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This work presents a methodology for the analysis of mode transitions in biological
networks. The proposed approach is predicated on the notion of orchestrating switching
between the domains of attraction of the steady states of the constituent modes. Initially,
the overall network is modeled as a switched nonlinear system that consists of multiple
modes, each governed by a set of continuous-time differential equations. The transitions
between the continuous modes are triggered by discrete events (changes in model
parameters that correspond to alterations in physiological conditions). Then, following
the characterization of the steady-state behavior of each mode, Lyapunov techniques are
used to characterize the domains of attraction of the steady states. Finally, by analyzing
how the domains of attraction of the various modes overlap with one other, a switching
rule is derived to determine when, and if, a given mode transition at a given time results
in the desired steady-state behavior. The proposed method is demonstrated using models
of biological networks that arise in cell cycle regulation and the bacteriophage �-switch
system. © 2005 American Institute of Chemical Engineers AIChE J, 51: 2220–2234, 2005
Keywords: switched nonlinear systems, domains of attraction, biological networks

Introduction

In a biological cell, cellular functions—such as metabolism,
DNA synthesis, movement, and information processing—are
implemented and controlled by vast arrays of complex net-
works of biochemical interactions. Understanding how these
networks are integrated and regulated, and how the regulation
may be influenced, possibly for therapeutic purposes, is a major
goal of molecular cell biologists and bioengineers. Although
experimental techniques have been, and will continue to be, an
indispensable tool in the quest for such an understanding, it is
now clear that the sheer complexity of biological networks is
such that informal biochemical intuition alone cannot reliably
deduce the underlying logic of these networks. This intuition
must be supplemented by precise mathematical and computa-
tional tools that can provide both qualitative and quantitative

insights into the description, analysis, and manipulation of
biological networks underlying basic cellular function. From a
practical perspective, such techniques could potentially reduce
the degree of trial-and-error experimentation. More impor-
tantly, computational and theoretical approaches can lead to
testable predictions regarding the current understanding of
biological networks, which can serve as the basis for revising
existing hypotheses. These realizations, together with recent
technological advances that are increasingly enabling experi-
mental validation of theoretical predictions, have been major
driving forces behind a large and growing body of research
work, in recent years, on the development and application of
analytical and computational tools for the modeling and sim-
ulation,1-7 optimization,8,9 and identification10 of biological net-
works. The reader may also refer to the available review
papers5,11-13 and the references therein for further results on
biological networks.

Biological networks are intrinsically dynamical systems,
driving the adaptive responses of a cell in space and time. The
behavior of these dynamical systems is determined by “bio-
chemical kinetics,” or rate equations, in which the variables of
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interest are the concentrations of individual network compo-
nents (proteins, metabolites, etc.) within the cell, and the dy-
namics describe the rates of production and decay of these
components. The dynamic models of biological networks typ-
ically consist of systems of nonlinear ordinary differential
equations, permitting the modeler to apply the analytical tech-
niques of nonlinear dynamics. These techniques have been
substantially developed in recent decades, making the rate-
equation approach a promising avenue for combining mathe-
matical analysis and computational simulation.

Although the resulting models are typically based on purely
continuous dynamics, the dynamics of biological networks
often involve switching between many qualitatively different
modes of behavior. At the molecular level, for example, the
fundamental process of inhibitor proteins turning off the tran-
scription of genes by RNA polymerase reflects a switch be-
tween two continuous processes. An example of this is the
classic genetic switch observed in the bacteriophage �,14-16

where two distinct behaviors, lysis and lysogeny, each with
different mathematical models, are seen. Also, at the cellular
level, the cell growth and division in a eukaryotic cell is usually
described as a sequence of four processes, each being a con-
tinuous process that is triggered by a set of conditions or
events.17-19 At the intercellular level, cell differentiation can
also be viewed as a switched system.20 In addition to naturally
occurring switches, switched dynamics can be the result of
external intervention that attempts to reengineer a given net-
work by turning on or off, for example, certain pathways. In all
of these examples, the overall behavior of the network is more
appropriately viewed as a switched system, that is, intervals of
continuous dynamics interspersed by discrete transitions, and
thus a hybrid approach that combines elements of discrete and
continuous dynamics is necessary, not only for the modeling,
simulation, and analysis,21,22 but also for controlling and mod-
ifying the network behavior.

Hybrid system models are increasingly being used to repre-
sent a diverse array of engineering systems, such as automotive
and chemical process control systems. A hybrid system con-
sists of a finite family of continuous dynamical subsystems (or
modes), each of which is governed by a different set of differ-
ential equations, together with a set of discrete events (or
logic-based switching rules) that orchestrate the transition be-
tween the constituent modes. Research on hybrid systems, both
within control systems theory and computer science, has led to
the development of systematic tools for the modeling,23,24

simulation,24 optimization,25-27 stability analysis,28-30 and con-
trol31-35 of several classes of hybrid systems. Given the simi-
larity that many biological networks exhibit to switched sys-
tems encountered in engineering (such as involving feedback
mechanisms and switching), it is instructive to investigate how
all these tools can be applied to model, analyze, and possibly
modify the dynamics of biological networks.

Changes in network dynamics can result from alterations in
local conditions (such as temperature, nutrient and energy
sources, light, cell density) and/or changes in the molecular
environment of individual regulatory components (such as
intracellular concentrations of transcription factors). Often, the
network can be switched between different modes by changes
in parameter values. These parameters typically include rate
constants and total enzyme concentrations that are under ge-
netic control. Changing the expression of certain genes will

change the parameter values of the model and move the net-
work across bifurcation boundaries into regions of qualitatively
different behavior (such as transitions from limit cycles to
single and multiple steady states). Understanding and analyz-
ing the nature of these qualitatively different modes of behavior
typically involves bifurcation analysis, which determines how
the attractors of the vector field depend on parameter values,
leading to a characterization of the regions in parameter space
where the different behaviors are observed. The boundaries of
these regions represent the bifurcation boundaries.

