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Robust inverse optimal control laws for nonlinear systems
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SUMMARY

This work proposes a robust inverse optimal controller design for a class of nonlinear systems with
bounded, time-varying uncertain variables. The basic idea is that of re-shaping the scalar nonlinear gain of
an LgV controller, based on Sontag’s formula, so as to guarantee certain uncertainty attenuation
properties in the closed-loop system. The proposed gain re-shaping is shown to yield a control law that
enforces global boundedness of the closed-loop trajectories, robust asymptotic output tracking with an
arbitrary degree of attenuation of the effect of uncertainty on the output, and inverse optimality with
respect to a meaningful cost that penalizes the tracking error and the control action. The performance of
the control law is illustrated through a simulation example and compared with other controller designs.
Copyright # 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

All practical control systems have to be robust with respect to model uncertainty (e.g. unknown
or partially known time-varying process parameters and exogenous disturbances) and utilize
reasonable control action to achieve the desired performance and robustness specifications.
Model uncertainty, if not taken into account in the controller design, may cause severe
deterioration in the nominal closed-loop performance or even lead to closed-loop instability. On
the other hand, unnecessarily large control action may also cause poor closed-loop behaviour
owing to the presence of constraints on the capacity of control actuators.

The problem of designing controllers for nonlinear systems with uncertain variables, that
enforce closed-loop stability and output tracking, has received significant attention in the past.
For feedback linearizable nonlinear systems with constant uncertain variables, adaptive
techniques have been employed to design controllers that enforce asymptotic stability and
output tracking (e.g. see References [1, 2]). On the other hand, for feedback linearizable
nonlinear systems with time-varying uncertain variables that satisfy the so-called matching
condition, Lyapunov’s direct method has been used to design robust state feedback controllers
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that enforce boundedness and arbitrary degree of asymptotic attenuation of the effect of
uncertainty on the output (e.g. see References [3, 4]). More recently, robust output feedback
controllers have also been designed through combination of robust state feedback controllers
with high-gain observers [5, 6]. Additional results on the robust stabilization of feedback
linearizable nonlinear systems can be found in References [7, 8].

Even though the above works provide systematic methods for adaptive and robust controller
design, they do not lead in general to controllers that are optimal with respect to a meaningful
cost. An approach to address the design of robust optimal controllers is within the nonlinear
H1 control framework (e.g. [9]). However, the explicit construction of controllers in this
approach requires the analytic solution of the steady-state Hamilton–Jacobi–Isaacs (HJI)
partial differential equation which is not a feasible task in general. An alternative approach
which does not require solving the HJI equation is the inverse optimal control approach. Inverse
optimal control problems have a long history in control theory (e.g. see References [10–15]). The
central idea of the inverse optimal approach is to compute a robust stabilizing control law
together with the appropriate penalties that render the cost functional well defined and
meaningful in some sense. This approach provides a convenient route for robust optimal
controller design and is well motivated by the fact that the closed-loop robustness achieved as a
result of controller optimality is largely independent of the specific choice of the cost functional
so long as this cost functional is meaningful [16]. The appealing features of the inverse optimal
approach have motivated its use for the design of robust optimal controllers in References
[17–19]. These controllers, however, do not necessarily lead to an arbitrary degree of attenuation
of the effect of uncertainty on the closed-loop output. This feature is particularly desirable in the
case of non-vanishing uncertainty that can change the nominal equilibrium point of the system.

In this work, we propose a robust inverse optimal controller design that enforces an arbitrary
degree of attenuation of the effect of uncertainty on the output of the closed-loop system. The
controller design is obtained by re-shaping the scalar nonlinear gain of a Lyapunov-based
controller based on Sontag’s formula, in a way that guarantees the desired uncertainty
attenuation properties in the closed-loop system. The rest of the paper is organized as follows.
In Section 2, we introduce the class of uncertain nonlinear systems considered and review some
preliminaries on inverse optimal controller design. Then in Section 3 we formulate the robust
inverse optimal control problem and present the proposed gain re-shaping, and the resulting
control law. We discuss some of the advantages of the proposed design, relative to other designs
that have been introduced in the literature. In contrast to previous works, the uncertain
variables considered here do not obey state-dependent bounds and can change the nominal
equilibrium point. Finally, in Section 4 we present a simulation example to illustrate the
performance of the controller and compare it with other possible controller designs.

2. PRELIMINARIES

We consider single-input single-output, uncertain nonlinear systems with the following state–
space description:

’xx ¼ f ðxÞ þ gðxÞuþ
Xq
k¼1

wkðxÞykðtÞ

y ¼ hðxÞ ð1Þ
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where x 2 Rn denotes the vector of state variables, u 2 R denotes the manipulated input,
ykðtÞ 2 W � R denotes the kth uncertain (possibly time varying) but bounded variable taking
values in a non-empty compact convex subset W of R; and y 2 R denotes the output to be
controlled. Without loss of generality, we assume that the origin is an equilibrium point of the
nominal system (uðtÞ ¼ ykðtÞ � 0) of Equation (1). The uncertain variable ykðtÞ may describe
time-varying parametric uncertainty and/or exogenous disturbances. The vector functions f ðxÞ;
wkðxÞ and gðxÞ; and the scalar function hðxÞ are assumed to be sufficiently smooth. Throughout
the paper, the notation jjyjj is used to denote ess:sup: jyðtÞj; t50 where the function y is
measurable (with respect to the Lebesgue measure). For simplicity, we will suppress the time
dependence in the notation of the uncertain variable ykðtÞ:

