R
controller is elucidated in Section 4 with the closed-loop simulations presented in Section 5.

2. Multiscale Computational Fluid Dynamics Model

Area-selective atomic layer deposition (AS-ALD) is defined by a three-step, ABC,
process comprising inhibition, adsorption, and oxidation steps that perform selective depo-
sition on growth areas of the substrate [29]. However, conducting experiments in laboratory
environments is a time-consuming and laborious process that may yield variable results
that depend on idealistic operating conditions. Thus, this section of the manuscript will
discuss the development of an in silico approach to replicate the experimental laboratory
settings by combining atomistic modeling through first principles quantum mechanics
simulations to evaluate kinetic parameters inherent to rate-determining reaction pathways,
mesoscopic modeling through the stochastic kinetic Monte Carlo (kMC) computations for
studying the surface-scale kinetics, and macroscopic computational fluid dynamics (CFD)
to evaluate the mass transfer of reagent and byproduct species in the fluid phase. The
conjunction of such simulations constitutes a multiscale model that performs simulations
through multiple time and length scales, which is advantageous to the development of
process scale-up in industrial applications.

2.1. Atomistic Modeling

The development of an atomistic model is imperative for the calculation of reaction rate
constants for rate-determining reactions involved in each step of the ABC, AS-ALD process.
This work utilized an inhibitor, acetylacetone (Hacac), a precursor, bis(diethylamino)silane
(BDEAS), and an oxidant, ozone (O3) for a substrate composed of a non-growth area,
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aluminum oxide (Al2O3), and growth area, silicon oxide (SiO2) where all reaction rate
pathways are elucidated in several reference works [20,30]. The surface morphologies
for Al2O3 and SiO2 were assumed to be pure in the α [29] and β [31] phases, respectively.
Two types of reaction rate constants, the pressure and temperature-dependent adsorption,
kads(P, T), and temperature-dependent nonadsorption, knads(T), are computed through
Collision Theory and the Arrhenius equation, which depend on multiple variables in-
cluding the sticking coefficient, σ, for adsorption reactions and the activation energy, EA,
and pre-exponential factor, ν, (evaluated using Transition State Theory) for nonadsorption
reactions. Equations for the pressure and temperature-dependent Collision Theory and the
temperature-dependent Arrhenius model are described as follows:

kads =
PAsiteσ

Z
√

2πmkBT
(1)

knads = ν exp
(
− EA

RT

)
(2)

where P is the surface pressure of the reagent, Asite is the surface area of the active site,
Z is the coordination number, m is the atomic mass of the adsorbate species, kB is the
Boltzmann constant, T is the ambient operating temperature of the reactor, and R is the
ideal gas constant. Additionally, some thermophysical parameters of species such as the
specific heat capacity, standard state enthalpy and entropy, density, dynamic viscosity, and
thermal conductivity, are needed to reduce the degrees of freedom for the heat transfer
dynamics in the macroscopic computational fluid dynamics (CFD) simulations. This work
obtains sticking coefficient parameters for various species through an exhaustive literature
search where the sticking coefficients for Hacac [13], BDEAS [32], and O3 [33] were also
determined by selecting sticking coefficients from species that are molecularly similar to
the species in this work such as that of Hacac, which were validated with experimental
processing times [30] to reach full coverage. Thermophysical property data were obtained
from the National Institute of Standards and Technology (NIST) database and Material
Safety Data Sheets (MSDS) from online references, experimental works, and databases
through Ansys Chemkin. Thermophysical property data not found in literature references are
calculated through first principles quantum mechanics computations using density functional
theory (DFT), nudged elastic band (NEB) methods, and quasi-harmonic approximation (QHA)
calculations through the open-source software, Quantum ESPRESSO. The reaction rate constant
parameters and thermophysical property data are detailed by Yun et al. (2022a, 2023) [20,22].

