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Abstract 

This work proposes a robust optimal and control estimation strategy for a broad class of nonlinear processes with uncertain 
variables and actuator constraints. Using combination of a high-gain observer with a bounded robust optimal state feedback 
controller synthesized via Lyapunov's direct method and the inverse optimal approach, we construct a bounded robust 
near-optimal dynamic output feedback controller with well-characterized performance and stability properties. The controller 
enforces, in the presence of active constraints, exponential stability and robust asymptotic output tracking with arbitrary degree 
of attenuation of the effect of the uncertainty on the output of the closed-loop system. In addition, the controller design yields 
an explicit and intuitive characterization of the regions in state space where the aforementioned properties are guaranteed. The 
developed controller is successfully applied to an exothermic chemical reactor. © 2000 Elsevier Science Ltd. All rights reserved. 
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1. Introduction 

The development of  an effective process control 
strategy to achieve safe and profitable process opera- 
tion is a central task at the interface of process control 
and operation. At the stage of controller design, this 
requires that the characteristics of  the process to be 
controlled be explicitly integrated into the design. For  
example, many important industrial processes exhibit 
highly nonlinear behavior, involve time-varying uncer- 
tain variables, and are subject to hard actuator con- 
straints. The presence of  uncertainty and input 
constraints, if not appropriately accounted for in the 
controller design, may cause serious deterioration in the 
closed-loop process performance and even lead to insta- 
bility. Motivated by these problems, significant research 
has focused on the synthesis of robust controllers for 
nonlinear uncertain processes (see, for example, 
Kravaris & Palanki, 1988; Arkun & Calvet, 1992; 
Christofides, Teel & Daoutidis, 1996), and the analysis 
and control of processes with constraints (Kothare, 
Campo, Morari & Nett, 1994; Chmielewski & Manou- 
siouthakis, 1998; Kapoor  & Daoutidis, 1998; Valluri & 
Soroush, 1998; Rao & Rawlings, 1999). 

* Corresponding author. 

At this stage, however, existing process control meth- 
ods lead to the synthesis of controllers that can deal 
with either model uncertainty or input constraints but 
not simultaneously or effectively with both. This clearly 
limits the achievable control quality and subsequent 
process performance. A unified framework for control 
of nonlinear systems that explicitly accounts for uncer- 
tainty and constraints is therefore needed. A natural 
approach to address the problem of  controlling con- 
strained uncertain nonlinear processes is the design of 
robust optimal controllers that expend minimal control 
effort to achieve robust stabilization. One way to do 
this is within the nonlinear H ~  control framework (van 
der Schaft, 1992). However, the practical applicability 
of this approach is still questionable because the explicit 
construction of  the controllers requires the analytic 
solution of the steady-state Hamil ton-Jacobi - Isaacs  
(HJI) equation which is not a feasible task except for 
simple problems. An appealing approach to robust 
optimal controller design, which does not require solv- 
ing the HJI equation, is the inverse optimal approach 
proposed by Kalman and introduced recently in the 
context of  robust stabilization in Freeman and Koko- 
tovic (1996). This approach has been employed for the 
design of  robust optimal controllers in Freeman and 
Kokotovic 1996) and Krstic and Li (1997). 

0098-1354/00/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. 
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In a recent work (E1-Farra & Christofides, 2000a) 
(see also EI-Farra & Christofides, 1999), we developed a 
direct robust optimal controller design method that 
integrates robustness, optimality, and explicit constraint 
handling capabilities in the controller design and pro- 
vides, simultaneously, an explicit characterization of the 
regions of guaranteed closed-loop stability. Using a 
general state space Lyapunov framework, the devel- 
oped controller design method led to the synthesis of 
bounded robust optimal state feedback controllers that 
enforce asymptotic stability and asymptotic robust out- 
put tracking in the presence of uncertainty and con- 
straints. Due to their optimality, the controllers possess 
larger regions of closed-loop stability than those ob- 
tained under existing process control techniques and, 
therefore, enhance process operation by enlarging the 
set of feasible operating conditions and allowing the 
process to operate safely and reliably under conditions 
deemed infeasible under other control strategies. 