Preparatory for its use as a tool for robust optimal controller design, we begin by reviewing
the concept of inverse optimality in the context of robust stabilization (see also Reference [18]).
To this end, consider the system of Equation (1) with q ¼ 1 and wð0Þ ¼ 0: Also, let lðxÞ and RðxÞ
be two continuous scalar functions such that lðxÞ50 and RðxÞ > 0 8 x 2 Rn and consider the
problem of finding a feedback control law uðxÞ for the system of Equation (1) that achieves
asymptotic stability of the origin and minimizes the infinite time cost functional

J ¼
Z 1

0

ðlðxÞ þ uRðxÞuÞ dt ð2Þ

The steady-state HJI equation associated with the system of Equation (1) and the cost of
Equation (2) is

0 � inf
u2R

sup
y2W

ðlðxÞ þ uRðxÞuþ LfV þ LgVuþ LwVyÞ ð3Þ

where the value function V is the unknown. A smooth positive definite solution V to this
equation will lead to a continuous state feedback uðxÞ of the form

u ¼ �pðxÞ ¼ � 1
2
R�1ðxÞLgV ð4Þ

which provides stability, optimality and robustness with respect to the disturbance y: However,
such a smooth solution may not exist or may be extremely difficult to compute. Suppose,
instead, that we were able to find a positive definite radially unbounded C1 scalar function V
such that

inf
u2R

sup
y2W

ðLfV þ LgVuþ LwVyÞ50 8 x=0 ð5Þ

Now, if we can find a meaningful cost functional (i.e. lðxÞ50; RðxÞ > 0) such that the given V is
the corresponding value function, then we will have indirectly obtained a solution to the HJI
equation and can therefore compute the optimal control law of Equation (4). Such reasoning
motivates following the inverse path. In the inverse approach, a stabilizing feedback control law
is designed first and then shown to be optimal with respect to a well defined and meaningful cost
functional of the form of Equation (2). The problem is inverse because the weights lðxÞ and RðxÞ
in the cost functional are a posteriori computed from the chosen stabilizing feedback control
law, rather than a priori specified by the designer.

A stabilizing control law uðxÞ is said to be inverse optimal for the system of Equation (1) if it
can be expressed in the form of Equation (4) where the negative definiteness of ’VV is achieved
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with the control un ¼ � 1
2
pðxÞ; that is

sup
y2W

’VV ¼ sup
y2W

ðLfV þ LgVu
n þ LwVyÞ

¼LfV � 1
2
LgVpðxÞ þ jLwV jyb50 8 x=0 ð6Þ

where the worst-case uncertainty (i.e. one that maximizes ’VV) is given by y ¼ sgn ½LwVðxÞ�yb
where yb ¼ jjyjj (which is clearly an admissible uncertainty since it is both measurable and
bounded). When the function lðxÞ is set equal to lðxÞ ¼ �supy2W ’VV ; then V is a solution to the
following steady-state HJI equation:

0 � lðxÞ þ LfV � 1
4
LgVR

�1ðxÞLgV þ jLwV jyb ð7Þ

and the optimal (minimal) value of the cost J is Vðxð0ÞÞ: Finally, we recall the definition of
input-to-state stability (ISS) for a system of the form of Equation (1).

Definition 1 (Sontag [20])
The system in Equation (1) (with u � 0) is said to be ISS with respect to y if there exist a
function b of class KL and a function g of class K such that for each x0 2 Rn and for each
measurable, essentially bounded input yð�Þ on ½0;1Þ the solution of Equation (1) with xð0Þ ¼ x0
exists for each t50 and satisfies

jxðtÞj4bðjxð0Þj; tÞ þ gðjjyjjÞ; 8 t50 ð8Þ

3. ROBUST INVERSE OPTIMAL CONTROL OF NONLINEAR SYSTEMS

3.1. Control problem formulation

Referring to the uncertain nonlinear system of Equation (1), we consider the general case when
the uncertain variables wkðxÞyk are non-vanishing, (i.e. wkð0Þy=0). Under this assumption, the
origin is no longer an equilibrium point for the uncertain system. Our objective is to synthesize a
robust nonlinear state feedback controller of the general form

u ¼ Pðx; %vvÞ ð9Þ

where Pðx; %vvÞ is a scalar function and %vv ¼ ½v vð1Þ � � � vðrÞ�T is a generalized reference input (vðkÞ

denotes the kth time derivative of the reference input v which is assumed to be a sufficiently
smooth function of time), that guarantees global boundedness of the closed-loop trajectories,
enforces the discrepancy between the output and the reference input to be asymptotically
arbitrarily small, and minimizes a meaningful cost functional defined over a finite time-interval.
To address this problem, the controller is designed using combination of geometric and
Lyapunov techniques. In particular, the design is carried out by combining a Sontag-like control
law with a robust control design proposed in Reference [4]. The analysis of the closed-loop
system is performed by utilizing the concept of ISS and nonlinear small gain theorem-type
arguments, and optimality is established using the inverse optimal control approach.
Throughout the paper, we focus on the problem of unconstrained controller design. For
results on constrained robust inverse optimal control of nonlinear systems, the reader is referred
to Reference [21].
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3.2. Controller synthesis

In order to proceed with the synthesis of the controller, we will impose the following
assumptions on the system of Equation (1). The first assumption allows transforming the system
into a partially linear form and is motivated by the requirement of output tracking.

Assumption 1
There exists an integer r and a set of co-ordinates:

z

Z

" #
¼

z1

z2

..

.

zr

Z1

..

.

Zn�r

2
666666666666666664

3
777777777777777775

¼ TðxÞ ¼

hðxÞ

Lf hðxÞ

..

.

Lr�1
f hðxÞ

T1ðxÞ

..

.

