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Abstract

This work proposes a methodology for coordinating feedback controller synthesis and actuator configuration switching in control

of spatially-distributed processes, described by highly dissipative partial differential equations (PDEs) with actuator constraints.

Under the assumption that the eigenspectrum of the spatial differential operator can be partitioned into a finite slow set and an

infinite stable fast complement, Galerkin’s method is initially used to derive a finite-dimensional system (set of ordinary differential

equations (ODEs) in time) that captures the dominant dynamics of the PDE system. Using this ODE system, a stabilizing nonlinear

feedback controller is designed, for a given actuator configuration, and an explicit characterization of the corresponding stability

region is obtained in terms of the size of actuator constraints and the spatial locations of the actuators. Switching laws are then

derived, on the basis of the stability regions, to orchestrate the transition between multiple, spatially-distributed control actuator

configurations, in a way that respects actuator constraints, accommodates multiple (possibly conflicting) control objectives and

guarantees closed-loop stability. Precise conditions that guarantee stability of the constrained closed-loop PDE system under

switching are provided, and the proposed approach is successfully applied to the problem of constrained, fault-tolerant stabilization

of unstable steady-states of a representative diffusion-reaction process and a non-isothermal tubular reactor with recycle.
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1. Introduction

Processes that exhibit significant spatial variations

owing to the underlying physical phenomena, such as

diffusion, convection, and phase-dispersion, are ubiqui-

tous among modern-day chemical processes essential in

making important industrial products. Examples in-

clude the catalytic packed-bed reactors used to convert

methanol to formaldehyde, the Czochralski crystalliza-

tion of high-purity crystals and the chemical vapor

deposition of thin films for microelectronics manufac-

turing, as well as the aerosol-based production of

nanoparticles used in medical applications. For these

processes, the distinguishing attribute of the control

problem is that it involves the regulation of distributed

variables using spatially-distributed control actuators
* Corresponding author. Tel.: �/1-310-794-1015; fax: �/1-310-206-

4107.

E-mail address: pdc@seas.ucla.edu (P.D. Christofides).

0098-1354/03/$ - see front matter # 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0098-1354(03)00174-1
and measurement sensors. Many of these systems are

also naturally modeled by highly dissipative partial

differential equation (PDE) systems, such as parabolic

PDE systems (transport-reaction processes) whose spa-

tial differential operators are characterized by an

eigenspectrum that can be partitioned into a finite

slow part and an infinite stable fast complement (Fried-

man, 1976), which implies that the dominant dynamics

of these systems can be captured by finite-dimensional

systems. The traditional approach to the control of

parabolic PDEs involves the application of Galerkin’s

method to the PDE system to derive ordinary differ-

ential equation (ODE) systems that describe the dy-

namics of the dominant (slow) modes of the PDE

system, which are subsequently used as the basis for

the synthesis of finite-dimensional controllers (e.g. see

Balas, 1979; Ray, 1981). A potential drawback of this

approach is that the number of modes that should be

retained to derive an ODE system that yields the desired

degree of accuracy may be very large, leading to
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complex controller design and high dimensionality of

the resulting controllers.

Motivated by these considerations, significant recent

work on the analysis and control of distributed process
systems has brought together concepts from the dy-

namics of infinite dimensional systems, model reduction,

and nonlinear control theory, leading to the develop-

ment of a general framework for the synthesis of low-

order nonlinear controllers for broad classes of non-

linear distributed parameter systems that arise in the

modeling of spatially distributed processes, on the basis

of ODE models obtained through combination of
Galerkin’s method with approximate inertial manifolds

(see the book Christofides, 2001 for details and refer-

ences). In addition to this work, other advances on

control of distributed systems have been made, includ-

ing, for example, distributed controller design using

generalized invariants (Palazoglu & Karakas, 2000) and

concepts from passivity and thermodynamics (Alonso &

Ydstie, 2001), the development of low-order control-
relevant models for distributed systems (Hoo & Zheng,

2001), analysis and control of parabolic PDE systems

with actuator saturation (El-Farra, Armaou & Christo-

fides, 2003), reduced spatial order model reference

adaptive control of distributed systems (Bentsman &

Orlov, 2001), and state observation and adaptive control

of distributed chemical reactors (Dochain, 2001).

While the above research efforts have led to the
development of a number of systematic approaches for

distributed controller design, an underlying theme of the

available control approaches is the use of a fixed (with

respect to spatial location) control actuator/measure-

ment sensor configuration to accomplish the desired

control objectives. There are many practical situations,

however, where it may be desirable, and sometimes even

necessary, to consider multiple, spatially-distributed
actuator/sensor configurations and switch between

them in a specific manner, in order to achieve the

desired control objectives. An important problem where

this approach is necessary is that of coping with control

actuator failure. In this case, upon the detection of faults

in the operating control actuator configuration, it is

often necessary to switch to an alternative, well-func-

tioning actuator configuration, with a different spatial
arrangement of the control actuators, in order to

preserve closed-loop stability. Switching between spa-

tially-distributed actuator configurations in this case

provides the means for fault-tolerant control. In other

instances, switching between actuator configurations

can be motivated by some additional performance

objectives, such as the desire to optimize a given

performance criterion for the control system, or accom-
modate inherently competing control objectives that

cannot be reconciled using a single control actuator

configuration. For example, when the performance

index associated with the control system penalizes the
placement of control actuators at different spatial

locations differently, the actuator configuration that

minimizes this cost will provide the best performance.

However, owing to the presence of actuator constraints,
it may not be possible to use this actuator configuration

(at least initially) especially if the desired initial condi-

tion is infeasible. This conflict can be resolved by

considering a number of pre-determined, spatially-dis-

tributed actuator configurations and switching between

them.

Motivated by the above considerations, we focus in

this work on the problem of coupling feedback and
switching in the control of spatially-distributed pro-

cesses described by highly dissipative PDE systems with

actuator constraints. The rest of the paper is organized

as follows. In Section 2, we present some mathematical

preliminaries to characterize the class of spatially-

distributed processes considered and formulate precisely

the switching problem of interest. Then in Section 3, we

initially use Galerkin’s method to derive an ODE system
that captures the dominant dynamics of the PDE

system. This ODE system is then used as the basis for

the integrated synthesis, via Lyapunov techniques, of

stabilizing nonlinear feedback controllers together with

stabilizing switching laws that orchestrate the switching

between the admissible control actuator configurations,

in a way that respects the actuator constraints, accom-

modates inherently conflicting control objectives, and
guarantees closed-loop stability at the same time. Precise

conditions that guarantee stability of the constrained

closed-loop PDE system under switching are provided.

Finally, in Sections 4 and 5, we demonstrate, through

numerical simulations, applications of the proposed

methodology of coordinating feedback and switching

to the problem of fault-tolerant, constrained stabiliza-

tion of unstable steady-states of a typical diffusion-
reaction process and a non-isothermal tubular reactor

with recycle.
2. Preliminaries
2.1. Class of spatially-distributed processes

In this work, we focus on spatially-distributed pro-

cesses, described by highly dissipative (in a sense made

precise in Assumption 1 below) infinite-dimensional

systems. This class of systems arises often in the

modeling of transport-reaction processes and various
classes of fluid dynamic systems. To provide a precise

specification of the control problem, we consider an

important class of processes that fit this category,

namely quasi-linear parabolic PDE systems of the form:
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@x̄

@t
�A

@x̄

@z
�B

@2x̄

@z2
�w

Xm

i�1

bi(z)ui�f (x̄)

yi
c�g

b

a

ci(z)kx̄(z; t)dz i�1; . . . ; m (1)

subject to the boundary conditions:

C1x̄(a; t)�D1

@x̄

@z
(a; t)�R1

C2x̄(b; t)�D2

@x̄

@z
(b; t)�R2 (2)

and the initial condition:

x̄(z; 0)� x̄0(z) (3)

where x̄(z; t)� [x̄1(z; t) . . . x̄n(z; t)]T �Rn denotes the

vector of state variables, z � /[a , b ]ƒ/R is the spatial

coordinate, t � /[0, �) is the time, ui � /[�/ui ,max, ui ,max]ƒ/

R denotes the ith constrained manipulated input, yci � /R

denotes the ith controlled output, @x̄=@z; @2x̄=@z2

denote the first and second-order spatial derivatives of

x̄; respectively, f (x̄) is a nonlinear vector function, w is a

constant column vector, k is a constant row vector, A ,

B , C1, D1, C2, D2 are constant matrices, R1, R2 are

column vectors, and x̄0(z) is the initial condition. The

function bi (z ) is a known smooth function of z that

describes how the control action, ui(t), is distributed in
the finite interval [a , b ] (actuator distribution function),

and ci(z) is a known smooth function of z that is

determined by the desired performance specifications in

the interval [a , b ]. Whenever the control action enters

the system at a single point, z0, with z0 � /[a , b ] (i.e. point

actuation), the function bi(z ) is taken to be nonzero in a

finite spatial interval of the form [z0�/m , z0�/m ], where

m is a small positive real number, and zero elsewhere in
[a , b ].

