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A methodology for the design of fault-tolerant control systems for chemical plants with
distributed interconnected processing units is presented. Bringing together tools from
Lyapunov-based nonlinear control and hybrid systems theory, the approach is based on
a hierarchical architecture that integrates lower-level feedback control of the individual
units with upper-level logic-based supervisory control over communication networks. The
local control system for each unit consists of a family of control configurations for each
of which a stabilizing feedback controller is designed and the stability region is explicitly
characterized. The actuators and sensors of each configuration are connected, via a local
communication network, to a local supervisor that orchestrates switching between the
constituent configurations, on the basis of the stability regions, in the event of failures. The
local supervisors communicate, through a plant-wide communication network, with a
plant supervisor responsible for monitoring the different units and coordinating their
responses in a way that minimizes the propagation of failure effects. The communication
logic is designed to ensure efficient transmission of information between units, while also
respecting the inherent limitations in network resources by minimizing unnecessary
network usage and accounting explicitly for the effects of possible delays due to fault-
detection, control computations, network communication and actuator activation. The
proposed approach provides explicit guidelines for managing the various interplays
between the coupled tasks of feedback control, fault-tolerance and communication. The
efficacy of the proposed approach is demonstrated through chemical process exam-
ples. © 2005 American Institute of Chemical Engineers AIChE J, 51: 1665–1682, 2005
Keywords: hybrid systems and control, switching logic, stability regions, fault-tolerance,
supervisory control, communication networks, process systems

Introduction

Safety and reliability are primary goals in the operation of
industrial chemical plants. An important national need cur-
rently exists for enhancing the safety and reliability of chemical
plants in ways that reduce their vulnerability to serious failures.
Increasingly faced with the requirements of operational flexi-
bility under tight performance specifications and other eco-
nomic drivers, plant operation is relying extensively on highly

automated process control systems. Automation, however,
tends to increase vulnerability of the plant to faults, such as
defects/malfunctions in process equipment, sensors and actua-
tors, failures in the controllers or in the control loops, which, if
not appropriately handled in the control system design, can
potentially cause a host of undesired economic, environmental,
and safety problems that seriously degrade the operating effi-
ciency of the plant. These considerations provide a strong
motivation for the development of systematic methods and
strategies for the design of fault-tolerant control systems and
have motivated many research studies in this area (see, for
example, 1,2,3 and 4,5,6 for references).

Given the complex dynamics of chemical processes (due, for
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example, to the presence of nonlinearities and constraints) and
the geographically distributed, interconnected nature of plant
units, as well as the large number of distributed sensors and
actuators typically involved, the success of any fault-tolerant
control strategy requires an integrated approach that brings
together several essential elements, including: (1) the design of
advanced feedback control algorithms that handle complex
dynamics effectively, (2) the design of supervisory switching
schemes that orchestrate the transition from the failed control
configuration to available well-functioning fallback configura-
tions to ensure fault-tolerance, and (3) the efficient exchange of
information and communication between the different plant
units through a high-level supervisor that coordinates the over-
all plant response in failure situations and minimizes the effects
of failure propagation.

The realization of such an approach is increasingly aided by
a confluence of recent, and ongoing, advances in several areas
of process control research, including advances in nonlinear
controller designs for chemical processes (for example,
7,8,9,10,11) and advances in the analysis and control of hybrid
process systems leading to the development of a systematic
framework for the integration of feedback and supervisory
control.12,13 A hybrid systems framework provides a natural
setting for the analysis and design of fault-tolerant control
systems since the occurrence of failure and subsequent switch-
ing to fallback control configurations induce discrete transi-
tions superimposed on the underlying continuous dynamics.
Hybrid control techniques have been useful in dealing with a
wide range of problems that cannot be addressed using classi-
cal control approaches, including fault-tolerant control of spa-
tially-distributed systems (for example, 14,15), control of pro-
cesses with switched dynamics (for example, 13,16), and the
design of hybrid predictive control structures that overcome
some of the limitations of classical predictive control algo-
rithms (for example, 17). In addition to control studies, research
work on hybrid systems spans a diverse set of problems rang-
ing from the modeling (for example, 18,19) and simulation (for
example, 19,20) to the optimization (for example, 21,22) and
stability analysis (for example, 23,24) of several classes of hy-
brid systems.

In addition to the above fundamental advances, recent inno-
vations in actuator/sensor and communication technologies are
increasingly enabling the integration of communication and
control domains.25 For example, the use of communication
networks as media to interconnect the different components in
an industrial control system is rapidly increasing and expected
to replace the more costly point-to-point connection schemes
currently employed in distributed control systems. Figure 1
shows the basic networked control architecture for (a) a single-
unit plant with few actuators and sensors (centralized struc-
ture), and (b) a larger plant with several interconnected pro-
cessing units and larger number of actuators and sensors
(distributed hierarchical structure).

Currently, networked control systems is an active area of
research within control engineering (for example, see
26,27,28,29,30 for some recent results and references in this area).
In addition to the advantages of reduced system wiring (re-
duced installation, maintenance time and costs) in this archi-
tecture, the increased flexibility and ease of maintenance of a
system using a network to transfer information is an appealing
goal. In the context of fault-tolerant control in particular, sys-

tems designed in this manner allow for easy modification of the
control strategy by rerouting signals, having redundant systems
that can be activated automatically when component failure
occurs, and in general they allow having a high-level supervi-
sory control over the entire plant. The appealing features of
communication networks motivate investigating ways for inte-
grating them in the design of fault-tolerant control systems to
ensure a timely and coordinated response of the plant in ways
that minimize the effects of failure propagation between plant
units. This entails devising strategies to deal with some of the
fundamental issues introduced by the network, including issues
of bandwidth limitations, quantization effects, network sched-
uling, and communication delays, which continue to be topics
of active research.

Motivated by the earlier considerations, we develop in this
work a fault-tolerant control system design methodology, for
plants with multiple (distributed) interconnected processing
units, that accounts explicitly for the inherent complexities in
supervisory control and communication tasks resulting from
the distributed interconnected nature of plant units. The ap-
proach brings together tools from Lyapunov-based control and
hybrid systems theory, and is based on a hierarchical distrib-
uted architecture that integrates lower-level feedback control of
the individual units with upper-level logic-based supervisory
control over communication networks. The local control sys-

Figure 1. (a) A centralized networked control system for
a single-unit plant, and (b) a hierarchical dis-
tributed networked control architecture for a
multi-unit plant.
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tems consist each of a family of feedback control configura-
tions together with a local supervisor that communicates with
actuators and sensors, via a local communication network, to
orchestrate the transition between control configurations, on
the basis of their fault-recovery regions, in the event of failures.
The local supervisors communicate, through a plant-wide com-
munication network, with a plant supervisor responsible for
monitoring the different units and coordinating their responses
in a way that minimizes the propagation of failure effects. The
communication logic is designed to ensure efficient transmis-
sion of information between units while also respecting the
inherent limitations in network resources by minimizing un-
necessary network usage and accounting explicitly for the
effects of possible delays due to fault-detection, control com-
putations, network communication, and actuator activation.
The proposed approach provides explicit guidelines for man-
aging the interplays between the coupled tasks of feedback
control, fault-tolerance and communication. The efficacy of the
proposed approach is demonstrated through chemical process
examples.