Tn�rðxÞ

2
666666666666666664

3
777777777777777775

ð10Þ

where T1ðxÞ; . . . ;Tn�rðxÞ are scalar functions such that the system of Equation (1) takes the form

’zz ¼ Azþ b Lr
f hðT

�1ðz; ZÞÞ þ LgL
r�1
f hðT�1ðz; ZÞÞuþ

Xq
k¼1

LwkL
r�1
f hðT�1ðz; ZÞÞyk

" #

’ZZ ¼ Cðz; Z; yÞ ð11Þ

where

Ar�r ¼

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
.

0 0 0 � � � 1

0 0 0 � � � 0

2
6666666664

3
7777777775
; br�1 ¼

0

0

..

.

1

2
6666664

3
7777775

ð12Þ

and LgL
r�1
f hðxÞ=0 for all x 2 Rn: Moreover, for each y 2 Wq; the states z; Z are bounded if and

only if x is bounded.

Assumption 1 is satisfied by SISO nonlinear systems that have a well-defined relative degree
(i.e. input/output linearizable systems, see Reference [22] for further details) and, in addition,
satisfy the matching condition (the relative order of the output with respect to the uncertainty, y;
is equal to the relative order with respect to the control input, u;) which ensures that the
uncertain variables cannot have a stronger effect on the controlled output than the manipulated
input. We note that the change of variables of Equation (10) is independent of y (because the
vector field gðxÞ is independent of y), and is invertible, since, for every x; the variables z; Z are
uniquely determined by Equation (10).
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Following [4], the requirement of ISS of the Z subsystem in Equation (11) is imposed to allow
the synthesis of a robust state feedback controller that enforces the requested properties in the
closed-loop system globally. Assumption 2 that follows states this requirement.

Assumption 2
The dynamical system ’ZZ ¼ Cðz; Z; yÞ is ISS with respect to z; y:

In order to achieve attenuation of the effect of the uncertain variables on the output, we assume
the existence of known bounds that capture the size of the uncertain variables for all times. In
practice, information of this kind can be obtained from physical considerations, preliminary
simulations, experimental data, etc.

Assumption 3
There exist known positive constants ybk such that jjykðtÞjj ¼ ybk:

Before we state the main result of this section, we need to introduce the following notation:
e ¼ ½e1 e2 � � � er�T; ei ¼ zi � vði�1Þ where i ¼ 1; . . . ; r: With this notation, we define

%ff ðe; Z; %vvÞ ¼ Aeþ bðLr
f hðT

�1ðe; Z; %vvÞÞ � vðrÞÞ

%ggðe; Z; %vvÞ ¼ bLgL
r�1
f hðT�1ðe; Z; %vvÞÞ; %wwkðe; Z; %vvÞ ¼ bLwkL

r�1
f hðT�1ðe; Z; %vvÞÞ ð13Þ

Theorem 1 below provides a formula of the robust state feedback controller and states precise
conditions under which the proposed controller enforces the desired properties in the closed-
loop system. The proof of this theorem is given in Appendix A.

Theorem 1
Consider the uncertain nonlinear system of Equation (1), for which Assumptions 1, 2 and 3
hold, under the state feedback law:

u ¼ � ½c0 þ rsðxÞ þ rdðxÞ�L %ggV

¼ � c0 þ
L %ff V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL %ff VÞ2 þ ðL %ggVÞ4

q
ðL %ggVÞ2

þ
ðrþ w

Pq
k¼1 ybkjLwkL

r�1
f hðxÞjÞ

ðLgL
r�1
f hðxÞÞ2

jL %ggV j
jLgL

r�1
f hðxÞj

þ f

 !
0
BBBB@

1
CCCCAL %ggV ð14Þ

where V ¼ eTPe; P is a positive definite matrix that satisfies ATPþ PA� PbbTP50; and c0;
r; w; and f are adjustable parameters that satisfy c0 > 0; r > 0; w > 2; and f > 0: Furthermore,
assume that the uncertain variables are non-vanishing in the sense that there exists positive real
numbers dk; mk such that j %wwkðe; ZÞj4dkj2bTPej þ mk 8 e 2 D; where D ¼ fe 2 Rr : j2bTPej4fð1

2

w� 1Þ�1g: Then for any initial condition, and for every positive real number d; there exists
fnðdÞ > 0 such that if f 2 ð0;fnðdÞ�; the following holds:

(1) The trajectories of the closed-loop system are bounded.
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(2) The output of the closed-loop system satisfies a relation of the form

lim sup
t!1

jyðtÞ � vðtÞj4d ð15Þ

(3) The control law of Equation (14) minimizes the cost functional

J ¼ VðeðTf ÞÞ þ
Z Tf

0

ðlðeðtÞÞ þ uðtÞRðxðtÞÞuðtÞÞ dt ð16Þ

where RðxÞ ¼ 1
2 ½c0 þ rsðxÞ þ rd ðxÞ��1 > 0 for all x 2 Rn and lðeÞ ¼ �L %ff V þ 1

4L %ggVR
�1ðxÞL %ggV �Pq

k¼1 jLwkV jybk > 0 8 t 2 ½0;Tf �; where Tf ¼ inffT50 : eðtÞ 2 G 8 t5Tg; G ¼ fe 2 Rr : eTPe4
lmaxðPÞe2g; e ¼ maxfa�1

1 ð2 %ffnÞ; a�1
2 ð2 %ffnÞg; where %ffn ¼ mybf

n; and a1ð�Þ; a2ð�Þ are class

K functions that satisfy, respectively,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL %ff VÞ2 þ ðL %ggVÞ4

q
5a1ðjejÞ and 1

2
½�L %ff V þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL %ff VÞ2 þ ðL %ggVÞ4
q

�5a2ðjejÞ:

Remark 1
Referring to the controller of Equation (14), one can easily observe that it is comprised of two
components. The first component, us ¼ �½c0 þ rsðxÞ�L %ggV ; is responsible for achieving
stabilization and reference-input tracking in the nominal (i.e. yðtÞ � 0) closed-loop system.
This component, with c0 ¼ 0; is the so-called Sontag’s formula proposed in Reference [23] and is
continuous everywhere, since V satisfies the small control property. The second component of
the controller, ud ¼ �rd ðxÞL %ggV ; enforces, on the other hand, output tracking with an arbitrary
degree of asymptotic attenuation of the effect of y on y: This component is also continuous
everywhere since LgL

r�1
f hðxÞ=0 for all x (from Assumption 1) and f > 0: A key feature of the

uncertainty compensator, rdðxÞ; is the presence of a scaling term of the form jxj=ðjxj þ fÞ which
allows us, not only to tune the degree of uncertainty attenuation (by adjusting f), but also to use
smaller and smaller control effort to cancel the uncertainties as we get closer and closer to the
equilibrium point. The full weight (gain) of the compensator is used only when the state is far
from the equilibrium point (since f is small).

Remark 2
Owing to the persistent nature of the uncertainty ( %wwkð0; ZÞy=0) and the fact that asymptotic
convergence to the equilibrium point of the nominal system is not possible, J cannot achieve a
finite value over the infinite time interval. Therefore, the cost functional of Equation (16) is
defined only over a finite time interval ½0;Tf �: The size of this interval is determined by the time
required for the tracking error trajectory to reach and enter a terminal set, G; centred around the
origin, without ever leaving again. In the proof of Theorem 1, we show that ’VV50 on and
outside the boundary of G: This, together with the fact that the boundary of G is a level set of V ;
implies that, once inside G; the closed-loop trajectory cannot escape. The size of G scales with f
and, depending on the desired degree of attenuation of the effect of the uncertainty on the
output, can be made arbitrarily small by adjusting the controller tuning parameter f: Therefore,
the discrepancy between the closed-loop output and the reference input can be made arbitrarily
small. In addition to the terminal time Tf ; the cost functional of Equation (16) imposes a
terminal penalty given by the term VðeðTf ÞÞ to penalize the tracking error trajectory for its
inability to converge to the origin for t > Tf :
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Remark 3
Regarding the properties of the cost functional of Equation (16), we observe that J is well
defined according to the formulation of the optimal control problem for nonlinear systems [16].
In particular, since the error trajectory of the closed-loop system converges to the terminal set G
as time tends to Tf ; the cost functional of Equation (16) is meaningful in the sense that the
weights lðeÞ and RðxÞ satisfy the following properties for all t 2 ½0;Tf �: The function lðeÞ is
continuous, positive definite, and bounded from below by a class K function of the norm of e
(see proof of Theorem 1). The function RðxÞ is continuous, strictly positive and the term uRðxÞu
has a unique global minimum at u ¼ 0 implying a larger control penalty for u farther away from
zero.

Remark 4
The linear growth bound on the functions %wwkðe; ZÞ is imposed to ensure that the results of
Theorem 1 hold globally. Note, however, that this condition is required to hold only over the set
D (containing the origin) whose size can be made arbitrarily small by appropriate selection of
the tuning parameters f and w: This bound is consistent with the non-vanishing nature of the
uncertain variables considered, since it implies that the functions %wwkðe; ZÞ do not vanish when
e ¼ 0:

Remark 5
The re-shaping of the scalar gain of the nominal LgV controller, us ¼ �rsðxÞL %ggV ; via the
addition of the uncertainty compensator, rdðxÞ; allows us to achieve attenuation of the effect of y
on y without using unreasonably large (high-gain) control action. The use of a high-gain
controller of the form u ¼ ð1=eÞus where e is a small positive parameter could also lead to
uncertainty attenuation at the expense of employing unnecessarily large control action (see the
example in Section 4 for an illustration of this fact).

Remark 6
It is important to compare the controller design proposed in Theorem 1 with the following
robust nonlinear controller proposed in Reference [4]:

u ¼
1

LgL
r�1
f hðxÞ

Xr
i¼0

bi
br

ðvðiÞ � Li
f hðxÞÞ þ ud ð17Þ

where ud ¼ �rdðxÞL %ggV ; which is continuous (since LgL
r�1
f hðxÞ=0 and f > 0) and guarantees

boundedness of the trajectories of the closed-loop system and output tracking with arbitrary
degree of asymptotic attenuation of the effect of y on y: The controller of Equation (17) consists
of a term that cancels the nonlinearities of the system of Equation (11), with yðtÞ � 0; that can be
cancelled by feedback, and a term that compensates for the effect of y on y: While the control
law of Equation (17) can be shown to be optimal with respect to some performance index, it
remains to be seen whether the index is meaningful or not. In particular, we note that the
controller of Equation (17) may generate unnecessarily large control action to cancel beneficial
nonlinearities and, therefore, may not in general be optimal with respect to a meaningful
performance index.
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Remark 7
An alternative to the gain-reshaping procedure underlying the controller design in Theorem 1 is
the one proposed in Reference [19] which involves incorporating the uncertainty compensator
within (rather than adding it to) the ‘nominal’ gain of Sontag’s formula. The resulting LgV
controller in this case has a scalar gain that is structurally similar to that of Sontag’s
formula, except that the term LfV appears with the uncertainty compensator added to it. In
particular, when the compensator in Theorem 1 is used, this gain-reshaping approach yields the
following control law:

u ¼ �
Ln

%ff
V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLn

%ff
VÞ2 þ ðL %ggVÞ4

q
ðL %ggVÞ2

0
@

1
AL %ggV ð18Þ

where

Ln
%ff
V ¼ L %ff V þ w

Xq
k¼1

ybkjL %wwkV j
j2bTPej

j2bTPej þ f

� �

Using calculations similar to those in Appendix A, one can show that the above control law is
also globally robustly stabilizing and inverse optimal with respect to a meaningful cost.
However, a potential drawback of this design is the fact that it can limit the ability of the
controller to fully ‘cancel out’ the uncertainty, especially when Ln