An important question, however, that is not addressed by
bifurcation analysis is that of when, or where, in the state
space, is a transition from one mode to another feasible. For
example, bifurcations can predict that a change in a certain
parameter is required for the network to move from an oscil-
latory mode (stable limit cycle) to a multistable mode (multiple
stable steady states) but cannot tell us when, or which, of the
new steady states will be observed upon switching. This is an
important consideration when one tries to manipulate the net-
work behavior to achieve a certain desirable behavior or steady
state. To address this question, bifurcations must be comple-
mented by a dynamical analysis of the transient behavior of the
constituent modes of the overall network. Intuitively, one ex-
pects that the newly switched mode will exhibit the desired
steady state if, at the time of switching, the network state is in
the vicinity of that steady state. A precise concept from non-
linear dynamical systems theory that quantifies this closeness is
that of the domain of attraction, which is the set of all points in
the state space, starting from where the trajectories of the
dynamical system converge to a given equilibrium state.

In this work, we present a methodology for the dynamic
analysis of mode transitions in biological networks. The pro-
posed approach is based on the notion (introduced in El-Farra
and Christofides35,36) of coupling the switching logic to the
domains of attraction of the constituent modes. To this end, we
initially model the overall network as a switched nonlinear
system that dwells in multiple modes, each governed by a set
of continuous-time differential equations. The transition be-
tween the continuous modes is triggered by discrete events
(changes in model parameters that correspond to alterations in
physiological conditions). Then, following the characterization
of the steady-state behavior of each mode, Lyapunov tech-
niques are used to characterize the domains of attraction of the
steady states. Finally, by analyzing how the domains of attrac-
tion of the various modes overlap with one other, it is possible
to determine when, and if, a given steady-state behavior, for a
given mode transition, is feasible or not. The proposed method
is demonstrated using models of biological networks that arise
in cell cycle regulation and the bacteriophage �-switch system.

A Switched System Representation of Biological
Networks

We consider biological networks modeled by systems of
nonlinear ordinary differential equations of the general form:

dx�t�

dt
� fi�t�� x�t�, pi�t�� i�t� � � � �1, . . . , N � (1)

where x � [x1 x2
. . . xn]T � �n is the vector of continuous

state variables (such as concentrations of the various network
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components such as proteins, genes, metabolites, etc.), fi� is a
smooth nonlinear function, pi is a vector of network parameters
(such as kinetic constants, total enzyme concentrations) that are
typically under genetic control, i : [0, �)3 � is the switching
signal that is assumed to be a piecewise continuous (from the
right) function of time, that is, i(tk) � lim

t3tk
�

i(t) for all tk � 0, k �

Z�, where Z� is the set of positive integers and tk is the kth
switching time, implying that only a finite number of switches
occurs on any finite interval of time. N is the number of modes
of the switched system i(t), which takes different values in the
finite index set, �, represents a discrete state that indexes the
vector field fi�, which determines ẋ. For each value that i takes
in �, the temporal evolution of the continuous state is governed
by a different set of differential equations. The system of Eq. 1
is therefore a switched (multimodal) system that consists of a
finite family of continuous nonlinear subsystems (modes) and
a switching rule that orchestrates the transitions between them.
In biological networks, mode transitions can be the result of a
fundamental change in the vector field itself (such as different
modes having different fi values) or, more commonly, a change
in network parameter values arising from changes in levels of
gene expression and enzyme activities (which can occur spon-
taneously or be induced externally).

The basic problem that we address in this work is that of
determining when (or where in the state space) can a transition
from one mode to another produce a certain desired behavior
that exists in the target mode (such as a desired steady state).
From the perspective of analysis, the answer to this question
sheds light on why certain naturally occurring mode transitions
always seem to favor a certain steady-state behavior. From a
control standpoint, on the other hand, the answer provides
insight into how and when the designer should enforce the
transition to bring about a desired steady-state behavior. In the
next section, we outline a methodology that addresses these
questions.

Methodology for Analysis of Mode Transitions

The methodology proposed here is based on the idea of
designing the switching logic on the basis of the domains of
attraction of the constituent modes, which was introduced in
El-Farra and Christofides35 in the context of constrained con-
trol of switched nonlinear systems. However, unlike the results
in El-Farra and Christofides,35 where the restrictions on the size
of the domains of attraction were a consequence of the con-
straints imposed on the manipulated input of each mode, the
domains of attraction considered here are directly linked to the
intrinsic dynamic behavior of the constituent modes, which is
dictated by the dependency of the attractors of the vector field
on the network parameters. For example, the presence of mul-
tiple equilibrium points in a given mode gives rise to multiple
stability regions, or domains of attraction, whose union covers
the entire state space. Clearly, which equilibrium state is at-
tained depends on which region contains the system state at the
switching time. Below is the proposed methodology:

(1) Identify the different modes of the network, where each
mode is characterized either by a different set of differential
equations or by the same set of equations but with different
parameters.

(2) Compute the steady state(s) of each mode by solving:

0 � fi� xs, pi� (2)

where xs is an admissible steady-state solution. Depending on
the values of p, each mode might possess a limit cycle, a single
steady state, or multiple steady states.

(3) Characterize the domain of attraction (stability region)
of each steady state in each mode. For a given steady state, xs,
the domain of attraction, �(xs), consists of the set of all states
starting from where the system trajectories converge to that
steady state. Estimates of the domain of attraction can be
obtained using Lyapunov techniques.37 For example, consider
the case of isolated equilibrium points and let Vi be a Lyapunov
function candidate, that is, Vi(xs) � 0 and Vi(x) 	 0 for all x 

xs. Consider also the set �(xs) � {x � �n : V̇i(x) � 0}. Then
the level set, �(xs) � {x � �n : Vi(x) � ci

max}, where ci
max 	

0 is the largest constant for which � is fully contained in �,
provides an estimate of the domain of attraction of xs (see
El-Farra and Christfides38,39 for more details on this issue).
Because of the possible conservatism of the resulting estimates,
Lyapunov techniques are usually coupled with other methods
to obtain larger estimates (such as multiple Lyapunov func-
tions; see chapter 4 in Khalil37 for details).

(4) Analyze how the domains of attraction of a given mode
overlap with those of another mode. Suppose, for example, that
the network is initialized within mode k and let T be the
transition time from mode k to mode j. Also, let xs be an
admissible steady state (among several others) of the jth mode.
Then, if

x�T� � �j� xs� (3)

and i(t) � j @ t � T� (that is, no further switches take place),
then we will have limt3� x(t) � xs, that is, the xs steady state
will be observed after switching. The switching rule of Eq. 3
requires monitoring the temporal evolution of the state evolu-
tion to locate where the state is at the switching time, with
respect to the domains of attraction of the mode to be activated.