Preliminaries
System description

We consider a plant composed of l connected processing
units, each of which is modeled by a continuous-time multi-
variable nonlinear system with constraints on the manipulated
inputs, and represented by the following state space description

ẋ1 � f1
k1� x1� � G1

k1� x1�u1
k1

ẋ2 � f2
k2� x2� � G2

k2� x2�u2
k2 � W2,1

k2 � x2� x1

···

ẋl � fl
kl� xl� � Gl

kl� xl�ul
kl � �

p�1

l�1

Wl,p
kl � xl� xp

�ui
ki� � ui,max

ki

ki�t� � �i :� �1, . . . , Ni�, Ni � �, i � 1, . . . , l (1)

where xi :� [ xi
(1) xi

(2) . . . xi
(ni)]T � �ni denotes the

vector of process state variables associated with the i-th pro-
cessing unit, ui

ki :� [ui,1
ki ui,2

ki . . . ui,mi

ki ]T � �mi denotes
the vector of constrained manipulated inputs associated with
the ki-th control configuration in the i-th processing unit, ui,max

ki

is a positive real number that captures the maximum size of the
vector of manipulated inputs dictated by the constraints, � � �
denotes the Euclidean norm of a vector, and Ni is the number
of different control configurations that can be used to control
the i-th processing unit. The index, ki(t), which takes values in
the finite set �i, represents a discrete state that indexes the
righthand side of the set of differential equations in Eq. 1. For
each value that ki assumes in �i, the i-th processing unit is
controlled via a different set of manipulated inputs which
define a given control configuration. For each unit, switching
between the available Ni control configurations is controlled by
a local supervisor that monitors the operation of the unit and
orchestrates, accordingly, the transition between the different

control configurations in the event of control system failures.
This in turn determines the temporal evolution of the discrete
state, ki(t), which takes the form of a piecewise constant
function of time. The local supervisor ensures that only one
control configuration is active at any given time, and allows
only a finite number of switches over any finite interval of time.

Without loss of generality, it is assumed that xi � 0 is an
equilibrium point of the uncontrolled i-th processing unit (that
is, with ui

ki � 0), and that the vector functions, fi
ki�, and the

matrix functions, Gi
ki� and Wj,p

kj �, are sufficiently smooth on
their domains of definition, for all ki � �i, i � 1, . . . , l, j �
2, . . . , l, p � 1, . . . , l � 1. For the j-th processing unit, the
term, Wj,p

kj ( xj) xp, represents the connection that this unit has
with the p-th unit upstream. Note from the summation notation
in Eq. 1 that each processing unit can in general be connected
to all the units upstream from it. Our nominal control objective
(that is, in the absence of control system failures) is to design,
for each processing unit, a stabilizing feedback controller that
enforces asymptotic stability of the origin of the closed-loop
system in the presence of control actuator constraints. More-
over, the assumption that the state xi enters the xi�1-subsystem
in a linear fashion is made for notational simplicity and can be
relaxed. To simplify the presentation of our results, we will
focus only on the state feedback control problem where mea-
surements of all process states are available for all times.

Problem statement and solution overview

Consider the plant of Eq. 1 where, for each processing unit,
a stabilizing feedback control system has been designed and
implemented. Given some catastrophic fault—that has been
detected and isolated—in the actuators of one of the control
systems, our objective is to develop a plant-wide fault-tolerant
control strategy that: (1) preserves closed-loop stability of the
failing unit, if possible, and (2) minimizes the negative impact
of this failure on the closed-loop stability of the remaining
processing units downstream. To accomplish both of these
objectives, we construct a hierarchical control structure that
integrates lower-level feedback control of the individual units
with upper-level logic-based supervisory control over commu-
nication networks. The local control system for each unit
consists of a family of control configurations for each of which
a stabilizing feedback controller is designed, and the stability
region is explicitly characterized. The actuators and sensors of
each configuration are connected, via a local communication
network, to a local supervisor that orchestrates switching be-
tween the constituent configurations, on the basis of the stabil-
ity regions, in the event of failures. The local supervisors
communicate, through a plant-wide communication network,
with a plant supervisor responsible for monitoring the different
units and coordinating their responses in a way that minimizes
the propagation of failure effects. The basic problem under
investigation is how to coordinate the tasks of feedback, con-
trol system reconfiguration and communication, both at the
local (processing unit) and plant-wide levels in a way that
ensures timely recovery in the event of failure and preserves
closed-loop stability.

Remark 1: In the design of any fault-tolerant control sys-
tem, an important task that precedes the control system recon-
figuration is the task of fault-detection and isolation (FDI).
There is an extensive body of literature on this topic including,
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for example, the design of fault-detection and isolation
schemes, based on fundamental process models (for example,
31,32) and statistical/pattern recognition and fault diagnosis
techniques (for example, 33,34,35,36,37,38). In this work, we focus
mainly on the interplay between the communication network
and the control system reconfiguration task. To this end, we
assume that the FDI tasks take place at a time scale that is very
fast compared to the time constant of the overall process
dynamics and the time needed for the control system recon-
figuration, and, thus, can be treated separately from the control
system reconfiguration (we note that the time needed for FDI is
accounted for in the control system reconfiguration through a
time-delay; see the next section and the simulation studies for
details). In the context of process control applications, this
sequential and decoupled treatment of FDI and control system
reconfiguration is further justified by the overall slow dynamics
of chemical plants.

Motivating example

In this section, we introduce a simple benchmark example
that will be revisited later to illustrate the design and imple-
mentation aspects of the fault-tolerant control design method-
ology to be proposed in the next section. While the discussion
will center around this example, we note that the proposed
framework can be applied to more complex plants involving
more complex arrangements of processing units as shown in
Eq. 1. To this end, consider two well-mixed, nonisothermal
continuous stirred-tank reactors (CSTRs) in series, where three
parallel irreversible elementary exothermic reactions of the

form A ¡
k1

B, A ¡
k2

U and A ¡
k3

R take place, where A is the
reactant species, B is the desired product and U, R are unde-
sired byproducts. The feed to CSTR 1 consists of pure A at flow
rate F0, molar concentration CA0, and temperature T0, and the
feed to CSTR 2 consists of the output of CSTR 1, and an
additional fresh stream feeding pure A at flow rate F3, molar
concentration CA03, and temperature T03. Due to the noniso-
thermal nature of the reactions, a jacket is used to remove/
provide heat to both reactors. Under standard modeling as-
sumptions, a mathematical model of the plant can be derived

from material and energy balances, and takes the following
form

dT1

dt
�

F0

V1
�T0 � T1� � �

i�1

3
��	Hi�

�cp
Ri�CA1, T1� �

Q1

�cpV1

dCA1

dt
�

F0

V1
�CA0 � CA1� � �

i�1

3

Ri�CA1, T1�

dT2

dt
�

F1

V2
�T1 � T2� �

F3

V2
�T03 � T2� � �

i�1

3
��	Hi�

�cp
Ri�CA2, T2� �

Q2

�cpV2

dCA2

dt
�

F1

V2
�CA1 � CA2� �

F3

V2
�CA03 � CA2� � �

i�1

3

Ri�CA2, T2� (2)

where Ri(CAj, Tj) � ki0exp(�Ei/RTj)CAj, for j � 1, 2. T,
CA, Q, and V denote the temperature of the reactor, the
concentration of species A, the rate of heat input/removal from
the reactor, and the volume of reactor, respectively, with sub-
script 1 denoting CSTR 1, and subscript 2 denoting CSTR 2.
	Hi, ki, Ei, i � 1, 2, 3, denote the enthalpies, pre-exponential
constants and activation energies of the three reactions, respec-
tively, cp and � denote the heat capacity and density of fluid in
the reactor. Using typical values for the process parameters
(see Table 2), CSTR 1, with Q1 � 0, has three steady-states:
two locally asymptotically stable and one unstable at (T1

s ,
CA1

s ) � (388.57 K, 3.59 kmol/m3). The unstable steady-state
of CSTR 1 corresponds to three steady-states for CSTR 2 (with
Q2 � 0), one of which is unstable at (T2

s , CA2
s ) � (429.24 K,

2.55 kmol/m3).
The control objective is to stabilize both reactors at the

(open-loop) unstable steady-states. Operation at these points is
typically sought to avoid high temperatures, while simulta-

Table 1. Process Parameters and Steady-State Values for
the Chemical Reactor of Eq. 13

F � 4.998 m3/hr
V � 1.0 m3

R � 8.314 KJ/kmol � K
TA0 � 300.0 K
CA0 � 4.0 kmol/m3

CB0 � 0.0 kmol/m3

	H1 � �5.0 
 104 KJ/kmol
	H2 � �5.2 
 104 KJ/kmol
	H3 � �5.4 
 104 KJ/kmol
k10 � 3.0 
 106 hr�1

k20 � 3.0 
 105 hr�1

k30 � 3.0 
 105 hr�1

E1 � 5.0 
 104 KJ/kmol
E2 � 7.53 
 104 KJ/kmol
E3 � 7.53 
 104 KJ/kmol
� � 1000.0 kg/m3

cp � 0.231 KJ/kg � K
Ts � 388.57 K
CA

s � 3.59 kmol/m3

CB
s � 0.41 kmol/m3

Table 2. Process Parameters and Steady-State Values for
the Chemical Reactors of Eq. 2