%ff
V is negative. This, in turn,

can lead either to a level of asymptotic uncertainty attenuation smaller than that achieved by the
controller of Equation (14), or to larger control action in order to enforce the same attenuation
level. To illustrate this point, consider the following system:

’xx ¼ uþ y ð19Þ

Since the system is scalar, we take V ¼ 1
2
x2 and get LgV ¼ LwV ¼ x and . For this choice, the

control law based on Equation (14) is

u ¼ � 1þ
wyb

jxj þ f

� �
x ð20Þ

while the control law based on Equation (18) is

u ¼ �
wyb

jxj þ f
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

wyb
jxj þ f

� �2
s0

@
1
Ax ð21Þ

It is straightforward to verify that, for the same choice of tuning parameters f and w; both
controllers enforce the same level of asymptotic uncertainty attenuation, with an ultimate bound
on the state of jxj4d where d ¼ fðw� 1Þ�1: However, it is also clear that the controller gain in
Equation (21) is larger, pointwise, than that of the control law in Equation (20). The
discrepancy between the two gains reflects the cost of incorporating the uncertainty
compensator within a Sontag-type gain, as done in Equation (21), as opposed to adding it to
the nominal gain of Sontag’s formula, as done in Equation (20). Note that to reduce the
controller gain in Equation (21) requires an increase in f and/or reduction in w which, in either
case, implies a lesser degree of uncertainty attenuation (larger residual set).
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Remark 8
For the special case when the uncertain variables are vanishing (i.e. %wwkð0; ZÞy ¼ 0), the origin is
an equilibrium point for the uncertain system. In this case, one can show, using calculations
similar to those in Appendix A, that the control law of Equation (14) globally asymptotically
stabilizes the origin and forces the output tracking error to converge, asymptotically, to zero
(d ¼ 0). Furthermore, inverse optimality can be established over the infinite time interval. In
particular, one can show that the control law of Equation (14) minimizes a cost functional of the
form of Equation (16) with Tf ¼ 1 and zero terminal penalty.

4. ILLUSTRATIVE EXAMPLE

In order to illustrate the performance of the developed control law, we consider a continuous
stirred tank reactor where an irreversible first-order exothermic reaction of the form A!k B takes
place. The inlet stream consists of pure A at flow rate F ¼ 100 L=min; concentration CA0 ¼
1:0 mol=L and temperature TA0 ¼ 290 K: Under standard modelling assumptions, the
mathematical model for the process takes the form

dCA

dt
¼

F

V
ðCA0 � CAÞ � k0 exp

�E

RT

� �
CA

dT

dt
¼

F

V
ðTA0 � TÞ þ

ð�DH Þ
rmcp

k0 exp
�E

RT

� �
CA þ

Q

rmcpV
ð22Þ

where CA denotes the reactant concentration, T denotes the reactor temperature, Q denotes the
rate of heat input to the reactor, V ¼ 100 L is the volume of the reactor, k0 ¼ 7:39 min�1;
E ¼ 27:4 KJ=mol; DH ¼ 718:31 KJ=mol are the pre-exponential constant, the activation energy
and the enthalpy of the reaction, cp ¼ 0:239 J=g K and rm ¼ 1000 g=L; are the heat capacity
and fluid density in the reactor. For these values of process parameters, the process (with Q ¼ 0)
has an unstable equilibrium point at ðCAs;TsÞ ¼ ð0:731 mol=L; 1098:5 KÞ: The control objective
is the regulation of the reactant concentration at the (open-loop) unstable equilibrium point, in
the presence of time varying, persistent disturbances in the feed temperature and uncertainty in
the heat of reaction, by manipulating the rate of heat input Q:

Defining the variables x1 ¼ ðCA � CAsÞ=CAs; x2 ¼ ðT � TsÞ=Ts; u ¼ Q=ðrmcpVTsÞ; y1ðtÞ ¼
TA0 � TA0s; y2ðtÞ ¼ DH � DHnom; y ¼ x1; where the subscript s denotes the steady-state values,
it is straightforward to verify that the process model of Equation (2) can be cast in the form of
Equation (1) with

f ðxÞ ¼
0:368� x1 � dðx1;x2Þ

�0:736� x2 þ 2dðx1; x2Þ

" #
; gðxÞ ¼

0

1

" #
; w1ðxÞ ¼

0

1

Ts

2
64

3
75

w2ðxÞ ¼

0

CAs

rmcpTs
dðx1;x2Þ

2
64

3
75 ð23Þ
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where

dðx1;x2Þ ¼ ð1þ x1Þ exp 2�
3

x2 þ 1

� �

and has a relative degree r ¼ 2: To simulate the effect of the uncertainty, we consider the
time-varying functions ykðtÞ ¼ ybk sinðtÞ; k ¼ 1; 2 with upper bounds yb1 ¼ 30 K and
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Figure 1. Closed-loop output and manipulated input profiles under the controller of Equation (14) (solid
lines), the controller of Equation (14) with w ¼ 0 (dashed–dotted lines), the controller of Equation (17)

(dashed lines), and the high-gain controller (dotted lines).
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yb2 ¼ 28:7 KJ=mol; respectively. To proceed with the design of the controller, we initially use
the co-ordinate transformation e1 ¼ x1; e2 ¼ 0:368� x1 � dðx1;x2Þ to cast the input/output
dynamics of the system of Equation (22) in the following form:

’ee ¼ %ff ðeÞ þ %ggðeÞuþ %ww1ðeÞy1 þ %ww2ðeÞy2 ð24Þ

where the functions %ff ; %gg; %ww1; %ww2 can be computed directly from Equation (13). We use the result
of Theorem 1 to design the necessary controller which takes the form of Equation (14) with
q ¼ 2; r ¼ 2; and

P ¼
1 0:45

0:45 1

" #

Moreover, the following values are used for the tuning parameters of the controller: f ¼ 0:0001;
w ¼ 1:6 and c0 ¼ 0:0001 to guarantee that the output of the closed-loop system satisfies a
relation of the form lim supt!1 jy� vj40:005:

Closed-loop simulations were performed to evaluate the robustness and optimality
properties of the controller. The results are shown by the solid lines in Figure 1, which
depict the controlled output (top) and manipulated input (bottom) profiles. One can immediately
see that the robust optimal controller drives the closed-loop output close to the desired steady state,
while attenuating the effect of the uncertainty on the output. Included also in Figure 1 is the closed-
loop output profile (top plot, dashed–dotted line) and corresponding input profile (bottom plot,
dashed–dotted line) when the controller of Equation (14) is implemented without the uncertainty
compensation component (w ¼ 0:) It is clear from the result that the effect of uncertainty is
significant and leads to poor transient performance and offset if unaccounted for.

-0.4 -0.2 0 0.2 0.4 0.6 -0.5

0

0.5
-10
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0

5

10

x
2x

1

u

Figure 2. Control actions computed by the controller of Equation (14) (dashed lines) and the controller of
Equation (17) (solid lines).
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For the sake of comparison, we also considered the robust nonlinear controller of Equation
(17) (see Remark 6 above) as well as the nonlinear high-gain controller of the form u ¼
ð1=eÞ½c0 þ rsðxÞ�L %ggV where no uncertainty compensation is included and e is a small positive
number. The results for these two cases (starting from the same initial condition) are shown in
Figure 1 by the dashed and dotted lines, respectively, for a choice of the tuning parameters:
b0 ¼ 4; b1 ¼ 9; b2 ¼ 1; e ¼ 0:05: It is clear from the input profiles that, compared with these
two controllers, the controller of Equation (14) starts by requesting significantly smaller control
action to achieve a relatively faster closed-loop response and enforce, asymptotically, the same
level of attenuation of the effect of uncertainty on x1: Finally, in order to establish the fact that
the robust optimal controller of Equation (14) does not use unnecessary control action
compared with the controller of Equation (17), we compared the control actions generated by
the two controllers for a broad range of x1 and x2: The results are shown in Figure 2 and clearly
indicate that the controller of Equation (14) (dashed lines) uses smaller control action,
pointwise, than the controller of Equation (17) (solid lines).

APPENDIX A

Proof of Theorem 1
Part 1: In this part, we establish that the controller of Equation (14) enforces global
boundedness of the closed-loop trajectories and that the closed-loop output satisfies Equation
(15). To simplify the notation, we consider only the case of a single uncertain variable, i.e. q ¼ 1
(extension to the case when q > 1 is conceptually straightforward). Consider the representation
of the closed-loop system in the transformed co-ordinates:

’ee ¼ %ff ðe; Z; %vvÞ þ %ggðe; Z; %vvÞuþ %wwðe; Z; %vvÞy

’ZZ ¼ Cðe; Z; %vv; yÞ

y ¼ e1 þ v ðA1Þ

where the functions %ff ; %gg; %ww are defined in Equation (13). We proceed in two steps. Initially, we
use a Lyapunov argument to show that, starting from any initial condition, the states of the
closed-loop e-subsystem are bounded and converge, asymptotically, to an arbitrarily small
neighbourhood, centred around the origin. We derive bounds that capture the evolution of the
states of the e and Z subsystems. Then we invoke a small gain argument to show that the
trajectories of the e;Z interconnected system remain bounded for all times and that the output
satisfies the relation of Equation (15).

Step 1: Computing the time derivative of V along the trajectories of the e-subsystem in
Equation (A1), we get

’VV ¼L %ff V þ L %ggVuþ L %wwVy

¼ � c0ðL %ggVÞ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL %ff VÞ2 þ ðL %ggVÞ4

q

�
rþ wybjLwL

r�1
f hðxÞj

ðLgL
r�1
f hðxÞÞ2

jL %ggV j
jLgL

r�1
f hðxÞj

þ f

 !
0
BBBB@

1
CCCCAðL %ggVÞ2 þ L %wwVy ðA2Þ
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Substituting the expressions L %ggV ¼ ð2bTPeÞLgL
r�1
f hðxÞ and L %wwV ¼ ð2bTPeÞLwL

r�1
f hðxÞ into the

above equation, we obtain

’VV4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL %ff VÞ2 þ ðL %ggVÞ4

q

�
rþ wybjLwL

r�1
f hðxÞj

ðj2bTPej þ fÞ

 !
j2bTPej2 þ j2bTPejjLwL

r�1
f hðxÞjyb

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL %ff VÞ2 þ ðL %ggVÞ4

q
�

rj2bTPej2

j2bTPej þ f

�
ybjLwL

r�1
f hðxÞjj2bTPejððw� 1Þj2bTPej � fÞ

j2bTPej þ f
ðA3Þ

From the last inequality and the fact that r > 0 and w > 2; it is clear that whenever j2bTPej5
fðw� 1Þ�1; the time derivative of the Lyapunov function satisfies

