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The objective of the present manuscript is to examine the performance improvement of a class of
nonlinear transport processes subject to spatiotemporally varying disturbances through the employment
of a comprehensive and systematic actuator activation and controller scheduling policy. To attain this
objective, it is assumed that multiple groups of actuators are available with only one such actuator group
being active over a time interval of fixed length while the remaining actuator groups are kept dormant.
Using well-established enhanced controllability and performance improvement measures, the candidate
actuator groups are first placed at locations that individually provide certain robustness with respect to
an appropriately defined "worst'' spatial distribution of disturbances. Once the multiple actuator groups
are in place, a switching scheme that dictates the switching of a different actuator group at different
time intervals, as well as the corresponding control signal supplied to it while being active, is developed.
Embedded in the decision policy is the activation of actuators that lie spatially closer to the spatiotem-
poral disturbances, thereby improving the control authority of the actuators and enhancing the ability
of the system to minimize the effects of this class of disturbances. Indeed, entering disturbances that
excite different system modes at different time intervals are best handled by employing the actuators
that have increased spatial controllability for the above disturbance modes while simultaneously satisfy
certain performance measures. In this manner, the control system designed engages the actuators that are
better suited to efficiently perform spatiotemporal disturbance compensation over the duration of certain
time intervals. The proposed method is demonstrated through simulations using two typical quasi-linear
highly dissipative partial differential equation examples.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Transport-reaction processes are characterized by highly non-
linear behavior owing to complex reaction mechanisms and strong
spatial variations due to the underlying diffusion and convection
phenomena. Examples include the chemical vapor deposition of
thin films, the Czochralski crystallization of high-purity crystals as
well as PEM fuel-cell systems and biological processes. The dynamic
models of transport-reaction processes over finite spatial domains
typically consist of linear/nonlinear parabolic partial differential
equation (PDE) systems whose spatial differential operators are
characterized by a spectrum that can be partitioned into a finite
(possibly unstable) slow part and an infinite stable fast comple-
ment (Curtain and Pritchard, 1978). This allows the construction
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of finite-dimensional controllers based on reduced order mod-
els that can guarantee stabilization of the infinite-dimensional
PDE system. Specifically, the traditional approach for control of
linear/quasi-linear parabolic PDEs involves the application of spa-
tial discretization techniques to the PDE system to derive systems
of ordinary differential equations (ODEs) that accurately describe
the dynamics of the dominant (slow) modes of the PDE system.
The finite-dimensional systems are subsequently used as the basis
for the synthesis of finite-dimensional controllers (e.g., see Balas,
1979; Curtain, 1982). While this approach works well for linear
parabolic PDEs, a potential drawback of this approach, in the con-
text of quasi-linear parabolic PDEs, is that the number of modes
that should be retained to derive an ODE system that yields the
desired degree of approximation may be very large, leading to
complex controller design and high dimensionality of the resulting
controllers. Motivated by these considerations, significant recent
work has focused on the development of a general framework for
the synthesis of low-order controllers for quasi-linear parabolic
PDE systems (and other highly dissipative PDE systems that arise
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in the modeling of spatially distributed systems) on the basis of
low-order nonlinear ODE models derived through a combination of
the Galerkin method (using analytical or empirical basis functions)
with the concept of inertial manifolds (Christofides and Daoutidis,
1997; Armaou and Christofides, 2000; Baker and Christofides, 2000;
Christofides, 2001). The approaches proposed in the above works,
however, do not address the issue of actuator and controller schedul-
ing to improve closed-loop performance.

In the context of optimal actuator placement and scheduling for
parabolic PDEs, previous work (Antoniades and Christofides, 2001)
has led to the development of a methodology for the computation
of optimal locations of point control actuators for nonlinear feed-
back controllers in transport-reaction processes described by a broad
class of quasi-linear parabolic PDEs. Initially, Galerkin's method was
employed to derive finite-dimensional approximations of the PDE
system which were used for the synthesis of stabilizing nonlinear
state feedback controllers via geometric techniques. Then, the op-
timal location problem was formulated as the one of minimizing a
meaningful cost functional that includes penalty on the response of
the closed-loop system and the control action and is solved by using
standard unconstrained optimization techniques. This work estab-
lished that the solution to this problem, which is obtained on the
basis of the closed-loop finite-dimensional system, is near-optimal
for the closed-loop infinite-dimensional system. Beyond the actua-
tor placement problem, research efforts have also studied the op-
timal sensor placement problem for certain classes of distributed
parameter systems (see, for example, Alonso et al., 2004a,b). In ad-
dition to these works, the problem of control actuator scheduling
for parabolic PDEs has been addressed in El-Farra and Christofides
(2004) and El-Farra and Ghantasala (2007) within a hybrid control
framework, where the control system consists of a family of con-
troller configurations (e.g., a family of feedback laws and/or a family
of actuator/sensor spatial arrangements) together with a higher-level
supervisor that uses logic to orchestrate switching between these
control configurations. An example where consideration of hybrid
control is necessary is the problem of control actuator failure. In this
case, upon detection of a fault in the operating actuator configura-
tion, it is often necessary to switch to an alternative well-functioning
actuator configuration with a different spatial placement of the ac-
tuators in order to preserve closed-loop stability. Switching between
spatially distributed actuators provides a means for fault-tolerant
control of spatially distributed systems.

At around the same time, considerable work on processes that
are modeled by parabolic linear PDEs with switching both actuat-
ing devices and control signals (Demetriou and Kazantzis, 2004c)
examined the performance improvement by actuator and controller
switching. Using a suboptimal method, the optimal value of a lin-
ear quadratic cost-to-go, parameterized by the admissible actuators,
was examined at the beginning of a given time interval. Both the
actuator and the associated controller were switched in according
to the static optimization scheme which activated the actuating de-
vice that produced the smallest optimal value of the associated cost-
to-go. Using a collocated actuator/sensor configuration, the above
method was extended to the case of output feedback control, where
a static output feedback controller was implemented (Demetriou
and Kazantzis, 2005). An additional aspect of the above actuator-
plus-switching scheme was to account for unknown disturbances,
and more specifically, unknown spatiotemporally varying distur-
bances, i.e., disturbances whose spatial distribution varies with time
and which is not accounted for in the controller design. Indirectly
addressing the spatial distribution of disturbances was the correct
placement of the candidate actuators, wherein locations were chosen
based on their ability to minimize the effects of the "worst'' spatial
distribution of disturbances. If the spatial distribution of disturbances
was known, then the actuator placement scheme considered such

distributions in the optimal locations. When the spatial distribution
of disturbances was not known, then either a "worst'' spatial distri-
bution was assumed or through another level of optimization, the
"worst'' spatial distribution of disturbances was found and used in
the placement of the actuating devices. Such a location scheme ren-
dered the actuator locations spatially robust. In fact, the preliminary
work in Demetriou and Kazantzis (2004b) addressed this issue for
the Kuramoto--Sivashinsky equation, by proposing various actuator
placement schemes in order to account for such disturbances, and
a performance-based actuator switching was presented in order to
address spatially "moving'' disturbances. The approach was verified
experimentally in welding processes with a single actuating device
(plasma arc welding) capable at moving at given spatial locations
and injecting thermal control signal at these locations (Demetriou
et al., 2003). An optimal controller-plus-actuator scanning scheme
was considered in Iftime and Demetriou (2005) for a general class of
linear infinite-dimensional systems. A linear quadratic cost was con-
sidered on a finite horizonwhich resulted in the solution of many op-
erator differential Riccati equations. An early attempt to address the
nonlinear case was examined in Demetriou and Kazantzis (2004a).
Controllers based on the linear part of a nonlinear PDEwere switched
in and out in order to account for the nonlinear dynamics of the
process and at the same time minimize the effects of spatiotempo-
rally varying disturbances. Similarly, actuating devices were switch-
ing in and out to provide fault tolerance for both temporary and
permanent actuator failures in linear distributed parameter systems
(Demetriou, 2003). Parallel to diffusion processes, considerable work
on flexible structures (both beams and plates) considered the actua-
tor switching for performance enhancement and robustness against
spatiotemporally varying disturbances (Demetriou, 2004; Demetriou
and Murugavel, 2004).

