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Abstract

This work focuses on control of multi-input multi-output (MIMO) nonlinear processes with uncertain dynamics and actuator constraints.
A Lyapunov-based nonlinear controller design approach that accounts explicitly and simultaneously for process nonlinearities, plant-model
mismatch, and input constraints, is proposed. Under the assumption that all process states are accessible for measurement, the approach
leads to the explicit synthesis of bounded robust multivariable nonlinear state feedback controllers with well-characterized stability and
performance properties. The controllers enforce stability and robust asymptotic reference-input tracking in the constrained uncertain
closed-loop system and provide, at the same time, an explicit characterization of the region of guaranteed closed-loop stability. When
full state measurements are not available, a combination of the state feedback controllers with high-gain state observes and appropriate
saturation ,lters, is employed to synthesize bounded robust multivariable output feedback controllers that require only measurements of
the outputs for practical implementation. The resulting output feedback design is shown to inherit the same closed-loop stability and
performance properties of the state feedback controllers and, in addition, recover the closed-loop stability region obtained under state
feedback, provided that the observer gain is su>ciently large. The developed state and output feedback controllers are applied successfully
to non-isothermal chemical reactor examples with uncertainty, input constraints, and incomplete state measurements. Finally, we conclude
the paper with a discussion that attempts to put in perspective the proposed Lyapunov-based control approach with respect to the nonlinear
model predictive control (MPC) approach and discuss the implications of our results for the practical implementation of MPC, in control
of uncertain nonlinear processes with input constraints.
? 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

As modern-day chemical processes are continuously
faced with the requirements of becoming safer, more re-
liable, and more economical in operation, the need for a
rigorous, yet practical, approach for the design of e?ective
chemical process control systems that can meet these de-
mands, becomes increasingly apparent. The development of
such an approach, however, can be quite a challenging un-
dertaking given the host of fundamental and practical prob-
lems that arise in process control systems and transcend the
boundaries of speci,c applications. Although they may vary
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from one application to another and have di?erent levels of
signi,cance, these issues remain generic in their relation-
ship to the control design objectives. Central to these issues
is the requirement that the control system provide satisfac-
tory performance in the presence of strong process nonlin-
earities, model uncertainty, process variations, and actuator
constraints. Process nonlinearities, plant-model mismatch,
and actuator constraints represent some of the more salient
features whose frequently encountered co-presence in many
chemical processes can lead to severe performance deterio-
ration and even closed-loop instability, if not appropriately
accounted for in the controller design. This realization has
consequently fostered a large and growing body of research
work on these problems, towards the development of a va-
riety of model-based nonlinear process control approaches,
including both analytical and optimization-based methods.
The area of nonlinear process control, for example, has been
the subject of signi,cant research activity over the past two
decades, and the literature on this subject is quite extensive
(e.g., see Bequette (1991), Kravaris and Arkun (1991) and
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AllgJower and Doyle (1997) and the references therein for
comprehensive reviews).
In addition to nonlinearity, the problem of designing

robust controllers for nonlinear processes with model un-
certainty, such as unknown process parameters and exoge-
nous disturbance inputs, has received signi,cant attention
in the past (e.g., Arkun & Calvet, 1992; Christo,des,
Teel, & Daoutidis, 1996; Christo,des, 2000; Kolavennu,
Palanki, & Cockburn, 2000). Similarly, the detrimental ef-
fects of actuator constraints on the stability and performance
of process control systems have motivated several studies
on the analysis and control of processes with input con-
straints. Important contributions in this area include results
within the model predictive control (MPC) framework (e.g.,
Rawlings, 1999; Schwarm & Nikolaou, 1999; Kurtz, Zhu,
& Henson, 2000), constrained quadratic-optimal control
(e.g. Chmielewski & Manousiouthakis, 1998) anti-windup
designs (e.g., Kothare, Campo, Morari, & Nett, 1994; Kendi
& Doyle, 1997; Teel, 1999; Kapoor & Daoutidis, 1999a),
the synthesis of directionality compensation schemes (e.g.,
Soroush & Valluri, 1999; Mhatre & Brosilow, 2000) for
constrained multivariable processes, the study of the non-
linear bounded control problem for a class of chemical
reactors (Alvarez, Alvarez, & Suarez, 1991), and some
general results on the dynamics of constrained nonlinear
systems (Kapoor & Daoutidis, 1999b).
Despite notable progress in these areas, however, a num-

ber of important limitations continue to impact on the prac-
tical implementation of existing control approaches. One
such limitation is the lack of a uni,ed framework for dealing
with the combined problems of nonlinearity, uncertainty,
and constraints; which can place unacceptable limitations
on the performance and stability of the closed-loop system.
The lack of a uni,ed control approach is due, in part, to the
well-known computational di>culties associated with some
of the available methods (e.g., nonlinear MPC) when deal-
ing with the problems of nonlinearity, uncertainty, and con-
straints combined. In addition to computational complexity,
there is also the lack of any theoretically well-established
guarantees of closed-loop stability. In particular, the issue of
identifying, a priori, the set of admissible initial conditions,
starting from where closed-loop stability is guaranteed un-
der uncertainty and constraints, remains to be adequately
addressed within existing nonlinear control approaches,
both analytical and optimization based. This issue has im-
portant implications for the practical implementation of a
given control strategy since, absent any a priori guarantees
of closed-loop stability, the control engineer is faced with
the task of searching, via extensive and time-consuming
closed-loop simulations, over the whole set of possible initial
conditions.
Motivated by these problems, we have recently developed

in El-Farra and Christo,des (2001a) a uni,ed framework for
model-based control of single-input single-output (SISO)
nonlinear processes with model uncertainty and input con-
straints. The proposed framework adopts a Lyapunov-based

approach and leads to the explicit synthesis of bounded
robust optimal nonlinear state feedback controllers that inte-
grate the following desirable properties in the controller de-
sign, including: (1) robustness against signi,cant (constant
and time-varying) plant-model mismatch, (2) optimality
with respect to meaningful performance criteria and subse-
quent use of reasonable control action to achieve the desired
closed-loop objectives such as stability and robust asymp-
totic set-point tracking, and (3) explicit constraint-handling
capabilities. In addition, the proposed approach provides
an explicit characterization of the region of guaranteed
closed-loop stability. Therefore, given an initial condition
one can ascertain a priori, i.e. before controller implemen-
tation and without the need to run closed-loop simulations,
whether closed-loop stability can be guaranteed under un-
certainty and constraints. The proposed control strategy
was shown to possess clear advantages over the traditional
two-step approaches in which a feedback controller is de-
signed ,rst in the absence of constraints and then modi,ed
to account for the presence of constraints through some
anti-windup modi,cation scheme. In addition to this work,
other advances on bounded, Lyapunov-based, state feed-
back control of nonlinear systems with disturbances include
the results in Liberzon (1999) on disturbance attenuation
within the input-to-state stability (ISS) framework, and the
results in Suarez, Solis-Daun, and Alvarez-Ramirez (2002)
on global robust stabilization of multi-input systems.
Even though the work in El-Farra and Christo,des