Remark 1. Referring to the computation of the steady
states of a biological network, we note that it is, in general,
difficult to compute all the steady-state solutions of a system of
nonlinear ordinary differential equations (ODEs). For an arbi-
trary system of nonlinear ODEs, where the right-hand side does
not possess any kind of structure, one can resort to general
search algorithms, such as Newton-type methods, to solve Eq.
2. These methods are usually local in character and thus may
require an extensive search over a large number of initial
guesses to find all possible solutions. For biological systems,
the search complexity can be reduced somewhat by taking
advantage of the natural limits on the values of the state
variables to bracket the region in the state space where the
system is expected to operate and where the search needs to be
carried out. More importantly, the dynamic models of biolog-
ical systems often exhibit specific types of structure that arise
from physical considerations and can thus be exploited in the
computation of all the steady states using computational algo-
rithms that have been developed in the literature. For example,
if each component on the right-hand side of the system of
ODEs in Eq. 1, fi, involves linear combinations of rational
functions of variables and parameters, then the algorithm de-
veloped in Zwolak et al.40 can be used to find all the steady
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states (the algorithm converts the steady-state equations into a
system of polynomial equations and uses a globally convergent
homotopy method to find all the roots of the system of poly-
nomials).

Most models of biological networks have linear combina-
tions of rational functions for the right-hand side of their
system of ODEs (see the cell-cycle and �-switch models stud-
ied in the next two sections for examples). In fact, the right-
hand sides are usually even more restricted to mass action and
Michaelis–Menten type kinetics. Mass action kinetics have the
form k  S1  S2  . . .  Sn, where k is a rate constant
(parameter) and Si represents the concentration of a protein
(variable). Michaelis–Menten kinetics have the form k  S 
E/(Km � S), where k is a rate constant (parameter), Km is a
Michaelis constant (parameter), S is the substrate concentration
(variable), and E is the enzyme concentration (variable).
Clearly, these kinetics are rational functions. Once the target
steady states are identified, the domains of attraction for each
steady state can be computed. Then, the switching rule of Eq.
3 ensures a priori where the system will end up upon switching
at a given point in the state space, provided that this point is
within the domain of attraction of a stable steady state. Finally,
it should be noted that even in the rare case that a structure
cannot be identified—and subsequently not all of the steady
states can be found—the proposed method still provides useful
information regarding the feasibility of switching into any of
the known steady states by verifying whether the state at any
given time is contained within its domain of attraction.

Remark 2. The issue of robustness of the proposed ap-
proach with respect to model uncertainty can be explicitly
handled by modifying the computation of the domains of
attraction following the methodology proposed in El-Farra and
Christofides39 to account for the presence of parametric model
uncertainty in the computation of the domain of attraction
using bounds on the variation of the model parameters.

Remark 3. The Lyapunov function–based approach that
we follow for the construction of the domains of attraction for
the individual stable steady states yields a domain of attraction
estimate that is dependent on the specific Lyapunov function
used. To improve on the obtained estimate, one can use a group
of different Lyapunov functions to come up with a larger
estimate of the domain of attraction. Other methods for the
construction of the Lyapunov function, such as Zubov’s

method41 and the sum-of-squares decomposition approach,42

can also be used. Acceptability of the computed estimates
should ultimately be judged with respect to the size of the
expected operating regime. Once the domain of attraction es-
timates are obtained, the switching rule of Eq. 3 ensures that
the system will go to a certain stable steady state if the
switching occurs at a point that is within the domain of attrac-
tion of this steady state. Finally, we note that the case of
multiple mode switchings can be handled in a sequential fash-
ion—the same way that the first mode switch is handled—by
tracking where the state is at the time of each switch.

Remark 4. It should be noted that the proposed approach is
not limited by the dimensionality of the system under consid-
eration but applies to systems of any dimensionality. The
estimation of the domain of attraction uses only simple alge-
braic computations and does not incur prohibitive computa-
tional costs with increasing dimensionality. In the simulation
studies presented below, the domains of attraction are plotted
for the sake of a visual demonstration. However, a plot of the
domain of attraction is not required for the implementation of
the switching rule, and thus poses no limitation when consid-
ering systems of higher dimensions. The knowledge of the
domain of attraction is contained completely in the value of the
level set ci, obtained when computing the estimate of the
domain of attraction. At the time of implementation, to ascer-
tain whether the state is within the domain of attraction requires
evaluating only the Lyapunov function and verifying whether
Vi(x(T)) � ci. To reduce the possible conservatism of the
resulting estimate, it is often desirable to find the largest value
of ci for which the estimate �ci

� {x : Vi(x) � ci} is fully
contained within �i. For this purpose, an iterative procedure to
recompute (and enlarge) the estimate of the domain of attrac-
tion can be used whereby the value of ci is gradually increased
in each iteration until a value ci

max is reached where for any ci

	 ci
max, �ci

is no longer fully contained in �i. The level set
�ci

max then is the largest estimate of the domain of attraction
that can be obtained using the level sets of the given Lyapunov
function. Note that, for a given value of ci in each iteration, the
determination of whether �ci

is fully contained in �i involves
only inexpensive algebraic computations and thus this iterative
procedure does not incur prohibitive computational costs as the
dimensionality of the system increases.