2.2. Mesoscopic Modeling

The AS-ALD processing occurs when the surface of the substrate is exposed to a
reagent along the wall-fluid boundary layer. To replicate the stochastic nature of the
surface-scale kinetics, this work employs a modified kinetic Monte Carlo (kMC) method
based on the algorithm proposed by Bortz, Kalos, and Lebowitz that is sometimes referred
to as the n-fold way or BKL algorithm [34]. Whereas the classic BKL algorithm employs
a Markov chain that advances the entire grid with each step, the modified kMC used in
this project employs a Markov chain that only advances one site of the grid with each step.
Specifically, the modified kMC randomly selects a site from the overall grid, followed by a
random selection of a reaction pathway j, which then advances the internal timer of the
kMC system with the following formulas:
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ktot =
N

∑
i=1

ki (3a)

j−1

∑
i=1

ki ≤ γ1ktot ≤
j

∑
i=1

ki where j = 1, 2, . . . , N (3b)

δt = − ln γ2

ktot M
where t → t + δt (3c)

where ktot is the sum of all possible reaction pathways for a single active site, γ1, γ2 ∈ (0, 1]
are uniformly chosen random numbers, δt is the time evolution that is iteratively summed
to the total process time t and represents the time for the active site to convert to the next
state, and M is the number of total active sites. One advantageous modification to the
conventional BKL approach is the inclusion of the number of available active sites (e.g., the
number of active sites that have not reached a final state or are unoccupied) to the time
evolution described by Equation (3c). With a decreasing number of available active sites, the
probability of adsorption decreases to account for the fact that incoming reagents are less likely
to encounter reactive substrate sites, thus causing the time evolution to increase. Additionally,
M resembles the changing probability of unoccupied sites due to the nonspontaneous nature
of the final reactions for Steps A, B, and C to form the terminated product. Since the number of
unoccupied sites decreases with increasing process time, the probability of reagent adsorption
will decrease, which builds on the assumptions made by Bortz et al. (1975) [34] and Gillespie
(1976) [35]. For example, Kim et al. (2020) accounted for the role of unoccupied sites and
steric hindrance effects in their Monte Carlo simulation through a random point searching
methodology for an Al2O3/SiO2 substrate [36]. Klement et al. (2021) also considered the
role of adsorbate collisions and unoccupied active sites on the surface of the substrate for
an AS-ALD process on a TiO2/SiO2 substrate [37]. This work similarly adopts the random
site selection approach while including steric hindrance effects associated with the bulky
properties of BDEAS and the free rotation of the adsorbed species, which has been addressed
in prior work [20].

To optimize the simulation efficiency and compatibility with multiphysics software,
Ansys Fluent, for computational fluid dynamics (CFD) simulations, the kMC script is
conducted in the C programming language and utilized with various C compilers includ-
ing GNU’s GCC and Intel oneAPI’s ICX, where CPU times are examined in Section 3.
Additionally, C language has a stronger affinity for running parallel tasks compared to
programming languages like Python, which further enhances the speed of the computation.

2.3. Macroscopic Modeling

The reaction rate constants used in the kMC simulation are dependent on the surface
pressure and temperature, as well as whether the reactions are adsorption or nonadsorption
reactions. The dynamics of the surface pressure and temperature depend on the design or
geometry and the operating conditions of the reactor used to conduct the AS-ALD process.
This work adopts a spatial, rotary reactor configuration that was previously developed [22]
and illustrated in Figure 1. The three-dimensional (3D) reactor is optimized geometrically
and the operating conditions are methodically chosen to reduce reagent intermixing while
establishing uniform substrate exposure to reagent upon entry to the reaction zones. The
reactor is operated under isothermal conditions; thus, the surface temperature profile is
uniform and fixed spatiotemporally, and under isobaric conditions for total reactor pressure.
Due to the small volume and sizing of the reactor with height in length scales of 10−3 m, a
laminar model is specified for the fluid dynamics [38]. Additionally, constant inlet flow
rates, reagent concentrations, outlet flow rates, and plate rotation speeds are defined with
total inlet and outlet flow rates being equal, which are detailed in Table 1.
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(a) Top View (b) Side View

Figure 1. Schematic of the spatial, rotary reactor used for the AS-ALD process that illustrates the
transfer of the wafer through reaction zones by a rotating plate moving at ω rad/s.