The objective of the present manuscript is to examine the perfor-
mance improvement of a class of nonlinear transport-reaction pro-
cesses subject to spatiotemporally varying disturbances through the
employment of a comprehensive and systematic actuator activation
and controller scheduling policy. To attain the above objective, it is
assumed that multiple groups of actuators are available with only
one such actuator group being active over a time interval of fixed
length while the remaining actuator groups are kept dormant. Us-
ing well-established enhanced controllability and performance im-
provement measures, the candidate actuator groups are first placed
at locations that individually provide certain robustness with respect
to an appropriately defined "worst'' spatial distribution of distur-
bances. Once the multiple actuator groups are in place, a switching
scheme is developed that dictates the switching of a different actu-
ator group at different time intervals, as well as the corresponding
control signal supplied to it while being active. Embedded in the
decision policy is the activation of actuators that lie spatially closer
to the spatiotemporal disturbances, thereby improving the control
authority of the actuators and enhancing the ability of the system
to minimize the effects of the above class of disturbances. Indeed,
entering disturbances that excite different system modes at differ-
ent time intervals are best addressed by employing the actuators
that have increased spatial controllability for the above disturbance
modes while simultaneously satisfy certain performance measures.
In this manner, the control system designed employs/engages the
actuators that are better suited to efficiently perform spatiotemporal
disturbance compensation over the duration of certain time inter-
vals. We apply the proposed method to typical examples of quasi-
linear highly dissipative PDEs.

2. Mathematical formulation

The focus of the present study is on quasi-linear highly dis-
sipative infinite-dimensional systems. Representative examples of
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such systems include many diffusion-reaction processes as well as
models of various fluid dynamic systems like Burgers' equation and
Kuramoto--Sivashinsky equation. The class of nonlinear infinite-
dimensional systems we consider here excludes those systems that
are singular (Lions, 1985), which in a sense is the class of systems
that do not admit a unique solution; hence we will be concerned
with well-posed problems (i.e., systems that do not have instabilities,
explosion phenomena, multiple solutions or bifurcation phenom-
ena). A representative example of such a well-posed problem is the
PDE (�/�t)x +�x + �x3 =u with ��0; the case with � <0 case results
in a singular system (Lions, 1985).

2.1. The 1-D Kuramoto--Sivashinsky equation

To motivate the present study, we first describe the 1-D con-
trolled Kuramoto--Sivashinsky equation where it is then viewed as
an abstract evolution equation in an appropriate Hilbert space. Burg-
ers' equation is subsequently presented and written once again as
an abstract nonlinear evolution equation in an appropriate Hilbert
space. Once the abstract framework is formulated, one may utilize
the proposed control and optimization scheme in any other nonlin-
ear transport-reaction process that can abstractly be written in the
samemanner. Specifically, the 1-D controlled Kuramoto--Sivashinsky
equation in the bounded interval � = [−�, �] is given by

�x(�, t)

�t
+ �

�4x(�, t)

��4
+ �2x(�, t)

��2
+ x(�, t)

�x(�, t)

��

=
m∑

i=1

bi(�)ui(t) + d(�)w(t), (1)

along with periodic boundary conditions

�jx

��j
(−�, t) = �jx

��j
(�, t), j : 0,1,2,3, (2)

and the initial condition

x(�,0) = x0(�), (3)

where x(�, t) denotes the state of system (1), � ∈ � = [−�, �] ⊂ R is
the spatial coordinate and � denotes the instability parameter. The
control signals ui ∈ R, i=1, . . . , m describe the temporal components
of the external excitation and the functions bi(�) are the actuator
distribution functions, describing the spatial influence of the actu-
ating devices. The spatial function d(�) denotes the distribution of
process disturbances and w(t) the associated temporal component.

In order to write the above system in a form that is conducive
to controller synthesis, actuator placement, actuator switching,
and derivation of an accurate finite-dimensional approximation, an
abstract formulation is employed, under which the system is math-
ematically represented through an evolution equation in the appro-
priate Hilbert space. Following the formulation adopted in Robinson
(2001) and Temam (1998), we consider as an appropriate state
space the space of square integrable periodic functions with zero
mean, defined via

H = L̇2(�) =
{
� ∈ L2(�),

∫ �

−�
�(�)d� = 0

}
, (4)

with the standard L2 inner product and induced norm denoted by
〈·, ·〉 and | · |, respectively. Associated with the above, are the two
interpolating spaces V and V ′ given by (Dautray and Lions, 2000)

V = Ḣ2
p (�), V ′ = H−2(�), (5)

where Ḣ2
p is a Sobolev space of order 2, defined as Ḣ2

p (�) = {� ∈
H : (

∑2
k=0 |�(k)|2)1/2 < ∞}, where �(k) = dk�/d�k is the distribu-

tional derivative of � of order k. A Gelf'and triple space naturally

emerges:

V ↪→ H ↪→ V ′, (6)

with both embeddings being dense and continuous (Adams, 1975;
Showalter, 1977). Here V is a reflexive Banach space with norm de-
noted by ‖·‖V , and V ′ denotes the conjugate dual of V (i.e., the space
of continuous conjugate linear functionals on V). Let ‖ · ‖∗ denote
the usual norm on V ′. In particular, it is assumed that |�|�cV ‖�‖V
for some positive constant cV . The notation 〈·, ·〉 will also be used to
denote the duality pairing between V ′ and V induced by the contin-
uous and dense embeddings given in (6).

Define the operator A : V → V ′ by

〈A�, 	〉 =
∫ �

−�
�(2)(�)	(2)(�)d�, �, 	 ∈ V , (7)

with domain D(A) = Ḣ4
p (�), where �(2) = d2�/d�2. One can easily

show that A−1 is compact and symmetric operator (Robinson, 2001),
and as a consequence, it has a set of orthonormal eigenfunctions that
form a basis in L̇2(�) (Dunford and Schwartz, 1988). Furthermore,
we define the linear (Laplacian) operator L : V → V ′

〈L�, 	〉 = −
∫ �

−�
�(1)(�)	(1)(�)d� (8)

as well as the bilinear and trilinear forms, 
 : V × V → V ′ and � :
V × V × V → R, respectively, via the following expression:

〈
(�, 	), �〉 = �(�, 	, �) =
∫ �

−�
�(�)	(1) �(�)d�, �, 	, � ∈ V . (9)

Finally, location-parameterized input operators Bi(�a) : R → V ′, i =
1, . . . , m are parameterized as follows:

〈Bi(�a)ui, �〉 =
[∫ �

−�
bi(�)�(�)d�

]
ui(t), � ∈ V , (10)

and similarly, the disturbance operator below

〈Dw(t), �〉 =
[∫ �

−�
d(�)�(�)d�

]
w(t), � ∈ V . (11)

Within the above framework, the original spatially distributed dy-
namics (1) can then be represented as an evolution equation of the
following form:

d
dt

x(t) = − �Ax(t) − Lx(t) + 
(x(t), x(t))

+
m∑

i=1

Bi(�a)ui(t) + Dw(t) in V ′. (12)

Notice that by setting

Ax = −�Ax − Lx, B() = [B1(�a) . . . Bm(�a)],
〈F(�), 	〉 = 〈
(�, �), 	〉,
and

u(t) = [u1(t) . . . um(t)]T

one can re-write the above equation as follows:

d
dt

x(t) = Ax(t) + F(x(t)) + B()u(t) + Dw(t) in V ′. (13)

2.2. Burgers' equation

Another example that belongs in the model of Eq. (1) is
Burgers' equation. Specifically, the 1-D forced Burgers' equation
(Burgers, 1974; Burns and Kang, 1991; Temam, 1998) with Dirichlet
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boundary conditions has the form

�

�t
x(t, �) = �

�2x(t, �)

��2
+ �x(t, �) − x(t, �)

�

��
x(t, �)

+
m∑

i=1

bi(�)ui(t) + d(�)w(t),

x(t,0) = 0 = x(t, �),

x(0, �) ∈ L2(�), (14)

where x(t, �) denotes the state, � ∈ � = [0, �] ⊂ R is the spatial
coordinate, t ∈ [t0, ∞) is the time variable, ui(t) denotes the control
signal supplied to the ith actuating device, bi(�) denotes the spatial
distribution of the ith actuating device, w(t) the unknown exogenous
input signal (disturbances) and d(�) the spatial distribution of the
disturbance. The state space in this case is H = L2(�) endowed with
the standard L2 inner product and norm denoted by 〈·, ·〉 and | · |,
respectively. Similarly, the interpolating spaces V and V ′ are given by

V = H1
0 (�), V ′ = H−1(�),

where H1
0 (�) = {� ∈ L2(�) : (

∑1
k=0 |�(k)|2)1/2 < ∞, �(0) = 0 = �(�)}.