The same procedure also applies when a family of Lyapunov
functions is used to estimate the domain of attraction of a given
steady state. Finally, it should be noted that how close the
obtained estimate is to the actual domain of attraction depends
on the particular system structure as well as the method used to
compute this estimate (in this case the particular Lyapunov
functions chosen). In general, it is expected that the estimate
will not capture the entire domain of attraction, which implies
that the union of all the estimates of the domains of attraction

Table 1. Parameter Values for the Cell Cycle Model
in Eq. 443

k�1 � 0.01
k�25 � 0.04
k �25 � 100
kINH � 0.1
kCAK � 1

Table 2. Steady-State Values (us, vvs) for the Cell Cycle Model for Different Values of k�2, k�2, and kwee

k�2 k �2 kwee Mode M-Arrest State G2-Arrest State Reference

0.01 10 3.5 G2-arrest n/a (0.016, 0.802)
0.01 0.5 2.0 M-arrest (0.202, 0.329) n/a
0.015 0.1 3.5 Bistable (0.276, 0.442) (0.012, 0.666)
0.01 10 2.0 Oscillatory n/a n/a Figure 2b
0.01 10 2.5 Oscillatory n/a n/a Figure 4
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of all the steady states will not cover the entire state space. An
implication of this, for the case when switching of the network
is controlled externally and a priori stability guarantees are

sought, is that switching should be delayed until the state
trajectory enters the computed estimate of the domain of at-
traction of the desired target steady state. The “gaps” between
the different estimates (and thus the conservatism of the
switching policy) can be reduced either with the help of dy-
namic simulations or by augmenting the individual estimates
using any of the methods cited in Remark 3.

Remark 5. The proposed approach models biological net-
works using deterministic differential equations and does not
account for possible network stochastic behavior. Such sto-
chasticity can be modeled as uncertainty in the model param-
eters, and thus be handled directly by modifying the computa-
tion of the domains of attraction in a way that accounts
explicitly for the effect of parameter model uncertainty follow-
ing the methodology proposed in El-Farra and Christofides.39

Figure 1. Phase-plane portraits of the system of Eq. 4,
for different values of k�2, k�2, and kwee.
(a) Stable steady state with most MPF inactive, (b) stable
steady state with most MPF active, (c) unstable steady state
surrounded by a limit cycle, and (d) bistability: two stable
steady states separated by an unstable saddle point.

Figure 2. (a) Plot showing the overlap of the limit cycle of
the oscillatory mode with the domains of at-
traction for the M-arrested steady state (entire
area above dashed curve) and for the G2-ar-
rested steady state (entire area below the
dashed curve). (b) Plot showing that switching
from the oscillatory to the bistable mode
moves the system to different steady states
depending on where switching takes place.
In both cases, the oscillatory mode is fixed at k�2 � 0.01, k �2
� 10, kwee � 2.0.

2224 AIChE JournalAugust 2005 Vol. 51, No. 8



In the next two sections, we demonstrate, through computer
simulations, the application of this methodology to the analysis
of mode transitions in two biological networks, one arising in
eukaryotic cell cycle regulation and the other in the bacterio-
phage �-switch system. We note here that the focus in both
examples is not on the modeling aspect, but rather on illustrat-
ing how the proposed analysis method can be applied given
some available model of the network (which could come either
from first principles or from data).

Application to Eukaryotic Cell Cycle Regulation

We consider here an example network of biochemical reac-
tions, based on cyclin-dependent kinases and their associated
proteins, which are involved in cell cycle control in frog egg
development. A detailed description of this network is given in
Novak and Tyson,43 where the authors use standard principles

of biochemical kinetics and rate equations to construct a non-
linear dynamic model of the network that describes the time
evolution of the key species including free cyclin, the M-phase
promoting factor (MPF), and other regulatory enzymes. The
model parameters have either been estimated from kinetic
experiments in frog egg extracts or assigned values consistent
with experimental observations. For illustration purposes, we
will consider below the simplified network model derived by
the authors (focusing only on the positive-feedback loops in the
network), which captures the basic stages of frog egg devel-
opment. The model is given by

du

dt
�

k�1
G

� �k�2 � k �2u
2 � kwee�u � �k�25 � k �25u

2�� v
G

� u�
dv
dt

� k�1 � �k�2 � k �2u
2�v (4)

where G � 1 � (kINH/kCAK); kINH is the rate constant for
inhibition of INH, a protein that negatively regulates MPF;
kCAK is the rate constant for activation of CAK, a cdc2-acti-
vating kinase; u is a dimensionless concentration of active MPF
and v is a dimensionless concentration of total cyclin; k�2 and
k �2 are rate constants for the low-activity and high-activity
forms, respectively, of cyclin degradation; k�25 and k �25 are rate
constants for the low-activity and high-activity forms, respec-
tively, of tyrosine dephosphorylation of MPF; k�1 is a rate
constant for cyclin synthesis; kwee is the rate constant for
inhibition of Wee1, an enzyme responsible for the tyrosine
phosphorylation of MPF (which inhibits MPF activity) (see
Novak and Tyson43 for model derivation from the molecular
mechanism and Table 1 for the parameter values). Bifurcation
and phase-plane analysis of the above model43 shows that, by

Figure 3. Time-evolution plots of (a) active MPF and (b)
total cyclin upon switching from the oscillatory
to the bistable mode at two representative
switching times.
At t � 333.5 min, the state trajectory lies on segment A (see
Figure 2a) and therefore switching lands the state in the
M-arrested steady state (dash–dotted line), whereas at t � 334
min, switching lands the state in the G2-arrested steady state
(dotted line). In both cases, the oscillatory mode is fixed at k�2
� 0.01, k �2 � 10, kwee � 2.0.

Figure 4. Plot showing that switching from the oscilla-
tory mode (of the following parameter values:
k�2 � 0.01, k�2 � 10, kwee � 2.5) to the bistable
mode at the same time as in Figure 2b (t �
333.5 min) moves the system to G2-arrested
steady state (instead of M-arrested steady
state) because switching does not occur on
segment B.
Note that the portion of the limit cycle overlapping the do-
main of attraction of the M-arrested steady state (segment B)
is larger than the one in Figure 2a (segment A).
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changing the values of k�2, k �2, and kwee, the following four
modes of behavior are predicted (see Table 2):

(1) A G2-arrested state (blocked before the G2–M transi-
tion) characterized by high cyclin concentration and little MPF
activity. This corresponds to a unique, asymptotically stable
steady state (k�2 � 0.01, k �2 � 10, kwee � 3.5; see Figure 1a).

(2) An M-arrested state (blocked before the meta-to-an-
aphase transition) state with an abundance of active MPF. This
corresponds to a unique, asymptotically stable steady state (k�2
� 0.01, k �2 � 0.5, kwee � 2.0; see Figure 1b).