F0 � 4.998 m3/hr
F1 � 4.998 m3/hr
F3 � 30.0 m3/hr
V1 � 1.0 m3

V2 � 3.0 m3

R � 8.314 KJ/kmol � K
T0 � 300.0 K
T03 � 300.0 K
CA0 � 4.0 kmol/m3

CA03
s � 2.0 kmol/m3

	H1 � �5.0 
 104 KJ/kmol
	H2 � �5.2 
 104 KJ/kmol
	H3 � �5.4 
 104 KJ/kmol
k10 � 3.0 
 106 hr�1

k20 � 3.0 
 105 hr�1

k30 � 3.0 
 105 hr�1

E1 � 5.0 
 104 KJ/kmol
E2 � 7.53 
 104 KJ/kmol
E3 � 7.53 
 104 KJ/kmol
� � 1000.0 kg/m3

cp � 0.231 KJ/kg � K
T1

s � 388.57 K
CA1

s � 3.59 kmol/m3

T2
s � 429.24 K

CA2
s � 2.55 kmol/m3

1668 AIChE JournalJune 2005 Vol. 51, No. 6



neously achieving reasonable conversion. To accomplish the
control objective under normal conditions (with no failures),
we choose the rates of heat input, u1

1 � Q1 and u1
2 � Q2, as

manipulated inputs, subject to the constraints �Q1� � umax
Q1 �

2.7 
 106 KJ/hr and �Q2� � umax
Q2 � 2.8 
 106 KJ/hr.

As shown in Figure 2, each unit has a local control system
with its sensors and actuators connected through a communi-
cation network. The local control systems in turn communicate
with the plant supervisor (and with each other) through a
plant-wide communication network. Note that in designing
each control system, only measurements of the local process
variables are used (for example, the controller for the second
unit uses only measurements of T2 and CA2). This decentral-
ized architecture is intended to minimize unnecessary commu-
nication costs incurred by continuously sending measurement
data from the first to the second unit over the network. We note
that while this issue may not be a pressing one for the small
plant considered here (where a centralized structure can in fact
be easily designed), real plants nonetheless involve a far more
complex arrangement of units with thousands of actuators and
sensors, which makes the complexity of a centralized structure,
as well as the cost of using the network to share measurements
between units quite significant. For this reason, we choose the
distributed structure in Figure 2 in order to highlight some of
the manifestations of the inherent interplays between the con-
trol and communication tasks.

The fault-tolerant control problem under consideration in-
volves a total failure in both control systems (Q1 and Q2) after
some time of startup, with the failure in the first unit being
permanent. Our objective will be to preserve closed-loop sta-
bility of CSTR 2 by switching to an alternative control con-
figuration involving, as manipulated variables, the rate of heat
input u2

1 � Q2, subject to the same constraint, and the inlet
reactant concentration u2

2 � CA03 � CA03
s , subject to the

constraint �CA03 � CA03
s � � umax

CA03 � 0.4 kmol/m3 where CA03
s

� 3.0 kmol/m3. The main question, which we address in the
next section, is how to devise the switching and network
communication logics in a way that ensures fault-tolerance in
the second unit and, simultaneously, accounts for the inherent
limitations in network resources and possible delays in fault-
detection, communication and actuator activation.

Fault-Tolerant Control System Design
Methodology

In this section, we outline the main steps involved in the
fault-tolerant control system design procedure. These include:
(1) the synthesis of a stabilizing feedback controller for each of
the available fallback control configurations, (2) the explicit
characterization of the stability region for each configuration
which characterizes the operating conditions for which fault-
recovery can be guaranteed, (3) the design of a switching law
that orchestrates the reconfiguration of the failing control sys-
tem in a way that safeguards closed-loop stability in the event
of failures, and (4) the design of the network communication
logic in a way that minimizes the propagation of failure effects
between plant units while also accounting for bandwidth con-
straints and delays. A major feature of the design methodology
is the inherent coupling between the aforementioned tasks,
whereby each task affects how the rest are carried out. Later is
a more detailed description of each step, and a discussion on
how the tradeoffs between the different steps are managed.

Constrained feedback controller synthesis

Referring to the system of Eq. 1, consider first the case when
no failures take place anywhere in the plant. Under such
conditions, our objective is to design, for each processing unit,
a “nominal” feedback controller that enforces asymptotic
closed-loop stability, and provides an explicit characterization
of the stability region under actuator constraints. One way to do
this is to use Lyapunov-based control techniques. Specifically,
consider the nonlinear system describing the i-th processing
unit under the ki-th control configuration, for which a control
Lyapunov function Vi

ki, is available. Using this function, one
can construct the following bounded nonlinear control law (see
39,9)

ui
ki � �r�xi, ui,max

ki ��T�xi� (3)

where

r� xi, ui,max
ki � �

�*� xi� � ���*� xi��
2 � �ui,max

ki ��T� xi���4

��T� xi��2�1 � �1 � �ui,max
ki ��T� xi���2�

(4)

�*( xi) � �( xi) � �i
ki� xi�2, �i

ki  0 is a real number, �( xi) �
Lfi

kiVi
ki�xi�, �T( xi) � �LGi

kiVi
ki�T�xi�, the notation Lfi

kiVi
ki is used to

denote the Lie derivative of the scalar function Vi
ki, with respect

to the vector field, fi
ki, and LGi

kiVi
ki is a row vector whose

constituent components are the Lie derivatives of Vi
ki along the

column vectors of the matrix Gi
ki. Note that the control law of

Eqs. 3 and 4 requires measurements of the local process state
variables, xi, only, and not measurements from other plant units
upstream. This fully decentralized design is motivated by the
desire to minimize unnecessary communication costs which
would be incurred when sharing measurement data between the
different units over the communication network. By disregard-
ing the interconnections between the units in the controller
design, however, closed-loop stability for a given unit rests on
the stability properties of the upstream units. In particular,
using a combination of Lyapunov and small-gain theorem type
arguments, one can show that, starting from any invariant

Figure 2. CSTR units in series.
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subset (for example, a level-set of Vi
ki) of the region described

by

�i�ui,max
ki � :� �xi � �ni : ��xi� � �i

ki�xi�2 � ui,max
ki ��T�xi��� (5)

the control law of Eqs. 3 and 4 asymptotically stabilizes the i-th
unit, under the ki-th control configuration, at the origin pro-
vided that the closed-loop states of the upstream units x1,
x2, . . . , xi�1, converge asymptotically to the origin. In this
case, and because of the way the various units are connected
(see Eq. 1), the closed-loop states of the upstream units can be
viewed as bounded vanishing perturbations that affect the i-th
unit and, therefore, a control law that asymptotically stabilizes
the unperturbed i-th unit (that is, disregarding the upstream
states) also stabilizes the closed-loop system when the pertur-
bations (connections) are added.

Having designed the nominal feedback control systems, we
now proceed to consider the effect of control actuator failure on
the feedback controller design for each unit. To this end, let us
consider a total failure in the actuators of the ki-th control
configuration in the i-th control system. This failure, if not
addressed properly, can lead to closed-loop instabilities both
within the i-th processing unit itself (where the failure has
occurred), and within all the remaining units downstream.
Minimizing the effects of failure propagation throughout the
plant can be achieved in one of two ways. The first involves
reconfiguring the local control system of the i-th unit—once
the failure is detected and isolated—by appropriately switching
from the malfunctioning control configuration to some well-
functioning fallback configuration (recall that each processing
unit has a family of control configurations). If this is feasible
and can be done sufficiently fast, then the inherent fault-
tolerance of the local control system is sufficient to preserve
closed-loop stability not only for the i-th unit with the failing
control system, but also for the other units downstream without
having to reconfigure their control systems. However, if local
fault-recovery is not possible (this can happen, for example, in
cases when the failure occurs at times that the state lies outside
the stability regions of all the available fallback control con-
figurations; see the next subsection for details), then it becomes
necessary to communicate the failure information to the control
systems downstream and reconfigure them in order to preserve
their closed-loop stability.