(2001a) provides a systematic approach for state feedback
nonlinear controller design for SISO nonlinear processes
with model uncertainty and input constraints, it does not ad-
dress the additional important problems of multivariable in-
teractions and lack of complete process state measurements,
which are frequently encountered in chemical process con-
trol systems. Virtually all practical process control systems
are characterized by multivariable interactions where the
control problem involves the regulation of more than one
output by manipulating more than one input. When input
constraints are not dealt with explicitly in the controller
design, multivariable interactions can cause further deteri-
oration in the process performance due to problems such
as process directionality. In addition, the lack of complete
state measurements renders the state feedback controller
designs not directly suitable for practical implementation
and necessitates the design of appropriate state estimators.
Motivated by these considerations, we focus in this work

on control of multi-input multi-output (MIMO) nonlinear
processes with model uncertainty and input constraints. A
uni,ed Lyapunov-based control approach, that accounts ex-
plicitly for process nonlinearities, model uncertainty, input
constraints, multivariable interactions, and the lack of full
state measurements, is proposed. When measurements of
the full state are available, the approach leads to the ex-
plicit synthesis of bounded robust multivariable nonlinear
state feedback controllers that enforce stability and robust
asymptotic set-point tracking in the constrained uncertain
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closed-loop system and provide, at the same time, an explicit
characterization of the region of guaranteed closed-loop sta-
bility. When complete state measurements are not avail-
able, a combination of the state feedback controllers with
high-gain state observes and appropriate saturation ,lters, is
employed to synthesize bounded robust multivariable out-
put feedback controllers that require only measurements of
the outputs for practical implementation. The resulting out-
put feedback design enforces the same closed-loop stability
and performance properties of the state feedback controllers
and, in addition, practically preserves the region of guar-
anteed closed-loop stability obtained under state feedback.
The developed state and output feedback controllers are ap-
plied successfully to non-isothermal multivariable chemical
reactor examples with uncertainty, input constraints, and in-
complete state measurements. Finally, we conclude the pa-
per with a discussion that attempts to put in perspective the
proposed Lyapunov-based control approach with respect to
the nonlinear MPC approach, and discuss the implications of
our results for the practical implementation of MPC in con-
trol of uncertain nonlinear processes with input constraints.

2. Preliminaries

We consider MIMO nonlinear processes with uncertain
variables and input constraints with the following state-space
description:

ẋ = f(x) +
m∑
i=1

gi(x)ui +
q∑

k=1

wk(x)
k(t); (1)

yi = hi(x); i = 1; : : : ; m;

where x∈Rn denotes the vector of process state variables,
ui denotes the ith constrained manipulated input taking val-
ues in a nonempty convex subset Ui of R (i.e., ui ∈Ui =
[ui;min ; ui;max] ⊂ R), 
k(t)∈W ⊂ R denotes the kth un-
certain (possibly time-varying) but bounded variable taking
values in a nonempty compact convex subsetW ofR, yi ∈R
denotes the ith output to be controlled. The uncertain vari-
able 
k(t) may describe time-varying parametric uncertainty
and/or exogenous disturbances. It is assumed that the origin
is the equilibrium point of the nominal (i.e., u(t)=
k(t) ≡ 0)
system of Eq. (1). The vector functions f(x), gi(x), wk(x),
and the scalar functions hi(x) are assumed to be su>ciently
smooth on their domains of de,nition. Throughout the pa-
per, the Lie derivative notation will used. In particular, Lf Rh
denotes the standard Lie derivative of a scalar function Rh(x)
with respect to the vector function f(x), Lk

f
Rh denotes the

kth order Lie derivative and LgiL
k−1
f

Rh denotes the mixed Lie
derivative where gi(x) is a vector function. We will also
need the de,nition of a class KL function. A function �(s; t)
is said to be of class KL if, for each ,xed t, the function
�(s; ·) is continuous, increasing, and zero at zero and, for
each ,xed s, the function �(·; t) is non-increasing and tends
to zero at in,nity.

Referring to the system of Eq. (1), we de,ne the relative
order of the output yi with respect to the vector of manipu-
lated inputs u= [u1u2 · · · um]T as the smallest integer ri for
which

[Lg1L
ri−1
f hi(x) · · · LgmL

ri−1
f hi(x)] �≡ [0 · · · 0] (2)

or ri =∞ if such an integer does not exist. We also de,ne
the characteristic matrix (Isidori, 1989)

C(x) =


Lg1L

r1−1
f h1(x) · · · LgmL

r1−1
f h1(x)

... · · · ...

Lg1L
rm−1
f hm(x) · · · LgmL

rm−1
f hm(x)

 : (3)

Finally, we recall the de,nition of ISS for a system of the
form of Eq. (1).

De�nition 1 (Sontag (1989a)). The system in Eq. (1) (with
u ≡ 0) is said to be ISS with respect to 
 if there exist a
function � of class KL and a function � of class K such
that for each x◦ ∈Rn and for each measurable, essentially
bounded input 
(·) on [0;∞) the solution of Eq. (1) with
x(0) = x◦ exists for each t¿ 0 and satis,es

|x(t)|6 �(|x(0)|; t) + �(‖
‖) ∀t¿ 0: (4)

3. Bounded robust Lyapunov-based control: state
feedback

In this section, we focus on the state feedback control
problem, where the full process state is assumed to be avail-
able for measurement. The output feedback control problem
will be discussed in Section 5. We begin, in Section 3.1,
with the control problem formulation and then present the
controller synthesis results in Section 3.2.

3.1. Control problem formulation

In order to formulate our control problem, we consider the
MIMO nonlinear process of Eq. (1) and assume, initially,
that the uncertain variable terms wk(x)
k are vanishing (in
the sense that wk(0)
k = 0 for any 
k ∈W-note that this
does not require the variable 
k itself to vanish in time).
Under this assumption, the origin, which is an equilibrium
point for the nominal process, continues to be an equilibrium
point for the uncertain process. The results for the case when
the uncertain variables are non-vanishing (i.e., perturb the
nominal equilibrium point) are discussed later (see Remark
7 below). For the control problem at hand, our objectives
are two fold. The ,rst is to synthesize, via Lyapunov-based
control methods, a bounded robust multivariable nonlinear
state feedback control law of the general form

u=P(x; Rv); (5)

that enforces the following closed-loop properties in the
presence of uncertainty and input constraints, includ-
ing: (a) asymptotic stability, and (b) robust asymptotic



3028 N. H. El-Farra, P. D. Christo+des / Chemical Engineering Science 58 (2003) 3025–3047

reference-input tracking with an arbitrary degree of atten-
uation of the e?ect of the uncertainty on the output of the
closed-loop system. In Eq. (5), P(x; Rv) is an m-dimensional
bounded vector function (i.e., |u|6 umax, where | · | denotes
the Euclidean norm and umax is the maximum magnitude of
the Euclidean norm of the vector of manipulated inputs al-
lowed by the constraints), Rv is a generalized reference input
which is assumed to be a su>ciently smooth function of
time. Our second objective is to explicitly characterize the
region of guaranteed closed-loop stability associated with
the controller, namely the set of admissible initial states
starting from where, stability and robust output tracking
can be guaranteed in the constrained uncertain closed-loop
system.