(3) An oscillatory state (alternating phases of DNA synthe-
sis and mitosis) exhibiting sustained, periodic fluctuation of
MPF activity and total cyclin protein. This corresponds to a
stable limit cycle surrounding an unstable equilibrium point (k�2
� 0.01, k �2 � 10, kwee � 2.0; see Figure 1c).

(4) Coexisting stable steady states of G2-arrest and M-
arrest. This corresponds to three steady states: one unstable and
two locally asymptotically stable (k�2 � 0.015, k �2 � 0.1, kwee

� 3.5; see Figure 1d).

The above analysis predicts that slight increases in k�2 and
kwee, accompanied by a significant drop in k �2 (which could be
driven, for example, by downregulation of cyclin degradation),
can induce a transition from the oscillatory mode of MPF
activity (early embryo stage) to the bistable mode. However, it
is not clear from this analysis alone whether the cell will end up
in a G2- or an M-arrested state upon switching. To address this
question, we initially compute the domains of attraction of both
steady states in the bistable mode. This is done using a Lya-
punov function of the form V � (u � us)

4 � 10(v � vs)
2, where

us and vs are the steady-state values. The basic idea here is to
compute, for each steady state, the region in the (u, v) space
where the time derivative of V is negative-definite along the
trajectories of the dynamical system of Eq. 4, and then use this
region to obtain an estimate of the domain of attraction. Al-
though several candidate functions could be used, this partic-
ular function was found to yield acceptable estimates of the
domains of attraction in the sense that the region obtained for
each steady state covered a distinct and large part of the
operating range considered (the two regions were mostly sep-
arated from one another along the separatrix running through
the three steady states, and their union covered the entire range)
with little overlapping between the two regions occurring only
in the vicinity of the two steady states. Computer simulations
were then used to check the regions of overlap and determine
which domain of attraction they were contained in.

The domains of attraction for both steady states are depicted
in Figure 2a. The entire area above the dashed curve (the
separatrix) is the domain of attraction of the M-arrested state,
whereas the area below is the domain of attraction of the
G2-arrested state. Both stable steady states are denoted by
asterisks on the plot and the unstable steady state is denoted by
a circle on the separatrix. By plotting the limit cycle (obtained
from the oscillatory mode) on the same plot, we see that a
portion of the limit cycle lies within the domain of attraction of
the M-arrested steady state (segment A in Figure 2a), whereas
the rest is completely within the domain of attraction of the
G2-arrested steady state. Based on this analysis, we conclude
that switching from the oscillatory mode to the bistable mode
would move the cell to the G2-arrested state only if the tran-
sition occurs at times when the state is not on segment A,

Figure 5. Time-evolution plots of (a) active MPF and (b)
total cyclin upon switching from the oscillatory
to the bistable mode at t � 333.5 min.
In both cases, the oscillatory mode is fixed at k�2 � 0.01, k �2
� 10, kwee � 2.5.

Figure 6. Schematic representation of the molecular
mechanism responsible for the lysogenic to
lytic mode transition in the bacteriophage �.
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whereas it would end up in the M-arrested state if switching
were to occur on segment A. This conclusion is verified by the
dotted and dash–dotted state trajectories, respectively, shown
in Figure 2b. The corresponding plots of the time evolution of
the states in both switching scenarios are given in Figure 3 for
two representative switching times. Note that, because of the
periodic nature of the solution in the oscillatory mode, there are
many time intervals, between t � 0 and t � 333.5 min, when
the limit cycle trajectory is on segment A. These intervals are
separated by one period of the limit cycle. Switching during
any of these intervals to the bistable mode moves the system to
the M-arrested state. Similarly, there are many time intervals
when the trajectory is not on segment A. Switching during any
of those intervals will land the system at the G2-arrested state.

Figure 4 shows the limit cycle resulting when the rate of
inhibition of Wee1 is increased to kwee � 2.5 (with k�2 and k �2
remaining fixed at 0.01 and 10, respectively). In a comparison
with Figure 2a, we observe that a larger portion of the limit
cycle (segment B in Figure 4) lies within the domain of
attraction of the M-arrested steady state. Therefore, unlike the
case of Figure 2a, when switching from the oscillatory mode to
the bistable mode takes place at t � 333.5 min, the state is not
within the domain of attraction of the M-arrested steady state.
Switching in this case lands the system at the G2-arrested
steady state. The corresponding time-evolution plots are given
in Figure 5.

Application to the Bacteriophage �-Switch
System

We consider an example of a biological switch observed in
the bacteriophage �. An excellent review and detailed descrip-
tion of the molecular regulatory mechanisms in the bacterio-
phage �-switch can be found in Ptashne.14 Bacteriophage � is
a virus capable of infecting Escherichia coli bacteria. The virus
attaches its tail to the surface of the host bacterium cell, drills
a hole in the cell wall, and squirts its chromosome into the
bacterium, leaving its coat behind. � is an obligate parasite—it
must inject its DNA into the bacterium to multiply. Upon
infection, it can follow either one of two different pathways.
First, the injected phage chromosome lysogenizes its host: all
but one of the phage genes are turned off, and one phage

chromosome, called prophage, becomes part of the host chro-
mosome. As the lysogen (the bacterium bearing the prophage)
grows and divides, the prophage is passively replicated and
quiescently distributed to the progeny bacteria. Second, the
phage chromosome enters the lytic mode: various sets of phage
genes are turned on and off according to a precisely regulated
program, the � chromosome is extensively replicated, new
head and tail proteins are synthesized, new phage particles are
formed within bacterium, and some 45 min after the infection
the bacterium lyses and releases about 100 progeny phage.
Once the virus is in the lysogenic state, it can shift to the lysis
state under certain conditions, such as whether the bacterial
culture is irradiated with ultraviolet (UV) light.

The molecular regulatory mechanism responsible for the
lysogeny/lysis decision is known as the phage �-switch and the
switch to lytic growth is called induction. A schematic repre-
sentation of the �-switch performance in the lysogenic and lytic
steady states is shown in Figure 6.