The main issue here is how to design the feedback control
law for a given fallback configuration in the units downstream
in a way that respects the actuators’ constraints, and guarantees
closed-loop stability despite the failure in the control system of
some upstream unit. The choice of the feedback law depends
on our choice of the communication policy. To explain this
interdependence, we first note that a total failure in the control
system of the i-th unit will cause its state xi, to move away
from the origin (possibly settling at some other steady-state).
Therefore, unless the nominal feedback controllers for the
downstream units i � 1, i � 2, . . . , l, are redesigned to
account for this incoming “disturbance,” the evolution of their
states xi�1, xi�2, . . . , xl, will be adversely affected driving
them away from the desired steady-state. To account for the
disturbance caused by the upstream control system failure, one
option is to send available measurements of xi, through the
communication network, to the affected units and redesign

their controllers accordingly. From a communications cost
point of view, however, this option may be costly since it
requires continued usage of the network resources after the
failure, which can adversely affect the performance of other
units sharing the same communication medium due to band-
width limitations and overall delays.

To reduce unnecessary network usage, we propose an alter-
native approach where the failure in the i-th processing unit is
viewed as a bounded nonvanishing disturbance affecting units
i � 1, i � 2, . . . , l, and use the available process models of
these units to capture, or estimate, the size of this disturbance
(by comparing, for example, the evolution of the process vari-
ables for the i-th unit under the failed and well-functioning
control configurations through simulations). In this formula-
tion, state measurements from the i-th unit need not be shared
with the other units; instead, only bounds on the disturbance
size are transmitted to the downstream units. This approach
involves using the network only once at the failure time and not
continuously thereafter. The disturbance information can then
be used to design an appropriate robust controller for each
downstream unit to attenuate the effect of the incoming distur-
bance and enforce robust closed-loop stability. To illustrate
how this can be done, let us assume that the failure in the
control system of unit i occurs at t � Tf, and that the failure is
detected immediately (the effect of possible delays in fault-
detection and how to account for them are discussed below in
the subsection on communication logic design). Consider some
unit j, downstream from the i-th unit, that is described by the
following model

ẋj � fj
kj� xj� � Gj

kj� xj�uj
kj � 	i �

p�1

i�1

Wj,p
kj � xj� xp � �

p�i

j�1

Wj,p
kj � xj�
p

(6)

for i � 1, . . . , l � 1, j � i � 1, . . . , l, where 	i � 0 for
i � 1, and 	i � 1 for i � 2, . . . , l � 1. The third term on
the righthand side of Eq. 6 describes the input from all the units
upstream of unit i. The 
p’s are time-varying, but bounded
functions of time that describe the evolution of the states of the
i-th unit and all the units downstream from unit i, but upstream
from unit j (that is, 
p(t) � xp(t), p � i, . . . , j � 1). The
choice of using the notation 
p, instead of xp, for units i, . . . ,
j � 1 is intended to distinguish the effect of these units (where
the failure originates and propagates downstream) as nonvan-
ishing disturbances to the j-th unit, compared with the units
upstream from unit i which are unaffected by the failure. Note
that for unit j � i � 1, which immediately follows the failing
unit, the only source of disturbances that should be accounted
for in its controller design is that coming from the i-th unit with
the failing control system. However, for units that lie further
downstream, that is, for j � i � 2, . . . , l, the controller
design needs to account for the additional disturbances result-
ing from the effect of the failure on the intermediate units
separating units i and j.

For a system of the form of Eq. 6, one possible choice of a
stabilizing controller is the following bounded robust Lya-
punov-based control law proposed in 10 which has the general
form
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uj
kj � �rj�xj, uj,max

kj , 
b��
T�xj� (7)

where

rj� xj, uj,max
kj , 
b�

�
�1� xj� � ���2� xj��

2 � �uj,max
kj ��T� xj���4

���T� xj���2�1 � �1 � �uj,max
kj ��T� xj���2�

(8)

�1� xj� � �� xj� � ��j
kj� xj� � �

p�i

j�1

�j
kj
b

p�Tf���p
T� xj���

 � � xj�
� xj� � �j

kj� (9)

�2� xj� � �� xj� � �j
kj� xj� � �

p�i

j�1

�j
kj
b

p�Tf���p
T� xj�� (10)


b
p(Tf) :� maxt�Tf

� xp(t)�, p � i, . . . , j � 1 are positive real
numbers that capture the size of the disturbances, originating
from the failure in the control system of the i-th unit, and
propagating downstream, �p( xj) � �LWj,p

kj Vj
kj��xj� is a row vec-

tor whose constituent components are the Lie derivatives of Vj
kj

along the column vectors of the matrix Wj,p
kj , Vj

kj, is a robust
control Lyapunov function for the j-th system under the kj-th
control configuration, and �j

kj  0, �j
kj  1, �j

kj  0 are tuning
parameters. Estimates of the disturbance bounds 
b

p, can be
obtained by comparing, through simulations, for example, the
responses of the p-th unit under the pre- and post-failure
configurations (see the simulation studies section for an exam-
ple). It should be noted that since all the incoming disturbances
to unit j take effect only after Tf, the controller of Eqs. 7–10 is
implemented only for t � Tf. For t � Tf, the nominal
controllers of Eqs. 3 and 4 are used.

Remark 2: When compared with the nominal controller of
Eqs. 3 and 4, we observe that the nonlinear gain function for
the fallback controller rj� in Eqs. 7–10, depends not only on
the size of actuator constraints uj,max

kj , and the particular fall-
back control configuration being used kj, but also on the size of
the disturbances caused by the occurrence of failure 
b

p. This
gain reshaping procedure is carried out in order to guarantee
constraint satisfaction, and enforce robust closed-loop stability,
with an arbitrary degree of attenuation of the effect of the
failure on the j-th unit downstream. Note that, owing to the
assumption of a persistent failure in the i-th unit (that is, a
nonvanishing disturbance), asymptotic closed-loop stability
cannot be achieved for any of the units downstream. Instead,
practical stability can be enforced, whereby the states of each
unit are driven, in finite-time, to a neighborhood of the origin
whose size can be made arbitrarily small by selecting the
controller tuning parameters (�j

kj, �j
kj, �j

kj) appropriately (see 14

for a detailed proof). These closed-loop properties are enforced
within a well-defined state-space region that is explicitly char-
acterized in the next subsection.

Remark 3: Note that since the processing units upstream of
unit i are not affected by its failing control system, the nominal

controllers designed for these units (see Eqs. 3 and 4) will
asymptotically stabilize their states xp, p � 1, . . . , i � 1, at
the origin regardless of the failure; hence, these state can be
viewed as bounded vanishing inputs to the j-th unit and, thus,
need not be accounted for in the controller design. The terms
describing the intermediate units p � i � 1, . . . , j � 1
cannot, however, be treated as vanishing inputs. The reason is
that even if the control systems of these units are immediately
and appropriately reconfigured to suppress the effect of the
failure, their controllers, as discussed earlier, will at best be
able to drive the states of these units, in finite time, only near
the origin without achieving asymptotic convergence. Finally,
we note that our framework can handle incipient failures in
upstream units by treating them as slowly-varying disturbances
in the downstream units through the robust controller design.
This is possible because the robust nonlinear controller design
requires only a bound on the magnitude of the disturbance, and
does not impose any limitations on the rate of change of the
disturbance.

Remark 4: It should be noted that the fault-tolerant control
system design methodology proposed in this section is not
restricted to the use of the bounded controller designs given in
Eqs. 3 and 4 (for the nominal case) and in Eqs. 7–10 (for the
case with failure). Any other stabilizing controller design that
accounts for the constraints, enforces the desired robustness
properties under failure, and provides an explicit characteriza-
tion of the stability region can be used, including the recently-
developed hybrid predictive control algorithms,40,41,17,42 which
embed the implementation of predictive controllers within the
explicitly-characterized stability region of Lyapunov-based
nonlinear bounded controllers.