3.2. Controller synthesis

To proceed with the controller synthesis task, we will
impose the following three assumptions on the process of
Eq. (1). We initially assume that there exists a coordinate
transformation that renders the system of Eq. (1) partially
linear. This assumption is motivated by the requirement of
robust output tracking and is formulated precisely below:

Assumption 1. There exist a set of integers (r1; r2; : : : ; rm)
and a coordinate transformation (�; �) = T (x) such that the
representation of the system of Eq. (1), in the (�; �) coordi-
nates, takes the form:

�̇(i)1 = �(i)2 ;

...

�̇(i)ri−1 = �(i)ri ;

�̇(i)ri = Lri
fhi(x)+

m∑
j=1

LgjL
ri−1
f hi(x)uj+

q∑
k=1

LwkL
ri−1
f hi(x)
k ;

�̇1 =�1(�; �; 
);

...

�̇n−∑i ri
=�n−∑i ri(�; �; 
);

yi = �(i)i ; i = 1; : : : ; m; (6)

where x = T−1(�; �); � = [�(1)
T · · · �(m)T ]T, � =

[�1 · · · �n−∑i ri
]T, 
= [
1 · · · 
q]T.

Assumption 1 includes the matching condition of our ro-
bust control methodology. In particular, we consider systems
of the form Eq. (1) for which the time derivatives of the out-
puts yi, up to order ri − 1, are independent of the uncertain
variables 
k . Notice that this condition is di?erent from the

standard one which restricts the uncertainty to enter the sys-
tem of Eq. (1) in the same equation with the manipulated in-
put u. De,ning the tracking error variables e(i)k =�(i)k −v(k−1)

i

and introducing the vector notation e(i) = [e(i)1 e(i)2 · · · e(i)ri ]
T,

e=[e(1)
T
e(2)

T · · · e(m)T ]T, where i=1; : : : ; m, k=1; : : : ; ri, the
�-subsystem of Eq. (6) can be re-written in the following
more compact form:

ė = Ae + r(e; �; Rv) + B[C1(x)u+ C2(x)
]; (7)

where A, B are constant matrices of dimensions (
∑m

i=1 ri)×
(
∑m

i=1 ri) and (
∑m

i=1 ri) × m, respectively, r(e; �; Rv) is a
(
∑m

i=1 ri) × 1 continuous nonlinear vector function, and
Rv=[ RvT1 RvT2 · · · RvTm]

T where Rvi=[vi v
(1)
i · · · v(ri)i ]T is a smooth

vector function, and v(k)i is the kth time derivative of the ex-
ternal reference input vi (which is assumed to be a smooth
function of time.) The speci,c forms of these functions are
omitted for brevity. The m× m matrix C1(x) is the charac-
teristic matrix of the system of Eq. (1) de,ned in Eq. (3)
while C2(x) is an m× q matrix that is structurally similar to
C1(x), except that the vector ,elds gi are replaced by wk . In
order to simplify the presentation of our results, the matrix
C1(x) will be assumed non-singular uniformly in x. This
assumption can be readily relaxed if robust dynamic state
feedback, instead of robust static state feedback, is used to
solve the control problem (see Isidori (1989) for details).
Finally, we de,ne the function Rf(e; �; Rv) = Ae + r(e; �; Rv),
denote by Rgi(e; �; Rv) the ith column of the matrix func-
tion g(x) = BC1(x); i = 1; : : : ; m, and denote by Rwk(e; �; Rv)
the kth column of the matrix function W (x) = BC2(x);
k = 1; : : : ; q.
Following El-Farra and Christo,des (2001a), the require-

ment of ISS is imposed on the �-subsystem of Eq. (6) to
ensure bounded stability of the internal dynamics and al-
low the synthesis of the desired controller on the basis of
the e-subsystem. This assumption, stated below, is standard
in the process control literature concerned with enforcing
output tracking and is satis,ed by many practical systems,
including the chemical reactor models studied in this pa-
per which do not exhibit non-minimum phase behavior (see
also Christo,des et al. (1996) and El-Farra and Christo,des
(2001a) for additional examples).

Assumption 2. The dynamical system

�̇1 =�1(e; �; 
; Rv)

...

�̇n−∑i ri =�n−∑i ri(e; �; 
; Rv) (8)

is ISS with respect to e uniformly in 
, Rv.

In order to achieve attenuation of the e?ect of the uncer-
tain variables on the outputs, we assume the existence of
known (but not necessarily small) bounds that capture the
size of the uncertain variables for all times.
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Assumption 3. There exist known constants 
bk such that
‖
k‖= 
bk where ‖
k‖ denotes ess.sup |
k(t)|n; t¿ 0.

Theorem 1 that follows provides the explicit synthesis for-
mula for the desired bounded robust multivariable state feed-
back control law and states precise conditions that guarantee
closed-loop stability and robust asymptotic output tracking
in the presence of uncertainty and input constraints. The
key idea in the proposed controller design is that of bound-
ing a robust Lyapunov-based controller, and is inspired by
the results on bounded control in Lin and Sontag (1991) for
systems without uncertainty. Analysis of the closed-loop
system utilizes combination of standard Lyapunov tech-
niques together with the concept of ISS and nonlinear
small-gain type arguments. The proof of the theorem can
be found in the appendix.

Theorem 1. Consider the constrained uncertain nonlinear
process of Eq. (1), for which Assumptions 1–3 hold, under
the static state feedback law:

u=− 1
2 R−1(x)(L RgV )T (9)

where

1
2
R−1(x) =

L∗
Rf
V +

√(
L∗∗

Rf
V
)2

+ (umax|(L RgV )T|)4

|(L RgV )T|2
[
1 +
√

1 + (umax|(L RgV )T|)2
] (10)

and

L∗
RfV = L RfV+

(
&|2Pe|+(

q∑
k=1


bk |L RwkV |
)( |2Pe|

|2Pe|+)

)
;

L∗∗
Rf V = L RfV + &|2Pe|+ (

q∑
k=1


bk |L RwkV |: (11)

V = eTPe, P is a positive de+nite matrix that satis+es
the Riccati matrix inequality ATP + PA − PBBTP¡ 0,
L RgV =[L Rg1V · · · L RgmV ] is a row vector, and &, ( and ) are
adjustable parameters that satisfy &¿ 0, (¿ 1 and )¿ 0.
Let , be the set de+ned by

,(
b; umax) = {x∈Rn : L∗∗
Rf V 6 umax|(L RgV )T|}: (12)

Then, if the origin is contained in the interior of ,, given
any initial condition x0 ∈-, where -= {x∈Rn : |x|6 .s}
is an invariant subset of ,, there exists )∗ ¿ 0 such that
if )∈ (0; )∗]:
(1)The constrained closed-loop system is asymptotically

stable (i.e. there exists a function � of class KL such that
|x(t)|6 �(|x0|; t);∀t¿ 0).