Table 1. Operating conditions of the rotary reactor defined to the multiscale CFD simulation.

Operating Condition Value

Reactor Pressure 1330 Pa
Reactor Temperature 523 K
BDEAS Mole Fraction 0.50

O3 Mole Fraction 0.05
Inlet Mass Flow Rate 2.00 × 10−5 kg/s

It is also illustrated that the substrate is partitioned into 10 sections to collect the
spatiotemporal behavior of deposition rate and pressure field data. Each partitioned
section is assigned an index for identification purposes that is depicted in Figure 2.

The rotary reactor is also discretized into a dynamic mesh comprising tetrahedral and
triangular cells that are geometrically constructed through mesh quality criteria defined by
the software, Ansys Fluent. A dynamic mesh is methodically defined to perform re-meshing
steps that maintain the mesh quality through each movement of the mesh.

Computational fluid dynamics (CFD) is performed to study the characteristics of the
reagent flow along the surface of the substrate by numerically and simultaneously solving
the transport phenomena equations for mass, momentum, and heat, which are defined
as follows:

∂ρ

∂t
+∇ ·

(
ρ−→v

)
= Sm (4)

∂

∂t
(
ρ−→v

)
+ ρ

(−→v · ∇
)−→v = −∇P +∇ · (τ) + ρ−→g +

−→
F (5)

∂

∂t
(ρE) +∇

(−→v (ρE + P)
)
= −∇

(
Σhj

−→
J j

)
+ Sh (6)

where ρ represents the density of the reagent, −→v is the reagent velocity, Sm is the reagent
or byproduct consumption and generation source rate, respectively, P is the pressure of
the gas-phase species, τ is defined as the rank-two stress tensor, −→g is the gravitational
constant,

−→
F is the body force subjected onto the gas-phase species, E is the internal energy

of the system, hj is the sensible enthalpy of the species, j, Jj is the mass diffusion flux
rate of species, j, and Sh is the heat transfer consumption or generation source rate. The
CFD simulation employs a pressure-based coupled solver with a first-order, transient, and
implicit numerical solver method with a fixed timestep size of 0.001 s.

2.4. Multiscale Modeling

The conjunction of the atomistic, mesoscopic, and macroscopic simulations produces
a multiscale model that enables various time and length scales to be examined. The
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multiscale model, depicted in Figure 2, is constructed through the application of a user-
defined function (UDF) script that is written in the C programming language and integrates
C-based macros that are inherent to the Ansys Fluent program. UDFs allow users to
customize tasks for specific computations that are not available in the software client. To
discuss the spatiotemporal aspects of the simulation, the program partitions the substrate
into 10 sections in the radial direction of the center of mass of the rotary reactor, which
is illustrated in Figure 1. The multiscale simulation begins by performing CFD for a
timestep size of 0.001 s to calculate the pressure field data on the substrate surface, which
is partitioned into 10 sections. This reagent pressure data are calculated through an area-
averaged approach for each section on the wafer and is then sent to UDF to calculate
reaction rate constants for adsorption and nonadsorption reactions. Next, the kMC script is
executed for each wafer section in a parallel computation procedure until the processing
time, t, reaches the timestep size of 0.001 s where the output, growth per cycle (GPC),
and the source generation and consumption rates for mass and heat are calculated. It is
notable that since the reactor is operating under isothermal conditions, heat generation
and consumption rates are negligible for this work. Next, the source generation and
consumption mass source rate is defined to the surface boundary condition for each section
of the wafer, where the next iteration for the multiscale simulation is executed repetitively
until the wafer exits the reaction zone. To ensure computational efficiency is sufficient, this
work adopted various CPU (Central Processing Unit) nodes comprising 36 and 48 cores
with 384 GB and 512 GB of RAM (Random Access Memory), respectively.