Remark 5: Control Lyapunov function (CLF)-based stabi-
lization of nonlinear systems has been studied extensively in
the nonlinear control literature (for example, see 39,43,44). The
construction of constrained CLFs (that is, CLFs that take the
constraints into account) remains a difficult problem (espe-
cially for nonlinear systems) that is the subject of ongoing
research. For several classes of nonlinear systems that arise
commonly in the modeling of practical systems, systematic and
computationally feasible methods are available for constructing
unconstrained CLFs (CLFs for the unconstrained system), by
exploiting the system structure. Examples include the use of
quadratic functions to construct CLFs. In this work, the
bounded controllers in Eqs. 3 and 4 and Eqs. 7–10 are designed
using unconstrained CLFs, which are also used to explicitly
characterize the associated stability regions. While the result-
ing estimates do not necessarily capture the entire domain of
attraction, we will use them throughout the article only for a
concrete illustration of the basic ideas of the results. It is
possible to obtain estimates using other methods, such as
Zubov’s method45 and a combination of several CLFs which
can yield substantially less conservative estimates.

Remark 6: The treatment of the failure in the control system
of unit i as a bounded disturbance is rooted in the assumption
that xi, while moving away from the origin after failure, will
eventually settle at some other (undesirable) steady-state (recall
that this is how the disturbance bound is computed). In the case
when the i-th processing unit has only a single steady-state in
the post-failure configuration, however, the failure cannot be
treated as a bounded disturbance since xi will simply grow
unbounded after the failure and not settle anywhere. In such a
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case, unless the control system of unit i is fixed in time, a
shutdown of the plant will be unavoidable.

Characterization of fault-recovery regions

Consider once again the j-th processing unit described by the
model of Eq. 6. In the previous section, we outlined how to
design, for a given fallback control configuration kj � �j, a
robust feedback controller that, when implemented, can pre-
serve closed-loop stability for this unit in the event of control
system failure in some upstream unit, i. Given that actuator
constraints place fundamental limitations on the ability of the
controller to steer the closed-loop dynamics at will, it is im-
portant for the control system designer to explicitly character-
ize these limitations by identifying, or estimating, the set of
admissible states starting from where the controller of Eqs.
7–10 is guaranteed to robustly stabilize the closed-loop system
for unit j (region of robust closed-loop stability). Since sup-
pression of the upstream failure effects on unit j is formulated
as a robust stabilization problem, we shall refer to the robust
stability region associated with any of the fallback configura-
tions, also as the fault-recovery region. As discussed in the next
subsection, the characterization of this region plays a central
role in devising the appropriate switching policy that reconfig-
ures the control system and ensures fault-recovery.

For the class of robust control laws given in Eqs. 7–10, using
a Lyapunov argument, one can show that the set

�j
kj�uj,max

kj , 
b�Tf�� :� �xj � �nj : ��xj� � �j
kj�xj�

� �
p�i

j�1

�j
kj
b

p�Tf���p
T�xj�� � uj,max

kj ��T�xj��� (11)

describes a region in the state space where the control action
satisfies the constraints, and the Lyapunov function decays
monotonically along the trajectories of the closed-loop system
outside of a small neighborhood around the origin (see 10 for
the detailed mathematical analysis). Note that the size of this
set depends both on the magnitude of the constraints and the
size of the disturbance (which in turn depends on the failure
time, Tf). In particular, as the constraints get tighter and/or the
disturbances greater, the set becomes smaller. Since �j

kj, how-
ever, is in general, not an invariant set, there is no guarantee
that a trajectory starting within �j

kj will remain within it for all
the times that the kj-th control configuration is active, that is,
�j

kj by itself is not necessarily a stability region. One way to
estimate the fault-recovery region associated with a given
control configuration using Eq. 11 is to construct an invariant
subset—preferably the largest—within �j

kj, which we denote
by �j

kj(uj,max
kj , 
b(Tf)) (for example, �j

kj can be chosen as a
level-set of Vj

kj). For a given fallback configuration kj, imple-
mentation of the controller of Eqs. 7–10 at any time that the
state is within �j

kj ensures that the closed-loop trajectory stays
within the region defined by �j

kj—and, hence, Vj
kj continues to

decay monotonically outside of a small neighborhood around
the origin—for all the times that the kj-th configuration is
active. The estimate provided by �j

kj can be conservative but
can also be improved using computer simulations. This ap-

proach was followed in the simulation examples in order to
obtain appropriate estimates of the fault-recovery regions.

Remark 7: Note that, unlike the nominal stability regions
associated with the nominal controllers of Eqs. 3 and 4 and
obtained from Eq. 5, the fault-recovery region of any down-
stream unit j, cannot be computed a priori (that is, before plant
startup) since this region, as can be seen from Eq. 11, depends
on the failure time which is unknown prior to startup. However,
once the failure occurs, estimates of the disturbance bounds can
be computed by the local supervisors of the upstream units
i, . . . , j � 1 (through on-line simulations of each unit’s
response under the pre- and post-failure configurations) and
then transmitted, through the communication network, to unit j
which in turn uses these bounds to construct, on-line, both the
controller and the fault-recovery region (see the subsection on
communication logic for a discussion on how the resulting
computational delays can be handled).

Supervisory switching logic design

Having designed the robust feedback control law and char-
acterized the fault-recovery region associated with each fall-
back configuration, the third step in our design methodology is
to derive the switching policy that the local supervisor of the
downstream unit j, needs to follow in reconfiguring the local
control system (that is, activating/deactivating the appropriate
fallback configurations) in the event of the upstream failure. In
the general case when more than one fallback control config-
uration is available for the unit under consideration, the ques-
tion is how to decide which of these configurations can and
should be activated at the time of failure in order to preserve
closed-loop stability. The key idea here is that because of the
limitations imposed by constraints on the fault-recovery region
of each configuration, the local supervisor can only activate the
configuration whose fault-recovery region contains the closed-
loop state at the time of the failure. Without loss of generality,
let the active control configuration in the j-th unit, prior to the
occurrence of failure in unit i, be kj(Tf

�) � � for some � �
�j, where kj(Tf

�) � lim
t3Tf

�
kj�t� and Tf is the time that the

control system of unit i fails, then the switching rule given by

kj�t� � �, � t � Tf
�, if xj�Tf� � �j

��uj,max
� , 
b�Tf�� (12)

for some � � �j, � � �, guarantees that the closed-loop
system of the j-th unit is stable. The implementation of the
above switching law requires monitoring, by the local super-
visor, of the evolution of the closed-loop state trajectory with
respect to the fault-recovery regions associated with the various
control actuator configurations. Another way to look at the
earlier switching logic is that it implicitly determines, for a
fixed fallback configuration, the times that the control system
of the j-th unit can tolerate upstream failures by switching to
this configuration. If failure occurs at times when xj lies outside
the fault-recovery region of all available configurations, this
analysis suggests that either the constraints should be re-
laxed—to enlarge the fault-recovery region of the given con-
figurations—or additional fallback control loops must be in-
troduced. The second option, however, is ultimately limited by
the maximum allowable number of control loops that can be
designed for the given processing unit. If neither option is
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feasible, a shutdown could be unavoidable. The proposition of
constructing the switching logic on the basis of the stability
regions was first proposed in 12 for the control of switched
nonlinear systems.

Design of the communication logic

Given the distributed interconnected nature of the plant
units—and, thus, the potential for failure effects propagating
from one unit to another—an essential element in the design of
the fault-tolerant control system is the use of a communication
medium that ensures fast and efficient transmission of infor-
mation during failure events. As discussed in the introduction,
communication networks offer such a medium that is both fast
(relative to the typically slow dynamics of chemical processes)
and inexpensive (relative to current point-to-point connection
schemes which require extensive cabling and higher mainte-
nance time and costs). The ability of the network to fulfill this
role, however, requires that we devise the communication
policy in a way that respects the inherent limitations in network
resources, such as bandwidth constraints and overall delays, by
minimizing unnecessary usage of the network.