Throughout the paper, the order of magnitude O (e )

and Lie derivative notations will be used. In particular,

d (e )�/O (e ) if there exist positive real numbers k1 and k2

such that: jd (e )j5/k1je j, �/je j5/k2. Lf h̄ denotes the

standard Lie derivative of a scalar function, h̄(�); with

respect to the vector function f ( �/), Lk
f h̄ denotes the k th

order Lie derivative and LgLk�1
f h̄ denotes the mixed Lie

derivative where g ( �/) is a vector function. Furthermore,

the notation, j �/j, will be used to denote the standard

Euclidean norm, while the notation j �/j2 and jj �/jj2 will be

used to denote the L2-norms of vectors belonging in a

finite-dimensional and an infinite-dimensional Hilbert

spaces, respectively.

For a precise characterization of the class of PDE

systems considered in this work, we formulate the
system of Eq. (1) as an infinite-dimensional system in

the Hilbert space H([a , b ]; Rn ), with H being the space
of sufficiently smooth n -dimensional vector functions
defined on [a , b ] that satisfy the boundary conditions of

Eq. (2), with inner product and norm:

(v1; v2)�g
a

b

(v1(z); v2(z))Rn dz;

½½v1½½2�(v1; v1)
1

2

(4)

where v1, v2 are two elements of H([a , b ]; Rn) and the

notation (�; �)Rn denotes the standard inner product in Rn .

Defining the state function x on H([a , b ]; Rn ) as:

x(t)� x̄(z; t); t�0; z � [a; b]; (5)

the operator A in H([a , b ]; Rn ) as:

Ax�A
@x̄

@z
�B

@2x̄

@z2
;

x �D(A)

�
�

x �H([a; b]; Rn):C1x̄(a; t)�D1

@x̄

@z
(a; t)�R1;

C2x̄(b; t)�D2

@x̄

@z
(b; t)�R2

�

and the input and controlled output operators as:

Bu�w
Xm

i�1

biui; Cx�(c; kx) (6)

the system of Eqs. (1)�/(3) takes the form:

ẋ�Ax�Bu�f (x); x(0)�x0:

yc�Cx (7)

where f (x(t))�f (x̄(z; t)) and x0� x̄0(z): We assume

that the nonlinear terms f (x ) are locally Lipschitz with

respect to their arguments and satisfy f(0)�/0. For A,
the eigenvalue problem is defined as:

Afj �ljfj; j�1; . . . ; � (8)

where lj denotes an eigenvalue and fj denotes an

eigenfunction. The eigenspectrum of A, s(A), is
defined as the set of all eigenvalues of A, i.e. s(A)�/

{l1, l2, . . .}. Assumption 1 that follows states that the

eigenspectrum of A can be partitioned into a finite part
consisting of m slow eigenvalues and a stable infinite

complement containing the remaining fast eigenvalues,

and that the separation between the slow and fast

eigenvalues of A is large.

Assumption 1.

1) Re{l1}]/Re{l2}]/. . .]/Re{lj}]/. . ., where
Re{lj} denotes the real part of lj .

2) s(A) can be partitioned as s(A)�/s1(A)�/s2(A),

where s1(A) consists of the first m (with m finite)

eigenvalues, i.e. s1(A)�/{l1, . . ., lm}, and jRe{l1}j/
jRe{lm}j�/O (1).
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3) Re{lm�1}B/0 and jRe{lm}j/jRe{lm�1}j�/O (e )
where eB/1 is a small positive number.

The assumption of finite number of unstable eigen-

values is always satisfied for parabolic PDE systems

(Friedman, 1976), while the assumption of discrete
eigenspectrum and the assumption of existence of only

a few dominant modes that describe the dynamics of the

parabolic PDE system are usually satisfied by the

majority of diffusion�/convection�/reaction processes

(see the examples in Sections 4 and 5).
2.2. Problem formulation and solution overview

Consider the spatially-distributed process of Eq. (1)

and assume that N (where N is finite) spatially-distinct
control actuator configurations are available (installed)

for feedback control purposes. Each configuration is

characterized by: (1) a unique spatial arrangement of the

actuators, z̄k; k�/1, . . ., N , where z̄k is an m -dimensional

vector whose components represent the corresponding

spatial locations of the actuators associated with the k th

control actuator configuration, and (2) hard actuator

constraints, �/ui ,max
k 5/ui

k 5/ui ,max
k . The superscript k in

z̄k is a discrete index that denotes which of the N

actuator configurations is active at any given time. Only

one configuration can be engaged for control at any

time instance and, to ensure controllability of the

system, we allow only a finite number of configuration

switchings over any finite time-interval. The problem

under consideration is how to coordinate switching

between the N different control actuator configurations
in a way that respects actuator constraints and guaran-

tees closed-loop stability. To address this problem, we

formulate the following three objectives:

1) Initially, a model reduction scheme based on
Galerkin’s method is used to derive a nonlinear

finite-dimensional system that accurately repro-

duces the solutions and dynamics of the parabolic

PDE system of Eq. (1).

2) Next, the finite-dimensional approximation of the

system of Eq. (1) is used as the basis for the

synthesis, via Lyapunov-based control techniques,

of bounded nonlinear feedback controllers of the

general form:

uk�p(xs; v̄; uk
max; z̄k) (9)

that enforce asymptotic stability and reference-

input tracking in the constrained closed-loop system

and provide an explicit characterization of the

constrained stability region, associated with each
control actuator configuration. Referring to Eq. (9),

p ( �/) is a bounded nonlinear vector function (i.e.

juk j5/umax
k , where j �/j is the standard Euclidean
norm and umax
k is the maximum norm of the vector

of manipulated inputs allowed by the constraints

associated with the k th actuator configuration), xs

is the vector of slow states, and v̄ is a generalized
reference input (which is assumed to be a smooth

function of time).

3) Finally, a set of switching rules is derived to
orchestrate the transition between the available

control actuator configurations, and an upper

bound on the separation between the slow and

fast eigenvalues, which guarantees stability of the

switched closed-loop infinite-dimensional system, is
computed. The switching laws determine which

actuator configuration can be activated at a given

moment, i.e. the value of the index k :

k(t)�f(xs(t); t) (10)

which can be viewed as a piecewise-constant func-

tion of time that depends on the slow states.
3. Hybrid control of spatially-distributed processes
3.1. Galerkin’s method

In this section, we apply standard Galerkin’s method

to the system of Eq. (7) to derive an approximate finite-

dimensional system. Let Hs , Hf be modal subspaces of
A, defined as Hs �/span{f1, f2, . . ., fm} and Hf �/

span{fm�1, fm�2, . . .} (the existence of Hs , Hf

follows from Assumption 1). Defining the orthogonal
projection operators Ps and Pf such that xs �/Psx , xf �/

Pfx , the state x of the system of Eq. (7) can be
decomposed as:

x�xs�xf �Psx�Pf x (11)

Applying Ps and Pf to the system of Eq. (7) and using

the above decomposition for x , the system of Eq. (7) can
be equivalently written in the following form:

dxs

dt
�Asxs�Bsu�fs(xs; xf )

@xf

@t
�Af xf �Bf u�ff (xs; xf )

yc�Cxs�Cxf

xs(0)�Psx(0)�Psx0; xf (0)�Pf x(0)�Pf x0 (12)

where As �/PsA, Bs �/PsB, fs�/Psf , Af �/PfA, Bf �/

PfB and ff �/Pff and the partial derivative notation in

@xf /@t is used to denote that the state xf belongs in an
infinite-dimensional space. In the above system, As is a
diagonal matrix of dimension m �/m of the form As �/

diag{lj}, fs (xs , xf) and ff(xs , xf) are Lipschitz vector
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functions, and Af is an unbounded differential operator
which is exponentially stable (following from part 3 of
Assumption 1 and the selection of Hs , Hf ). Neglecting
the fast and stable infinite-dimensional xf -subsystem in
the system of Eq. (12), the following m -dimensional

slow system is obtained:

dx̄s

dt
�Asx̄s�Bsu�fs(x̄s; 0)

ȳc�Cx̄s (13)

where the bar symbol in x̄s; ȳc denotes that these

variables are associated with a finite-dimensional sys-

tem.

Remark 1. We note that the above model reduction

procedure which led to the approximate ODE system of

Eq. (13) can also be used when empirical eigenfunctions
of the system of Eq. (1), computed through Karhunen�/

Loeve (KL) expansion, are used as basis functions in Hs

and Hf instead of the eigenfunctions of A. For
approaches on how to compute empirical eigenfunctions
through KL expansion, the reader is referred to Atwell
and King (2001).