Define the elliptic operator A : V → V ′ by

〈A�, 	〉 =
∫ �

0
�(1)(�)	(1)(�)d�, �, 	 ∈ V , (15)

with domain D(A) = H2(�) ∩ H1
0 (�), where H2 is a Sobolev space of

order 2, and the location-parameterized input operators Bi(�a) : R →
V ′, i = 1, . . . , m as follows:

〈Bi(�a)ui, �〉 =
∫ �

0
bi(�)�(�)d�ui(t), � ∈ V . (16)

In a similar fashion as in the Kuramoto--Sivashinsky equation, the
nonlinear term can be expressed in terms of a trilinear form and sub-
sequently as a nonlinear operator. The nonlinear operator (bilinear
form) F : H2(�) × H2(�) → H−2(�) is given in variational form by

〈F(�), 	〉 = −
∫ �

0
�(�)�(1)(�)	(�)d� = −1

2

∫ �

0

d
d�

(�2(�))	(�)d�,

and the disturbance operator D via

〈Dw(t), �〉 =
∫ �

0
d(�)�(�)d�w(t), � ∈ V . (17)

Similar to Eq. (13), by setting Ax = −�Ax + �x, the 1-D controlled
Burgers' equation can be placed in an abstract setting written as an
evolution system (Dautray and Lions, 2000)

ẋ(t) = Ax(t) + F(x(t)) + Bu(t) + Dw(t) in V ′. (18)

It is assumed that the spatial distribution of the actuating devices
is spanned over a portion of the process spatial domain centered at
a location �a and is given by

b(�) =
{ 1
2�

if �a − �����a + �,

0 otherwise.

Remark 2.1. Notice, that the above approximation for b(�) avoids
any regularity problems that may arise due to the unbounded na-
ture of a point-wise (in space) actuator distribution (i.e., a spatial
delta function) and also guarantees that b ∈ L2(�) with norm 1/

√
2�.

Furthermore, one must ensure that the location �a of the actua-
tor is such that approximate controllability of the linearized part of
Eqs. (1) and (14) is attained (Curtain and Zwart, 1995). This essen-
tially amounts to choosing each �a in the orthogonal complement of

the set of zeros of the eigenfunctions of the linear operator −�A − L

in Eq. (13) and −�A + �I in Eq. (15).

Remark 2.2. The nonlinear operator satisfies 〈F(�), �〉 = 0, � ∈ V =
H1
0 (�), since

−
∫ �

0
�(�)

d�(�)

d�
�(�)d� = − 1

3

∫ �

0

d
d�

(�3(�))d�

= − 1
3

(�3(�) − �3(0)) = 0,

and hence the open-loop system with w ≡ 0 satisfies

d
dt

|x(t, ·)|2
L2(�)

= −2
∫ �

0
�

(
�

��
x(t, �)

)2
d�� − �|x(t, ·)|2

L2(�)
,

where � is a function of both the lower bound for � and of the
embedding constant in H2(�) ↪→ L2(�) (Adams, 1975).

2.3. Model reduction

A finite-dimensional approximation of the evolution systems (13)
and (18) realized through the slow eigenmodes of the differential
operator A can be derived, as it naturally emerges from the time-
scale decomposition of the operator's eigenspectrum (Hyman and
Nikolaenko, 1986; Jolly et al., 1990; Temam, 1998). In the present
study, we adhere to the exposition presented in earlier work by
Christofides and Armaou (2000). In summary, we consider the de-
composition H =Hs ⊕Hf in which Hs denotes the finite-dimensional
space spanned by the unstable/slow part of A's eigenspectrum Hs =
span{�1, . . . , �n}, with Hf = span{�n+1, �n+2, . . .} being the infinite-
dimensional one spanned by the stable/fast eigenfunctions. Under
the above decomposition, one defines the orthogonal projection op-
erators Ps and Pf that yield the following decomposition for the
state

x = Psx + Pf x = xs + xf .

Application of the projection operators Ps and Pf to the above sys-
tem yields the following equivalent form of the process dynamics

dxs

dt
= Asxs + Fs(x) +

m∑
i=1

PsBi(�)ui(t) + PsDw(t),

dxf

dt
= Af xf + Ff (x) +

m∑
i=1

Pf Bi(�)ui(t) + Pf Dw(t),

xs(0) = Psx(0), xf (0) = Pf x(0), (19)

where As is an n-dimensional matrix with diagonal structure As =
diag{�i}, where {�i, . . . , �n} are the slow eigenvalues associated with
Hs. Furthermore, under standard assumptions, one can show that

Fs(x) = PsF(x) = Fs(xs + xf ),

Ff (x) = Pf F(x) = Ff (xs + xf ) (20)

are Lipschitz continuous vector functions and the unbounded opera-
torAf the infinitesimal generator of an exponentially stable C0 semi-
group. Furthermore, the eigenvalues and eigenfunctions associated
with the slow/unstable subsystem are given by �j =−�j4 + j2, �j(�)=
(1/

√
�) sin(j�), j =1,2, . . . , n for the Kuramoto--Sivashinsky equation

and by �j = −�j2�2/�2 + �, �j(�) =√
2/� sin(j��/�), j = 1,2, . . . , n for

Burgers' equation.
By neglecting the fast and stable infinite-dimensional subsys-

tem one considers the state x̃s associated with the resulting finite-
dimensional system given by

d̃xs

dt
= As̃xs + Fs(̃xs) +

m∑
i=1

PsBi(�)ui(t) + Dsw(t),

x̃s(0) = Psx(0). (21)
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On the basis of the above decomposition and model-reduction, one
may now define meaningful control and optimal actuator place-
ment objectives. All of them, however, should ensure the develop-
ment of an integrated and systematic control and optimal actuator
placement policy that employs actuator location-parameterized
well-performing controllers synthesized for the approximate
reduced-order system, while preserving stability, guaranteeing
robustness and eventually enhancing the performance of the con-
trolled system under consideration.

3. Integrated nonlinear controller synthesis and actuator
placement

In the present section, the primary goal is to synthesize, for a
fixed actuator location, a nonlinear state feedback control law that
provides stability, induces the desired dynamic response character-
istics for the controlled process, eventually allowing the attainment
of a set of performance requirements. According to the proposed
methodology, the controller is parameterized with respect to the
actuator locations, and using a set of optimization criteria, a cer-
tain performance index is statically minimized with respect to the
candidate actuator locations. The solution to the aforementioned
optimization problem determines the set of actuator locations
that induce the "best'' system performance. With that in mind,
we now embark on the development of a fixed-actuator location-
parameterized nonlinear controller synthesis.

3.1. Robust nonlinear controller design

To simplify the notation one sets

B(�i)�Bi(�), i = 1,2, . . . , m

to denote the input operator at location �i ∈ �. Therefore, Eq. (21) is
now re-written as follows:

d̃xs

dt
= As̃xs + Fs(̃xs) +

m∑
i=1

PsB(�i)ui(t) + Dsw(t),

x̃s(0) = Psx(0).

Implicitly it is assumed that all actuating devices have identical spec-
ifications differing only at the location � that they are placed at.

Proposition 3.1. Consider the above finite-dimensional system with
fixed actuator locations 0=[�01 . . . �0m] ∈ Rm. The proposed controller
takes the form

u = −B−1
s (0)Fs(̃xs) − Kx̃s, (22)

where Bs(0) = PsB(0) = [PsB(�01) . . . PsB(�0m)], u = [u1 . . . um]T
and K being a suitably chosen m × n feedback gain matrix.

With the above control law, we have the following stability re-
sults.

Lemma 3.1. Consider system (1) or (14) for which the number of unsta-
ble/slow modes is equal to the number of actuating devices (i.e., n=m).
If matrix Bs is invertible, then the control law u = −B−1

s (0)Fs(̃xs) −
Kx̃s ensures that the solution x(�, t) of the resulting finite-dimensional
closed-loop system is exponentially stable for any initial condition x0 ∈
H in the absence of disturbances.

Proof. If the choice of the feedback gainK is such thatAs−Bs(0)K

is a Hurwitz matrix, then the stability of the finite-dimensional
closed-loop system readily follows by employing standard technical
arguments found in Christofides and Armaou (2000). �

Remark 3.1. The proposed controller (22) results in partial feedback
linearization. The rationale for such a choice is dictated by the fact
that the actuator locations appear now explicitly (via Bs(0)) in the
closed-loop system equations.

In the absence of disturbances, the above control law results in
the following closed-loop system dynamics:

d̃xs

dt
= (As − Bs(0)K)̃xs. (23)

Once the m actuator locations 0 are decided, one computes the gain
K in order to meet a pre-specified set of closed-loop performance
and robustness specifications at the controller design stage. Within
the proposed context, however, one assumes that process distur-
bances enter explicitly the unstable subsystem's dynamic equations
and the closed-loop system becomes

d̃xs

dt
= (As − Bs(0)K)̃xs + Dsw(t), (24)

where Ds denotes the spatial component of the disturbance (=PsD)
and w(t) its temporal square integrable component. To further en-
hance the robustness of the controller gain K in Eq. (22), Ds is
assumed to be the "worst'' spatial disturbance and therefore it is
expressed as the sum of the first n modes, which equivalently trans-
lates to a class of disturbances whose spatial component "excites''
the first n unstable/slow modes.