In the section on feedback controller synthesis, we have
already discussed how the bandwidth constraint issue can be
handled by formulating the problem as a robust control prob-
lem, where the failure in the control system of the i-th pro-
cessing unit and the subsequent effects on units i � 1, . . . ,
j � 1 are treated as a bounded nonvanishing disturbances that
affect unit j downstream. The communication policy requires
that the local supervisors of units i, . . . , j � 1 perform the
following tasks: (1) compute the disturbance bounds using the
process model of each unit, and (2) send this information,
together with other relevant information, such as the failure
type, the failure time and operating conditions, to the plant
supervisor. The plant supervisor in turn forwards the informa-
tion to the local supervisor of unit j utilizing the plant-wide
communication network (see Figure 1b). This policy avoids
unnecessary overloading of the network (which could result
when measurements from the upstream units are sent continu-
ously to unit j), while also guaranteeing fault-tolerance in the
downstream units. The idea of using knowledge of the plant
dynamics to balance the tradeoff between bandwidth limita-
tions (which favor reduced communication of measurements)
and optimum control performance (which favors increased
communication of measurements) is conceptually aligned with
the notion of minimum attention control (for example, see
46,27). In our work, however, this idea is utilized in the context
of fault-tolerant control.

The second consideration in devising the communication
logic is the issue of time delays which typically result from the
time sharing of the communication medium, as well as the
computing time required for the physical signal coding and
communication processing. The characteristics of these time
delays depend on the network protocols adopted as well as the
hardware chosen. For our purposes here, we consider an overall
fixed time delay (which we denote by �max

j ) that combines the
contribution of several delays, including: (1) delays in fault-
detection, (2) the time that the local supervisors of units i, . . . ,
j � 1 take to compute the effective disturbance bounds
(through simulations comparing the pre- and post-failure state
evolutions in each unit), (3) the time that the local supervisors

of units i, . . . , j � 1 take to send the information to the plant
supervisor, (4) the time that it takes the plant supervisor to
forward the information to the local supervisor of unit j, (5) the
time that it takes the local supervisor for unit j to compute the
fault-recovery region for the given fallback configurations us-
ing the information arriving from the upstream units, and the
time that it takes for the supervisor’s decision to reach and
activate the appropriate fallback configuration, and (6) the
inherent actuator/sensor dead-times.

Failure to take such delays into account can result in acti-
vating the wrong control configuration and subsequent insta-
bility. For example, even though the upstream failure may take
place at t � Tf, the fallback configuration in the control system
of unit j will not be switched in before t � Tf � �max

j . If the
delay is significant, then the switching rule in the previous
section should be modified such that the local supervisor for
unit j activates configuration kj � �, for which xj(Tf �
�max

j ) � �j
�(uj,max

� , 
b). This modification is yet another
manifestation of the inherent coupling between the switching
and communication logics. The implementation of the modi-
fied switching rule that accounts for delays requires that the
local supervisor of unit j be able to predict where the state
trajectory will be at t � Tf � �max

j (for example, through
simulations using the process model), and check whether the
state at this time is within the fault-recovery region of a given
fallback configuration. If not, then either an alternative fallback
configuration, for which the fault-recovery region contains the
state at the end of the delay, should be activated, or a shutdown
maybe unavoidable. The availability of several fallback control
loops, however, is limited by process design considerations
which dictate, for example, how many variables can be used for
control. Figure 3 summarizes the overall fault-tolerant control
strategy for a two-unit plant.

Simulation Studies

In this section, we present two simulation studies that dem-
onstrate the application of the proposed fault-tolerant control
system design methodology to two chemical processes. In the
first application, a single chemical reactor example is consid-
ered to demonstrate the idea of reconfiguring the local control
system in the event of failures on the basis of the stability
regions of the constituent control configurations, and how
overall communication delays impact the reconfiguration logic.
In the second application, a cascade of two chemical reactors in
series is considered to demonstrate how the issue of failure
propagation between a multiunit plant is handled within the
proposed methodology, and how the various interplays be-
tween the feedback, supervisory control and communication
tasks are handled in the multiunit setting.

Application to a single chemical reactor

Consider a well-mixed, nonisothermal continuous stirred-
tank reactor, where three parallel irreversible elementary exo-

thermic reactions of the form A ¡
k1

B, A ¡
k2

U, and A ¡
k3

R take
place, where A is the reactant species, B is the desired product,
and U, R are undesired byproducts. The feed to the reactor
consists of pure A at flow rate F, molar concentration CA0, and
temperature TA0. Due to the nonisothermal nature of the reac-
tions, a jacket is used to remove/provide heat to the reactor.
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Under standard modeling assumptions, a mathematical model
of the process can be derived from material and energy bal-
ances, and takes the following form

dT

dt
�

F

V
�TA0 � T� � �

i�1

3
��	Hi�

�cp
Ri�CA, T� �

Q

�cpV

dCA

dt
�

F

V
�CA0 � CA� � �

i�1

3

Ri�CA, T�

dCB

dt
� �

F

V
CB � R1�CA, T� (13)

where Ri(CA, T) � ki0exp(�Ei/RT)CA, CA and CB denote the
concentrations of the species A and B, respectively, T denotes
the temperature of the reactor, Q denotes the rate of heat input
to the reactor, V denotes the volume of the reactor, 	Hi, ki, Ei,

i � 1, 2, 3, denote the enthalpies, pre-exponential constants
and activation energies of the three reactions, respectively, cp

and � denote the heat capacity and density of fluid in the reactor.
The values of the process parameters and the corresponding
steady-state values are given in Table 1. It was verified that under
these conditions, the process model of Eq. 13 has three steady-
states: two locally asymptotically stable, and one unstable at (Ts,
CA

s , CB
s ) � (388 K, 3.59 kmol/m3, 0.41 kmol/m3).

The control objective is to stabilize the reactor at the (open-
loop) unstable steady-state. Operation at this point is typically
sought to avoid high temperatures while, simultaneously,
achieving reasonable reactant conversion. To accomplish this
objective in the presence of control system failures, we con-
sider the following manipulated input candidates:

1. Rate of heat input u1 � Q, subject to the constraint �Q�
� umax

1 � 2.7 
 106 KJ/hr.
2. Inlet stream temperature u2 � TA0 � TA0

s , subject to the
constraint �u2� � umax

2 � 100 K.
3. Inlet reactant concentration u3 � CA0 � CA0

s , subject to
the constraint �u3� � umax

3 � 4 kmol/m3.
Each of the earlier manipulated inputs represents a unique

control configuration (or control-loop) that, by itself, can sta-
bilize the reactor using available measurements of the reactor
temperature, reactant and product concentrations provided by
the sensors. The sensors and control actuators of each config-
uration are connected to the unit supervisor (for example, a
distant control room) over a communication network (see Fig-
ure 4). The first loop involving the heat input Q, as the
manipulated variable will be considered as the primary control
configuration. In the event of a total failure in this configura-
tion, however, the supervisor will have to activate one of the
other two fallback configurations in order to maintain closed-
loop stability. The main question that we address in this sim-
ulation study is how can the supervisor determine which con-
trol loop to activate once failure is detected in the active
configuration, and how overall communication delays influ-
ence this decision.

Following the proposed methodology, we initially synthe-

Figure 4. Fault-tolerant control structure for a single
unit operation, integrating supervisory and
feedback control over a communication net-
work.

Figure 3. Summary of the fault-tolerant control strategy,
for a two-unit plant, using communication net-
works.
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size, for each control configuration, a feedback controller that
enforces asymptotic closed-loop stability in the presence of
actuator constraints. This task is carried out on the basis of the
process input/output dynamics. While our control objective is
to achieve full-state stabilization, auxiliary process outputs are
introduced here to facilitate transforming the system of Eq. 13
into a form more suitable for explicit controller synthesis. In
the case of the process of Eq. 13, a further simplification can be
obtained by noting that CB does not affect the evolution of
either T or CA and, therefore, the controller design can be
addressed on the basis of the T and CA equations only. A
controller that stabilizes the (T, CA) subsystem also stabilizes
the entire closed-loop system. For the first configuration with
u1 � Q, we consider the output y1 � (CA � CA

s )/CA
s . This

choice yields a relative degree of r1 � 2 for the output with
respect to the manipulated input. The coordinate transforma-
tion (in error variables form) takes the form: e1 � (CA �
CA

s )/CA
s , e2 � (F/V)(CA0 � CA)/CA

s � ¥i�1
3 ki0exp(�Ei/

RT)CA/CA
s . For the second configuration with u2 � TA0 �

TA0
s , we choose the output y2 � (CA � CA

s )/CA
s , which yields

the same relative degree as in the first configuration r2 � 2,
and the same coordinate transformation. For the third config-
uration, with u3 � CA0 � CA0

s , we choose the output y3 �
(T � Ts)/Ts, which yields a relative degree of r3 � 2, and a
coordinate transformation of the form: e1 � (T � Ts)/Ts, e2 �
(F/V)(TA0 � T)/Ts � ¥i�1

3 [(�	Hi)/�cpTs]Ri(CA, T) �
Q/�cpVTs.