Figure 2. The multiscale process diagram begins with CFD simulation to calculate area-averaged
surface pressure and temperature data for evaluating reaction rate constants in the UDF script. Then,
the kMC simulation is performed until the simulation reaches the CFD timestep size of 0.001 s to
calculate the growth per cycle, GPC, and the source generation terms for mass and heat, Sm and Sh,
respectively, which are then defined to the boundary condition on the wafer, which is partitioned
into 10 sections.

A consequence of the partitioning is that earlier sections of the wafer partition will
enter the reaction zone before later sections of the wafer where a noticeable delay in
complete saturation exposure would be observed. This consideration is depicted from the
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multiscale simulation results in Figure 3, which illustrates the spatiotemporal behavior
of the area-averaged surface pressure for BDEAS and O3 for a constant rotation speed of
0.56 rad/s.

(a) (b)

Figure 3. Multiscale modeling results for a constant rotation speed of 0.56 rad/s that depicts the
time delay for later sections of the 10-partitioned wafer to observe maximum reagent exposure to
(a) BDEAS and (b) O3. The wafer number is synonymous with the substrate location, which is
examined in Section 3.

3. Pressure Field Generation through Machine Learning

One disadvantage of multiscale simulations is the computational complexity and
inefficiency when data must be gathered in short time intervals. The multiscale model
defined in Section 2 and shown in Figure 2 may require minimum simulation times of
3 days and maximum simulation times of 14 days, depending on the rotation speed of the
wafer that is defined to the multiscale model. Lower rotation speeds increase the residence
time of the wafer in the reaction zones, which increases the computation time. Thus,
this work proposes a machine learning approach to correlate a multi-input-single-output
(MISO) data set, to produce pressure field data in place of pressure field data generated
through CFD.

Feedforward Neural Network for MISO System

A feedforward neural network (FNN) model is generated for a multi-input system
composed of three variables (rotation speed, process time, and substrate location) to calcu-
late a single predicted output, the growth per cycle (GPC). This FNN model is illustrated in
Figure 4, which describes the nodal connections that are conducted to train the FNN.

The FNN was constructed using two hidden layers, each including 30 neurons to
train and test data sets of 240,000 and 120,000 data points for BDEAS and O3 pressure,
respectively. It is notable that the Hacac pressure is not included in this work, since the
GPC is a measurement taken from the growth area of the substrate. A two-hidden layer
FNN is described by the following equations that describe the training of the FNN:

ŷ = W2H2 + B2

H2 = f (W1H1 + B1)

H1 = f (W0X + B0)

where ŷ is the predicted output, GPC, X ∈ Rm is the input vector comprising m = 3
input parameters (rotation speed, process time, and substrate location), W0 ∈ Rn×m,
W1 ∈ Rn×n, W2 ∈ Rn are weights where n = 30 neurons for each hidden layer,
B0 ∈ Rn, B1 ∈ Rn, B2 ∈ R, and f (·) is the rectified linear unit (ReLU) activation func-
tion. Additionally, the FNN models for BDEAS and O3 were generated by using a training
size of 90% and testing size of 10% using the Adam optimizer, a learning rate of 0.004,
and by minimizing the mean squared error (MSE), which was conducted through the
open-source Python library, TensorFlow.
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Figure 4. A feedforward neural network with two hidden layers for a three-input-single-output
model containing three inputs (rotation speed, process time, and substrate location) and output
(growth per cycle).

Predicted BDEAS and O3 pressure data from the FNN model are depicted in Figure 5
with the BDEAS and O3 FNN models having MSEs of 0.0143 and 0.0121, respectively.
Figure 3 illustrates that substrate location affects the processing time required for the
substrate to become completely exposed to the reagent due to the time delays for the
sections to enter the reaction zone. Furthermore, increasing rotation speed also increases the
time needed for the substrate to observe full exposure to the reagent, which is reflective of
the operation of the rotary reactor while the residence time of the wafer in the reaction zone
increases with decreasing rotation speed. The precision and accuracy of the FNN model
are presented in Figure 6, which plots a sample of all data points to illustrate the absolute
error of the FNN predicted pressures to the multiscale CFD pressures for BDEAS and O3.
Results demonstrate that a majority of points have a marginal error, thus enabling the
substitution of the FNN model in place of the pressure data generated from the multiscale
CFD simulation.