To understand how the switch works, we need to consider
two regulatory genes (cI and cro) and the regulatory region
called OR (right operator). In a lysogen, cI is on and cro is off,
and vice versa when lytic growth ensues. The operator consists
of three binding sites (OR1, OR2, and OR3) that overlap two
opposing promoters. One of these, PR, directs transcription of
lytic genes and the other, PRM, directs transcription of the cI
gene. In a lysogen, the � repressor (the product of cI gene), at
OR, is bound at the two adjacent sites OR1 and OR2. At these
positions, it performs two functions: it represses rightward
transcription from the promoter PR, thereby turning off expres-
sion of cro and other lytic genes; simultaneously it activates
transcription of its own gene from the promoter PRM. Upon
induction, repressor vacates the operator and transcription from
PR commences spontaneously. The first newly made protein is
Cro. This protein binds first to OR3, apparently helping to
abolish repressor synthesis.

To illustrate the application of our methodology, we con-
sider the following bacteriophage � synthetic network model
described in Hasty et al.15 (other more detailed models can also
be used):

dx

dt
�

mx�1 � x2 � ��1x
4�

Q� x, y�
� 	xx

d y

dt
�

my
y�1 � y2�

Q� x, y�
� 	yy (5)

where

Q� x, y� � 1 � x2 � �1x
4 � �1�2x

6 � y2 � ��1 � �2� y4

� �1�3y
6 � �1�4x

4y2 � �5x
2y2 (6)

Table 3. Parameter Values for the Bacteriophage � Model
in Eq. 515


y � 62.92 �1 � 0.08
� � 11 �2 � 0.08

mx � 1 �3 � 0.08
my � 1 �4 � 1
�1 � 2 �5 � 1
�2 � 0.08

Table 4. Steady-State Values (xs, ys) for the Lysogenic, Lytic, and Unstable Steady States for Different Values of �x and �y

	x 	y Lysogenic State Lytic State Unstable State Domain of Attraction

0.004 0.008 (32.39, 0) (0, 16.22) (2.79, 15.27) Figures 8a, 14, 16a
0.05 0.008 (13.71, 0.01) (0, 16.22) (4.89, 6.38) Figure 7
0.1 0.008 (10.75, 0.03) (0, 16.22) (5.37, 4.10) Figures 8b, 16b
1 0.008 n/a (0, 16.22) n/a
0.004 1 (32.39, 0) n/a n/a
0.05 0.0005 (13.71, 0.11) (0, 28.59) (10.24, 3.47) Figure 11a
0.05 0.06 (13.71, 0) (0, 10.60) (2.64, 7.65) Figure 11b
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and x and y represent dimensionless concentrations of the CI
and Cro proteins, respectively; t represents dimensionless time;
�1 and �2 are prefactors denoting the relative affinities for
dimer binding to OR1 vs. that of binding to OR2 and OR3,
respectively; � 	 1 represents the degree to which transcription
is enhanced by dimer occupation of OR2; �1–�5 represent
prefactors denoting binding strengths on reactions entailing the
binding of Cro to different operator sites (see Eq. 17 in Hasty
et al.15); the integers mx and my represent the plasmid copy
numbers for the two species; 
y represents a constant related to
the scaling of y relative to x; 	x and 	y are directly proportional
to the decay rates of CI and Cro proteins, respectively. The
even polynomials in x occur as a result of dimerization and
subsequent binding to the promoter region. The x4 term repre-
sents the transcription when the two operator sites OR1 and OR2

are occupied (x2x2). The x6 term represents the occupation of all
three operator sites and arises in the denominator because
dimer occupation of OR3 inhibits polymerase binding and shuts
off transcription. The values of the model parameters in Eqs. 5

and 6 are given in Table 3. The steady-state values for different
CI and Cro degradation rates are given in Table 4.

Bifurcation and phase-plane analysis of the above model
show that, by changing the values of 	x and 	y, the system of
Eq. 5 can exhibit one of the following modes of behavior:

● A mode with a single globally asymptotically stable equi-
librium point corresponding to the lysogenic steady state (low
	x and high 	y).

● A mode with a single globally asymptotically stable equi-
librium point corresponding to the lytic steady state (high 	x

and low 	y).
● A bistable mode where the stable lysogenic and lytic

steady states coexist together with a third unstable steady state.
Note from Table 4 that for a fixed 	y, as the degradation rate

of protein CI is increased (larger 	x value), the lysogenic steady

Figure 7. Phase plot for the moderate CI degradation
mode showing that an initial condition within
the lysogenic domain of attraction (entire area
below the separatrix) will converge to the ly-
sogenic steady state (dashed trajectory) and
that an initial condition within the lytic domain
of attraction (entire area above the separatrix)
will converge to the lytic steady state (solid
trajectory).
Here, the Cro degradation rate is fixed at 	y � 0.008.

Figure 8. Phase plot showing the system of Eq. 5 being
initialized using �x � 0.05 (dashed trajectory)
and undergoing: (a) a decrease in the degra-
dation rate of CI protein (to �x � 0.004) at t �
20, leading the state to converge to the lyso-
genic steady state, and (b) an increase in the
degradation rate of CI protein (to �x � 0.1) at
t � 20, leading the state to converge to the lytic
steady state.
In both cases, the Cro degradation rate is fixed at 	y � 0.008.

Table 5. Lyapunov Functions Used in Estimating the
Invariant Set �lysogenic for the Lysogenic State and the

Invariant Set �lytic for the Lytic State

	x 	y Lyapunov Function for �lysogenic cmax

0.004 0.008 V � (x � xs)
2 � (y � ys)

2 800
0.1 0.008 V � (x � xs)

2 � 0.6(y � ys)
4 100

0.05 0.0005 V � (x � xs)
2 � (y � ys)

6 150
0.05 0.06 V � (x � xs)

2 � 0.5(y � ys)
2 150

	x 	y Lyapunov Function for �lytic cmax

0.004 0.008 V � 20(x � xs)
2 � (y � ys)

2 100
0.1 0.008 V � 0.5(x � xs)

2 � (y � ys)
2 150

0.05 0.0005 V � (x � xs)
2 � 0.01(y � ys)

4 700
0.05 0.06 V � 20(x � xs)

2 � (y � ys)
2 100
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state keeps shifting to smaller concentrations until the system
exhibits only the lytic steady state (the lysogenic steady state
vanishes). By contrast, for a fixed 	x, when the degradation rate
of protein Cro is increased (larger 	y value), the lytic steady
state keeps shifting to smaller concentrations until the system
exhibits only the lysogenic steady state (the lytic steady state
vanishes).