Motivated by recent advances in output feedback 
controller design (Khalil, 1994; Teel & Praly, 1994; 
Isidori, 1999; Christofides, 2000;  E1-Farra & 
Christofides, 2000b) and the fact that the complete state 
often cannot be measured, we focus in this paper on the 
task of designing bounded robust near-optimal output 
feedback controllers that guarantee the aforementioned 
closed-loop stability and performance properties in the 
presence of process uncertainty and active input con- 
straints for initial conditions and uncertainty in large 
compact sets whose size is limited by the size of stability 
region obtained under state feedback. We show that the 
performance properties obtained under the output feed- 
back controller can be made arbitrarily close to those 
obtained under the optimal state feedback controllers 
when the gain of the observer is selected to be suffi- 
ciently large. The proposed control method is applied 
successfully to an exothermic chemical reactor example. 

2. Preliminaries 

We consider the class of continuous-time single-input 
single-output nonlinear processes with uncertain vari- 
ables with the following state-space description: 

q 

2 =f(x)  + g(x)sat(u) + ~ w~(x)O~(t) 
k--1 

y = h ( x )  (1) 

where xel~" denotes the vector of state variables, ueR 
denotes the manipulated input, Ok(t)e~lC c ~ denotes 
the kth uncertain (possibly time varying) but bounded 
variable taking values in a nonempty compact convex 
subset ~#/ of ~, y e ~  denotes the output to be con- 
trolled, and sat refers to the standard saturation nonlin- 
earity. The uncertain variable Oh(t) may describe 

time-varying parametric uncertainty and/or exogenous 
disturbances. It is assumed that w~(0) = 0 and therefore 
the origin is an equilibrium point of the system of Eq. 
(1). The vector functions f ix),  wk(x) and g(x), and the 
scalar function h(x) are assumed to be sufficiently 
smooth. 

We begin by reviewing the concept of inverse opti- 
mality introduced in the context of robust stabilization 
in (Freeman & Kokotovic, 1996) and used as a tool for 
robust optimal controller design. To this end, consider 
the system of Eq. (1) with q = 1 and suppose there 
exists a positive definite radially unbounded C 1 scalar 
function V such that 

inf sup(LfV+ L~Vu + LwVO) < 0 V x v ~ 0 (2) 
u ~  OEw 

Also, let l(x) and R(x) be two continuous scalar 
functions such that l(x) > 0 and R(x) > 0 V xsR" and 
consider the cost functional 

= .fo n (l(x) + uR(x)u)dt J (3) 

A stabilizing control law u(x) is said to be inverse 
optimal with respect to the cost functional of Eq. (3) if 
it can be expressed in the following form 

1 1 
U = - - p ( X )  = --  - ~ R -  ( x ) L g V  (4) 

where the negative definiteness of l)" is achieved with the 
control u* = 1/2p(x) that is 

1 
sup l?= LyV-- -~LgVp(x ) + ILwWlOb < o (5) 
OE~¢/" 

where 0b = 1[011 = ess. sup.10(t)[, t>_ 0. When the func- 
tion - l(x) is set equal to the right hand side of Eq. (5), 
then V(x) is a solution to the following steady state HJI 
equation. 

1 
0 ~ l(x) ~- L f V -  -~LgVR-l(x)LgV-q- ILwVlOb (6) 

and the optimal (minimal) value of J is V (x(0)). The 
approach is inverse because the functions l(x) and R(x) 
are a posteriori determined by the chosen stabilizing 
feedback control law, rather than a priori specified by 
the designer. 

3. Bounded robust near-optimal output feedback 
controller synthesis 

Our objective is to synthesize a robust nonlinear 
dynamic output feedback controller of the form: 

6~ = ~(co, y, ~) 

u = ~(o9, y, g, t) (7) 

where meRs is a state, ~(co, y, f) is a vector function, 
~'(o9, y, f, t) is a bounded scalar function (i.e. ]u I < Umax), 
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[ J =  [l) D(l)'"I)(r)] T is a generalized reference input (v (k) 
denotes the kth time derivative of the reference input v, 
which is assumed to be a sufficiently smooth function of 
time), that: (a) enforces, in the presence of active actuator 
constraints, exponential stability and asymptotic robust 
output tracking with arbitrary degree of attenuation of 
the effect of the uncertainty on the output, (b) minimizes 
a meaningful infinite-time cost functional that imposes 
penalty on the control action and tracking error, and (c) 
possesses an explicit characterization of the region where 
the aforementioned properties are guaranteed. 