(2) The outputs of the closed-loop system satisfy a re-
lation of the form

lim sup
t→∞

|yi(t)− vi(t)|= 0; i = 1; : : : ; m: (13)

Remark 1. In addition to the explicit controller synthesis
formula, Theorem 1 provides an explicit characterization of

the region in the state space where the desired closed-loop
stability and set-point tracking properties are guaranteed
under the proposed control law. This characterization is
obtained from the inequality of Eq. (12) which describes
a closed state-space region where the time derivative of
the Lyapunov function is guaranteed to be negative def-
inite, along the trajectories of the constrained uncertain
closed-loop system, and the control action satis,es the
input constraints. Provided that the origin is contained
in the interior of the region described by the set ,, any
closed-loop trajectory that evolves within this region is
guaranteed to converge to the origin with the available
control action. In fact, it is not di>cult to see how this in-
equality is closely linked to the classical Lyapunov stability
condition

V̇ = L RfV + L RgVu+
q∑

k=1

L RwkV
k 6 0 (14)

when the additional requirements that |u|6 umax and
|
k |6 
bk are imposed on Eq. (14). The key idea here is
that by taking the constraints directly into account (i.e.,
bounding the controller), we automatically obtain infor-
mation about the region where both stability is guaranteed
and the input constraints are respected. The inequality of
Eq. (12) can therefore be used to identify the set of admis-
sible initial states starting from where closed-loop stability
is guaranteed under uncertainty and constraints (region of
closed-loop stability). A reasonable estimate of the stability
region can be obtained by computing an invariant subset,
-, (preferably the largest) within the set , (see El-Farra
and Christo,des (2001a) for further details). This invari-
ant subset can then be used to check a priori (i.e., before
controller implementation) whether closed-loop stability
is guaranteed starting from a given initial condition. It is
important to note here that the representation of the invari-
ant subset by a Euclidean ball of size .s in Theorem 1 is
done only for notational convenience; the stability results
of the theorem hold for any invariant subset (which can be
of arbitrary shape) that can be constructed within , and
contains the origin in its interior. Note that, since the set ,
is closed, this requires that the origin lie in the interior of
, as assumed in Theorem 1. This assumption assures the
existence of an invariant subset and can be checked prior to
the practical implementation of the results of the theorem.
However, it can be shown, by means of local Lipschitz ar-
guments, that, if the vector ,elds are su>ciently smooth on
their domains of de,nition and the adjustable parameters in
Eq. (12) chosen properly, this assumption is automatically
satis,ed.

Remark 2. By inspection of the inequality in Eq. (12), it
is clear that the size of this set is governed, as expected, by
the size of the constraints and the size of the uncertainty.
Therefore, under extremely tight constraints (umax close
to zero) and/or large plant-model mismatch, this set may
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contain only the origin (particularly for open-loop unstable
processes where L RfV ¿ 0). In this case, the origin would be
the only admissible initial condition for which closed-loop
stability can be guaranteed. In most applications of practical
interest, however, the stability region contains the origin
in its interior and is not empty (see the chemical reactor
examples studied in Sections 4 and 6 for a demonstration of
this fact). As discussed in Section 7, another feature of the
inequality of Eq. (12) is that it suggests a general way for
estimating the stability region, which can be used in con-
junction with other approaches (such as optimization-based
control approaches) to provide the necessary a priori
closed-loop stability guarantees. Although the inequality
of Eq. (12) pertains speci,cally to the bounded robust
controller of Eqs. (9)–(11), similar ideas can be used to
identify the feasible initial conditions for other control
approaches.

Remark 3. Regarding the continuity properties of the con-
troller of Eqs. (9)–(11), it is important to note that this
controller is smooth, away from the origin, because the
functions L∗

Rf
V , L∗∗

Rf
V , L RgV are smooth on their domains

of de,nition. In addition, the controller is continuous at
the origin because the Lyapunov function, V = eTPe, sat-
is,es the small control property for the system of Eq. (7)
(see Sontag (1989b) as well as Freeman and Kokotovic
(1996, Chapter 4) for further details and illustrations of this
point). These continuity properties can be proven by fol-
lowing the same arguments used in the proof of Theorem 1
in Sontag (1989b) to prove continuity of the nominal (i.e.
with 
 = 0) unbounded version of the controller (see also
the proof of Proposition 3.43 in Sepulchre, Jankovic, and
Kokotovic (1997) for a similar proof). The same argu-
ments can be extended to the bounded robust controller
of Eqs. (9)–(11).

Remark 4. An important problem, frequently encountered
in control of multivariable processes with input constraints,
is the problem of directionality. This is a performance deteri-
oration problem that arises when a multivariable controller,
designed on the basis of the unconstrained MIMO process,
is “clipped” to achieve a feasible plant input. Unlike the
SISO case, clipping an unconstrained controller output to
achieve a feasible plant input may not lead in MIMO sys-
tems to a plant output that is closest to the unconstrained
plant output, thus steering the plant in the wrong directions
and leading to performance deterioration. Controllers that
do not account explicitly for input constraints su?er from
this problem and often require the design of directional-
ity compensators to prevent the resulting excessive perfor-
mance deterioration (e.g., Soroush & Valluri, 1999). It is
important to note that the Lyapunov-based control approach
proposed in Theorem 1 avoids the directionality problem
by taking input constraints directly into account in the con-
troller design. In particular, note that the controller of

Eqs. (9) and (10) inherently respects the constraints within
the region described by Eq. (12) and, therefore, starting
from any initial condition in -, there is never a mismatch
between the controller output and actual plant input at any
time.

Remark 5. The bounded nonlinear controller of Eqs. (9)–
(11) possesses certain optimality properties characteristic
of its ability to use reasonable control action to accomplish
the desired closed-loop objectives. Using techniques from
the inverse optimal control approach (e.g., see Freeman
& Kokotovic, 1996; Sepulchre et al., 1997; El-Farra &
Christo,des, 2001a), one can rigorously prove that, within
a well-de,ned subset of the set ,, this controller is optimal
with respect to an in,nite-time meaningful cost functional
of the form

J =
∫ ∞

0
(l(e) + uTR(x)u) dt; (15)

where l(e) is a positive de,nite penalty on the tracking
error (and its time derivatives), that is bounded below by
a quadratic function of the norm of the tracking error, and
R(x)¿ 0 is a positive de,nite penalty weight on the control
action, and thus the above cost functional imposes sensible
penalties on both the tracking error and control action. The
inverse optimal approach provides a rigorous framework
for associating meaningful optimality (i.e., meaningful per-
formance criteria) with certain stabilizing controllers (such
as those of Eqs. (9)–(11)) and therefore helps explain
the basis for their optimality properties. An advantage of
this approach is that it allows the design of optimal feed-
back controllers without recourse to the unwieldy task of
solving the Hamilton–Jacobi–Isaacs equation which is the
optimality condition for the robust stabilization problem.
Inverse optimal control design is motivated by the fact
that both the optimality bene,ts (e.g., avoiding wasteful
cancellation of bene,cial nonlinearities) and the robustness
properties that the controller possesses as a consequence of
optimality (e.g., stability margins) are largely independent
of the speci,c choice of the cost functional as long as it
is a meaningful one. Finally, one can easily show that the
minimum cost achieved by the state feedback controller
is V (e(0)).