Remark 3.2. A possible worst spatial distribution of process distur-
bances can be represented by the unit spatial step function with
d(�) = 1. This describes disturbances entering uniformly at every
single point in the spatial domain; hence there is no spatial bias.
Alternatively, one may consider a disturbance that excites all the
modes of the system and thus given by the sum d(�) =∑∞

i=1 �i(�).
Thus, its projection Psd(�) = Ps

∑∞
i=1 �i(�) becomes the truncated

sum
∑n

i=1 �i(�). Furthermore, its vector representation is explicitly
given by

Ds =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
�

(
n∑

i=1
�i(�)

)
�1(�)d�

∫
�

(
n∑

i=1
�i(�)

)
�2(�)d�

...∫
�

(
n∑

i=1
�i(�)

)
�n(�)d�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
1

1
...

1

⎤⎥⎥⎥⎥⎥⎦ . (25)

However, onemay consider a spatial distribution of disturbances that
affect specific modes, say the first n ones, differently, in the sense
of d(�) ≈ ∑n

i=1 �i�i(�), resulting in a vector representation similar to
that in Eq. (25), but given by Ds = [�1 �2 . . . �n]T.

For fixed actuator locations 0 ∈ Rm, one considers an associated
H∞ Riccati equation, and in that manner the control design reduces
to that of minimizing the (RMS) L2 gain � of the closed-loop transfer
function from w(t) to x̃s(t). In particular, this requires the solution of

AT
s P∞(0) + P∞(0)As

− P∞(0)

(
Bs(0)BT

s (0) − 1
�2

DsD
T
s

)
P∞(0) + Q = 0, (26)

for the smallest possible � >0 where Q = QT >0. The resulting gain
is then given by

K = BT
s (0)P∞(0). (27)
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Summarizing themain aspects of this subsection, one first decides
on the "best'' actuator locations 0 using certain criteria (primarily
controllability-related as seen in the sequel). Once this is achieved,
then one computes the robust gain K from Eq. (27) using Eq. (26)
wherein robustness is meant with respect to the worst possible class
of disturbances entering in the slow/unstable subsystem dynamic
description considered earlier. This then provides both a spatial and
a temporal robustness of the control signal. Finally, the control law
is provided by Eq. (22).

3.2. Optimal actuator placement

By parameterizing the above controller (22) by the admissible
actuator locations (cf. Remark 3.1), one may proceed to the location
optimization stage. First, let us define �c ⊂ � as the set of admissible
candidate actuator locations given by

�c =
{
� ∈ � :

∫
�

bi(�)�j(�)d� �= 0,

for at least all j�n and all i = 1, . . . , m

}
, (28)

where �j(�) are the eigenmodes associated with the slow/unstable
dynamics. Associated with the above, we define

�c = {
 = [�1 . . . �m] : �i ∈ �c and

Bs() = [PsB(�1) . . . PsB(�m)] is invertible
}
,

which denotes the set of admissible locations for a given group of
actuators whose actuating devices are placed at locations  that
yield approximate controllability and which ensure that Bs() is
invertible.

Remark 3.3. The search for optimal actuator locations=[�1 . . . �m]
will be restricted to the candidate locations in the set �c which guar-
antees approximate controllability, i.e., all m-dimensional  whose
elements are in �c . This condition would ensure that (at least) the
first n modes are controllable by each of the m actuating devices.
Therefore, the candidate actuator locations would guarantee that the
slow finite-dimensional subsystem is a controllable one and would
also provide the necessary conditions for the invertibility of Bs(0)

as required for the implementation of the control law (22). A related
scheme, presented in Armaou and Demetriou (2006), considered the
effects of the actuator location on specific modes, using the notion
of spatial norms. An issue that was also considered there was that of
spillover, and in that case the spectrumwas divided into three differ-
ent subsystems, the slow, the fast and a middle-range. The actuator
locations, via the use of spatial norms, allowed for minimization of
spillover effects by incorporating information about the mid-range
modes. This was subsequently capitalized in the design of fault de-
tection schemes for nonlinear distributed processes (Demetriou and
Armaou, 2007).

Remark 3.4. With regard to the system of interest and considering
periodic odd functions and point-wise actuator distributions (i.e.,
bi(�) = b(�i) = �(� − �i)), the set of admissible actuator locations
(i.e., locations that yield approximate controllability) is given by

�c = {� ∈ � : sin(j�i) �= 0, for at least all j�n and all

i = 1, . . . , m}.
In essence this is the set of all locations that do not coincide with
the zeros of the first m eigenfunctions. In a similar fashion, one can
easily define �c for Burgers' equation in Eq. (14).

Remark 3.5. It should be noted that the characterization given for
�c in Remark 3.4 is applicable only in the absence of constraints

on the manipulated input. In the presence of control constraints,
the set of admissible actuator locations (i.e., locations that guaran-
tee constrained controllability or stabilizability) becomes dependent
on the initial condition due to the limitations imposed by the con-
straints on the set of stabilizing initial conditions that can be steered
to the origin under a fixed actuator location. Therefore, for a given
initial condition, the set of admissible locations under control con-
straints will in general be only a subset of �c . In addition to further
restricting the set of admissible actuator locations, the presence of
constraints on the manipulated input requires that the feedback con-
trol law be re-designed (e.g., using bounded control techniques) to
account for the constraints and provide an explicit characterization
of the constrained stability region in terms of the magnitude of the
constraints, the initial condition and the locations of the control ac-
tuators. The reader is referred to El-Farra et al. (2003) for results
on bounded control of systems described by nonlinear PDEs, where
a Lyapunov-based approach is developed to synthesize stabilizing
bounded nonlinear controllers and simultaneously characterize the
set of stabilizing actuator locations and initial conditions under con-
trol constraints.

Two different methods are summarized here that provide an inte-
grated controller synthesis and actuator placement framework. The
first one is an "open-loop'' procedure in which the actuator place-
ment problem is decoupled from the controller design one. In this
case, one first selects the actuator locations so that the system is
"more'' controllable in the above sense, and then designs the feed-
back gain based on some performance and/or robustness criteria
(e.g., H2/H∞ as in Eq. (26)). The second method introduces a cou-
pling between the actuator placement and the controller synthesis
one by considering sets of matrix inequalities that provide both a
feedback gain and optimal actuator locations that enhance the sta-
bility of the closed-loop system.

Method 1a (Open-loop---all modes). According to the basic principles
of this method, one may simply use controllability criteria to first
identify the optimal actuator locations that would yield a "more''
controllable system. Therefore, one must choose the "optimal''
actuator locations  from the set �c that maximize the bound
� = �() in

〈Wc()�, �〉��‖�‖2, � ∈ H, (29)

where Wc() denotes the -parameterized controllability Gramian
operator of the linearized system, defined via

〈AWc()�1, �2〉 + 〈Wc()A∗�1, �2〉
= −〈B()B∗()�1, �2〉,  ∈ �c , (30)

for �1, �2 ∈ D(A∗). In other words, the "best'' actuator locations are
given via

opt = arg sup
∈�c

�(), (31)

where �() is given in Eq. (29), and which makes the Gramian
operator "more'' coercive. Once the actuator locations opt via
Eq. (31) are found, one may proceed to the design of the (location-
decoupled) controller gain K as summarized by Eqs. (26), (27) in
Remark 3.2. Using H2/H∞ cost functionals, one may then find an
optimal gain that corresponds to these "most'' controllable actuator
locations.

The above procedure finds the best actuator locations that make
"more'' controllable all the available modes. Since we are interested
in the controllability of the unstable/slow subsystem, we introduce
a certain "bias'' for the controllability of the slow subsystem being
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more controllable, and therefore we arrive at the following modifi-
cation:

Method 1b (Open-loop---slow modes). Choose the "optimal'' actuator
locations  from the set �c that maximize the bound �() in

zTWc()z��()zTz, z ∈ Rn, (32)

where Wc() denotes the -parameterized controllability Gramian
of the finite-dimensional subsystem defined via

AsWc() + Wc()AT
s = −Bs()BT

s (),  ∈ �c . (33)

In other words, the "best'' actuator locations are now given via

opt = arg sup
∈�c

�() = arg sup
∈�c

�min(Wc())

or

opt = arg sup
∈�c

trace [Wc()]. (34)

The above would make the unstable system "more'' controllable,
where the measure of controllability is naturally realized through
the positiveness of the associated Gramian. Once these actuator loca-
tions are found, one may then proceed to the design of the feedback
gain which exhibits robustness with respect to the worst spatial dis-
tribution of the disturbances, as presented in the previous subsection
via Eq. (26). Notice that one may consider "closed-loop'' techniques
for the actuator placement, in which performance and/or stability
considerations are utilized instead of only enhanced controllability.

Method 2a (Locations yielding robust stability). First, using solely sta-
bility criteria, the optimal location set  ∈ Rm is found as the one
that provides quadratic stability to the system under consideration.