’VV4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL %ff VÞ2 þ ðL %ggVÞ4

q
ðA4Þ

which is negative definite since, for all e=0; L %ggV ¼ 0 ) L %ff V50: To analyse the sign of ’VV
when j2bTPej5fðw� 1Þ�1; we use the bound jLwL

r�1
f hðxÞj4dj2bTPej þ m and the fact that f�

ðw� 1Þj2bTPej5f to obtain the following estimates:

ybjLwL
r�1
f hðxÞjj2bTPejðf� ðw� 1Þj2bTPejÞ

4ybjLwL
r�1
f hðxÞjj2bTPejf

4ybdfj2bTPej2 þ ybmfj2bTPej3 8 j2bTPej5fðw� 1Þ�1 ðA5Þ

Substituting the estimates of Equation (A5) directly into Equation (A3) yields

’VV4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL %ff VÞ2 þ ðL %ggVÞ4

q
þ

ð�rþ dybfÞj2bTPej2

j2bTPej þ f
þ

ybmfj2bTPej
j2bTPej þ f

ðA6Þ

It is clear from the above equation, and the fact that j2bTPej=ðj2bTPej þ fÞ41; that if
f4r=dyb :¼ fn

1 ; ’VV satisfies

’VV4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL %ff VÞ2 þ ðL %ggVÞ4

q
þ %ff ðA7Þ

irrespective of the value of j2bTPej; where %ff ¼ ybmf: Consequently, there exists a function a1ð�Þ
of class K such that

’VV4� a1ðjejÞ þ %ff ðA8Þ

Choosing f small enough such that %ff4 1
2
a1ðjejÞ; we have

’VV4� 1
2
a1ðjejÞ50 8 jej5a�1

1 ð2 %ffÞ ðA9Þ

This inequality shows that ’VV is negative outside the set, B1 :¼ fe 2 Rr : jej4a�1
1 ð2 %ffÞg: A direct

application then of the result of Theorem 5.1 and its corollaries in Reference [24] allows us to
conclude that starting from any initial condition, the following ISS inequality holds for the e
states of the system of Equation (A1)

jeðtÞj4 %bbeðjeð0Þj; tÞ þ %ggeðfÞ 8 t50 ðA10Þ
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where %bbe is a classKL function and %gge is a classK1 function. From Assumption 2, we have that
the Z states of the system of Equation (A1) possess an ISS property with respect to e and y

jZðtÞj4 %bbZðjZð0Þj; tÞ þ %ggZðjj½eT y�TjjÞ4 %bbZðjZð0Þj; tÞ þ %ggZ1 ðjjejjÞ þ %ggZ2 ðjjyjjÞ ðA11Þ

uniformly in %vv; where %ggZ1 ; %ggZ2 are class K functions defined as %ggZ1 ðsÞ ¼ %ggZ2ðsÞ ¼ %ggZð2sÞ:
Step 2: We now analyse the behaviour of the interconnected dynamical system comprised of

the states e; Z in Equation (A1) for which the inequalities of Equations (A10) and (A11) hold.
We first define the following positive real numbers: de ¼ D %ee þ fn; dZ ¼ D%ZZ þ %ggZ1 ðdeÞ þ fn; D %ee

¼ %bbeð%dde; 0Þ þ %ggeðf
nÞ; D%ZZ ¼ %bbZð%ddZ; 0Þ þ %ggZ2 ðybÞ; fn ¼ minf1

2
fn
1 ; %gg

�1
e ðdÞg where d > 0 is arbitrary

and %dde; %ddZ are any positive real numbers. Then, using a contradiction argument similar to the one
used in References [4, 25], one can show that if f 2 ð0;fn�; the evolution of the states e; Z;
starting from any initial states that satisfy jeð0Þj4%dde; jZð0Þj4%ddZ; satisfies the inequalities
jeðtÞj4de; jZðtÞj4dZ for all times. Finally, for f 2 ð0;fn� and for any initial states, taking the
lim sup of both sides of Equation (A10) as t ! 1; we have

lim sup
t!1

jyðtÞ � vðtÞj4 lim sup
t!1

jeðtÞj

4 lim sup
t!1

ð %bbeðjeð0Þj; tÞ þ %ggeðfÞÞ4%ggeðf
nÞ4d ðA12Þ

Part 2: In this part, we prove that the control law of Equation (14) is optimal with respect to a
meaningful cost functional of the form of Equation (16). We proceed in two steps. In the first
step, we show that the cost functional defined in Equation (16) is a meaningful one. In the
second step, we show that the stabilizing control law of Equation (14) minimizes this cost
functional.

Step 1: From its definition in Theorem 1, lðeÞ is given by

lðeÞ ¼ �L %ff V þ 1
4
L %ggVR

�1ðxÞL %ggV � jL %wwV jyb ðA13Þ

Direct substitution of the expression for R�1ðxÞ given in Theorem 1 in the above equation yields

lðeÞ ¼
1

2
c0ðL %ggVÞ2 þ

1

2
½�L %ff V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL %ff VÞ2 þ ðL %ggVÞ4

q
�

þ
1

2

ðrþ wybjLwL
r�1
f hðxÞjÞj2bTPej2

j2bTPej þ f
� jL %wwV jyb

5
1

2
½�L %ff V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL %ff VÞ2 þ ðL %ggVÞ4

q
� þ

1

2

rj2bTPej2

j2bTPej þ f

� �

þ
ybj2bTPejjLwL

r�1
f hðxÞjðð1

2
w� 1Þj2bTPej � fÞ

j2bTPej þ f
ðA14Þ

where we used the expression for L %wwV and the fact that c0 > 0 to derive the above inequality.
From this inequality and the fact that r > 0 and w > 2; it is clear that whenever j2bTPej5
fð1