Focusing on the bistable mode, we initially compute esti-
mates of the domains of attraction of both steady states for
different values of the CI and Cro protein degradation rate.
Because of the complex nonlinearity of the system—relative to
that of the cell cycle model—the Lyapunov function used in the
cell cycle example did not yield good estimates of the domain
of attraction for the �-switch system. However, we were able to
attain “conservative” estimates of the domains of attraction
using several other polynomial Lyapunov functions that are
listed in Table 5. For each steady state, we initially used the
corresponding V to determine the region �, where V̇ � 0 and

then constructed an invariant set (a level set) within this region,
� � {x : V(x) � cmax}, where cmax is a positive constant for
which � is contained in �. The boundaries of the invariant
sets, �lysogenic and �lytic, are depicted by the dotted lines in
Figures 8, 11, 14, and 16 for the lysogenic state and lytic state
(note that, for each level set, only the part that is contained
within the given x–y range is shown). To get an idea of the
possible conservatism of these estimates, we also used com-
puter simulations to compare, for each steady state, the entire
domain of attraction (separated by the separatrix) with the
estimate provided by the corresponding level set.

Figures 7, 8a, and 8b show the domains of attraction for the
lysogenic and lytic steady states for: (1) a moderate CI degra-
dation rate (	x � 0.05, 	y � 0.008), (2) a relatively low CI
degradation rate (	x � 0.004, 	y � 0.008), and (3) a relatively
high CI degradation rate (	x � 0.1, 	y � 0.008), respectively,
keeping the Cro protein degradation rate constant. Figures 7,
11a, and 11b show the domains of attraction for the lysogenic

Figure 9. Time-evolution plots of the (a) CI and (b) Cro
protein concentrations when the system un-
dergoes a transition from the �x � 0.05 mode
(dashed lines) to the �x � 0.004 mode at t � 20
and converges (solid lines) to the lysogenic
steady state.
The Cro degradation rate is fixed at 	y � 0.008.

Figure 10. Time-evolution plots of the (a) CI and (b) Cro
protein concentrations when the system un-
dergoes a transition from the �x � 0.05 mode
(dashed lines) to the �x � 0.1 mode at t � 20
and converges (solid lines) to the lytic steady
state.
The Cro degradation rate is fixed at 	y � 0.008.
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and lytic steady states for: (1) a moderate Cro degradation rate
(	x � 0.05, 	y � 0.008), (2) a relatively low Cro degradation
rate (	x � 0.05, 	y � 0.0005), and (3) a relatively high Cro
degradation rate (	x � 0.05, 	y � 0.06), respectively, keeping
the CI protein degradation rate constant. The entire area below
(or to the right of) the separatrix is the entire domain of
attraction for the lysogenic steady state, whereas the area above
(or to the left of) the separatrix is the entire domain of attraction
for the lytic steady state. Both stable steady states are denoted
by asterisks on each plot.

It is clear from the plots that an increase in the CI degrada-
tion rate results in a smaller domain of attraction for the
lysogenic state (and a larger one for the lytic state) and vice
versa. In the limiting case of very high degradation rates, the
lysogenic state vanishes and the domain of attraction of the

lytic state occupies the entire state space (single globally
asymptotically stable equilibrium point). The opposite trend is
observed when the Cro protein degradation rate is increased. In
particular, increasing 	y leads to a smaller domain of attraction
for the lytic state and a larger one for the lysogenic state. For
very high Cro degradation rates, the lytic steady state vanishes
and the domain of attraction for the lysogenic state turns into
the entire state space.

Therefore, in the bistable mode, the initial condition plays a
critical role in deciding which steady state the bacteriophage �
will attain. Also, the size of the domain of attraction for each
state helps explain why the lysogenic state is more likely to be
observed under a given set of conditions,16 whereas the lytic
state is more likely to be seen under a different set of condi-
tions. Figure 7 shows that starting from an initial condition of
high CI and Cro concentrations, the phage ends up in the lytic
state because the initial condition is within its domain of

Figure 11. Phase plot showing the system of Eq. 5 being
initialized using �y � 0.008 (dashed trajectory)
and undergoing: (a) a decrease in the degra-
dation rate of Cro protein (to �y � 0.0005) at
t � 20, leading the state to converge to the
lytic steady state, and (b) an increase in the
degradation rate of Cro protein (to �y � 0.06)
at t � 20, leading the state to converge to the
lysogenic steady state.
In both cases, the CI degradation rate is fixed at 	x � 0.05.

Figure 12. Time-evolution plots of the (a) CI and (b) Cro
protein concentrations when the system ini-
tialized at [x(0), y(0)] � (35, 18) undergoes a
transition from the �y � 0.008 mode (dashed
lines) to the �y � 0.0005 mode at t � 20 and
converges (solid lines) to the lytic steady
state.
The CI degradation rate is fixed at 	x � 0.05.
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attraction (solid trajectory). Initializing the system, however, at
high CI but low Cro concentrations drives the phage to the
lysogenic state (dashed trajectory).

We now demonstrate the effect of switching in the CI protein
degradation rate on whether the bacteriophage will exhibit the
lytic or lysogenic steady state. To this end, we initialize the
system within the moderate CI degradation mode (	x � 0.05,
	y � 0.008) at the initial condition [x(0), y(0)] � (35, 18) and
allow it to evolve in this mode until, at t � 20, a mode
transition is enforced (see dashed trajectories in Figures 8a and
8b). The results show that, for a fixed transition time, depend-
ing on which mode is being switched in, the phage takes a
different path. For example, Figure 8a shows that when the
system switches to the relatively low CI degradation mode (	x

� 0.004, 	y � 0.008) at t � 20, the system state is within the
invariant set of the lysogenic steady state (�lysogenic) and thus
the phage ends up with lysogeny. Figure 8b, on the other hand,

shows that when the relatively high CI degradation mode (	x �
0.1, 	y � 0.008) is switched in at t � 20, the system state is
within the invariant set of the lytic steady state (�lytic) and thus
the phage ends up with lysis instead. The time-evolution plots
for both scenarios are depicted in Figures 9 and 10, respec-
tively.