Remark 6. The inequality of Eq. (12) captures the classi-
cal tradeo? between stability and performance. To see this,
note that the size of the region of guaranteed closed-loop
stability (obtained from Eq. (12)) can be enlarged by
using small values for the controller tuning parameters
( and &. This enlargement of the stability region, how-
ever, comes at the expense of the controller’s robust per-
formance, since large values for the tuning parameters
( and & are typically required to achieve a signi,cant
degree of attenuation of the e?ect of disturbances and
plant-model mismatch on the outputs of the closed-loop
system. Therefore, in selecting the controller tuning
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parameters, one must strike a balance between the need to
stabilize the process from a given initial condition and the
requirement of achieving a satisfactory level of uncertainty
attenuation.

Remark 7. The result of Theorem 1 can be extended
to the case when the uncertain variables in Eq. (1) are
non-vanishing. In this case, starting from any initial state
within the invariant set -, the bounded robust controller of
Eqs. (9)–(11) enforces boundedness of the process states
and robust asymptotic output tracking with an arbitrary
degree of attenuation of the e?ect of uncertainty on the
outputs of the closed-loop system. Owing to the persistent
nature of the uncertainty, asymptotic convergence to the
origin in this case is not possible. Instead, the controller
sends the closed-loop trajectory into a small neighborhood
of the origin, the size of which (i.e. the asymptotic tracking
error) can be made arbitrarily small by selecting the tuning
parameters ) to be su>ciently small and/or selecting the
tuning parameter ( to be su>ciently large. The problem of
non-vanishing uncertainty has been addressed in detail in
El-Farra and Christo,des (2001a) for SISO nonlinear pro-
cesses. It is worth noting that the use of a Lyapunov-based
control approach allows the synthesis of a robust controller
that can e?ectively attenuate the e?ect of both constant
and time-varying persistent uncertainty on the closed-loop
outputs, which cannot be achieved using classical uncer-
tainty compensation techniques, including integral action
and parameter adaptation in the controller. For nonlinear
controller design, Lyapunov methods have provided use-
ful and systematic synthesis tools (e.g., see Kazantzis &
Kravaris, 1999).

Remark 8. Referring to the practical implementation of
the proposed control approach, we initially verify whether
Assumptions 1 and 2 hold for the nonlinear process under
consideration, and determine the available bounds on the
uncertain variables. Next, given the constraints on the ma-
nipulated inputs, the inequality of Eq. (12) is used to com-
pute the estimate of the region of guaranteed closed-loop
stability, -, and check whether a given initial condition is
admissible. Then, the synthesis formula of Eqs. (9)–(11)
is used to design the controller which is then implemented
on the process. Note that the actual controller synthesis re-
quires only o?-line computations, including di?erentiation
and algebraic calculations to compute the various terms
in the analytical controller formula of Eqs. (9)–(11). This
task can be easily coded into a computer using available
software for symbolic manipulations (e.g., MATHEMAT-
ICA). Furthermore, the approach provides explicit guide-
lines for the selection of the tuning parameters that guaran-
tee closed-loop stability and the desired robust performance.
For example, the tuning parameters ( and ) are responsible
for achieving the desired degree of uncertainty attenuation.
A large value for ( (greater than one) and a small value for

Table 1
Process parameters and steady-state values for the reactor of Eq. (16)

V = 100:0 l
R = 8:314 J=mol K
CA0s = 1:0 mol=l
TA0s = 310:0 K
VH =−4:78× 104 J=mol
k0 = 7:20× 1010 min−1

E = 8:31× 104 J=mol
cp = 0:239 J=g K
& = 1000:0 g=l
F = 100:0 l=min
CAs = 0:577 mol=l
Ts = 395:3 K

) (close to zero) lead to signi,cant attenuation of the e?ect
of uncertainty on the closed-loop outputs.

4. Application to a multivariable exothermic chemical
reactor

Consider a well-mixed continuous stirred tank reactor
where an irreversible elementary exothermic reaction of the

form A k→B takes place. The feed to the reactor consists of
pure A at Wow rate F , molar concentration CA0 and tempera-
ture TA0. Under standard modeling assumptions, the process
model takes the following form:

V
dCA

dt
= F(CA0 − CA)− k0e−(E=RT )CAV;

V
dT
dt

= F(TA0−T )+
(−VH)
&cp

k0e(−E=RT )CAV+
Q
&cp

;

(16)

where CA denotes the concentration of species A, T denotes
the temperature of the reactor, Q denotes the rate of heat
input to the reactor, V denotes the volume of the reactor,
k0, E, VH denote the pre-exponential constant, the activa-
tion energy, and the enthalpy of the reaction, cp and &, de-
note the heat capacity and density of the Wuid in the reactor.
The steady-state values and process parameters are given in
Table 1. For these parameters, it was veri,ed that the given
equilibrium point is an unstable one (the system also pos-
sesses two locally asymptotically stable equilibrium points).
The control objective is to regulate both the reactor tem-

perature and reactant concentration at the (open-loop) un-
stable equilibrium point by manipulating both the rate of
heat input/removal and the inlet reactant concentration. The
control objective is to be accomplished in the presence of:
(1) time-varying persistent disturbances in the feed stream
temperature, (2) parametric uncertainty in value of the heat
of reaction, and (3) hard constraints on the manipulated in-
puts. De,ning x1 = CA, x2 = T , u1 = CA0 − CA0s, u2 = Q,

1(t) = TA0 − TA0s, 
2(t) =VH −VHnom, y1 =CA, y2 = T ,
where the subscript s denotes the steady-state value and
VHnom denotes the nominal value of the heat of reaction,
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the process model of Eq. (16) can be cast in the form of Eq.
(1) with

f(x) =

 F
V (CA0s − CA)− k0e−E=RTCA

F
V (TA0s − T ) + (−VHnom)

&cp
k0e−E=RTCA

 ;

g1(x) =

[
F
V

0

]
; g2(x) =

 0

1
&cpV

 ;

w1(x) =

[
0
F
V

]
; w2(x) =

[
0

k0e−E=RTCA

]
; (17)

h1(x) = x1; h2(x) = x2. In all simulation runs, the following
time-varying function was considered to simulate the e?ect
of exogenous disturbances in the feed temperature


1(t) = 
0 sin(3t); (18)

where 
0 = 0:08TA0s. In addition, a parametric uncer-
tainty of 50% in the heat of reaction was considered, i.e.