Remark 2. Although the finite-dimensional system of
Eq. (13) was obtained through standard Galerkin’s

method, the results of this paper can be generalized to

the case where the finite-dimensional approximation of

the system of Eq. (12) is obtained through combination

of Galerkin’s method with approximate inertial mani-

folds (see Christofides, 2001). This approach can be used

to further reduce the dimension of the system of Eq. (13)

and ensure that it is of an appropriately low-order
suitable for controller design and analysis.
3.2. Coordinating feedback and switching

Having obtained a finite-dimensional model that
describes the dominant dynamics of the infinite-dimen-

sional system, we proceed in this section to describe the

proposed procedure for designing the hybrid control

system. To this end, we consider the equivalent repre-

sentation of the slow system of Eq. (13) in terms of the

evolution of the amplitudes of the eigenmodes. This

ODE system is given by:

ȧs(t)�Fas(t)�G(z̄k)uk(t)�d(as(t))

ỹc(t)�Cas(t) (14)

where as (t )�/[a1(t). . .am (t )]T � /Rm , ai(t) is the ampli-

tude of the ith eigenmode, x̄s(t)�a
m

j�1 aj(t)fj; (/x̄s/(t),

fj)�/aj(t)(fj , fj), F is an m �/m diagonal matrix of the

form F�/diag{lj}, G is an m �/m matrix (when point

actuation is used, the (i , j) element of G is given by
fi (/z
k
j )/), d ( �/)�/[d1( �/). . .dm ( �/)]T is a vector function and

(fs( �/), fj)�/dj ( �/)(fj , fj ), ỹc(t)� [ỹ1
c(t) . . . ỹm

c (t)]T �Rm; ỹi

c

is the ith controlled output of the finite-dimensional

slow system, C is a constant m �/m matrix. Referring to

the system of Eq. (14), we define the relative order of the

output ỹi

c
with respect to the vector of manipulated

inputs u as the smallest integer ri for which:

[Lg̃1
L

ri�1

f̃
h̃i(as) . . . Lg̃m

L
ri�1

f̃
h̃i(as)]f [0 . . . 0] (15)

where g̃i is the ith column of the matrix G , f̃ (as)�
Fas�d(as); and ỹi

c
� h̃i(as) is the ith component of the

vector Cas , or ri �/� if such an integer does not exist.

We also define the characteristic matrix:

C̄(as)�

Lg̃1
L

r1�1

f̃
h̃1(as) � � � Lg̃m

L
r1�1

f̃
h̃1(as)

Lg̃1
L

r2�1

f̃
h̃2(as) � � � Lg̃m

L
r2�1

f̃
h̃2(as)

n � � � n
Lg̃1

L
rm�1

f̃
h̃m(as) � � � Lg̃m

L
rm�1

f̃
h̃m(as)

2
6664

3
7775 (16)

which, to simplify our development, is assumed to be

nonsingular uniformly in as . This assumption can be

relaxed if dynamic state feedback is used instead of
static state feedback (see Isidori, 1989 for details). To

proceed with controller synthesis, and under the as-

sumption that the relative degree is well-defined, we

initially transform the system of Eq. (14), by means of

an invertible coordinate change of the form as �/T�1(z ,

h ), into the following partially linear form:

ż
(i)
1 �z

(i)
2

n
ż

(i)
ri�1�z(i)

ri

ż(i)
ri
�L

ri

f̃
h̃i(as)�

Xm

j�1

Lg̃j
L

ri�1

f̃
h̃i(as)u

k
j

ḣ1�C1(z; h)

n
ḣ

m�
P

i
ri
�C

m�
P

i
ri
(z; h)

ỹci �z
(i)
1 ; i�1; . . . ; m; k�1; . . . ; N

(17)

where z(i)
j �L

j�1

f̃
h̃i(as); z�/[z(1)T . . .z(m )T ]T , h�

[h1 . . . h
m�ai ri

]T : Defining the tracking error variables,

ej
(i )�/zj

(i )�/vi
(j�1), and introducing the vector notation

e(i )�/[e1
(i )e2

(i ). . .eri

(i )]T , e� [e(1)T e(2)T . . . e(m)T ]T ; where i�/

1, . . ., m , j�/1, . . .ri , the system of Eq. (17) can be cast in
the following more compact form:

ė�Le�G[l(e; h; v̄)�C̄(e; h; v̄)uk]

ḣ�C(e; h; v̄) (18)

where L�/diag{Li} is an (ari
�/ari

) block diagonal

constant matrix whose constituent blocks are ri �/ri

matrices of the form:
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Li�

0 1 0 . . . 0

0 0 1 . . . 0

n n n . . . n
0 0 0 . . . 1

0 0 0 . . . 0

2
66664

3
77775 (19)

G is an (ari
�/m ) constant matrix, l ( �/) is an (m �/1)

smooth vector function. The specific forms of G and l( �/)
are omitted for brevity. Finally, we define f̄ (e; h; v̄)�
Le�Gl(e; h; v̄) and denote by ḡi the ith column of the

matrix Ḡ�GC̄:/

Assumption 2. The h -subsystem of Eq. (18) is input-to-
state stable with respect to e , uniformly in v̄; and locally

exponentially stable when e�/0.

We are now ready to state the main result of this

work. Theorem 1 below provides both the state feed-

back control law (see the discussion in Remark 11 and

the example in Section 4 for output feedback controller

design and implementation) as well as the necessary

switching laws, and states precise conditions that
guarantee closed-loop stability and asymptotic refer-

ence-input tracking in the switched closed-loop system.

The proof is given in Appendix A.

Theorem 1.

1) Consider the system of Eq. (14) and its transforma-
tion of Eq. (18), for which Assumption 2 holds,

under the feedback control law:

uk��r(as; uk
max; z̄k)(LḡV )T (z̄k) (20)

where

r(as; uk
max; z̄k)

�
L�̄f V �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(L�̄f V )2 � (uk

max½(LḡV )T (z̄k)½)4
q

½(LḡV )T (z̄k)½2[1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � (uk

max½(LḡV )T (z̄k)½)2
q

]

(21)

/z̄k� [zk
1zk

2 . . . zk
m]T ; k�/1, . . ., N , L�̄f V �Lf̄ V�r½e½2;

r�/0, LḡV is a row vector of the form

[Lḡ1
V . . . Lḡm

V ]; V�/eTFe , F, is a positive definite

matrix that satisfies the Riccati inequality LTF�/

FL�/FGGTFB/0. Let ds
k be a positive real number

such that the compact set V(umax
k , z̄k)/�/{as � /Rm :

as
TFas 5/ds

k} is the largest invariant set embedded

within the region described by the following inequal-

ity:

L�̄f V 5uk
max½(LḡV )T (z̄k)½ (22)

Without loss of generality, assume that z̄k(0)� z̄1 and

as (0) � /V(umax
1 , z̄1): If, at any given time T, the

condition:

as(T) �V(uj
max; z̄j) (23)
holds, for some j � /{1, . . ., N}, then setting z̄k(t)� z̄j

for all t �/T guarantees that the switched closed-loop

system is asymptotically stable.

2) Consider the parabolic PDE system of Eq. (1) under
the control law of Eqs. (20) and (21) and the

switching law of Eq. (23). Let Us
1	/{xs(0) � /Hs :

jxs(0)j25//d̄1
s/} be the set of all xs(0) for which

as
T(0)Fas

T (0)5/ds
1. Then given any pair of positive

real numbers (d , d̄1
b) such that d̄1

b�d5 d̄1
s/, and given

any positive real number df , there exists e*�/0 such

that if e � /(0, e*], jxs(0)j25//d̄1
b; jjxf(0)jj25/df :

2.1 The infinite-dimensional closed-loop system is
asymptotically (and locally exponentially)

stable.

2.2 The outputs of the closed-loop system satisfy a
relation of the form:

lim sup
t0�

½yi
c(t)�vi(t)½�O(e) (24)
Remark 3. Owing to the dependence of the input

operator, Bs , in Eq. (13) on the spatial locations of
the control actuators (through the actuator distribution
functions bi(z)), the inequality of Eq. (22) is parameter-

ized by the actuator locations and can, therefore, be

used to explicitly identify the admissible control actua-

tor configurations (/z̄k) for which stability of the con-
strained closed-loop system is guaranteed under

constraints. For a given actuator configuration (fixed

umax
k and z̄k); the inequality of Eq. (22) describes a region

of the state-space where the control action satisfies the

constraints and the time-derivative of the Lyapunov

function is negative-definite, along the trajectories of the

finite-dimensional closed-loop slow system. Therefore,

by computing an invariant set, V(umax
k , z̄k); (preferably

the largest) within this region, we obtain an estimate of

the stability region associated with each control actuator

configuration (see chapter 4 in Khalil, 1996; El-Farra &

Christofides, 2001 for how to compute this estimate).