Figure 8b gives some insight into the implications of using
a conservative estimate of the domain of attraction as the basis
for switching, in lieu of the true domain of attraction (which
could be more computationally expensive to obtain). In partic-
ular, if the relatively high CI degradation mode (	x � 0.1, 	y �
0.008) is switched in before the states enter the invariant set of
the lytic state �lytic, then, having no knowledge about what the
actual domain of attraction looks like, the only conclusion we
would be able to make is that there is no guarantee that the
phage would end up in the lytic state if switching were to take
place at such a time. Switching has to be “delayed” until the
state enters �lytic to guarantee that the phage would end up with
lysis.

To demonstrate the effect of switching in the Cro protein
degradation rate, the system is initialized within the moderate
Cro degradation mode (	x � 0.05, 	y � 0.008) at the same
initial condition [x(0), y(0)] � (35, 18) and allowed to evolve
in this mode until, at t � 20, a mode transition is enforced (see
dashed trajectories in Figures 11a and 11b). The results show
that, for a fixed transition time, depending on which mode is
being switched in, the phage takes a different path. For exam-
ple, Figure 11a shows that when the system switches to the
relatively low Cro degradation mode (	x � 0.05, 	y � 0.0005)
at t � 20, the system state is within �lytic and thus the phage
ends up with lysis. Figure 11b, on the other hand, shows that
when the relatively high Cro degradation mode (	x � 0.05, 	y

� 0.06) is switched in at t � 20, the system state is within
�lysogenic and thus the phage ends up with lysogeny instead.
The time-evolution plots for both scenarios are depicted in
Figures 12 and 13, respectively.

So far in our analysis, we have fixed the transition time and
showed that which mode is activated at that time determines

Figure 13. Time-evolution plots of the (a) CI and (b) Cro
protein concentrations when the system ini-
tialized at [x(0), y(0)] � (35, 18) undergoes a
transition from the �y � 0.008 mode (dashed
lines) to the �y � 0.06 mode at t � 20 and
converges (solid lines) to the lysogenic
steady state.
The CI degradation rate is fixed at 	x � 0.05.

Figure 14. Phase plot showing the system undergoing a
transition from the �x � 0.05 mode (dashed
trajectory) to the �x � 0.004 at t � 70 and
converging (solid trajectory) to the lytic
steady state.
The Cro degradation rate is fixed at 	y � 0.008.
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the final state of the phage. Here, we demonstrate the effect of
varying the transition time, for a given mode transition, on the
steady-state behavior of the phage. To this end, we reconsider
the switching scenario presented in Figure 8a, where the sys-
tem switches from the moderate (	x � 0.05) to the relatively
low (	x � 0.004) CI degradation mode and the Cro degradation
rate is fixed at 	y � 0.008. However, instead of carrying out the
transition at t � 20 as in Figure 8a, the switch is delayed until
t � 70. The result is depicted in Figure 14, which shows that
at t � 70, the system state is within the invariant set of the lytic
steady state (�lytic) and thus the phage ends up with lysis. The
corresponding time-evolution plots are given in Figure 15. By
comparing Figure 8a with Figure 14, we conclude that an early
transition from moderate to relatively low CI degradation rate
favors lysogeny, whereas a late transition favors lysis.

In the last simulation run, we demonstrate the effect of the
initial condition on the outcome of switching for a given
transition time. To this end, we initialize the system within the

moderate CI degradation mode (	x � 0.05, 	y � 0.008) at an
initial condition different from the one considered in Figure 8
and characterized by high concentration of CI and low concen-
tration of Cro [x(0) � 35, y(0) � 2]. We allow the system to
evolve in this mode until, at t � 40, a mode transition is
enforced (see dashed trajectories in Figures 16a and 16b). The
results show that, for a fixed transition time, switching close to
a particular steady state will converge to that particular steady
state, independently of which mode is being switched in. For
example, Figure 16a shows that when the system switches to
the relatively low CI degradation mode (	x � 0.004, 	y �
0.008) at t � 40, the state is within the invariant set of the
lysogenic steady state (�lysogenic) and thus the phage ends up
with lysogeny. Similarly, Figure 16b shows that when the
relatively high CI degradation mode (	x � 0.1, 	y � 0.008) is

Figure 15. Time-evolution plots of the (a) CI and (b) Cro
protein concentrations when the system un-
dergoes a transition from the �x � 0.05 mode
(dashed lines) to the �x � 0.004 mode at t �
70 and converges (solid lines) to the lytic
steady state.
The Cro degradation rate is fixed at 	y � 0.008.

Figure 16. Phase plot showing the system of Eq. 5 being
initialized using �x � 0.05 (dashed trajectory)
and undergoing: (a) a decrease in the degra-
dation rate of CI protein (to �x � 0.004) at t �
40 and (b) an increase in the degradation rate
of CI protein (to �x � 0.1) at t � 40, both
leading the state to converge to the lysogenic
steady state.
In both cases, the Cro degradation rate is fixed at 	y �
0.008.
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switched in at t � 40, the state is again within the invariant set
of the lysogenic steady state (�lysogenic) and thus the phage ends
up with lysogeny (albeit with a smaller steady-state concentra-
tion of CI protein). The time-evolution plots for both scenarios
are depicted in Figures 17 and 18, respectively. Note that this
result is different from that obtained in Figure 8 where the final
steady-state behavior is dependent on which mode is being
switched in. The difference lies in the fact that the system state
at the switching time considered in Figure 16 is contained
within the invariant set of the lysogenic steady state (�lysogenic)
for both the low and high CI degradation modes, and thus only
the lysogenic steady state can be observed regardless of
whether the low or high CI degradation mode is activated.

Conclusions

In this work, a methodology for the analysis of mode tran-
sitions in biological networks was presented. The proposed

approach was predicated on the notion of orchestrating switch-
ing between the domains of attraction of the steady states of the
constituent modes. The proposed method was demonstrated
using models of biological networks that arise in cell cycle
regulation and the bacteriophage �-switch system. The pro-
posed approach has implications both for understanding the
outcome of naturally occurring mode transitions and for the
ability to manipulate network behavior by enforcing mode
transitions.
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