Note that since our objective is full-state stabilization, the
choice of the output in each case is really arbitrary. However,
to facilitate the controller design and subsequent stability anal-
ysis, we have chosen in each case an output that produces a
system of relative degree 2. For each configuration, the corre-
sponding state transformation yields a system, describing the
input/output dynamics, of the following form

ė � Ae � lk�e� � b�kuk

:� f�k�e� � g� k�e�uk, k � 1, 2, 3 (14)

where A � 	0 1
0 0
, b � 	0

1
, lk� � Lfk

2 hk( x), �k� �

Lgk
Lfk

hk( x), hk( x) � yk is the output associated with the k-th

configuration, x � [ x1 x2]T with x1 � (T � Ts)/Ts, x2 �
(CA � CA

s )/CA
s , and the functions fk� and gk� can be

obtained by rewriting the (T, CA) model equations in Eq. 13 in
the form of Eq. 1. The explicit forms of these functions are
omitted for brevity. Using a quadratic Lyapunov function of
the form Vk � eTPke, where Pk is a positive-definite symmet-
ric matrix that satisfies the Riccati inequality ATPk � PkA �
PkbbTPk � 0, we synthesize, for each control-loop, a bounded
nonlinear feedback control law of the form of Eqs. 3 and 4 and
characterize the associated stability region with the aid of Eq.
5. Figure 5 depicts the stability region, in the (T, CA) space, for
each configuration. The stability region of configuration 1
includes the entire area of the plot. The stability region of
configuration 2 is the entire area to the left of the solid line,
while the stability region of configuration 3 covers the area to
the right of the dashed vertical line. The desired steady-state is
depicted with an asterisk that lies in the intersection of the three
stability regions.

Figure 5. Stability regions of the three control configu-
rations (I, II, III) considered for the chemical
reactor example of Eq. 13.

Figure 6. Evolution of the closed-loop state profiles un-
der repeated control system failures and sub-
sequent switching by the supervisor from con-
figuration 1 (solid lines) to configuration 2
(dashed lines) to configuration 3 (dotted lines).
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We first consider the case when no time-delays are involved,
and the supervisor can switch immediately between the differ-
ent control loops in the event of failures. To this end, the
reactor is initialized at T(0) � 300 K, CA(0) � 4.0 kmol/m3,
CB(0) � 0.0 kmol/m3, using the Q control configuration, and
the supervisor proceeds to monitor the evolution of the closed-
loop trajectory. As shown by the solid parts of the closed-loop
trajectory in Figure 5, the state profiles in Figure 6, and the rate
of heat input profile in Figure 7, the controller proceeds to drive
the closed-loop trajectory towards the desired steady-state until
the actuator of the Q-configuration experiences a total failure
after 2.0 h of startup (simulated by fixing Q � 0 for all t � 2.0
h). From the solid part of the trajectory in Figure 5, it is clear
that the failure of the primary control configuration occurs
when the closed-loop trajectory is within the stability region of
the second control configuration, and outside the stability re-
gion of the third control configuration. Therefore, on the basis

of the switching logic, the supervisor immediately activates the
second configuration, with TA0 as the manipulated input. The
result is shown by the dashed parts of the closed-loop trajectory
in Figure 5, the state profiles in Figure 6 and the inlet stream
temperature profile in Figure 7 where it is seen that, upon
switching to the TA0 configuration, the corresponding control-
ler continues to drive the closed-loop trajectory closer to the
desired steady-state. At t � 15.0 h, we consider another total
failure in the control actuators of the TA0 configuration (sim-
ulated by fixing TA0 for all t � 15.0 h). From the dashed part
of the trajectory in Figure 5, it is clear that this failure occurs
when the closed-loop trajectory is within the stability region of
the third configuration. Therefore, the supervisor immediately
activates the third control configuration, with CA0 as the ma-
nipulated input, which then successfully stabilizes the reactor
at the desired steady-state (see the dotted parts of the closed-
loop trajectory in Figure 5, the state profiles in Figure 6, and the
inlet reactant concentration in Figure 7).

To demonstrate the effect of delays on the implementation of
the switching logic, we consider an overall delay, between the
supervisor and the constituent control configurations, of
�max � 8.0 min (accounting for possible delays in fault-
detection, control computations, network transmission and ac-
tuator activation). In this case, the reactor is initialized at
T(0) � 300 K, CA(0) � 4.0 kmol/m3, CB(0) � 0 kmol/m3

under the first control configuration (with Q as the manipulated
input). The actual failure of this configuration occurs at t � 10
h which, as can be seen from Figure 8, is a time when the
closed-loop state trajectory is within the intersection of all three
stability regions. In the absence of delays, this suggests that
switching to either configuration 2 or 3 should preserve closed-
loop stability. We observe, however, from Figure 9 that, when
the delay is present, activation of configuration 3 leads to
instability (dotted profiles), while activation of configuration 2
achieves stabilization at the desired steady-state (dashed pro-
files). The reason is the fact that, for the time period between
the actual failure (t � 10 h), and the activation of the backup
configuration (t � 10.13 h), the process evolves in an open-
loop fashion leading the trajectory to move out of the intersec-
tion zone such that at t � 10.13 h the state is within the

Figure 8. Closed-loop state trajectory leaving the inter-
section zone (I, II & III) during the delay period
(dashed-dotted trajectory) rendering configu-
ration 3 destabilizing (dotted trajectory).

Figure 7. Manipulated input profiles for each control
configuration as the supervisor switches from
configuration 1 to configuration 2 at t � 2 h,
and from configuration 2 to configuration 3 at
t � 15 h.
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stability region of configuration 2 and outside that of configu-
ration 3 (see Figure 8). The corresponding manipulated input
profiles are shown in Figure 10. To activate the correct con-
figuration in this case, the supervisor needs to predict where the
state trajectory will be at the end of the communication delay
period.

Application to two chemical reactors in series

In this section, we revisit the two chemical reactors in series
of Eq. 2, introduced earlier in the motivating example section,
to illustrate the implementation of the proposed fault-tolerant
control methodology. To this end, the reactors are initialized at
(T1(0), CA1(0)) � (300 K, 4.0 kmol/m3), and (T2(0),
CA2(0)) � (440 K, 4.0 kmol/m3). Under normal operating

conditions (with no failures), each reactor is controlled by
manipulating the rate of heat input, using a bounded nonlinear
control law of the form of Eqs. 3 and 4.

For the first CSTR, the controller design procedure is the
same as the one used for the Q configuration in the previous
simulation example. For the second CSTR, we design the
controller on the basis of the temperature equation only. Spe-
cifically, a quadratic function of the form V2 � 1

2
a2( x2

(1))2,
where x2

(1) � (T2 � T2
s )/T2

s , is used to design the controller
and estimate the resulting stability region using Eq. 5. The
values of the controller tuning parameters are chosen as a2 �
0.5 and �2 � 0.0001. Figure 11 (solid profiles) and Figure 12
show the resulting closed-loop state and manipulated input
profiles when the controllers are implemented without failure
for both reactors. We observe that each controller successfully
stabilizes the corresponding reactor at the desired steady-state.

Consider now a total failure in the actuators of both control
systems (Q1 and Q2) at Tf � 5 min. In this case, both reactors

Figure 10. Manipulated input profiles when configura-
tion 1 fails at t � 10 h, and an overall delay of
�max � 8.0 min elapses before the backup
configuration is activated.