Additionally, with the integration of the FNN model, the multiscale model outlined in
Figure 2 substitutes FNN in place of CFD while retaining the conjunction to the kMC script,
which is still presented in the C language while removing user-defined function macros
from Ansys Fluent’s programming language in Figure 7. From the modified multiscale
model, simulation time is dramatically reduced from timescales of days to minutes by
employing TensorFlow and the Intel oneAPI ICX C compiler toolkit, which is conveyed
in Figure 8. The efficiency of the modified multiscale model with FNN integration is
sufficient to progress to control work, which requires abundant data generation to produce
an accurate input-output model that is described in Section 4.
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(a)

(b)

Figure 5. Contours of predicted pressure field data for (a) BDEAS and (b) O3 generated from the
FNN model for inputs of rotations speed, process time, and substrate location (identified by the
partitioned wafer in Figure 3). The FNN models for BDEAS and O3 have MSE values of 0.0143 and
0.0121, respectively.
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Figure 6. Comparison of surface pressure data produced from the FNN predicted model and the
multiscale CFD model for (a) BDEAS and (b) O3 to illustrate the absolute errors from a sample of the
total points used to generate the FNN model.



Coatings 2024, 14, 38 10 of 18

Figure 7. The modified multiscale process diagram substitutes the FNN model for pressure data
generation in place of CFD. Additionally, the kMC code is executed in C programming language
without the aid of UDFs in Ansys Fluent.

Figure 8. Comparison of simulation times with the conventional multiscale CFD simulation to the
modified multiscale model with FNN integration using various C compilers, including GNU’s GCC
and Intel oneAPI’s ICX. The CPU time is reduced from timescales of days to minutes through the
integration of the FNN model and optimizer tools in the Intel oneAPI toolkits.

4. R2R Modeling of the SISO Process

To develop a paradigm for the control of AS-ALD, the general procedures conducted
in in vitro environments are first examined to provide insight into the controller mechanism.
Area-selective atomic layer deposition (AS-ALD) is a cyclical process composed of a three-
step, ABC, procedure composed of inhibition, chemical adsorption, and oxidation sub-
cycles that occur in short intervals. Due to these short intervals, which occur in the range of
1 to 5 s [29,39], in situ monitoring cannot be performed due to time delays associated with
the controller. Thus, ex-situ statistical process control (SPC) methods such as run-to-run
(R2R) control have been employed in the semiconductor manufacturing industry to regulate
operating conditions by employing offline adjustments to the input parameter(s) [23] after
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completion of a batch run or in this work, a cycle of AS-ALD, to return the process to the
setpoint. This work will study the impact of these disturbances on the growth per cycle
(GPC) on the growth area of the substrate. Thus, Step A of the ABC AS-ALD process is not
considered for this component of the R2R control framework.

4.1. Run-to-Run Controller Framework

The R2R controller action is conducted by receiving measured output data that are
produced from the multiscale model and portrayed in Figure 9. The multiscale simulation
provides the substrate rotation speed as an input variable to evaluate surface pressure
data for BDEAS and O3. Additionally, constant shift disturbances are applied to the FNN
or kMC components of the multiscale model in the form of a multiplicative factor to
deviate the output, growth per cycle (GPC), from the setpoint. In industrial applications, a
Quartz Crystal Microbalance (QCM) [40] is used to measure the GPC by taking the reactor
system offline. The resulting GPC is then sent to the R2R controller where an exponentially
weighted moving average method is performed to calculate an updated rotation speed for
the subsequent batch run, where the formulation is discussed in greater detail in Section 4.2.