The design of the dynamic controller is carried out 
using combination of a high-gain observer and a 
bounded robust optimal state feedback control design 
proposed in E1-Farra and Christofides (2000a) and 
inspired by the results on bounded control in Lin and 
Sontag (1991). In particular, the system cb = ~(o~,y,~) in 
Eq. (7) is synthesized to provide estimates of the system 
state variables, while the bounded static component 
~(¢o,y,f,t) is synthesized to enforce the requested prop- 
erties in the closed-loop system and at the same time 
provide the necessary explicit characterization of the 
region of guaranteed stability. The stability analysis of 
the closed-loop system employs standard singular pertur- 
bation techniques (due to the high-gain nature of the 
observer) and utilizes the concept of input-to-state stabil- 
ity and nonlinear small gain theorem-type arguments. 
Near-optimality is established through the inverse opti- 
mal approach and using standard singular perturbation 
results. 

In order to proceed with the design of the controllers, 
we need to impose the following three assumptions on 
the system of Eq. (1). The first assumption is motivated 
by the requirement of output tracking and allows trans- 
forming the system of Eq. (1) into a partially linear form. 

Assumption 1. There exists an integer r and a set of 
coordinates: 

E1 

~2 

(~ = z ( x )  = 

th 

~n--r. 

h ( x )  

L ~ ( x )  

L[r- lh(x)  

z , ( x )  

z .  - ~(x) 

(8) 

where Zl(x)  . . . . .  Xn_r(X) are nonlinear scalar functions 
of x, such that the system of Eq. (1) takes the form: 

~r -~- Zff~/()¢ - 1(~, ~ ) )  + t g Z ~ -  l h ( z  - 1 ( ( ,  ~ ) ) u  
q 

+ ~, L~okL~-Oh( z -1(( ,  tl))Ok 
k = l  

(9) 

01 = ~r/l((,/~) 

On--r = ~Jn--r((,?]) 

Y =  (l 

where LgL~- lh(x) ~ 0 Vx~R", 0 ~  q 
Moreover, for each 0e~q,((, t /)~(0,  0) if and only if 
X "")" 0• 

We note that the change of variables of Eq. (8) is 
independent of 0 and invertible, since, for every x, the 
variables (, r/are uniquely determined by Eq. (8). This 
implies that if we can estimate the values of (, ~/for all 
times, using appropriate state observers, then we auto- 
matically obtain estimates of x for all times. This 
property will be exploited later to synthesize a state 
estimator for the system of Eq. (1) on the basis of the 
system of Eq. (9). We also note that assumption 1 
includes the matching condition of our robust control 
method. In particular, we consider systems of the form 
Eq. (1) for which the uncertain variables enter the system 
in the same equation with the manipulated input• This 
assumption is motivated by our requirement to eliminate 
the presence of 0 in the r/subsystem of the system of Eq. 
(9). This requirement and the stability requirement of 
assumption 2 below will allow including in the controller 
a replica of the q subsystem of Eq. (9) which provides 
estimates of the t/states (see Theorem 1). Introducing the 
notation, e = [ele 2 . . . . .  G] T, ei = (i 

_ v(i- 1~, i = 1 . . . .  , r, the ( subsystem of Eq. (9) can be 
further transformed into the following form 

q 
=f(e ,  rl, f )  + g(e, rl, f )u + ~ ~k(e, ~l, f)Ok (10) 

k = l  

where f (e ,  tl, O, g(e, tl, O, Dk(e, r/, ~) are r x 1 vector 
fields. We now use the above normal form to construct 
the positive definite function V of Eq. (4) whose time- 
derivative can be rendered negative definite via feedback. 
One way to do this, for instance, is to use a quadratic 
function V = e T Pe where the positive definite matrix P 
is chosen to satisfy the following Ricatti inequality: 

A rp  _}_ PA -- Pbb Tp < 0 (11 ) 

where 

[i10 0 I! 0 1 "" 0 

A =  " , b =  (12) 

0 0 ... 1 

0 0 .-- 0 

are an r × r matrix and r × 1 vector, respectively. 
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Assumption 2. the system: 

01 = qfi(; , t l )  

O n - .  = ~ e . _ . ( ( , ~ )  

(13) 

is ISS with respect to (with/7.(lq(0) l, t ) -  K, iv/(0)le -at 
where K,, a are positive real numbers and K, _> 1. 