Remark 3.6. Using solely stability criteria, one searches in the set
�c to find the actuator group locations j that yield quadratic sta-
bility. This translates to finding both the locations j (if more than
one) within �c and the feedback gain K that render the following
inequalities:

(As − Bs(j)K)TP + P(As − Bs(j)K) <0 (35)

feasible. However, this procedure may generate quite a conservative
controller gain K.

Remark 3.7. In the above optimization problem, where the feedback
gain K is computed, the above LMI can be convexified by setting
Y =KQ . Hence the system is quadratically stabilizable if and only if
there exist Q >0 and Y such that the LMI

AsQ + QAs + Bs(j)Y + YTBT
s (j) <0 (36)

is feasible. If this is achieved, then the quadratic function V = x̃TQ−1x̃

establishes quadratic stability under the linear state feedback con-
trol law: u = YQ−1x̃s. If more than one set j of actuator locations
renders the above LMIs feasible, then one may adopt the approach
presented in Demetriou and Kazantzis (2004b) and extend it to the
case of placing a group of actuators. In this case the feedback gain K

and the actuator group locations j are found so that in addition to
quadratic stabilizability and enhanced controllability, they also pro-
vide a certain robustness with respect to disturbances. In particular,
one chooses the feedback gain K so that the (RMS) L2 gain � in the
following polytopic LMIs is minimized:[

(As − Bs(j)K)Q + Q(As − Bs(j)K)T + DsD
T
s QCT

z
CzQ −�2I

]
�0,

j ∈ �c , (37)

where Ds, Cz denote the matrix distributions of the process distur-
bance and controlled output, respectively, in the closed-loop repre-
sentation

˙̃xs(t) = Asx(t) + Bs(j)u + Dsw(t),

z(t) = Czx̃(t). (38)

In essence, one minimizes the effects of the disturbance on the
controlled output, i.e., minimize the H∞ norm of the closed-loop
transfer function Tzw(s, j)�Cz(Is− (As −Bs(j)K))−1Ds. Following
Remark 3.2, to further enhance this robustness property of the feed-
back gain, one may choose Cz ≡ In which ensures that the effects
of the disturbance on every single component of x̃s are minimal.
Furthermore, the "worst'' case of spatial distribution of the distur-
bance vector may be assumed, which translates to setting d(�) = 1
so that the disturbance affects each of the states (or modes) of the
slow subsystem. In summary, the LMIs above with Ds given by Eq.
(25) in Remark 3.2 and Cz = In will ensure that the effects of the dis-
turbance on every single state are minimized and that the "worst''
possible disturbance distribution function is considered. In relation
to the original PDE, it translates to having the disturbance enter at
every single point in the spatial domain �, with the property that it
affects at least the slow eigenmodes, (i.e., d(�) = Ps

∑∞
j=1 �j(�)).

By coupling together the actuator location with the robustness of
the feedback controller requirements, one then simply considers

opt = arg inf
∈�c

�(), (39)

where now Eq. (26) (or equivalently Eq. (37)) becomes

AT
s P∞() + P∞()As

− P∞()

(
Bs()BT

s () − 1
�2()

DsD
T
s

)
P∞() + I = 0. (40)

Finally, in this case, the associated truly robust controller gain (worst
spatial disturbance, smallest RMS gain) is given by

K = Bs(
opt)P∞(opt). (41)

Method 2b (Locations yielding optimal performance). While the above
method provided both the optimal actuator location and the feed-
back gain by considering robustness bounds on the H∞ norm of
the closed-loop system, the method below considers an approach
in which the feedback gain and the optimal locations are found by
minimizing the H2 norm of the closed-loop transfer function. Mo-
tivated by the results derived in de Oliveira and Geromel (2000), we
consider the infinite horizon H2 cost functional

J =
∫ ∞
t0

[̃xTs (�)Q x̃s(�) + uT(�)Ru(�)]d�. (42)

Its optimal value for a given actuator location 0 is given by

Jopt = x̃Ts (t0)P2x̃s(t0),

where P2 is the solution to the associatedH2 algebraic Riccati equa-
tion. When one parameterizes the Riccati solution by the actuator
locations  and minimizes this location-parameterized optimal cost,
one would arrive at the optimal location. The optimal locations are
therefore given via

opt = arg min
∈�c

x̃Ts (t0)P2()̃xs(t0), (43)

where P2() is the solution to the -parameterized Riccati equation

AT
s P2() + P2()As − P2()Bs()R−1BT

s ()P2() + Q = 0, (44)
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and the corresponding optimal gain is thus given by K(opt) =
−R−1BT

s (opt)P2(opt).

The dependence of Eq. (43) on initial conditions x̃s(t0) can be
circumvented by assuming that x̃s(t0) is a random vector uniformly
distributed on the unit sphere, and hence the measure is simply
given by the trace of the matrix P2():

opt = arg min
∈�c

trace[P2()].

Remark 3.8. Similar to the extended LQR problem considered in
Eq. (43), one may employ anH2 formulation, in which theH2 norm
of the closed-loop transfer function

Tzw(s, ) = I(sI − (As − Bs()K()))−1Ds

is minimized, and in this case the criterion (43) becomes

opt = arg min
∈�c

trace[DT
s P2()Ds].

In this case, the scheme takes into consideration the spatial distri-
bution of disturbances, as in the first method via Eqs. (39)--(41).

4. An integrated framework for control and actuator switching
policies

The procedure described by Eq. (35) or (37) provides a method for
simultaneously finding the optimal actuator locations and the global
feedback gainK common to possibly more than one candidate actu-
ator group. More precisely, it finds those N group locations  within
a subset �lmi

c ⊂ �c that render (37) feasible, where �lmi
c is defined

via

�lmi
c = { ∈ �c : LMIs in (37) are feasible for some �}.

Even further, the proposed method identifies those locations within
�lmi

c that render the LMIs (37) feasible and simultaneously provide
robustness with respect to the worst spatial disturbance distribution.
The resulting nonlinear control law is then given by

u = −B−1
s (opt)Fs(̃xs) − Kx̃s. (45)

The reason for considering many candidate group locations  within
the subset �lmi

c that all have a common feedback gain will become
apparent later in the present section, where one can further simplify
the proposed switching actuator policy. In summary, one keeps the
same linear part of the above control signal (i.e., −Kx̃s in Eq. (45))
that is common to all (say N) candidate actuator groups (regardless
of actuators used) within �lmi

c . Every �t time units, one switches to
a different group of actuating devices (each of which is optimal in its
own right if that were to be used) using a certain switching policy, in
order to further enhance the performance of the closed-loop system.
The issues at hand are twofold:

(i) The actuator switching policy: How does one decide at the begin-
ning of a given time interval [tk, tk + �t) which actuator group
to activate, and which (N − 1) ones to keep dormant for the
duration of that time interval (i.e., for �t time units)?

(ii) The control policy: Once a given set of actuators is chosen to be
active over the interval [tk, tk +�t), what is the controller signal
that must be supplied to this group of actuators?

Both issues will be simultaneously addressed in the sequel. In the
first subsection, both a common feedback gain K and its associated
common Lyapunov function (̃xTs Px̃s in Eq. (35) or x̃Ts Q−1x̃s in Eq. (37))
are assumed to exist thus simplifying the stability-under-switching

arguments. In the next subsection, it is assumed that each candi-
date group of actuator locations (that makes the inversion of Bs()

in Eq. (22) feasible) has its own (and not necessarily common) feed-
back gain derived from the solution of an associated optimal H2/H∞
problem with a common Lyapunov function. Lastly, the assumption
of the existence of a common Lyapunov function is relaxed, and thus
each actuator group is allowed to have its own associated feedback
gain, but the decision to switch is now based on multiple Lyapunov
function (MLF) arguments.

4.1. Common feedback with common Lyapunov function

It is assumed that N different groups of actuators exist, each of
which satisfy Eq. (35) or (37). In other words, each of the n × m

matrices Bs(j) representing a given group of actuators, satisfies
the LMIs for j = 1,2, . . . , N with the same common feedback gain
K. Thus, the control law u = −B−1

s (j)Fs(̃xs) − Kx̃s, would result
in a stable closed-loop system regardless which of the N actuator
groups is utilized. Since a common feedback gain exists, stability
under switching is guaranteed (Liberzon, 2003).What is needed now,
is a procedure/policy for switching to a specific actuator group based
on performance enhancement arguments.