Figure 9. Process flow diagram depicting the conjunction of the R2R controller to the multiscale
model. The addition of shift disturbances is introduced to the multiscale model in the form of
pressure or kinetic perturbations. From industrial perspectives, the deposition process is stopped
to measure the output (yt) growth per cycle offline via a Quartz Crystal Microbalance (QCM). The
error generated from the deviation from the setpoint, T is applied to the R2R controller that uses the
EWMA method to evaluate an input (xt), rotation speed, for the subsequent run.

4.2. Exponentially Weighted Moving Average Approach to Run-to-Run Control

Each R2R controller uses a statistical algorithm such as the exponentially weighted
moving average (EWMA), the double exponentially weighted moving average (dEWMA),
and the autoregressive moving averages (ARMA), to perform controller correction based
on the error of the measured output parameter from the target or setpoint. This work will
employ the EWMA method to implement controller action due to its capability of detecting
and mitigating small-magnitude shift disturbances [41].

The EWMA method relies on a linear regression model of multiscale data of the output
variable, growth per cycle (GPC) on the growth area of the substrate, for a range of the input
variable, substrate rotation speed, which are obtained offline [42]. The linear regression
model is defined as follows:

ŷ = α + βu (7)

where ŷ is the estimated deposition rate evaluated by the linear regression model, α is the
bias or intercept, β is the process gain or slope, and u is the input variable. The linear model
produced from open-loop data produced from the multiscale simulation of the output,
GPC, and input, rotation speed, is presented in Figure 10. The controller-adjusted input
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variable, µt will then be calculated based on the deviation of the output variable from the
setpoint, T.

µt =
T − at

b
(8)

where b = β and at is the adjusted bias at batch run t where α = a0, which is evaluated
through an exponentially weighted moving average. A predicted intercept is evaluated
by recursively summing the errors from each batch run [23], and is defined by the follow-
ing expression:

at = λ(yt − but−1) + (1 − λ)at−1 (9)

where yt is the measured GPC evaluated from the multiscale modeling simulation and
λ ∈ (0, 1] is a self-determined weighting parameter that is used to preferentially balance
the impact of older data on newer data [43]. λ also has a significant role in control-
ling oscillatory behavior, which is analogous to the role that integral action conducts in
proportional-integral (PI) controllers. Thus, lower λ is suggested for the detection of small-
magnitude shift disturbances, as recommended by Montgomery (2013) [44] and Lucas and
Saccucci (1990) [45]. An important characteristic of performing an EWMA weight of the
intercept of the linear model is the ability to tune modeling data to implement controller
action by assuming a constant slope [42]. Such methodology is established by the assump-
tion that disturbances will generally affect all elements of the data-fitted model, thereby
translating all points in the model in the form of a tuning strategy. The adoption of this
methodology enables all model-fitted open-loop data to impact the controller update to the
input parameters without requiring the generation of a new model for each observation of
a disturbance, which may require an abundance of data generation.

Figure 10. The linear model of the output, GPC, and input, rotation speed, from offline multiscale
data for evaluating the process gain, β, and bias, α.

4.3. Limitations of the EWMA-Based R2R Controller

Arguably, the EWMA approach has some limitations that are notable for this work.
For instance, the EWMA method will utilize a constant λ, which must be determined
through extensive experimental studies and is dependent on the magnitude of the shift dis-
turbances [44]. For example, if a large-magnitude error is produced from a shift disturbance
with a low λ, additional batch runs would be required for the controller to implement
sufficient controller action to minimize the offset. In realistic settings, the magnitude of the
shift disturbance is unpredictable, which is why this work focuses on the integration of a
constant and minor shift disturbance only. This particular EWMA method also neglects the
potential for noise and drift disturbances, which are frequent issues often encountered in
industrial applications for semiconductor processing and are attributed to sudden changes
in the operation of the reactor [46]. Additionally, this EWMA approach assumes that
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complete feedback control is implemented for each batch run, thus the reactor will be
required to be taken offline after each batch run to measure the output parameter using a
Quartz Crystal Microbalance to measure the GPC. This procedure may be impractical for
realistic control and is inefficient for achieving high-throughput semiconductor generation,
but serves as a starting point towards controller models that implement controller action
using an open-loop approach, such as the previously proposed self-tuning model [46].
It is notable that self-tuning strategies using ARMA models are beneficial for mitigating
disturbances for drift and noise, but are ineffective for bringing process stability toward the
setpoint but rather maintain the process within standard deviations from the setpoint [47].