Following (Christofides et al., 1996), the requirement 
of input-to-state stability of the system of Eq. (13) with 
respect to ( is imposed to allow the synthesis of a 
robust state feedback controller that enforces the re- 
quested properties in the closed-loop system for arbi- 
trarily large initial conditions and uncertain variables. 
On the other hand, the requirement that fl~([t/(0)[, 
t )  = g ~ e  - a t  allows incorporating in the robust output 
feedback controller a dynamical system identical to the 
one of Eq. (13) that provides estimates of the variables 
17. Assumption 2 is satisfied by many chemical processes 
(see, (E1-Farra & Christofides, 2000a) and the chemical 
reactor example in Section 4). 

Finally, in order to attenuate the effect of the uncer- 
tain variables on the output, we need to assume the 
existence of known bounds that capture the size of the 
uncertain variables for all times. 

Assumption 3. There exists known positive constants Obk 
such that II0~(t)ll = 0~. 

Theorem 1 below provides a formula for the 
bounded robust near-optimal output feedback con- 
troller and states precise conditions under which the 
proposed controller enforces the desired properties in 
the closed-loop system. 

Theorem 1. Consider the constra&ed uncerta& nonlinear 
system of  Eq. (1),for which assumptions 1, 2, and 3 hold, 
under the robust output feedback controller: 

~= - . , ,  0''' !1 --  L2a2 0 1 "'" 

L~-la 0 0 "" --  r--1 

- -  L~a~ 0 0 ... 

L a l  

L2a2 

y +  

L r -  l a r -  I 

L ~a~ 

Y 

d) 1 = ~ l ( s a t 0 7 ) ,  09 )  

d)._ ~= ~ _  r(Sat07), ¢o) 

U = - -  ~R- I(..~)L;V 

(14) 

where 

1 
-R-1(~)  = 
2 

/ u ~-1  . . \ /  i2breo[  2 \ 
+ 

(LgW)2[1 q- ~/1 -I- ( U m a x L ; W )  2] 

x/ q vl ( L f V +  X • ObklL~k )2 Ai - ( U m a x L ; W ) 4  

+ k=l (15) 
(G-v)2[1 + ~/1 + (UmaxG-VY] 

:f = Z-l(sat(y),°9)),  V =  eVPe, P is a positive definite 
matrix that satisfies the Riccati inequality of Eq. (11) 
and Z, ¢ are adjustable parameters that satisfy Z > 2, 
and ¢ > 0. Let e -- 1/L. Then given any pair of positive 
real numbers 6~, 6o such that 

q 

LfV  + Z ~ ObdL~vk V] ~ UmaxlL~V[ (16) 
k = l  

for Ixl-< 6xlL0 N -< 6o, there exists ¢* > 0 and for each 
¢~(0, ¢*], there exists an e * ( ¢ ) > 0 ,  such that i f  

¢~(0, ¢*], e~(0, e*(¢)], sat( ' )= m i n ~ l , ~ ( ' )  
% 1 1 - /  

with (max being the maximum value of  the vector [(1, (2 
... (r] for  [el- &(6~, 0) where tic is a class KL function 
and tic is the maximum value o f  the vector [h(x) Lfh(x) 
• .. t~ f - lh (x ) l f o r  Ixl<_6x, Ix(0)[ < 6x, II011 <60, 1;(0)1 < 
6¢, aJ(0) = #7(0) + O(e) the following holds: 
1. the closed-loop system is exponentially stable; 
2. lim supt~ oo]y(t) - v(t)[ = 0; 
3. the output feedback controller of Eq. (14) is near 

optimal in the sense that 

J =  I°°(l(e) + u(~)R(x)u(fc))dt--+ g(e(O)) as e-+0 

(17) 

where R(x)  > 0 and l(e) >_ O. 