Using a closed-loop performance measure at the beginning of each
time subinterval, one typically considers a cost-to-go quadratic cost

J(tk, ) =
∫ ∞
tk

x̃Ts (�)Qcl̃xs(�)d� (46)

corresponding to the actuator location-parameterized closed-loop
system

˙̃xs = (As − Bs()K)̃xs,  ∈ �lmi
c . (47)

The optimal value of J(tk, �), for a given choice of actuator locations
, is given by

Jopt(tk, ) = x̃Ts (tk)�1()̃xs(tk),  ∈ �lmi
c , (48)

where �1() is the location-parameterized solution to the location-
parameterized Lyapunov equation

(As − Bs()K)T�1() + �1()(As − Bs()K) = −Qcl ,

 ∈ �lmi
c . (49)

The choice of the actuator group to be activated in the time interval
[tk, tk + �t) would then be dictated by the minimum of the optimal
cost Jopt(tk, ) with respect to all candidate actuator locations in
�lmi

c . This observation is captured by the following:

Proposition 4.1. Consider the slow subsystem and assume that N ac-
tuator groups can be found from the set �c that render the LMIs
feasible (i.e., from �lmi

c ) and result in a common gain K satisfying
Eq. (35) or (37). For each of these N actuator groups, solve the cor-
responding location-parameterized Lyapunov equations (49). Then the
actuator group to be activated in the interval [tk, tk + �t) is given by

opt = arg min
∈�lmi

c

x̃Ts (tk)�1()̃xs(tk). (50)

Furthermore, the associated control signal that must be supplied to the
active actuator group is given by

uopt(t) = −B−1
s (opt)Fs(̃xs) − Kx̃s(t), t ∈ [tk, tk + �t). (51)

Finally, stability under switching is guaranteed by the common Lyapunov
function in the LMIs in Eq. (35) or (37).

Under the above considerations, the proposed algorithm for ac-
tuator switching is presented below.
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Switching Algorithm 1.

1. Find the N actuator groups that satisfy either (35) or (37).
2. For each of these locations i, i = 1,2, . . . , N, find the N solutions

to the associated location-parameterized Lyapunov equations

(As − Bs()K)T�1() + �1()(As − Bs()K) = −Qcl,  ∈ �lmi
c .

3. At the beginning of each time interval [tk, tk + �t), form the N

inner products x̃Ts (tk)�1()̃xs(tk) and choose the actuator group to
be activated over [tk, tk + �t) via

arg min
∈�lmi

c

x̃Ts (tk)�1()̃xs(tk).

4. Repeat step 3 for the next time interval [tk+1, tk+1 + �t).

Remark 4.1. The idea of using a closed-loop performance measure
to choose the appropriate control configuration (from a pre-selected
set of possible candidates) has also been pursued in the context
of reconfiguration-based fault-tolerant control of both lumped
(Mhaskar et al., 2006) and distributed (El-Farra and Ghantasala,
2007) parameter nonlinear systems. The basic idea in these works
is to evaluate (and compare) on-line, at the time of fault detec-
tion, a certain cost-to-go for each configuration to determine (and
subsequently activate) the one with the smallest cost. In these
works, however, switching between control configurations takes
place only when a fault occurs, whereas switching in the current
work is introduced actively at fixed time-intervals in order to en-
hance the robustness of the closed-loop system to spatiotemporally
varying disturbances. Also, due to the nonlinear structure of the
closed-loop systems obtained in Mhaskar et al. (2006) and El-Farra
and Ghantasala (2007), the costs-to-go there cannot be determined
explicitly in terms of the closed-loop state (unlike the case in Eqs.
(46)--(48)) and are therefore evaluated through on-line simulations
instead. Another important difference to note is that in the lumped
parameter system case considered in Mhaskar et al. (2006), each
control configuration refers to a distinct manipulated input, whereas
in the spatially distributed case considered here (and in El-Farra
and Ghantasala, 2007), the different configurations share the same
manipulated input and differ only in the spatial placement of the
actuating devices.

4.2. Common Lyapunov function with different feedback gains

Considering Eq. (35) to be valid for all N actuator groups might
appear rather restrictive. Furthermore, the resulting controller gain
Kmight be too conservative. Therefore, we now consider N actuator
groups that yield an invertible Bs() and satisfy some improved
controllability properties as described by Eq. (34), i.e.,  ∈ �c . For
each of these actuator groups, one designs an associated optimal
feedback gain K(). If in addition to the improved controllability
properties, one imposes a condition similar to Eq. (35) for each of
the N actuator groups

(As − Bs(j)K(j))
TP + P(As − Bs(j)K(j)) <0,

k = 1,2, . . . , N, (52)

then stability under switching can also be guaranteed. Now one has
to find a method for switching to a specific actuator group for the
duration of the time interval [tk, tk + �t).

Proposition 4.2. Consider the slow subsystem and assume that there
are N actuator groups that in addition to the enhanced controllabil-
ity measures given by Eq. (34), they also satisfy Eq. (52), where each
K(j) (associated with each actuator group) is designed to satisfy cer-
tain performance and robustness measures unique to its corresponding

actuator group. Then the actuator group to be activated in the interval
[tk, tk + �t) is given by

opt = arg min
∈�c

x̃Ts (tk)�2()̃xs(tk), (53)

where �2(j) is the positive definite solution to the Lyapunov equation
associated with each of the actuator groups (cf. Eq. (49))

(As − Bs(j)K(j))
T�2(j) + �2(j)(As − Bs(j)K(j)) = −Qcl ,

j = 1,2, . . . , N. (54)

The associated control signal that must be supplied to the active actuator
group (cf. Eq. (51)) is given by

uopt(t) = −B−1
s (opt)Fs(̃xs) − K(opt )̃xs(t), t ∈ [tk, tk + �t). (55)

Finally, stability under switching is guaranteed by the common Lyapunov
function.

In this case, the proposed algorithmic procedure for an actuator
activation/switching policy is the following one:

Switching Algorithm 2.

1. Find the N actuator groups and the N feedback gains K() asso-
ciated with them that satisfy

(As − Bs(j)K(j))
TP + P(As − Bs(j)K(j)) <0,

j = 1,2, . . . , N,

2. For each of these locations j , j = 1,2, . . . , N, find the N solutions
to the location-parameterized Lyapunov equations

(As − Bs(j)K(j))
T�2(j) + �2(j)(As − Bs(j)

× K(j)) = −Qcl, j = 1,2, . . . , N.

3. At the beginning of each time interval [tk, tk + �t), form the N

inner products x̃Ts (tk)�2()̃xs(tk) and choose the actuator group to
be activated over [tk, tk + �t) via

arg min
∈�lmi

c

x̃Ts (tk)�2()̃xs(tk).

4. Repeat step 3 for the next time interval [tk+1, tk+1 + �t).

4.3. MLFs and different feedback gains

In this case, it is assumed that no common Lyapunov function
can be found that satisfies Eq. (52). Therefore, the decision to switch
to a specific actuator group will be based on MLFs stability criteria.
Towards that, we rewrite the system with its N actuator groups as
follows:

d̃xs

dt
= As̃xs + Fs(̃xs) + [Bs(1) . . . Bs(N)]u(t) + Dsw(t),

x̃s(0) = Psx(0), (56)

where the Nm × 1 control vector u(t) has the specific form

u(t) =
⎡⎢⎣

u1(t)
...

uN(t)

⎤⎥⎦ . (57)

The individual m-dimensional controllers ui, i=1, . . . , N are the con-
trol signals that are fed to each actuator group Bs(i). To bring it to
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a form that is familiar to a switched control setting, we define the
N basic controllers (Savkin and Evans, 2002)

u1(t) =

⎡⎢⎢⎢⎢⎢⎣
u1(t)

0n×1
...

0n×1
0n×1

⎤⎥⎥⎥⎥⎥⎦ , u2(t) =

⎡⎢⎢⎢⎢⎢⎣
0n×1
u2(t)

...

0n×1
0n×1

⎤⎥⎥⎥⎥⎥⎦ ,

uN−1(t) =

⎡⎢⎢⎢⎢⎢⎣
0n×1
0n×1

...

uN−1(t)

0n×1

⎤⎥⎥⎥⎥⎥⎦ , uN(t) =

⎡⎢⎢⎢⎢⎢⎣
0n×1
0n×1

...

0n×1
uN(t)

⎤⎥⎥⎥⎥⎥⎦ . (58)

When the ith basic controller ui is switched in, it results in

[Bs(1) . . . Bs(i) . . . Bs(N)]ui(t)

= [Bs(1) . . . Bs(i) . . . Bs(N)]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0n×1
...

0n×1
ui(t)

0n×1
...

0n×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Bs(i)ui(t), (59)

which designates that the ith actuator group is active and is the one
that receives the control signal ui(t). The remaining (N − 1) actua-
tors receive the 0 control signal, designating that they are dormant.
Following Eq. (59), the problem of actuator and controller switching
of Eq. (21) now reduces to that of controller switching for the sys-
tem (56) in which the structure of the N basic controllers is given
by Eq. (58).