The requirement that the set V(uk
max; z̄k) be invariant is

needed to ensure that the closed-loop trajectories do not

leave the region described by Eq. (22), under a given

actuator configuration.
Remark 4. Due to the large separation between the

slow and fast eigenvalues of the spatial differential

operator of the PDE system of Eq. (1), the character-

ization (or estimate) of the constrained stability region

obtained for the approximate, finite-dimensional closed-

loop slow subsystem remains practically preserved for
the slow subsystem in the infinite-dimensional closed-

loop system, in the sense that given any initial slow state

that belongs to any compact subset of V(umax
k , z̄k); and
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given any initial fast state, there always exists e

sufficiently small such that the controller of Eqs. (20)

and (21) continues to enforce stability and reference-

input tracking in the constrained infinite-dimensional
closed-loop system. In the asymptotic limit (as e0/0),

the stability region of the slow subsystem is fully

recovered. It should be noted here that this result is

fundamentally different from its counter part in the

linear case (El-Farra & Christofides, 2003) where the

stability region of the closed-loop slow subsystem is

exactly preserved (i.e. the slow stability region is the

same for the finite- and infinite-dimensional closed-loop
systems) due to the fact that the evolution of the slow

subsystem in the linear case is completely independent of

the fast subsystem. As discussed in El-Farra and

Christofides (2003), this decoupling property is a con-

sequence of: (1) the absence of the nonlinear terms,

fs(xs , xf ), ff(xs , xf ) (see Eq. (12)) which introduce an

interconnection between the two subsystem, and (2) the

fact that the control input is only a function of the slow
states.

Remark 5. The switching law of Eq. (23) orchestrates

the transition between the N actuator configurations in

a way that respects their constraints and guards against

any potential instability that may arise due to switching.

The basic problem here owes to the limitations imposed

by constraints on the set of feasible initial conditions

that can be used, for a given actuator configuration, to
stabilize the closed-loop system. Different actuator

configurations possess different stability regions and,

depending on where the state is at a given moment in

time, a switch from one configuration to another may

land the state outside the stability region of the target

configuration, thus leading to instability. To guard

against this possibility, the switching law of Eq. (23)

monitors the evolution of the slow state in time (fast
states can be neglected since e is sufficiently small) and

allows switching to take place only when the state is

within the stability region of the desired actuator

configuration. This condition determines, implicitly,

the earliest time for which switching is safe.

Remark 6. The results of Theorem 1 can be useful for

dealing with a variety of distributed control problems.
One example is the problem of actuator failure. In this

case, it is often necessary to switch from the failed

actuator configuration to an alternative, well-function-

ing, configuration that may already be installed on the

process, in order to preserve closed-loop stability. The

switching scheme of Theorem 1 can be used in this case

to determine when the switching can take place and

which of the alternative actuator configurations can be
used (see Sections 4 and 5 for simulation examples).

Note, however, that in other control problems, switch-

ing may not be needed to maintain closed-loop stability,
but is motivated, instead, by the desire to achieve some

higher objective, such as the desire to optimize a given

performance criterion for the control system or to

accommodate conflicting control objectives that cannot
be reconciled using a single control actuator configura-

tion. For example, when the performance index asso-

ciated with the control system includes penalty on the

actuator location, the actuator configuration (or loca-

tions) that minimizes this cost provides the best perfor-

mance. However, owing to the presence of different

constraints for actuators placed at different locations, it

may not be possible to use this actuator configuration if
the desired initial condition lies outside its stability

region. To resolve this conflict, one may initially use

another actuator configuration, for which the initial

condition is admissible, and later switch to the desired

configuration, that provides better performance, when

the state of the system enters its stability region.

Remark 7. Note that it is possible for more than one

control actuator configuration (/z̄k) to satisfy the switch-
ing rule given in Eq. (23) at a given time. This can

happen when the slow state lies in the intersection of

several stability regions. In this case, Theorem 1 only

guarantees that a switch from the current configuration

to any of these configurations is safe, as far as closed-

loop stability is concerned. The decision to select a

particular configuration should then be made on the

basis of some other objective as discussed in Remark 6.
For example, in the event that the operating actuator

fails and it becomes necessary to switch to some backup

configuration, then if more than one backup configura-

tion is feasible, one might choose the one that utilizes the

smallest control effort or minimizes some other perfor-

mance criterion (see Section 5 for an example) in order

to minimize any performance losses resulting from the

failure of the primary actuator configuration. In Theo-
rem 1, however, the selection of the N actuator

configurations is assumed to be pre-determined and

not necessarily based on any optimality criteria. For

some results on the problem of optimal placement of

control actuators and measurement sensors for distrib-

uted systems, the reader is referred to Demetriou (1999),

Antoniades and Christofides (2001a, 2002).

Remark 8. Owing to the spatially distributed nature of

the control problem, the switching scheme proposed in

this paper is conceptually different from the classical

switching schemes studied in the context of hybrid

controller design for lumped-parameter systems. For

lumped systems, the idea is to achieve the specified

control objectives by switching between members of an a

priori specified family of feedback functions, whereas
the switching scheme presented here seeks to achieve the

desired control objectives by switching between mem-

bers of an a priori specified family of control actuator
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configurations (or locations), using the same feedback

function (parameterized by z̄k): For each actuator

configuration, the temporal evolution of the state is

governed by a different set of differential equations
which define a particular mode. The closed-loop system

can, therefore, be viewed as multi-modal even though

the unforced dynamics themselves are not hybrid in

nature. The area of switched and hybrid controller

design for lumped-parameter systems is currently an

active area of research (e.g. see El-Farra & Christofides,

2002 and the references therein for results in this area).

Remark 9. The control law of Eqs. (20) and (21)
involves a modification of the controller design origin-

ally proposed in Lin and Sontag (1991), by including the

term �/r je j2 which is made to ensure that the control

law enforces exponential stability in the closed-loop

PDE system (see the proof of Theorem 1 in Appendix

A). With r�/0, it can be shown that the control law of

Eqs. (20) and (21) enforces only asymptotic closed-loop

stability. It is, therefore, preferable to set r�/0 and
achieve exponential stability because of its robustness to

bounded perturbations, which are always present in

most practical applications (Balas, 1991). We also note

that even though a single (common) Lyapunov function

is used to design the controller and characterize the

stability region for all actuator configurations, it is

possible to employ multiple Lyapunov functions (one

for each configuration) instead, to achieve greater
flexibility in switching (e.g. larger stability regions). In

this case, however, additional switching rules, that

impose restrictions on the growth of each Lyapunov

function at transition times, are needed to ensure closed-

loop stability (see El-Farra & Christofides, 2002 for

further details on this issue).

Remark 10. Referring to the practical applications of
the result of Theorem 1, one must initially identify the

candidate control actuator configurations to be used. A

single quadratic Lyapunov function is then used to: (1)

synthesize, via Eqs. (20) and (21), the necessary bounded

nonlinear controller, and (2) construct, with the aid of

Eq. (22), the region of guaranteed closed-loop stability

V(umax
k , z̄k) associated with each actuator configuration,

on the basis of the finite-dimensional model that
captures the dominant dynamics of the distributed

system. Once this is done, one can proceed with the

implementation of the control strategy by initializing the

closed-loop system within the stability region of the

desired initial actuator configuration and implementing

the feedback controller using this configuration. Then,

the switching law of Eq. (23) is checked on-line to

determine if it is possible to switch to another actuator
configuration at any given time. If the condition is

satisfied for some configuration, then this configuration

can be safely activated. Otherwise, the current actuator
configuration remains active. Note that when switching

is necessitated by the failure of the operating actuator,

then if none of the backup configurations is feasible at

failure time (due to tight constraints), then a process
shutdown may be unavoidable. This possibility can be

minimized by increasing the number of backup actua-

tors and their capacities.

Remark 11. The nonlinear controller of Eqs. (20) and

(21) was derived under the assumption that measure-

ments of the state variables x̄(z; t) are available at all

positions and times. From a practical point of view,

measurements of the state variables are available only at
a finite number of spatial positions, while in addition,

there are many applications where measurements of

state variables cannot be obtained on-line. To deal with

this problem, an output feedback controller that uses

only measurements of the outputs, ym , can be con-

structed under the assumption that the number of

measurements is equal to the number of slow modes

and that the inverse of the measurement operator S
exists, so that x̂s�S�1ym where x̂s is the estimate of the
slow state and ym is the measured output. The invert-

ibility of the measurement operator can be ensured by

appropriate choice of the location of the measurement

sensors. The synthesis of the output feedback controller

can be carried out by combining the state feedback

controller of Eqs. (20) and (21) with a procedure

proposed in Christofides (2001) for obtaining estimates
for the states of the approximate ODE model of Eq. (13)

from the measurements. While the estimation error

leads to some loss in the size of the stability region

obtained under state feedback, this loss can be made

small by increasing the order of the ODE approximation

and including more measurements. This approach

allows us to asymptotically (as e0/0) recover the

stability region associated with each control actuator
configuration.