Remark 1. The robust output feedback controller of 
Eq. (14) consists of a high gain observer which provides 
estimates of the derivatives of the output y up to order 
r - 1, denoted as 370, )~1 . . . . .  )~r-- 1, and thus estimates of 
the variables (1 . . . . .  (r, an observer that simulates the 
inverse dynamics of the system of Eq. (9), and a 
staticstate feedback controller (see discussion in Re- 
mark 2 below) that attenuates the effect of the uncer- 
tain variables on the output and enforces exponential 
stability and reference input tracking. To eliminate the 
peaking phenomenon associated with the high gain 
observer, we use a standard saturation function, sat, to 
eliminate wrong estimates of the output derivatives for 
short times. In most practical applications, it is possible 
to use knowledge of process operating conditions to 
derive nonconservative bounds on the actual values of 
the output derivatives. 
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Remark 2. Regarding the static component of the con- 
troller of Eq. (14), we note that it is synthesized via 
Lyapunov's direct method and the inverse optimal ap- 
proach and that it depends explicitly on both process 
uncertainty (i.e. Obk ) and actuator constraints (i.e. Umax). 
Theorem 1 therefore provides a direct controller design 
method that accounts explicitly and simultaneously for 
process uncertainty and active input constraints. This is 
in contrast to the two-step approach typically employed 
for constrained processes which involves first the design 
of a controller for the unconstrained process and then 
accounts for the input constraints through a suitable 
anti-windup modification. It was shown in EI-Farra and 
Christofides (2000a) that the static state feedback con- 
troller of Eq. (14) is optimal with respect to a meaning- 
ful cost of the form of Eq. (17) and that the minimum 
cost achieved in the state feedback problem is V (e(0)). 

Remark 3. By examining the structure of the static 
component of Eq. (14), one can appreciate, at least 
qualitatively, the optimality properties of this compo- 
nent. In this regard, note that the static component of 
Eq. (14) has the ability to: (a) recognize the potential 
beneficial (stabilizing) effects of process nonlinearities 
and prevent their unnecessary cancellation, and (b) 
assess the extent of the effect of uncertainty on the 
process and prevent their cancellation if this effect is not 
significant. To understand this point, note that when the 
process contains stabilizing nonlinearities and does not 
suffer from significant uncertainty, the term L f V +  
xOb~[L~,~ V[ will be negative and therefore corresponding 
squared term under the square root will prevent it 
unnecessary and wasteful cancellation. The ability of the 
controller to expend minimal control effort in achieving 
robust stabilization is a necessary ingredient that any 
well-designed controller must have to handle the co- 
presence of process uncertainty and actuator con- 
straints. 

Remark 4. Theorem 1 provides an explicit characteriza- 
tion of the region in state space where the desired 
stability and performance properties outlined in the 
theorem are guaranteed. This characterization takes the 
form of the inequality in Eq. (16) which, given an 
arbitrary startup condition for the process, can be used 
to check a priori, whether the closed-loop properties can 
be guaranteed under the controller of Eq. (14), in the 
presence of process uncertainty and actuator con- 
straints. This aspect of the proposed design has impor- 
tant practical implications for efficient process 
operation since it provides the plant operators with a 
systematic and clear guide to identify feasible process 
operating conditions. This is particularly significant in 
the case of unstable plants (e.g. exothermic chemical 
reactor) where lack of such a priori knowledge can lead 
to disastrous consequences. 

Remark 5~ The output feedback controller design of Eq. 
(14) is near-optimal in the sense that the cost incurred 
by implementing this controller to the system of Eq. (1) 
tends to the optimal (minimal) cost achieved by imple- 
menting the bounded robust optimal state feedback 
controller (i.e. u of Eq. (14) with 2 = x), for all times, 
when the gain of the observer is sufficiently large. The 
near-optimality of the controller of Eq. (14) is therefore 
a consequence of both the optimality of the static 
component of the controller (state feedback problem), 
and the high-gain nature of the observer which can be 
exploited to make the performance of the output feed- 
back controller arbitrarily close to that of the robust 
optimal state feedback controller. Instrumental in this 
regard is the use of the saturation function (see Remark 
1) which allows the use of arbitrarily large values of the 
observer gain to achieve the desired degree of near-opti- 
mality without the detrimental effects of observer 
peaking. 

Remark 6. In E1-Farra and Christofides (2000a), it was 
shown that the inequality of Eq. (16) describes the 
region of guaranteed closed-loop stability obtained un- 
der the bounded robust optimal static component of Eq. 
(14) (state feedback), which, in general, is an unbounded 
region. This region remains practically preserved under 
the output feedback design of Theorem 1 in the sense 
that, given an initial state and uncertainty that belong to 
any compact subset of the state feedback region, there 
always exists an observer gain such that the closed-loop 
properties of Theorem 1 are satisfied. As expected, the 
nature of this result is consistent with the semi-global 
result obtained in E1-Farra & Christofides (2000b) for 
the unconstrained case. 