In order to address the issue of stability under switching, we
consider a quadratic criterion for construction of the feedback gain
K() associated with each actuator group Bs(). In other words,
for each actuator group Bs() with  ∈ �c , we consider the infinite
horizon quadratic cost function

J(t0, ) =
∫ ∞
t0

[̃xTs (t)Q x̃s(t) + uT(t)Ru]dt. (60)

Its optimal value is given by

J∗(t0, ) = x̃Ts (t0)P()̃xs(t0), (61)

where P(�) solves the -parameterized algebraic Riccati equation

AT
s �3() + �3()As − �3()

(
Bs()R−1BT

s ()

− 1
�2

DsD
T
s

)
�3() + Q = 0. (62)

The reason that the quadratic cost is chosen, is because the optimal
value of Eq. (60) can serve as a Lyapunov function for the linearized
system

˙̃xs(t) = As̃xs(t) + Bs()u(t) + Dsw(t),

u(t) = −R−1BT
s ()�3()̃xs(t). (63)

We thus define the following sequence of Lyapunov functions.

Definition 4.1. We define the Lyapunov function corresponding to
a system with the ith actuator on and with the ith robust controller
ui(t) = −R−1BT

s (i)�3(i) supplied to it via

Vi(̃xs(t0)) = J∗(t0, i) = x̃Ts (t0)�3(i )̃xs(t0),

i = 1,2, . . . , N. (64)

Remark 4.2. Since the closed-loop system

˙̃xs(t) = (As − Bs()R−1BT
s ()�3())̃xs(t) (65)

is stable with the matrix As − Bs()R−1Bs()�3() being Hurwitz,
we then have that

Vi(̃xs(t2)) = x̃Ts (t2)�3(i )̃xs(t2)�Vi(̃xs(t1))

= x̃Ts (t1)�3(i )̃xs(t1), (66)

for all t1, t2 with t0� t1� t2 < ∞.

The above remark would allow us to use MLFs in order to guaran-
tee stability under actuator/controller switching. Relevant to the sta-
bility of switched systems, we summarize a theorem from Branicky
(1998) that provides conditions for stability under switching.

Theorem 4.1 (Branicky, 1998). Given the N-switched system

ẋ(t) = f�(t)(x(t)), �(t) ∈ I = {1,2, . . . , N}, (67)

suppose that each vector field fi has an associated Lyapunov-like function
Vi in the region �i, an equilibrium point xeq=0, and suppose

⋃
i �i=R n.

Let �(t) be a given switching sequence such that �(t) can take the value
of i only if x(t) ∈ �i, and in addition

Vi(x(tik
))�Vi(x(tik−1

)), (68)

where tik
denotes the kth time that the vector field fi is switched in, i.e.,

�(t−
ik

) �= �(t+
ik

) = i. Then, system (67) is Lyapunov stable.

Now, Eq. (21) is re-written as

d̃xs

dt
= As̃xs + Fs(̃xs) + Bs(i)ui + Dsw

= As̃xs + Fs(̃xs) − Bs(i)(B
−1
s (i)Fs(, x̃s) + K(i )̃xs) + Dsw

= (As − Bs(i)R
−1BT

s (i)�3(i))̃xs + Dsw

= Asi x̃s + Dsw, (69)

where Asi�As − Bs(i)R
−1BT

s (i)�3(i). Alternatively, it may be
written as

d̃xs

dt
= As̃xs + 
s(̃xs, x̃s) + Bs(�(t))u�(t) + Dsw

= As�(t) x̃s + Dsw, �(t) ∈ I = {1,2, . . . , N}, (70)

where � : [0, ∞) → I is the switching signal which is assumed to
be a piecewise continuous function of time. Now, for each value
that � assumes in the index set I, the slow dynamics is governed
by a different set of differential equations reflecting the different
actuator group with its associated controller used, as presented in
Eq. (64). We adopt the terminology and notation used in El-Farra
and Christofides (2003) (see also Christofides and El-Farra, 2005)
and therefore we let tik

and tik+1 to denote the kth time that the
ith actuator (and consequently the ith subsystem) is switched in
and out; thus �(t+

ik
) = �(t−

ik+1) = i. Relating to Eq. (70), we have that

d̃xs/dt = Asi x̃s + Dsw, for tik
� t � tik+1. A condition for closed-loop

stability under switching can be established as follows: If at any time
T the following holds:

Vj(̃xs(T)) < Vj(̃xs(tj∗+1)), (71)

for some j ∈ I, j �= i, where tj∗+1 denotes the time that the jth
actuator (equivalently jth subsystem)was last utilized, i.e., �(t+

j∗+1) �=
�(t−

j∗+1) = j, then choosing �(T+) = j guarantees that the closed-loop
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tk−3Δt tk−2Δt tk−Δt tk+Δt

tk+Δt

tk+Δt

tk+2Δtt0

Vj

Vl

Vi
Vj

tk

Vm

last time that jth
actuator was switched out

recent time that jth
actuator was switched in

Fig. 1. Stability analysis using MLF's corresponding to different actuator groups.

system is asymptotically stable. In summary, the above stability re-
quirement says that the jth subsystem is only switched on if its
corresponding value function at the current time is less than its cor-
responding value function evaluated at the last time it was utilized
(switched out). If the actuator groups Bs(i) are switched on and
off every �t time units with �t ��d, where �d denotes the average
dwell time, then using the criterion

j∗ = arg min
j∈�c

Vj(̃xs(tk))

= arg min
j∈�c

x̃s(tk)�3(j )̃xs(tk), tk � t � tk + �t, (72)

subject to the condition of Eq. (71)would provide both stability under
switching and optimal actuator switching. The following analysis
provides a glimpse on the stability under switching in which the jth
actuator group is used in the current subinterval [tk + �t, tk + 2�t)

and was last switched on two time subintervals prior, i.e., at [tk −
2�t, tk − �t), see Fig. 1:

Vj(̃xs(tk + �t))

< Vi(̃xs(tk + �t))from (72), i �= j, use jthin [tk + �t, tk + 2�t)

�Vi(̃xs(tk)) from (66)

< V�(̃xs(tk))from (72), � �= j, i, use ith in [tk, tk + �t)

�V�(̃xs(tk − �t)) from (66)

< Vj(̃xs(tk − �t))from (72) use �th in [tk − �t, tk)

�Vj(̃xs(tk − 2�t)) from (66)

< Vm(̃xs(tk − 2�t))from (72) use jth in [tk − 2�t, tk − �t). (73)

By setting tjk
= tk + �t (most recent time that jth was switched in)

and tjk−1
=tk −�t (previous time that jth was switched out), we then

have

Vj(̃xs(tjk
)) < Vj(̃xs(tjk−1

)) (74)

since Vj(̃xs(tk + �t)) < Vj(̃xs(tk − �t)) follows from Eq. (73). Note that
Eq. (74) is condition (68) of Theorem 4.1, and therefore stability
under switching easily follows. If, of course, i is replaced by j (i.e., the
previous time that the jth actuator was switched out was at t−

k
+ �t

and the most recent time that the jth actuator was switched in was
tk + �t), then stability under switching easily follows from Eq. (66).

In this particular case, the proposed actuator switching algorithm
assumes the following structure:

Switching Algorithm 3.

1. Find the N actuator groups using any of the methods presented
in Section 3.

2. For each of these actuator groups, find the N feedback gains K()

via the solution of

AT
s �3(i) + �3(i)As − �3(i)

×
(
Bs(i)R

−1BT
s (i) − 1

�2
DsD

T
s

)
�3(i) + Q = 0,

i = 1,2, . . . , N.

3. At the beginning of each time interval [tk, tk + �t), form the N

inner products x̃Ts (tk)�3()̃xs(tk) and choose the actuator group to
be activated over [tk, tk + �t) via

arg min
∈�c

x̃Ts (tk)�3()̃xs(tk).

4. If the chosen actuator group has never been activated before, im-
plement it for [tk, tk + �t), else check first if Eq. (71) holds. If this
condition holds, implement the chosen group for [tk, tk +�t), else
exclude the chosen group from the set of candidate actuators and
select another one according to

arg min
∈�′

c

x̃Ts (tk)�3()̃xs(tk),

where �′
c is �c minus the excluded actuator group.

5. Repeat steps 3 and 4 for the next time interval [tk+1, tk+1 + �t).

Remark 4.3. We note that the control and switching algorithms pre-
sented in this work---which are designed on the basis of the ap-
proximate finite-dimensional slow subsystem of Eq. (21)---continue
to enforce the desired closed-loop stability and performance prop-
erties when implemented on the infinite-dimensional closed-loop
system of Eq. (19) provided that the separation between the slow
and fast eigenvalues of the differential operator is sufficiently large.
This can be justified using singular perturbation arguments similar
to the ones used in Christofides and Daoutidis (1997).