2
w� 1Þ�1; we have

lðeÞ5 1
2
½�L %ff V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL %ff VÞ2 þ ðL %ggVÞ4

q
� ðA15Þ

which is positive definite. To analyse the sign of lðeÞ when j2bTPej5fð1
2
w� 1Þ�1; we use the

bound jLwL
r�1
f hðxÞj4dj2bTPej þ m and the fact that ð1

2
w� 1Þj2bTPej � f > �f to obtain the
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following estimates:

ybjLwL
r�1
f hðxÞjj2bTPejðf� ð12w� 1Þj2bTPejÞ

5� ybjLwL
r�1
f hðxÞjj2bTPejf

5� ybdfj2bTPej2 � ybmfj2bTPej 8 j2bTPej5fð1
2
w� 1Þ�1 ðA16Þ

Substituting the estimates of Equation (A16) directly into Equation (A14) yields

lðeÞ5
1

2
½�L %ff V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL %ff VÞ2 þ ðL %ggVÞ4

q
� þ

ðð1=2Þr� dybfÞj2bTPej2

j2bTPej þ f
�

ybmfj2bTPej
j2bTPej þ f

ðA17Þ

From the above equation, it is clear that if f4P=2dyb :¼ fn
2 ; lðeÞ satisfies

lðeÞ51
2
½�L %ff V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL %ff VÞ2 þ ðL %ggVÞ4

q
� � %ff ðA18Þ

irrespective of the value of j2bTPej: Therefore, there exists a function a2ð�Þ of class K such that

lðeÞ5a2ðjejÞ � %ff

5 1
2
a2ðjejÞ > 0 8 jej5a�1

2 ð2 %ffÞ ðA19Þ

The last inequality implies that lðeÞ is positive outside the set B2 :¼ fe 2 Rr : jej4a�1
2 ð2 %ffÞg: Note

that this set is completely contained within the set G since jej4a�1
2 ð2 %ffÞ4a�1

2 ð2 %ffnÞ4e )
eTPe4lmaxðPÞjej24lmaxðPÞe2 where e :¼ maxfa�1

1 ð2 %ff�Þ; a�1
2 ð2 %ff�Þg and lmaxðPÞ > 0 is the

maximum eigenvalue of the matrix P: Similarly, the set B1; defined right after Equation (A9),
is also contained in G; and therefore ’VV50 on and outside the boundary of G: From its definition
in Theorem 1, Tf is the minimum time for the trajectories of the closed-loop system to reach and
enter G without ever leaving again (note that the boundary of G is a level set of V). Therefore,
we have that jeðtÞj5a�1

2 ð2 %ffÞ 8 t 2 ½0;Tf �: Hence, lðeÞ > 0 8 t 2 ½0;Tf �: Note also that RðxÞ > 0
for all x: Therefore, the cost functional of Equation (16) is a meaningful one.

Step 2: In this step, we prove that control law of Equation (14) minimizes the cost functional
of Equation (16). Substituting

a ¼ uþ 1
2
R�1ðxÞL %ggV ðA20Þ

into Equation (16), we get the following chain of equalities:

J ¼VðeðTf ÞÞ þ
Z Tf

0

ðlðeðtÞÞ þ uðtÞRðxðtÞÞuðtÞÞ dt

¼VðeðTf ÞÞ þ
Z Tf

0

ð�L %ff V þ 1
2
L %ggVR

�1ðxÞL %ggV � jL %wwV jyb � L %ggVaÞ dt

þ
Z Tf

0

aRðxÞa dt

¼VðeðTf ÞÞ �
Z Tf

0

sup
y2W

ð ’VVÞ dtþ
Z Tf

0

aRðxÞa dt ðA21Þ

Note that the term J n ¼ VðeðTf ÞÞ �
R Tf

0 supy2W ð ’VVÞ dt is bounded from above since

J n ¼ VðeðTf ÞÞ �
Z Tf

0

sup
y2W

ð ’VVÞ dt4VðeðTf ÞÞ �
Z Tf

0

’VV dt ¼ Vðeð0ÞÞ ðA22Þ
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Since RðxÞ > 0 for all x 2 Rn; it is clear that the minimum of J is J n: This minimum is achieved
when aðtÞ � 0 which proves that the controller of Equation (14) minimizes the cost defined in
Equation (16). To complete the proof of optimality, we need to show that J n ¼ Vðeð0ÞÞ: To this
end, consider the uncertain variable yD 2 W where for every eDð0Þ 2 Rr; every u 2 R; and every
D > 0; we have Z Tf

0

’VVðeD; u; yDÞ dt5
Z Tf

0

sup
yD2W

’VVðeD; u; yDÞ dt� D ðA23Þ

(The existence of yD follows from the properties of yðtÞ:) From the inequality of Equation (A23),
we obtain

Vðeð0ÞÞ ¼ VðeðTf ÞÞ �
Z Tf

0

’VV dt4VðeðTf ÞÞ �
Z Tf

0

sup
yD2W

’VVðeD; u; yDÞ dtþ D ðA24Þ

Combining the inequalities of Equations (A24) and (A22), we get

Vðeð0ÞÞ � D4J n4Vðeð0ÞÞ ðA25Þ

for arbitrarily small D: Clearly, if J n ¼ Vðeð0ÞÞ; the proof of optimality is complete. Otherwise,
there exists m > 0 such that J n þ m ¼ Vðeð0ÞÞ: Since D is arbitrary, we can choose it to be
sufficiently small such that D5m and the inequality of Equation (A25) is violated. Thus, the only
way to satisfy the inequality of Equation (A25) for arbitrary D is to set J n ¼ Vðeð0ÞÞ: This
completes the proof of the theorem. &
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