4. Application to a chemical reactor 

Consider a well-mixed continuous stirred tank reactor 
where three parallel irreversible elementary exothermic 
reactions of the form A ~ P1, A ~ P2 and A ~ P3 
take place, where A is the reactant species, P1 is the 
desired product and Pz, P3 are undesired byproducts. 
The feed to the reactor consists of pure A at flow rate 
F, molar concentration CAo and temperature TA0. A 
cooling jacket is used to remove heat from the reactor. 
Under standard modeling assumptions, the process 
model takes the following form 

dCA F 3 
dt - ~.(CAo -- CA) -- ~ R,(CA, 7) 

i~1 

dCm F 
dt V CP1 -[- RI(CA' T) 
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dT F = ~(Tao -- T)  + L -- AH' )R~(CA,T)  
( 

i=1 pcp 
UA 

+ p c p v ( T c  - T)  

where Ri(CA, T ) = k i o e - E ~ m r C a  (see (E1-Farra & 
Christofides, 2000c) for parameter values). It was ver- 
ified that these conditions correspond to an unstable 
equilibrium point of the system of the above equation. 

The control problem for the process is that of regu- 
lating the concentration of the desired product Cei by 
manipulating the temperature of the fluid in the cooling 
jacket T~. The enthalpies of the three reactions 
A HI,/~ H2, ~//3, and the feed temperature TAO are 
assumed to be the main uncertain variables present. 
Cooling water at 300 K is available to cool the reactor 
but must be returned at a temperature no higher than 
360 K, thus placing a constraint on the magnitude of 
allowable cooling. Defining 0~ = A / 4 , -  A H~o, i-- l, 2, 
3 and 04 = TAo -- TAos, where the subscript s denotes the 
steady state values and AH, 0 are the nominal values for 
the enthalpies, the process model of the above equation 
can be recast in the form of Eq. (1) and easily verified 
to satisfy the assumptions of Theorem 1. 

The controller of Eq. (14) (whose practical imple- 
mentation requires measurements of Cp~ only) was used 
in the simulations and the following time-varying un- 

o,5°'e y f l * ' "  .......... 
// -.i°"/' 

i.~ o.3 

o2 

o . t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .... 

°o ~ • ; '- ,o 
(rain) 

g 3.~ ff 

310 

Fig. 1. Closed-loop output and input profiles under the controller of 
Eq. (14) (solid), the state feedback controller (dashed) and open-loop 
profile (dotted). 

certain variables were considered in all of the simula- 
tion runs:  Oi(t ) =-0.4(--AH,~)[1 +sin(2t)], i =  1, 2, 3, 
04(0 = 0.03Taos[1 + sin(2t)]. The upper bounds on the 
uncertain variables were taken to be Obi=O.8l( - -  
A~o)l , i  = 1, 2, 3, 0~4:  0.06TAos and the magnitude of 
actuator constraints present was set at Uma x = 60 K. 
Moreover, the following values were used for the tun- 
ing parameters of the controller and observer: ¢ = 0.01, 
2'= 1.1, L=3000,  a l =  100, a2=2000, to guarantee 
that the output of the closed-loop system satisfies rela- 
tion of the form lim s u p t _ ~ l y -  v[ < 0.005. 

The performance, robustness, and near-optimality 
properties of the dynamic bounded robust output feed- 
back controller of Eq. (14) were tested through simula- 
tions in the presence of the specified active constraints. 
In particular, we tested the ability of the controller to 
drive the output of the process close to the desired 
(unstable) steady state starting from an initial condition 
in the region of guaranteed closed-loop stability (i.e. 
satisfies Eq. (16)) despite the presence of uncertainty 
and actuator constraints. Fig. 1 shows the controlled 
output and manipulated input profiles. One can imme- 
diately see that process has been successfully stabilized, 
the effect of the uncertainty significantly reduced (com- 
pare with the unstable output of the open-loop system), 
and that the output of the process remains very close to 
the desired steady state. Included in the figure also are 
the controlled output and manipulated input profiles 
for the process under the optimal state feedback con- 
troller. It is clear from the figure that the profiles 
obtained under the output feedback controller follow 
closely those obtained under the optimal state feedback 
controller and therefore, the robust output feedback 
controller of Eq. (14) is near-optimal. 
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