2(t) = 0:5(−VHnom). The upper bounds on the uncer-
tain variables were therefore taken to be 
b1 = 0:08TA0s,

b2 = 0:5|(−VHnom)|. Also, the following constraints were
imposed on the manipulated inputs: |u1|6 1:0 mol=l, and
|u2|6 92 KJ=s.
A quadratic Lyapunov function of the form V = (CA −

CAs)2 + (T − Ts)2 was used to design the multivariable
bounded robust controller of Eqs. (9)–(11) and to compute
the associated region of guaranteed closed-loop stability,
with the aid of Eq. (12). Since the uncertainty considered
is non-vanishing (see Remark 7), the following values were
used for the tuning parameters: (=8:0, )=0:0001, and &=
0:01 to guarantee that the outputs of the closed-loop system
satisfy a relation of the form lim supt→∞ |yi− vi|6 0:0005,
i = 1; 2.
Several closed-loop simulation runs were performed to

evaluate the robustness and constraint-handling capabilities
of the multi-variable controller. Fig. 1 depicts the startup re-
actor temperature and reactant concentration pro,les, for an
initial condition that lies within the stability region computed
from Eq. (12). The solid lines represent the process response
when the bounded robust controller is tuned properly and
implemented on the process. The dashed lines on the other
hand correspond to the response when the controller is de-
signed and implemented without the robust uncertainty com-
pensation component (i.e., ( = 0). Finally the dotted lines
represent the open-loop response. When compared with the
open-loop pro,les, it is clear that, starting from the given
admissible initial condition, the properly tuned bounded ro-
bust controller successfully drives both outputs to the de-
sired steady state, in the presence of input constraints, while
simultaneously attenuating the e?ect of the uncertain vari-
ables on the outputs. It is noteworthy that this conclusion was
reached a priori (before controller implementation), based
on the characterization of the stability region given in The-
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Fig. 1. Controlled outputs: reactant concentration (top) and reactor tem-
perature (bottom) pro,les under the bounded multivariable nonlinear
state feedback controller with uncertainty compensation and initial condi-
tion inside the stability region (solid), without uncertainty compensation
(dashed) and under open-loop conditions (dotted).

orem 1. From the dashed pro,les we see that the uncertain
variables have a signi,cant e?ect on the process outputs and
that failure to explicitly account for them in the controller
design leads to instability and poor transient performance.
Fig. 2 shows the corresponding pro,les for the manipulated
inputs. Note that since the initial condition is chosen within
the region of guaranteed stability, the well-tuned multivari-
able controller generates, as expected, control action (solid
lines) that respects the constraints imposed.
In Fig. 3, we tested the ability of the controller to robustly

stabilize the process at the desired steady state, starting from
initial conditions that lie outside the region of guaranteed
closed-loop stability. In this case, no a priori guarantees can
be made regarding closed-loop stability. In fact, from the
process response denoted by the dashed lines in Fig. 3, we
see that, starting from the given initial condition, the con-
troller is unable to successfully stabilize the process or at-
tenuate the e?ect of uncertainty on the process outputs. The
reason for this can be seen from the corresponding manip-
ulated inputs’ pro,les in Fig. 4 (dashed lines) which show
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Fig. 2. Manipulated inputs: inlet reactant concentration (top) and rate of
heat input (bottom) pro,les under the bounded multivariable nonlinear
state feedback controller with uncertainty compensation and initial condi-
tion inside the stability region (solid), without uncertainty compensation
(dashed).

that both the inlet reactant concentration and rate of heat
input stay saturated for all times, indicating that stabilizing
the process from the given initial condition requires signif-
icantly larger control action, which the controller is unable
to provide due to the constraints. The combination of in-
su>cient reactant material in the incoming feed stream and
insu>cient cooling of the reactor prompt an increase in the
reaction rate and, subsequently, an increase in the reactor
temperature and depletion of the reactant material in the re-
actor. Note that since the region of guaranteed closed-loop
stability given in Theorem 1 does not necessarily capture all
the admissible initial conditions (this remains an resolved
problem in control), it is possible for the controller to ro-
bustly stabilize the process starting from some initial condi-
tions outside this region. An example of this is shown by the
controlled outputs and manipulated inputs’ pro,les denoted
by solid lines in Figs. 3 and 4, respectively.
In addition to robust stabilization, we also tested the robust

set-point tracking capabilities of the controller under uncer-
tainty and constraints. The results for this case are shown
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Fig. 3. Controlled outputs: reactant concentration (top) and reactor tem-
perature (bottom) pro,les under the bounded robust multivariable non-
linear state feedback controller for initial conditions outside the region
described by Eq. (12).

in Figs. 5 and 6 which depict the pro,les of the controlled
outputs and manipulated inputs, respectively, in response to
a 0:4 mol=l increase in the reactant concentration set-point
and 40 K decrease in the reactor temperature set-point. It
is clear from the ,gures that the controller successfully
achieves the requested tracking while simultaneously atten-
uating the e?ect of uncertainty and generating control action
that respects the constraints imposed. Finally, the state-space
region, where the bounded robust multivariable controller
satis,es the input constraints, was computed using Eq. (12)
and is depicted in Fig. 7 (top plot). For the sake of com-
parison, we included in Fig. 7 (bottom plot) the corre-
sponding region for a multivariable input–output linearizing
controller that cancels process nonlinearities (the stabilizing
linear terms were not included since the associated stabiliza-
tion cost of these terms would yield an even smaller region).
Evolution of the closed-loop trajectories within either region
(which is insured by constructing the largest invariant subre-
gion within) guarantees closed-loop stability. It is clear from
the comparison that the bounded robust multivariable con-
troller satis,es the constraints for a wider range of process
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Fig. 4. Manipulated inputs: inlet reactant concentration (top) and rate of
heat input (bottom) pro,les under the bounded multivariable nonlinear
state feedback controller for initial conditions outside the region described
by Eq. (12).

operating conditions. This is a consequence of the fact that,
unlike the input–output linearizing controller, the bounded
multivariable controller accounts explicitly for constraints.
Furthermore, the cost of cancelling process nonlinearities
by the linearizing controller renders many initial conditions,
far from the equilibrium point, infeasible. In contrast, the
bounded controller avoids the unnecessary cancellation of
nonlinearities and employs reasonably smaller control ac-
tion to stabilize the process. This, in turn, results in a larger
set of operating conditions that satisfy the constraints.