Figure 9. Evolution of the closed-loop state profiles
when configuration 1 (solid lines) fails at t �
10 h, and an overall delay of �max � 8.0 min
elapses before the backup configuration is ac-
tivated.
Activation of configuration 2 preserves closed-loop stability
(dashed lines) while activation of configuration 3 leads to
instability (dotted lines).
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revert to their open-loop mode of behavior and, consequently,
if no fallback control configuration is activated, the states move
away from the desired steady-state, as shown by the dashed
lines in Figure 11 for the first reactor, and Figure 13 for the
second reactor (note that CA03 remains fixed for all times since
it is not used as a manipulated variable in the prefailure
configuration). As stated in the motivating example subsection,
we assume that the controller failure in the first reactor is
permanent; and our objective is to prevent the propagation of
this effect to the second reactor. A permanent failure in the first
unit could be the result of lack of sufficient fallback configu-
rations, or because failure occurs at a time when the state is
outside the stability regions of all the available configurations
for this unit.

Using the proposed methodology, the supervisor of CSTR 1,
at the failure time, runs both open-loop and closed-loop sim-
ulations using the process model of CSTR 1 to estimate the size
of the disturbance affecting CSTR 2, and transmits this infor-

mation to the local supervisor of CSTR 2 through the commu-
nication network. The maximum disturbance size is propor-
tional to the largest discrepancy (after the failure time) between
the values of CA1, T1 in the well-functioning (solid lines in
Figure 11) and in the failed (dashed lines in Figure 11) modes.
Using this information, the local supervisor of CSTR 2 designs
a robust control law of the form of Eqs. 7–10 to stabilize CSTR
2, using the available fallback configuration with (Q2, CA03) as
the manipulated inputs, and constructs the associated fault-
recovery region for this configuration. The controller design
procedure involves rewriting the process model of CSTR 2 in
Eq. 2 in the form of Eq. 6, using the dimensionless variables,
xi

(1) � (Ti � Ti
s)/Ti

s, xi
(2) � (CAi � CAi

s )/CAi
s , i � 1, 2, and

with the states of CSTR 1 redefined as the disturbance variables

1(t) � [
1

(1)(t) 
1
(2)(t)]T, where 
1

(1)(t) � (F1T1
s /

V2T2
s )( x1

(1)(t) � 1) and 
1
(2)(t) � (F1CA1

s /V2CA2
s )( x1

(2)(t) �
1), for all t � Tf. Then, using a quadratic function of the form
V2 � 1

2
a2( x2

(1))2 � 1
2

a2( x2
(2))2, the controller of Eqs. 7–10 is

constructed and its fault-recovery region is computed with the

Figure 12. Evolution of the closed-loop state and manip-
ulated input profiles for CSTR 2 under a well-
functioning control system.

Figure 11. Evolution of the closed-loop state and manip-
ulated input profiles for CSTR 1 under a well-
functioning control system (solid), and when
the control actuator fail at t � 5 min (dashed).
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aid of Eq. 11. The disturbance bound is computed as 
b
1 �

supt�Tf
�
1(t)�. The values of the controller tuning parameters

are selected to be a2 � 0.5, �2 � 0.0001, �2 � 2.0001 and
�2 � 0.0001. The fault-recovery region is depicted by the
shaded area in Figure 14.

From Figure 14, we observe that the failure occurs when the
states of CSTR 2 are within the fault-recovery region. There-
fore, assuming no delays in the fault-detection, computations
and communication processing (that is, instantaneous switch-
ing), when the fallback controllers are activated, closed-loop
stability is preserved and the closed-loop states converge close to
the desired steady-state as shown by the solid lines in Figure 13.

When delay effects are taken into account, we see from
Figure 14 (top plot) that if an overall delay of 3 min (account-
ing for delays in fault-detection, controller computations, in-
formation transmission and actuator activation) elapses be-
tween the failure and the activation of the (Q2, CA03)
configuration—during this delay, CSTR 2 evolves in an open-
loop mode as indicated by the dotted line in Figure 14 (top
plot)—the state at the end of the delay still resides within the
fault-recovery region and, therefore, closed-loop stability is

Figure 13. Evolution of the closed-loop state and ma-
nipulated input profiles for CSTR 2 when the
controller of the fallback configuration (Q2,
CA03) is activated immediately after the fail-
ure (solid lines), and the open-loop state
and input profiles resulting when the fall-
back configuration is not activated after the
failure (dashed lines).

Figure 14. Fault-recovery region of the fallback control
configuration (Q2, CA03) for CSTR 2, with con-
straints �Q2� ≤ 2.8 � 106 KJ/hr and �CA03 �
CA03

s � ≤ 0.4 kmol/m3 when failure occurs at Tf

� 5 min.
Activation of the fallback configuration after a 3 min delay
preserves closed-loop stability (top plot), while activation
after 4.1 min delay fails to ensure fault-tolerance (bottom
plot).
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preserved by switching to the (Q2, CA03) configuration at the
end of the delay. The corresponding state and input profiles are
shown by the solid lines in Figures 14 and 15. By contrast, we
see from the bottom plot in Figure 14 that when an overall
delay of 4.1 min is considered, the state at the end of the delay
lies outside the fault-recovery region; hence, the fallback con-
figuration cannot stabilize the system at the desired steady-
state, as can be seen from the dashed lines in Figures 14 and 15.

Examination of Figure 14 provides useful insights into how
the tradeoff between the controller design, switching and com-
munication logics can be managed to ensure fault-tolerance.
For example, the picture suggests that with a larger fault-
recovery region, even large delays maybe tolerated by switch-
ing to this particular configuration. A larger region can be
obtained by relaxing the constraints. Figure 16 shows the
resulting fault-recovery region for the (Q2, CA03) configuration
when the constraints are relaxed to �Q2� � umax

Q2 � 1.4 
 107

KJ/hr and �CA03 � CA03s� � umax
CA03 � 2.0 kmol/m3. In this

case, the fault-recovery region includes the entire area of the
plot. As a result, activation of the fallback configuration,
whether after 3 min or 4.1 min from the failure time, stabilizes
the reactor since the state at the end of the delay in both cases
is contained within the fault-recovery region. Figure 17 shows
the corresponding closed-loop state and input profiles of CSTR
2 for both scenarios.

Conclusions

In this work, we presented a methodology for the design of
fault-tolerant control systems for chemical plants with distrib-
uted interconnected processing units. Bringing together tools
from Lyapunov-based nonlinear control and hybrid systems
theory, the approach is based on a hierarchical architecture that
integrates lower-level feedback control of the individual units
with upper-level logic-based supervisory control over commu-
nication networks. The local control system for each unit
consists of a family of control configurations for each of which
a stabilizing feedback controller is designed, and the stability

Figure 15. Evolution of the closed-loop state and input
profiles when the failure occurs at Tf � 5
min, and the fallback configuration (Q2,
CA03), with constraints �Q2� ≤ 2.8 � 106

KJ/hr and �CA03 � CA03
s � ≤ 0.4 kmol/m3 is

activated after a total delay of 3 min (solid
lines), and after a total delay of 4.1 min
(dashed lines).

Figure 16. Fault-recovery region of the fallback con-
trol configuration (Q2, CA03) for CSTR 2, with
constraints �Q2� ≤ 1.4 � 107 KJ/hr and
�CA03 � CA03

s � ≤ 2.0 kmol/m3 when failure
occurs at Tf � 5 min.
Activation of the fallback configuration after a delay of
either 3 min or 4.1 min ensures fault-tolerance.
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region is explicitly characterized. The actuators and sensors of
each configuration are connected, via a local communication
network, to a local supervisor that orchestrates switching be-
tween the constituent configurations, on the basis of the stabil-
ity regions, in the event of failures. The local supervisors

communicate, through a plant-wide communication network,
with a plant supervisor responsible for monitoring the different
units and coordinating their responses in a way that minimizes
the propagation of failure effects. The communication logic is
designed to ensure efficient transmission of information be-
tween units while also respecting the inherent limitations in
network resources by minimizing unnecessary network usage
and accounting explicitly for the effects of possible delays due
to fault-detection, control computations, network communica-
tion and actuator activation. Explicit guidelines for managing
the various interplays between the coupled tasks of feedback
control, fault-tolerance and communication were provided. The
efficacy of the proposed approach was demonstrated through
chemical process examples.
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