Remark 12. An a priori estimate of the minimum

necessary separation between the slow and fast eigen-

values (i.e. a value for e*) can, in principle, be extracted

from the stability proof via singular perturbation

techniques. However, as is the case with most singular

perturbation techniques, this estimate is typically con-
servative and, therefore, it is useful to check its

appropriateness through computer simulations. To this

end, an initial value for m (the number of slow

eigenmodes) is chosen by the user (thus fixing the value

of e ) and Galerkin’s method is applied to derive a finite-

dimensional ODE system that describes the dynamics of

these m slow modes, which is then used to design the

feedback and switching laws of Theorem 1 which, in
turn, are applied to the parabolic PDE system. Closed-

loop stability is then checked through computer simula-

tions and, if not achieved, the initial choice for m is
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revised, by including more slow eigenvalues and increas-

ing the order of the ODE approximation.
4. Application to a diffusion-reaction process

In this section, we illustrate through computer

simulations how the concept of coupling feedback and

switching, proposed in Theorem 1, can be used to deal

with the problem of control actuator failure in control

of a diffusion-reaction process. To this end, consider a

long, thin rod in a reactor. The reactor is fed with pure

species A and a zeroth order exothermic catalytic

reaction of the form A 0/B takes place on the rod.
Since the reaction is exothermic, a cooling medium in

contact with the rod is used for cooling. Under standard

assumptions, the spatiotemporal evolution of the di-

mensionless rod temperature is described by the follow-

ing parabolic PDE:

@x̄

@t
�

@2x̄

@z2
�bT e

�
g

1�x̄�bU (b(z)u(t)� x̄)�bT e�g

subject to the boundary and initial conditions:

x̄(0; t)�0; x̄(p; t)�0; x̄(z; 0)� x̄0(z) (25)

where x̄ denotes the dimensionless temperature in the

reactor, bT denotes a dimensionless heat of reaction, g

denotes a dimensionless activation energy, bU denotes a

dimensionless heat transfer coefficient, u(t) denotes the

vector of manipulated inputs and b(z) the vector of the

corresponding actuator locations. The following typical

values are given to the process parameters: bT �/50.0,

bU �/2.0, g�/4.0.
For the above values, it was verified that the operat-

ing steady-state x̄(z; t)�0 is an unstable one. The

control objective, therefore, is to stabilize the rod

temperature profile at this unstable steady-state by

manipulating the temperature of the cooling medium,

subject to hard constraints on the manipulated input. To

achieve this objective, the controlled output is defined

as:

yc(t)�g
p

0

ffiffiffi
2

p

s
sin(z)x(z; t)dz (26)

The eigenvalue problem for the spatial differential

operator of the process can be solved analytically and
its solution is:

lj ��j2; fj(z)�

ffiffiffi
2

p

s
sin(jz); j�1; . . . ; � (27)

For this system, we consider the first eigenvalue as the
dominant one and use standard Galerkin’s method to

derive an ODE that describes the temporal evolution of

the amplitude, a1(t ), of the first eigenmode, where
xs(t)�/a1(t )f1(z ). This ODE is used for the synthesis

of the controller, using Eqs. (20) and (21), which is then

implemented on a 30th order Galerkin discretization of

the parabolic PDE system (higher order discretizations
led to identical results).

In order to demonstrate the utility of the switching

scheme, we consider the following two problems where

switching is needed to preserve closed-loop stability. In

the first problem, two point control actuators A and B,

placed at two different locations zA �/0.5p and zB �/

0.12p , respectively, are assumed to be available for

stabilization. Both actuators have the same magnitude
constraints of umax�/1.4 but only one actuator is to be

used for control at any given moment. The question to

be addressed in this problem is: when is it possible to

switch between the two actuators, to preserve closed-

loop stability, in case the operating actuator fails. In the

second problem, we assume that three point control

actuators, A, B, and C, located at zA �/0.5p , zB �/0.23p ,

and zC �/0.36p , respectively, are available for stabiliza-
tion. The three actuators have different constraints of

umax
A �/umax

B �/2.5 and umax
C �/0.5. Again, only one ac-

tuator is to be active at any given moment. The question

in this problem is how to decide which of the two

backup actuators can be used to maintain stability once

the third actuator fails. The first problem basically deals

with the issue of identifying the appropriate switching

times that ensure fault-tolerance for a given actuator re-
configuration policy, while the second problem ad-

dresses the issue of how to select the appropriate

actuator re-configuration policy among a family of

possible choices.

We proceed with the state feedback results first. For

the first problem, we initially use Eq. (22) with r�/0.2 to

compute the stability region as a function of control

actuator location. To simplify the presentation of our
results, we plot in Fig. 1(a) the variation of the set of

admissible initial conditions for the amplitude, a1(0), of

the first eigenmode, with actuator location (note that

xs(0)�/a1(0)f1(z )). From this figure, it is clear that for

the initial condition a1(0)�/0.78, only actuator A can be

used initially since the initial condition is outside the

stability region of actuator B. Fig. 1(b�/c) depict,

respectively, the closed-loop temperature and manipu-
lated input profiles corresponding to this initial condi-

tion, using actuator A. Clearly, the controller

successfully stabilizes the temperature profile at the

desired steady-state. Now, suppose that sometime after

process startup, a fault is detected in actuator A. From

Fig. 1(a), we conclude that switching to actuator B may

or may not solve the problem depending on when the

failure of A actually occurs. For example, consider the
case when actuator A fails at t�/1.25. By tracking the

slow state a1 in time, we find that a1(1.25)�/0.5, which is

outside the stability region of actuator B, and therefore,

a switch to actuator B is not expected to preserve closed-



Fig. 1. (a) Stability region as a function of actuator location for

umax�/1.4, (b) closed-loop dimensionless temperature profile (state

feedback) for a1(0)�/0.78 when actuator A (umax�/1.4, zA �/0.5p ) is

used without switching, (c) corresponding manipulated input profile. Fig. 2. (a) Closed-loop dimensionless temperature profile (state feed-

back) for a1(0)�/0.78 when actuator A fails at t�/1.25 and actuator B

(umax�/1.4, zB �/0.12p ) is activated, (b) closed-loop dimensionless

temperature profile (state feedback) for as (0)�/0.78 when actuator A

fails at t�/1.75 and actuator B is activated, (c) corresponding

manipulated input profiles for case a (solid) and case b (dashed).
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loop stability. This is confirmed by the closed-loop

temperature profile in Fig. 2(a) and the corresponding

manipulated input profile in Fig. 2(c) (solid profile).

Note that the input stays saturated for all times after

switching. Suppose now that actuator A fails at t�/1.75

instead. By tracking the slow state, we find that

a1(1.75)�/0.29, which is well within the stability region

of actuator B, and, therefore, according to the switching

scheme of Theorem 1, closed-loop stability can be

preserved by activating actuator B. This is illustrated

in Figs. 2b and 2c (dashed profile) which show that the

controller successfully stabilizes the closed-loop tem-

perature when actuator B is activated at the time that
actuator A fails. From these results we conclude that a

fault in actuator A can be tolerated after t�/1.75 by

using the proposed switching scheme.

We now turn our attention to the second problem.

Using Eq. (22) with r�/0.02, the stability regions for

umax�/2.5 (solid line) and for umax�/0.5 (dashed line)

are computed and shown in Fig. 3(a). From this figure,

it is easy to see that for the initial condition a1(0)�/1.3,

only actuator A (zA �/0.5p , umax
A �/2.5) can be used



Fig. 3. (a) Stability region as a function of actuator location for umax�/2.5 (solid) and umax�/0.5 (dashed), (b) closed-loop dimensionless temperature

profile (state feedback) for a1(0)�/1.3 when actuator A (umax�/2.5, zA �/0.5p ) fails at t�/1.4 and actuator C (umax�/0.5, zC �/0.36p ) is activated, (c)

closed-loop dimensionless temperature profile (state feedback) for a1(0)�/1.3 when actuator A fails at t�/1.4 and actuator B (umax�/2.5, zB �/0.23p )

is activated, (d) corresponding manipulated input profiles for case b (solid) and case c (dashed).
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initially since the initial condition is outside the stability

regions of both actuator B (zB �/0.23p , umax
B �/2.5) and

actuator C (zC �/0.36p , umax
C �/0.5). Now, suppose that

sometime after process startup, say t�/1.4, a fault is

detected in actuator A and it becomes necessary to

switch to another actuator. Without using the switching

law of Theorem 1, it is not clear whether actuator B or C

should be activated at this time. Figs. 3b and 3d (solid

profile) depict, respectively, the resulting closed-loop

temperature and manipulated input profiles when ac-

tuator C is chosen. We see in this case that the controller

is unable to stabilize the system at the desired steady-

state. In contrast, using the proposed switching scheme,

we find that the slow state at the time that actuator A

fails is a1(1.4)�/0.62, which is inside the stability region

of actuator B and outside the stability region of actuator

C. So, we choose to activate actuator B. Figs. 3c and 3d

(dashed line) depict the results for this case which show

that the controller successfully stabilizes the closed-loop

system.