5. State estimation and output feedback control

The feedback controller of Eqs. (9)–(11) was designed
under the assumption of accessibility of all process states for
measurement. In chemical process control, however, more
so than in other control areas, the complete state often can-
not be measured. For example, the concentration of certain
intermediates in chemical reactors may not be accessible
for online measurements and therefore cannot be used di-
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Fig. 5. Controlled outputs: reactant concentration (top) and reactor tem-
perature (bottom) pro,les under the bounded robust multivariable non-
linear state feedback controller for a set-point increase of 0:4 mol=l in
the reactant concentration and a set-point decrease of 40 K in the reactor
temperature.

rectly for feedback purposes. In the past few years, signif-
icant advances have been made in the direction of output
feedback controller design for the purpose of robustly sta-
bilizing nonlinear systems. In this section, we address the
problem of synthesizing bounded robust output feedback
controllers for the class of constrained uncertain multivari-
able nonlinear processes in Eq. (1). Owing to the explicit
presence of time-varying uncertain variables in the process
of Eq. (1), the approach that is followed for output feed-
back controller design is based on combination of high-gain
observers and state feedback controllers (see also Khalil
(1994), Teel and Praly (1994), Mahmoud and Khalil (1996),
and Christo,des (2000) for results on output feedback con-
trol for unconstrained nonlinear systems). To this end, we
initially formulate the control problem in Section 5.1 and
then present its solution in Section 5.2.

5.1. Control problem formulation

Referring to the system of Eq. (1), our objective is to syn-
thesize a bounded robust nonlinear dynamic output feedback
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Fig. 6. Manipulated inputs: inlet reactant concentration (top) and rate of
heat input (bottom) pro,les under the bounded multivariable nonlinear
state feedback controller for a set-point increase of 0:4 mol=l in the
reactant concentration and a set-point decrease of 40 K in the reactor
temperature.

controller of the form:

!̇=F(!; y; Rv);

u=P(!; y; Rv); (19)

where !∈Rs is an observer state, F(!; y; Rv) is a vector
function,P(!; y; Rv) is a bounded vector function, Rv is a gen-
eralized reference input, that: (a) enforces, in the presence
of actuator constraints, exponential stability and asymptotic
robust output tracking with arbitrary degree of attenuation
of the e?ect of the uncertainty on the output, and (b) pro-
vides an explicit characterization of the region where the
aforementioned properties are guaranteed.
The design of the dynamic controller is carried out

using combination of a high-gain state observer and the
bounded robust state feedback controller proposed in Sec-
tion 3. In particular, the system !̇=F(!; y; Rv) in Eq. (19)
is constructed to provide estimates of the process state
variables from the measured outputs, while the bounded
static component P(!; y; Rv) is synthesized to enforce the
requested properties in the closed-loop system and at the

Fig. 7. Comparison between the state space regions where the bounded
robust multivariable controller (top) and a multivariable input–output
linearizing controller (bottom) satisfy the input constraints. The regions
are used to provide estimates of the corresponding stability regions.

same time provide the necessary explicit characterization of
the region of guaranteed closed-loop stability. The stability
analysis of the closed-loop system employs singular per-
turbation techniques (due to the high-gain nature of the
observer) and utilizes the concept of ISS and nonlinear
small gain theorem-type arguments.

5.2. Controller synthesis

In order to proceed with the controller synthesis task, we
need to slightly modify Assumption 1 to the following one:

Assumption 4. There exist a set of integers (r1; r2; : : : ; rm)
and a coordinate transformation (�; �) = T (x) such that the
representation of the system of Eq. (1), in the (�; �) coordi-
nates takes the form of Eq. (6) with

�̇1 =�1(�; �)

...

�̇n−∑
i

ri =�n−∑i ri(�; �): (20)

We note that the change of variables of Eqs. (6) and (20)
is independent of 
 and is invertible, since, for every x, the
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variables �; � are uniquely determined by the transformation
(�; �) = T (x). This implies that if we can estimate the values
of �; � for all times, using appropriate state observers, then
we automatically obtain estimates of x for all times. This
property will be exploited later to synthesize a state estima-
tor for the system of Eq. (1) on the basis of the system of
Eq. (6). We also note that Assumption 1 includes the match-
ing condition of our robust control method. In particular, we
consider systems of the form Eq. (1) for which the uncer-
tain variables enter the system in the same equation with the
manipulated input. This assumption is motivated by our re-
quirement to eliminate the presence of 
 in the � subsystem.
This requirement and the stability requirement of Assump-
tion 5 below will allow including in the controller a replica
of the � subsystem of Eq. (20) which provide estimates of
the � states.

Assumption 5. The system of Eq. (20) is ISS with respect
to � with ��(|�(0)|; t) = K�|�(0)|e−at where K�, and a are
positive real numbers and K�¿ 1.

Assumption 5 is satis,ed by many chemical processes of
practical interest (e.g., see El-Farra and Christo,des (2001a)
and the chemical reactor example in Section 6). We are
now ready to state the main result of this section. Theorem
2 that follows provides the explicit synthesis formula for
the desired bounded robust output feedback controller and
states precise conditions that guarantee closed-loop stability
and robust asymptotic output tracking in the presence of
uncertainty and input constraints. The proof of the theorem
can be found in the appendix.

Theorem 2. Consider the constrained uncertain nonlinear
process of Eq. (1), for which Assumptions 3–5 hold, under
the output feedback controller

˙̃y (i) = Aỹ (i) + Fi(yi − y(i)
0 );

!̇1 =�1(sat(ỹ); !);

...

!̇n−∑ ri =�n−∑ ri(sat(ỹ); !);

u=− 1
2R

−1(x̂)(L̂ RgV )T; (21)

where x̂ = T−1(sat(ỹ); !), ỹ = [ỹ (1)T · · · ỹ (m)T ]T, ! =
[!1 · · · !n−∑i ri

]T, Fi = [Lia
(i)
1 L2

i a
(i)
2 · · · Lri

i a
(i)
ri ]

T; i =
1; : : : ; m. Let R: = max{1=Li}. Then for each pair of posi-
tive real numbers (.b; d) such that �(.b; 0)+d6 .s, where
�(·; ·) and .s were de+ned in Theorem 1, and for each
pair of positive real numbers (.
; . Rv), there exists )∗ ¿ 0,
and for each )∈ (0; )∗], there exists R:∗())¿ 0, such that
if )∈ (0; )∗], R:∈ (0; R:∗())], sat(·) = min{1; �max=| · |}(·)
with �max being the maximum value of the vector � for
|�|6 ��(.�; 0) where �� is a class KL function and .� is
the maximum value of the vector [lT1 (x) lT2 (x) · · · lTm(x)]

T

for |x|6 .b, where li(x) = [hi(x) Lfhi(x) · · · Lri−1
f hi(x)]T,

|x(0)|6 .b, ‖
‖6 .
, ‖ Rv‖6 . Rv, |ỹ(0)|6 .�, !(0)=�(0)+
O(:), the following holds in the presence of constraints:
(1)The closed-loop system is asymptotically (and locally

exponentially) stable.
(2) The outputs of the closed-loop system satisfy a re-

lation of the form

lim sup
t→∞

|yi(t)− vi(t)|= 0; i = 1; : : : ; m: (22)