4.4. Compensation of Shift Disturbances

This work considers the effects of two shift disturbances that are intended to deviate
the reactor operation from idealistic conditions. One of these shift disturbances includes
a pressure shift disturbance that negatively or positively impacts the GPC of the system
by including a constant shift variable intended to decrease or increase the magnitude
of the pressure field data in the FNN model. Recall that the GPC is a parameter that is
evaluated from the surface coverage computation from the kMC simulation. The reac-
tion rate constants for nonadsorption and adsorption reactions are computed from the
temperature-dependent Arrhenius model and the temperature- and pressure-dependent
Collision Theory model, respectively. The integration of pressure and kinetic shift distur-
bance is intended to increase or decrease the magnitude of the reaction rate constants for
the adsorption and nonadsorption reactions, thereby increasing or decreasing the com-
puted surface coverage. For the pressure disturbance, a coefficient is introduced to the
machine learning model to increase or decrease the pressure field data while for the kinetic
disturbance, a coefficient is introduced to the computation of the total reaction rate constant,
ktot, which affects the time advanced computation in Equation (3c). It is notable that the
kinetic shift disturbance is intended to perturb all reaction rate constants (adsorption and
nonadsorption), by introducing a constant shift variable intended to decrease or increase
their magnitude. The introduction of the pressure shift disturbance reflects the changes
in the operating conditions such as that in the input, and kinetic disturbances resemble
potential shift disturbances that may be unaccounted for during the AS-ALD process such
as equipment failure.

5. Closed-Loop Simulation Results

The objective of the R2R controller is to manipulate the rotation speed of the wafer,
which congruently affects the residence time of the substrate within the reaction zone. The
residence time is a direct indicator of how much reagent is deposited onto the surface
of the substrate, where GPC increases with increasing residence time. By subjecting the
AS-ALD process to pressure and kinetic shift disturbances in the multiscale model, the
R2R controller must minimize the error from the setpoint by adjusting the rotation speed.
This section will examine the response of the R2R controller to various disturbances that
positively and negatively affect the GPC on the substrate.

5.1. Closed-Loop Response to Pressure Disturbances

Pressure disturbances are oftentimes encountered in semiconductor fabrication due
to potential changes in the fluid dynamics that are attributed to byproduct generation
or changes to the inlet conditions. The pressure has a profound impact on the ability
for adsorbates like BDEAS and O3 to interact with the substrate surface via Collision
Theory. Positive shift disturbances on the BDEAS and O3 pressures were introduced to
the FNN model for factors of 0.2 and 0.1, respectively, and their response is illustrated
in Figure 11 using an EWMA weight of λ = 0.2. Findings illustrate that the EWMA
approach successfully overcomes the effects of the disturbance within 19 batch runs in
Figure 11a by increasing the rotation speed of the wafer depicted in Figure 11b in order
to reduce the residence of the wafer in the reaction zone. The results decrease the GPC
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to the desired setpoint. However, the result suggests that a substantial initial response is
needed for the controller to mitigate the effects of the disturbance by requiring lesser batch
runs to reach the setpoint. In addition to positive shift disturbances on the BDEAS and
O3 pressures, negative shift disturbances were introduced to the FNN model for pressure
generation using factors of 0.2 and 0.1, respectively. The results of the R2R controller action
are presented in Figure 12 using an EWMA weight of λ = 0.2. It is observed that the
R2R controller detects the minor shift disturbances induced to the GPC by decreasing
the rotation speed in Figure 12b thereby increasing the residence time of the wafer in the
reaction zone. The result is depicted by a steady increase in the GPC in Figure 13a where
the setpoint is reached at 14 batch runs.