For the case of output feedback, we use a single point

sensor located at z�/0.33p , to obtain estimates of the

first eigenmode, which are then used for implementing

the output feedback controller. Owing to the small,
O (e ), discrepancy between the stability regions obtained

under state and output feedback (due to estimation

errors), the switching law of Theorem 1 should be used

only as an approximate guide for switching between the

different actuators in the case of output feedback (see

Remark 11). The simulation results for this case are

consistent with the state feedback results for both
problems. For brevity, we present only the results for

the second problem. These results are given in Fig. 4

which shows that the closed loop system becomes

unstable when configuration C is activated at the time

that actuator A fails at t�/1.4 (Figs. 4a and 4c (solid

line)), whereas closed-loop stability is maintained by

activating configuration B instead (Figs. 4b and 4d

(dashed line)).
5. Application to a non-isothermal tubular reactor with

recycle

We consider the non-isothermal tubular reactor
studied in Antoniades and Christofides (2001b), where

an irreversible first-order reaction of the form A 0/B

takes place. The reaction is exothermic and a cooling



Fig. 4. (a) Closed-loop dimensionless temperature profile (output

feedback) for a1(0)�/1.3 when actuator A (umax�/2.5, zA �/0.5p ) fails

at t�/1.4 and actuator C (umax�/0.5, zC �/0.36p ) is activated, (b)

closed-loop dimensionless temperature profile (output feedback) for

a1(0)�/1.3 when actuator A fails at t�/1.4 and actuator B (umax�/2.5,

zB �/0.23p ) is activated, (c) corresponding manipulated input profiles

for case a (solid) and case b (dashed).
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jacket is used to remove heat from the reactor. The

outlet of the reactor is fed to a separator where the

unreacted species A is separated from the product B and

then fed back to the reactor through a recycle loop.

Under standard modeling assumptions, the dynamic

model of the process can be derived from mass and

energy balances and takes the following dimensionless

form:
@x̄1

@t
��

@x̄1

@z
�

1

PeT

@2x̄1

@z2
�BT BC exp

gx̄1

1�x̄1 (1� x̄2)

�bT (b(z)u(t)�x̄1)
@x̄2

@t
��

@x̄2

@z
�

1

PeC

@2x̄2

@z2
�BC exp

gx̄1

1�x̄1 (1�x̄2) (28)

subject to the boundary conditions:

@x̄1(0; t)

@z
�PeT (x̄1(0; t)�(1�r)x̄1f (t)�rx̄1(1; t))

@x̄2(0; t)

@z
�PeC(x̄2(0; t)�(1�r)x̄2f (t)�rx̄2(1; t))

@x̄1(1; t)

@z
�0;

@x̄2(1; t)

@z
�0 (29)

where x̄1 and x̄2 denote dimensionless temperature and

concentration of species A in the reactor, respectively,

x̄1f and x̄2f denote dimensionless inlet temperature and

inlet concentration of species A in the reactor, respec-

tively, PeT and PeC are the heat and thermal Peclet

numbers, respectively, BT and BC denote a dimension-

less heat of reaction and a dimensionless pre-exponential
factor, respectively, r is the recirculation coefficient (it

varies from zero to one, with one corresponding to total

recycle with zero fresh feed, and zero corresponding to

no recycle), g is a dimensionless activation energy, bT is

a dimensionless heat transfer coefficient, u is a dimen-

sionless jacket temperature (chosen to be the manipu-

lated input), and b (z) is the actuator distribution

function. For the purposes of our analysis here, we
will assume that there is no recycle loop dead-time.

In order to transform the boundary condition of Eq.

(29) to a homogeneous one, we insert the non-homo-

geneous part of the boundary condition into the

differential equation and obtain the following PDE

representation of the process:

@x̄1

@t
��

@x̄1

@z
�

1

PeT

@2x̄1

@z2
�BT BC exp

gx̄1

1�x̄1 (1� x̄2)

�bT (b(z)u(t)�x̄1)�d(z�0)

� ((1�r)x̄1f �rx̄1(1; t))

@x̄2

@t
��

@x̄2

@z
�

1

PeC

@2x̄2

@z2
�BC exp

gx̄1

1�x̄1 (1�x̄2)�d(z�0)

� ((1�r)x̄2f �rx̄2(1; t))

(30)

where d ( �/) is the standard Dirac function, subject to the

homogeneous boundary conditions:

@x̄1(0; t)

@z
�PeT x̄1(0; t);

@x̄2(0; t)

@z
�PeC x̄2(0; t);

@x̄1(1; t)

@z
�0;

@x̄2(1; t)

@z
�0 (31)



Fig. 5. Spatiotemporal evolution of the dimensionless reactor tem-

perature profile in the open-loop system.
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The following values for the process parameters were

used in our calculations: PeT �/7.0, PeC �/7.0, BC �/0.1,

BT �/2.5, bT �/2.0, g�/10.0, r�/0.5, x̄1f � x̄2f �0: For

these values, the operating steady-state of the open-loop

system is unstable (the linearization around the steady-

state possesses one real unstable eigenvalue and infi-

nitely many stable eigenvalues). This instability is shown

by the open-loop temperature profile in Fig. 5 where it is

seen that starting close to the unstable steady-state, the

temperature profiles moves to an asymptotically stable

periodic (limit cycle) spatially non-uniform steady-state.

We note that in the absence of recycle-loop (i.e. r�/0),

the above process parameters correspond to a unique,

globally asymptotically stable spatially non-uniform

steady-state for the open-loop system (see Antoniades

& Christofides, 2001b for a detailed study of the effect of

the recycle ratio on the dynamics of the tubular reactor).

The control problem is to stabilize the reactor at a

spatially-nonuniform steady-state where the production

of species B is desirable and the ‘hot-spot’ temperature

is acceptable, by manipulating the jacket temperature,

u (t ), which is subject to hard constraints and possible

actuator failures. To achieve this control objective, the

controlled output is defined as yc(t)�f
1

0
e�Pezf11(z)x̄1dz;

and the actuator distribution function is taken to be

b (z )�/d (z�/zact ) (point control actuator placed at z�/

zact ). The desired reference input value was set at v�/

0.10 (this value of y (t) corresponds to a steady-state

with the desired characteristics of a high production rate

with relatively low ‘hot-spot’ temperature). Further-

more, we assume that there is available a large number

of point measurements of the temperature throughout

the reactor so that yc(t) is known with sufficient

accuracy.

The spatial differential operator of the system of Eq.

(30) is of the form:
Ax̄�
A1x̄1 0

0 A2x̄2

� �

�

1

PeT

@2x̄1

@z2
�

@x̄1

@z
0

0
1

PeC

@2x̄2

@z2
�

@x̄2

@z

2
6664

3
7775 (32)

The solution of the eigenvalue problem for Ai can be
obtained by utilizing standard techniques from linear
operator theory (see, for example, Ray, 1981) and is of
the form:

lij �
ā2

ij

Pe
�

Pe

4
; i�1; 2; j�1; . . . ; �

fij(z)�Bije
Pe

z

2

�
cos(āijz)�

Pe

2āij

sin(āijz)

�
;

i�1; 2; j�1; . . . ; �

f̄ij(z)�e�Pezfij(z); i�1; 2; j�1; . . . ; � (33)

where Pe�/PeT �/PeC , and lij , fij , f̄ij; denote the
eigenvalues, eigenfunctions and adjoint eigenfunctions

of Ai , respectively. āij ; Bij can be calculated from the
following formulas:

tan(āij)�
Peāij

ā2
ij �

�
Pe

2

�2 ; i�1; 2; j�1; . . . ; �

Bij �
�
g

1

0

�
cos(āijz)�

Pe

2āij

sin(āijz)

�2

dz

��
1

2
;

i�1; 2; j�1; . . . ; �

(34)

For this system, we take as the slow modes of the
process the first temperature mode and use Galerkin’s

method to derive an ODE that describes the temporal

evolution of the amplitude of the first eigenmode. This

ODE is employed for the synthesis of the controller,

using Eqs. (20) and (21), which is then implemented on a

400th order Galerkin discretization of the system of Eqs.

(30) and (31) (further increases in the order of the

Galerkin truncation were found to give negligible
improvement on the accuracy of the results). To deal

with possible actuator faults, we consider switching

between three point control actuators placed at zA �/0

(constraints magnitude: umax
A �/0.06), zB �/0.2 (con-

straints magnitude: umax
B �/0.06), and zC �/0.8 (con-

straints magnitude: umax
C �/0.02).