5. Simulation studies

5.1. Application to the Kuramoto--Sivashinsky equation

We considered Eq. (1) with the instability parameter � = 0.2
which results in two unstable modes �i = 0.8, i = 1,2, and thus
we considered n = 2 as the dimension of the slow/unstable sub-
system. The infinite-dimensional system was approximated by 100
modes and thus the resulting 100-dimensional system was assumed
to capture the salient features of the system in Eq. (1). The com-
putations were carried out via codes written in Matlab� run on
a dual processor DELL� workstation (Xeon 2.8GHz, 2 × 2GB). The
resulting finite-dimensional system of ODEs was integrated using
the stiff ODE solver from the Matlab� ODE library, routine ode15s
based on a fourth-order Runge--Kutta scheme. The high-order sys-
tem of differential equations was simulated for the time interval
[t0, tf ] = [0,2] and the actuator switching was implemented every
�t = 0.1.

The initial condition of the state was x0(�)=sin(�)+�3 −�2�. The
spatial distribution of the actuating devices was considered to be of
the following form

bi(�) =
{ 1

�
if �i − �

2
����i + �

2
,

0 otherwise.

A total of N = 5 actuator groups were assumed to be available
for switching in the time interval [t0, tf ] = [0,1], and placed at
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Fig. 2. Evolution of spatiotemporal disturbance d(�, t)w(t).

locations

Bs(1) = B(−1.3509) B(0.5969)],
Bs(2) = [B(−1.6022) B(−1.2881)],
Bs(3) = [B(1.2881) B(1.6022)],
Bs(4) = [B(−2.2934) B(1.7907)],
Bs(5) = [B(−1.9792) B(2.6075)],

where the length � was taken to be equal to 2�/100. These locations
were found using Method 1b, which in essence considers locations
that render the matrix Bi() invertible and enhanced the controlla-
bility of the first n modes. The disturbance term d(�)w(t) was cho-
sen to represent a moving spatiotemporal disturbance whose spatial
distribution d(�) changes within the spatial domain �. It is better
expressed as d(�, t)w(t) (depicted in Fig. 2), while being analytically
represented by

10∑
k=1

[
H(� − �k(t)) − H

(
� − �k(t) − 2�

5

)]

×
[
H(t − tk) − H

(
t − tk − tf − t0

10

)]
sin(2�tf k),

where for k = 1,2, . . . ,10

tk = t0 + (k − 1)
tf − t0

20
, �k(t) = −� + jk

2�

5
,

jk = mod

(
round

(
20t

tf

)
,5

)
.

It should be noted that jk takes values in the integer set {0,1,2,3,4}
and thus the left endpoint of the spatially "moving'' characteristic
function (sequentially) takes on the values �k(t) = −�, −� + 2�/5,
−�+4�/5, −�+6�/5 and −�+8�/5. Similarly, the forcing frequency
fk sequentially takes values from the first five eigenfrequencies of
the open-loop system.

The evolution of the system norm for the open-loop case, the
closed-loop with a fixed actuator and the closed-loop with a switch-
ing actuator is depicted in Fig. 3. The feedback gain for the fixed actu-
ator case was in fact found as the LQR gain that provided the small-
est value of the optimal cost x̃Ts (t0)�3()̃xs(t0) with Q = Is, R = 0.01
and �=∞. In other words, for each of the five actuator groups above,
the solution to the corresponding ARE (52) was found and the group
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Fig. 3. Evolution of system norm ‖x(t, ·)‖2 for open-loop (solid), closed-loop with a
fixed actuator (dotted) and closed-loop with a switching actuator (dashed).
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Fig. 4. Actuator activation sequence for the controlled Kuramoto--Sivashinsky equa-
tion.

that resulted in the smallest value of the optimal cost was the one
chosen. In this case, the optimal actuator was Bs(3). Similarly, the
same five feedback gains were used in the case of a switching actua-
tor group. The switching policy used was the one given in Switching
Algorithm 3. The associated actuator activation sequence is depicted
in Fig. 4, where it is observed thatB3() andB4() are used for most
of the time, with B1() and B2() used occasionally and B5() not
used at all. Finally, the cumulative norm

‖x(t, �)‖
L2(t0,tf ;L2(�))

=
(∫ 1

0

∫ �

−�
x2(t, �)d�dt

)1/2

is tabulated in Table 1 for all three cases. As can be observed from
Fig. 3, the performance improvement for the switching actuator case
is substantial, which suggests that the switching actuator case can
better address spatiotemporally varying disturbances.
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Table 1√∫ 1
0 ‖x(t,�)‖2

L2(�)
dt norm

Open loop 31.01
Fixed actuator 6.98
Switched actuator 6.26
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Fig. 5. Evolution of system norm ‖x(t, ·)‖2 for open-loop (solid), closed-loop with a
fixed actuator (dotted) and closed-loop with a switching actuator (dashed).

5.2. Application to Burgers' equation

Similarly, we considered Eq. (14) in the spatial interval [0, �] =
[0,1] with � = 0.001 and � = 10�(�/�)2 leading to three unstable
modes �1 = 0.0888, �2 = 0.0592 and �3 = 0.0099 and in this case we
considered n = 3 as the dimension of the slow/unstable subsystem.
The infinite dimensional system was once again approximated by
100 modes. The high-order system of differential equations was sim-
ulated for the time interval [t0, tf ]=[0,8] and the actuator switching
was implemented every �t = 0.1.

The initial condition of the state was x0(�)=−�3+�2�2. The same
spatial distribution of the actuating devices presented in the previous
example was also used here. A total of N = 5 actuator groups were
assumed to be available for switching in the time interval [t0, tf ] =
[0,8], and placed at locations

Bs(1) = [B(0.335) B(0.6250) B(0.805)],
Bs(2) = [B(0.145) B(0.295) B(0.645)],
Bs(3) = [B(0.105) B(0.405) B0.925)],
Bs(4) = [B(0.135) B(0.585) B(0.865)],
Bs(5) = [B(0.185) B(0.505) B(0.915)],

where the length � was taken to be equal to �/100. These locations
were found using Method 1b, which in essence considers locations
that render the matrix Bs(i) invertible and enhanced the control-
lability of the first n modes.

The evolution of the system norm for the open-loop case, the
closed-loop with a fixed actuator and the closed-loop with a switch-
ing actuator is depicted in Fig. 5. The feedback gain for the fixed
actuator case was in fact found as the LQR gain that provided the
smallest value of the optimal cost x̃Ts (t0)�3()̃xs(t0) with Q = 0.01Is,
R = 0.01 and � = ∞. The optimal actuator was Bs(1). Similarly, the
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3
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6

Fig. 6. Actuator activation sequence for the controlled Burgers' equation.

Table 2√∫ 8
0 ‖x(t,�)‖2

L2(�)
dt norm

Open loop 1.344
Fixed actuator 0.626
Switched actuator 0.474

same five feedback gains were used in the case of a switching actua-
tor group. The switching policy used was the one given in Switching
Algorithm 3. The associated actuator activation sequence is depicted
in Fig. 6. The switching scheme utilized mostly actuator #5 and #2
with occasional use of actuator #1 and #3 with no use of actuator
#4 at all. Such an actuator employment can naturally change if the
spatially moving disturbance is altered in such a way that actuator
#4 would have more control authority over a specific time interval.
Finally, the cumulative norm

‖x(t, �)‖
L2(t0,tf ;L2(�))

=
(∫ 8

0

∫ �

0
x2(t, �)d�dt

)1/2

is tabulated in Table 2 for all three cases. Once again, it is observed
that actuator switching results in enhanced convergence of the L2

state norm.

6. Conclusions

In this work, a control activation scheme for a class of nonlinear
transport processes modeled by highly dissipative PDEs was pre-
sented. Using performance measures for the linearized process, a
switching actuator-plus-controller scheme that accounts for process
nonlinearities and spatiotemporally varying disturbances was devel-
oped on the basis of an appropriate reduced-order model that cap-
tures the dominant dynamic characteristics of the PDE. A set of can-
didate actuators, optimally placed within the spatial domain, was
used as the set of available devices to switch from, and a perfor-
mance metric was used to switch from one actuator to another at
the beginning of a given time interval. The key idea of the switch-
ing policy is the activation of actuators that lie spatially closer to
the spatiotemporal disturbances, thereby improving the control au-
thority of the actuators and enhancing the ability of the system to
minimize the effects of this class of disturbances. Extensive simu-
lation studies for two representative examples were presented and
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demonstrated the performance enhancement that can be achieved
using the proposed actuator scheduling scheme.

An immediate extension of the current work will be on the use
of output feedback for the case when the full state is inaccessible
and only partial measurements from sensing devices placed at cer-
tain locations in the spatial domain are available. The issue of sen-
sor placement and the subsequent compensator design with now
actuator-plus-sensor and controller switching will be examined in a
forthcoming publication.
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