(a) (b)

Figure 11. R2R controller action using λ = 0.2 when perturbing the pressure fields for BDEAS and
O3 with a positive pressure disturbance by factors of 0.2 and 0.1, respectively. The GPC reaches the
setpoint at 19 batch runs shown in (a) and the controller action increases the rotation speed illustrated
in (b) to reduce the substrate residence time in the reactor. The rate of the rotation speed per batch
run also decreases to minimize potential oscillations in the GPC output.

(a) (b)

Figure 12. R2R controller action using λ = 0.2 when perturbing the pressure fields for BDEAS and
O3 with a negative pressure disturbance by factors of 0.2 and 0.1, respectively. The GPC reaches the
setpoint at 14 batch runs shown in (a) and the controller action reduces the rotation speed illustrated
in (b) to reduce the substrate residence time in the reactor. The rate of the rotation speed per batch
run also increases to minimize potential oscillations in the GPC output.

5.2. Closed-Loop Response to Kinetic Disturbances

Kinetic disturbance factors were applied to the kMC simulations for Steps B and C of
the AS-ALD process to represent the perturbation of unknown disturbances that are applied
to all reactions (adsorption and nonadsorption). Figure 13 illustrates the R2R controller
response when subjecting the kMC simulations for Steps B and C to a constant kinetic
disturbance factor that increases the GPC from the desired setpoint. The R2R controller
uses an EWMA weight of λ = 0.2, which indicates that the setpoint is reached at 14 batch
runs in Figure 13a by increasing the rotation speed presented in Figure 13b to compensate
for the excess deposition onto the growth area of the substrate. In addition to subjecting the
reaction rate constants to positive shift disturbances, negative shift disturbances were also
applied separately to Steps B and C kMC simulations, with results pictured in Figure 14.
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An R2R controller with an EWMA weight of λ = 0.2 increased the residence time of the
substrate in the reaction zone by decreasing the rotation speed of the wafer depicted in
Figure 14b. The result of the adjustment increases the GPC to the setpoint after 16 batch
runs, which is shown in Figure 14a.

(a) (b)

Figure 13. R2R controller action using λ = 0.2 when perturbing the reaction rate constants for Steps
B and C with a positive kinetic disturbance by factors of 0.1. The GPC reaches the setpoint at 15 batch
runs shown in (a) and the controller action increases the rotation speed illustrated in (b) to reduce the
substrate residence time in the reactor. The rate of the rotation speed per batch run also decreases to
minimize potential oscillations in the GPC output.

(a) (b)

Figure 14. R2R controller action using λ = 0.2 when perturbing the reaction rate constants for Steps B
and C with a negative kinetic disturbance by factors of 0.1. The GPC reaches the setpoint at 16 batch
runs shown in (a) and the controller action decreases the rotation speed illustrated in (b) to increase
the substrate residence time in the reactor. The rate of the rotation speed per batch run also increases
to minimize potential oscillations in the GPC output.

6. Conclusions

This work developed a run-to-run controller with an exponentially weighted moving
average approach to overcome the effects of various pressure and kinetic shift disturbances
for an area-selective atomic layer deposition rotary reactor, which are often observed
in industrial applications for semiconductor manufacturing. To facilitate the process of
generating data, this work developed an in silico multiscale model that integrates machine
learning through a feedforward neural network to generate surface pressure data that are
conjoined to a kinetic Monte Carlo simulation written in the C programming language
that evaluates the growth per cycle on the growth areas of a semiconductor substrate. An
advantageous product of machine learning and C programming language integration for
multiscale modeling is the substantial reduction in computation time from timescales of
days to minutes. The run-to-run controller implemented input adjustment to the rotation
speed of the rotary reactor to regulate the residence time of the substrate within the reaction
zones, thereby allowing the controller to bring the process back to the setpoint within a
minimum of 14 batch runs.
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