In the first set of simulation runs, we evaluate the

ability of the constrained controller to stabilize the
reactor at the desired steady-state in the absence of

actuator faults. To this end, we design the bounded

nonlinear controller of Eqs. (20) and (21) with r�/0.001

and implement it using actuator A placed at the



Fig. 6. (a) Controlled output profiles when actuator A (umax�/0.06, zA �/0) operates without failure (solid) and when it fails at t�/0.875 without

activating any of the backup actuators (dashed), (b) corresponding manipulated input profiles, (c) closed-loop dimensionless temperature profile

when actuator A operates without failure, (d) closed-loop dimensionless temperature profile when actuator A fails at t�/0.875 without activating any

of the backup actuators.
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entrance of the reactor. The result is shown by the solid

profiles in Figs. 6a and 6b which depict the evolution of

the controlled output and manipulated input, respec-

tively. It is seen that the controller successfully stabilizes

the output at the desired reference input while satisfying

the constraints. The corresponding temperature profile

is shown in Fig. 6(c).
In the second set of simulation runs, we demonstrate

how actuator switching can be used to deal with the

problem of actuator failure. To this end, the closed-loop

system is initialized at the same initial condition,

considered earlier, under control actuator A which is

assumed to fail at t�/0.875. If neither of the two backup

actuators, B or C, is activated at this time, we see from

the dashed profiles in Fig. 6(a�/b) that the system reverts

to its open-loop mode where the output moves away

from the desired steady-state and exhibits a limit cycle

behavior. This instability is also reflected in the tem-

perature profile shown in Fig. 6(d). When actuator B is

activated, however, it is clear from the resulting

controlled output (Fig. 7(a) solid line) and temperature

(Fig. 7(c)) profiles that the controller successfully

preserves closed-loop stability and achieves the desired

steady-state despite the failure of actuator A. In con-

trast, when actuator C is activated instead of B, we see
from the dashed profile in Fig. 7(a) that the controller is

unable to stabilize the output at the desired steady-state,

leading to transient oscillatory behavior and offset. The

resulting poor performance is also evident in the closed-

loop temperature profile depicted in Fig. 7(d). The

difference in outcome between the two switching se-

quences (activation of B following failure of A vs.

activation of C following failure of A) can be explained

from the corresponding input profiles shown in Fig.

7(b). In particular, when actuator C (closer to the

reactor exit) is activated, the controller requests large

control action to drive the system to the desired steady-

state, which is not available due to the tight constraints

of this actuator, leading to prolonged periods of

actuator saturation that result in poor performance

and offset. In the case of actuator B, however, the

control action requested is within the allowable range

for this actuator, and therefore, the desired stability and

performance properties are preserved successfully upon

switching. These results are consistent with the solution

of the optimal actuator placement problem for this

tubular reactor, obtained in Antoniades and Christo-

fides (2001a), which show that actuators placed closer to

the inlet of the reactor utilize smaller control effort than

those placed closer to the exit.



Fig. 7. (a) Controlled output profiles for the case when actuator A (umax�/0.06, zA �/0) fails at t�/0.875 and actuator B (umax�/0.06, zB �/0.2) is

activated (solid) and for the case when actuator C (umax�/0.02, zC �/0.8) is activated (dashed) instead of B, (b) corresponding manipulated input

profiles, (c) closed-loop dimensionless temperature profile when actuator A fails at t�/0.875 and actuator B is activated, (d) closed-loop

dimensionless temperature profile when actuator A fails at t�/0.875 and actuator C is activated.
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6. Conclusions

A methodology for coordinating feedback and

switching in control of spatially-distributed processes

described by highly dissipative, constrained PDE sys-

tems was proposed. Under the assumption that the

eigenspectrum of the spatial differential operator can be

partitioned into a finite slow set and an infinite stable

fast complement, Galerkin’s method was initially used

to derive a finite-dimensional ODE system that captures

the dominant dynamics of the PDE system. The ODE

system was then used as the basis for the integrated

synthesis, via Lyapunov techniques, of a stabilizing

nonlinear feedback controller, together with a switching

law that orchestrates the switching between the admis-

sible control actuator configurations, in a way that

respects actuator constraints, accommodates conflicting

control objectives, and guarantees closed-loop stability

at the same time. Precise conditions that guarantee

stability of the constrained closed-loop PDE system

under switching were provided. Finally, the proposed

methodology was successfully applied to stabilize an

unstable steady-state of a diffusion-reaction process and

a non-isothermal tubular reactor with recycle, under

constraints and control actuator failure.
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Appendix A

Proof of Theorem 1. The proof of this theorem is

divided into three parts. In the first part, we show that,

for each fixed actuator configuration, z̄k; (without

switching), the finite-dimensional closed-loop system is

asymptotically (and locally exponentially) stable for any

initial condition as(0) � /V(umax
k , z̄k): In the second part,

we show that switching among the N actuator config-

urations, using the switching rule of Eq. (23), guarantees

that the switched finite-dimensional closed-loop system

remains also asymptotically (and locally exponentially)

stable. Finally, in the third part, we use the stability

results obtained for the finite-dimensional closed-loop
system to prove closed-loop stability and reference-input

tracking for the infinite-dimensional closed-loop system.

Part 1: Consider first the finite-dimensional system of



N.H. El-Farra, P.D. Christofides / Computers and Chemical Engineering 28 (2004) 111�/128126
Eq. (14) in the transformed (e , h ) coordinates intro-

duced in Eqs. (17) and (18), subject to the control law of

Eqs. (20) and (21). Using a standard Lyapunov argu-

ment, it can be shown that whenever Eq. (22) is satisfied,

for a given actuator configuration z̄k; the time-derivative

of the Lyapunov function, along the trajectories of the

closed-loop e-subsystem, satisfies:

V̇ 5
�r½e½2

[1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � (uk

max½(LḡV (z̄k))T ½)2
q

]
B0

�e"0; k�1; . . . ; N

(35)

Since the function D(uk
max; z̄k)� [1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�(uk
max½(LḡV (z̄k))T ½)2

q
] is continuous everywhere,

then given any compact set V(umax
k , z̄k); there exists a

positive real number n (umax
k , z̄k)/�/0 such that

D(uk
max; z̄k)5n(uk

max; z̄k) for all as � /V(umax
k , z̄k); which

implies that V̇ 5�a(uk
max; z̄k)½e½2B0 for all e "/0, k�/1,

. . ., N , where a(uk
max; z̄k)�r=n(uk

max; z̄k)�0: Consider

now any initial condition such that as(0) � /V(umax
k , z̄k):

Since the set V(umax
k , z̄k) is an invariant set within the

region described by Eq. (22), then starting from as(0),

the closed-loop state satisfies Eq. (22) for all time and,

consequently from Eq. (35) above, we have that V

decreases monotonically according to the dissipation

inequality V̇ 5�a(uk
max; z̄k)½e½2B0; which implies that

the closed-loop e-subsystem is exponentially stable

under the k th actuator configuration. Therefore, there

exists positive real numbers s1
k ]/1, f1

k �/0 such that the

e states of the finite-dimensional closed-loop system

satisfy:

½e(t)½5sk
1 ½e(0)½e�fk

1 t � t]0 (36)

Since the h subsystem, with e as input, is ISS (from

Assumption 2), uniformly in v̄; the h states of the closed-

loop system satisfy the following inequality:

½h(t)½5s2½h(0)½e�f2t�gh(½½e½½) � t]0 (37)

for some s2]/1, f2�/0, where gh is a class K function
of its argument (i.e. continuous, increasing and zero at
zero) and jje jj�/ess.supje(t)j, �/t ]/0. Using the inequal-

ities of Eqs. (36) and (37), it can be shown by means of a
small gain argument that the closed-loop (e , h ) inter-

connected system, and hence that of Eqs. (14), (20) and

(21), is asymptotically stable. Furthermore, from this

result and the fact that the h -subsystem (with e�/0) is

locally exponentially stable, we have that the closed-

loop system of Eqs. (14), (20) and (21) is locally

exponentially stable (see Khalil, 1996 for details).

Part 2: Without loss of generality, assume that as(0) � /

V(umax
1 , z̄1): Since the set V(umax

1 , z̄1) is invariant, then for
all times that the configuration z̄k� z̄1 is active, the

closed-loop state satisfies Eq. (22) with z̄k� z̄1 and V

decreases monotonically according to the dissipation

inequality V̇ 5�a(u1
max; z̄1)½e½2B0: Now, if at any time

T , such that as (T ) � /V(umax
j , z̄j) (Eq. (23)) for some j � /

{2, . . ., N}, configuration z̄j is activated (and z̄1 switched

out), then it is clear from the invariance of V(umax
j , z̄j)

that, for all times that the configuration z̄k� z̄j remains

active, the closed-loop state will satisfy Eq. (22) with

z̄k� z̄j and, consequently from Eq. (35) above, we have

that V continues to decrease monotonically, but with a

different dissipation rate V̇ 5�a(uj
max; z̄j)½e½2B0:

Therefore, we conclude that, as long as the k th

configuration is switched in at time T when as(T ) � /

V(umax
k , z̄k); the time-derivative of the Lyapunov func-

tion (for the switched e -subsystem) will always satisfy

the following worst-case dissipation inequality for all

t ]/0:

V̇ 5maxk�1;...;Nf�a(uk
max; z̄k)g½e½2B0 (38)

which implies that the switched closed-loop e -subsystem

is exponentially stable and that the switched closed-loop

system of Eqs. (14), (20)�/(23) is asymptotically stable

(by invoking the ISS property of the h -subsystem similar
to part 1 of the proof). Therefore, there exists a function

b̄ of class KL such that jas(t)j5//b̄/(jas (0)j, t) �/t ]/0 (a

function b̄(s; t) is said to be of class KL if, for each

fixed t , the function b̄(s; �) is continuous, increasing, and

zero at zero and, for each fixed s , the function b̄(�; t) is
nonincreasing and tends to zero at infinity). Using the

fact that x̄s�a
m

j�1 aj(t)fj(z); and the definition of the

L2-norm associated with the finite-dimensional Hilbert

space, Hs , we have:

½x̄s½2�g
b

a

(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1(t)f2
1(z)� . . .�a2

m(t)f2
m(z)

q
)dz (39)

Since the functions fj( �/) are continuous on the closed

interval [a , b ], then there exist real numbers 8j ]/0, j�/

1, . . ., m such that fj
25/8j , and consequently:

½x̄s½25g
b

a

(8�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1(t)� . . .�a2
m(t)

q
)dz

�g
b

a

(8�½as(t)½)dz58�(b�a)b̄(½as(0)½; t) (40)

where 8*�//

ffiffiffiffi8p
; 8�/maxj�1,. . .,m{8j}, which implies

that the state x̄s is bounded and ½x̄s½2 0 0 as t 0/�.

Therefore, the origin of the switched closed-loop slow

subsystem of Eqs. (13), (20)�/(23) is asymptotically
stable, i.e. there exists a class KL function, bs , such

that:

½x̄s½25bs(½x̄s(0)½2; t) �t]0 (41)
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Furthermore, from the exponential stability of the

switched closed-loop e-subsystem (see Eq. (38)) and the

local exponential stability of the h -subsystem (Assump-
tion 2), we have that the switched closed-loop system of

Eqs. (14), (20)�/(23) (hence that of Eqs. (13), (20)�/(23))

is locally exponentially stable. Therefore, given the

positive real number ds
1 (or d̄1

s ); there exists b �/0 such

that if jas(0)j5/ds
1 (or ½x̄s(0)½5 d̄1

s ); the following bound

holds:

½x̄s(t)½25s3½x̄s(0)½2e�f3t �t]0 (42)

for all ½x̄s(t)½25b; for some s3]/1, f3�/0.

Part 3: Substituting the controller of Eqs. (20) and

(21) into Eq. (12) and using the fact that e�/jRe{l1}j/
jRe{lm�1}jB/1, the closed-loop system can be written

in the following form:

dxs

dt
�Asxs�Bsr(xs; uk

max; z̄k)(LḡV )T �fs(xs; 0)

� [fs(xs; xf )�fs(xs; 0)]

e
@xf

@t
�Af exf �ef̄ f (xs; xf ) (43)

where Afe is an unbounded differential operator defined

as Afe�/eAf , and the function f̄ f defined as

f̄ f (xs; xf )��Bsr(xs; uk
max; z̄k)(LḡV )T �ff (xs; xf ): The

system of Eq. (43) is in the standard singularly perturbed
form, with xs being the slow states and xf being the fast

states. Introducing the fast time-scale t�/t /e and setting

e�/0, we obtain the following infinite-dimensional fast

subsystem from the system of Eq. (43):

@x̄f

@t
�Af ex̄f (44)

where the bar symbol in x̄f ; denotes that the state x̄f is

associated with the approximation of the fast xf -

subsystem. From the fact that Re{lm�1}B/0 and the

definition of e , we have that the above system is globally

exponentially stable. Therefore, there exists real num-
bers s4]/1, f4�/0 such that:

½½x̄f (t)½½25s4½½x̄f (0)½½2e�f4t � t]0 (45)

Setting e�/0 in the system of Eq. (43) and using that

the operator Afe is invertible, we have that x̄f �0 and

thus the finite-dimensional closed-loop slow system
takes the form of Eqs. (13), (20)�/(23). We have already
shown in part 2 of the proof that this slow system is
asymptotically (and locally exponentially) stable starting

from any initial condition x̄s(0) �Us(u
1
max; z̄1) (equiva-

lently, from any initial condition as(0) � /V(umax
1 , z̄1)/) and

under the switching rule of Eq. (23) and that its states
are bounded. Therefore, exploiting the stability proper-

ties of the fast and slow systems, it can be shown, using

techniques similar to those performed in Christofides

and Teel (1996) for the analysis of singularly perturbed
systems, that the inequalities of Eqs. (41) and (45)

continue to hold, for the states of the infinite-dimen-

sional singularly perturbed closed-loop system, up to an

arbitrarily small offset, d , for initial conditions in large

compact subsets, Ub (umax
1 , z̄1)/ƒ/Us(umax

1 , z̄1); (equiva-

lently, Vb(umax
1 , z̄1)/ƒ/V(umax

1 , z̄1)/) where Ub(umax
1 , z̄1)/�/

{xs(0) � /Hs : jxs(0)j25/d�1
b }. Therefore, given any pair

of positive real numbers (/d̄1
b; d), such that d̄1

b/�/d 5//d̄1
s ;

and given any df , there exists e(1)�/0 such that if e � /(0,

e(1)], jxs(0)j25//d̄1
b; jjxf (0)jj25/df , then, for all t ]/0, the

states of the closed-loop singularly perturbed system

satisfy:

½xs(t)½25bs(½xs(0)½2; t)�d

½½xf (t)½½25s4½½xf (0)½½2e
�f4

t

e�d (46)

The above inequalities imply that the trajectories of

the switched closed-loop singularly perturbed system

will be bounded. Furthermore, as t increases, they will

be ultimately bounded with an ultimate bound that
depends on d . Since d is arbitrary, we can choose it

small enough such that after a sufficiently large time, say

t̃; the trajectories of the closed-loop system are confined

within a small compact neighborhood of the origin of

the closed-loop system. Obviously, t̃ depends on

both the initial condition and the desired size of the

neighborhood, but is independent of e . Let d�/b /2 and t̃

be the smallest time such that

maxfbs(½x̄s(0)½2; t̃); s4½½xf (0)½½2e�f4t=eg5d: Then it can

be easily verified that:

½xs(t)½25b; ½½xf (t)½½25b � t] t̃ (47)

Recall from Eqs. (42) and (45) that both the fast and

slow subsystems are exponentially stable within the ball

of Eq. (47). Therefore, there exists e(2)�/0 such that if

e5/e(2), the singularly perturbed closed-loop system of

Eq. (43) is locally exponentially stable and, therefore,

once inside the ball of Eq. (47), the closed-loop

trajectories converge to the origin as t 0/�. The details
of this argument can be found in the proof of proposi-

tion 4.1 in Christofides (2001) and will not be repeated

here. To summarize, we have that given any pair of

positive real numbers (/d̄1
b; d ) such that d̄1

b�d5 d̄1
s ; and

given any positive real number df , there exists e*�/

min{e(1), e(2)} such that if jxs(0)j25//d̄1
b; jjxf (0)jj25/df ,

and e � /(0, e*], he closed-loop trajectories are bounded

and converge to the origin as time tends to infinity, i.e.

the closed-loop system is asymptotically stable. By
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taking the lim sup of both sides of Eq. (36) as t 0/�, we

have that lim supt0�½e
i
1(t)½�0 and, therefore,

lim supt0�½ȳ
i
c(t)�vi(t)½�0; i�1; . . . ; m: Owing to

the exponential stability of the infinite-dimensional

closed-loop system, standard results from singular
perturbation theory on closeness of solutions can be

used (see Christofides, 2001) to show that there exists

tb �/0 such that, for all t ]/tb , the following estimates

hold:

xs(t)� x̄s(t)�O(e)

xf (t)�O(e) (48)

Using the above estimates together with the definition

of yc , given in Eq. (12), we get:

yc�Cxs�Cxf �Cx̄s�O(e)� ȳc�O(e) (49)

where we have used the fact that ȳc�Cx̄s to derive the

last equality. From Eq. (49), we can write:

yi
c� ȳi

c�O(e); i�1; . . . ; m (50)

and, therefore:

lim sup
t0�

½yi
c(t)�vi(t)½� lim sup

t0�

½ȳi
c(t)�vi(t)½�O(e);

i�1; . . . ; m
(51)

Since the limit on the right hand side of Eq. (51) is

zero, we finally have:

lim sup
t0�

½yi
c(t)�vi(t)½�O(e); i�1; . . . ; m (52)

This completes the proof of the theorem.
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