Remark 9. The robust output feedback controller of Eq.
(21) consists of m high-gain observers, each of which
provides estimates of the derivatives of one of the m con-
trolled outputs, yi, up to order ri − 1, and thus estimates
of the variables �(i)1 ; : : : ; �(i)ri , an observer that simulates the
inverse dynamics of the system of Eq. (20), and a bounded
robust static feedback controller (see Theorem 1) that uses
measurements of the outputs and estimates of the states to
attenuate the e?ect of the uncertain variables on the process
outputs and enforce reference input tracking. The use of
high-gain observers allows us to achieve a certain degree of
separation in the output feedback controller design, where
the observer design is carried out independently of the state
feedback design. This is possible because of the distur-
bance rejection properties of high-gain observers that allow
asymptotic recovery of the performance achieved under
state feedback, where “asymptotic” here refers to the be-
havior of the system as the poles of the observer approach
in,nity. It is important to note here that while such “sepa-
ration principle” holds for the class of feedback linearizable
nonlinear systems considered in this paper, one should not
expect the task of observer design to be independent from
the state feedback design for more general nonlinear sys-
tems. In fact, even in linear control design, when model
uncertainties are taken into consideration, the design of the
observer cannot be separated from the design of the state
feedback control.

Remark 10. In designing the output feedback controller
of Eq. (21), we use a standard saturation function, sat, to
eliminate the peaking phenomenon typically exhibited by
high-gain observers in their transient behavior. The origin
of this phenomenon owes to the fact that as the observer
poles approach in,nity, its exponential modes will decay to
zero arbitrarily fast, but the amplitude of these modes will
approach in,nity, thus producing impulsive-like behavior.
To eliminate observer peaking, we use the saturation ,lter
in conjunction with the high-gain observers, to eliminate (or
,lter out) wrong estimates of the process output derivatives
provided by the observer for short times. The idea here is to
exploit our knowledge of an estimate of the stability region
obtained under state feedback (-), where the process states
evolve, to derive bounds on the actual values of the outputs’
derivatives, and then use these bounds to design the satura-
tion ,lter. Therefore, during the short transient period when
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the estimates of the high-gain observers exhibit peaking, the
saturation ,lter eliminates those estimates which exceed the
state feedback bounds, thus preventing peaking from being
transmitted to the plant. Over the same period, the estima-
tion error decays to small values, while the state of the plant
remains close to its initial value. The validity of this idea is
justi,ed via asymptotic analysis from singular perturbation
theory (see the proof of Theorem 2 in the appendix).

Remark 11. An important consequence of the combined
use of high-gain observers and saturation ,lters is that the
region of closed-loop stability obtained under state feed-
back remains practically preserved under output feedback.
Speci,cally, starting from any compact subset of initial con-
ditions (whose size is ,xed by .b) within the state feedback
region, there always exist observer gains, such that the dy-
namic output feedback controller of Eq. (21) continues to
enforce asymptotic stability and reference-input tracking in
the constrained uncertain closed-loop system, when the ob-
server gains are selected to be su>ciently large. Instrumen-
tal in deriving this result is the use of the saturation ,lter,
which allows us to use arbitrarily large observer gains, in
order to recover the state feedback region, without su?ering
the detrimental e?ects of observer peaking. Note that the
size of the output feedback region (.b) can be made close
to that of the state feedback region (.s) by selecting d to
be su>ciently small which, in turn, can be done by making
R: su>ciently small. Therefore, although combination of the
bounded state feedback controller with the observer results
in some loss (given by d) in the size of the region of guar-
anteed closed-loop stability, this loss can be made small by
selecting R: to be su>ciently small. As expected, the nature of
this result is consistent with the semi-global result obtained
in El-Farra and Christo,des (2001b) for the unconstrained
case.

Remark 12. In addition to preserving the stability region,
the controller–observer combination of Eq. (21) practically
preserves the optimality properties of the state feedback
controller explained in Remark 4. The output feedback
controller design is near-optimal in the sense that the cost
incurred by implementing this controller tends to the op-
timal cost achieved by implementing the bounded state
feedback controller when the observer gains are taken to
be su>ciently large. Using standard singular perturba-
tion arguments, one can show that cost associated with
the output feedback controller is O( R:) close to the opti-
mal cost associated with the state feedback controller (i.e.
Jmin=V (e(0))+O( R:)). The basic reason for near-optimality
is the fact that by choosing R: to be su>ciently small, the
observer states can be made to converge quickly to the
process states. This fact can be exploited to make the per-
formance of the output feedback controller arbitrarily close
to that of the optimal state feedback controller (see El-Farra
and Christo,des (2001b) for an analogous result for the
unconstrained case).

Remark 13. Owing to the presence of the fast (high-gain)
observer in the dynamical system of Eq. (21), the
closed-loop system can be cast as a singularly perturbed
system, where R: = max{1=Li} is the singular perturbation
parameter. Within this system, the states of the high-gain
observers, which provide estimates of the outputs and their
derivatives, constitute the fast states, while the ! states of
the observer and the states of the original system of Eq.
(1) under state feedback represent the slow states. Owing
to the dependence of the controller on both the slow and
fast states, the control action computed by the static com-
ponent in Eq. (21) is not O( R:) close to that computed by
the state feedback controller for all times. After the decay
of the boundary layer term (fast transients of the high-gain
observers), however, the static component in Eq. (21)
approximates the state feedback controller to within O( R:).

Remark 14. It is important to note that the asymptotic
stability results of Theorem 1 (Theorem 2) are regional
(semi-regional) and non-local. By de,nition, a local result
is one that is valid provided that the initial conditions are
su>ciently small. In this regard, neither the result of Theo-
rem 1 nor that of Theorem 2 requires the initial conditions
to be su>ciently small in order for stability to be guaran-
teed. The apparent limitations imposed on the size of the
initial conditions that guarantee closed-loop stability follow
from the fundamental limitations imposed by the input con-
straints and uncertainty, as can be seen from Eq. (12). In
the absence of constraints, for example, one can establish
asymptotic stability globally for the state feedback prob-
lem and semi-globally for the output feedback case. In fact,
one of the valuable features of the results in Theorem 1 is
that they provide an explicit procedure for constructing rea-
sonably large estimates of the stability region, that depend
only on the magnitude of the constraints and size of the un-
certainty, which therefore allows one to start from initial
conditions farther away (from the equilibrium point) than
would be possible using existing approaches where no ex-
plicit characterization of the stability region is available and
consequently one often has to restrict the initial conditions
to be su>ciently close to the origin. In this light, our re-
sults allow control designers to break away from local and
unnecessarily conservative results available in the literature.

6. Robust stabilization of a chemical reactor via output
feedback control

To illustrate an application of the output feedback con-
troller design presented in the previous section, we consider
in this section a well-mixed continuous stirred tank reac-
tor where three parallel irreversible elementary exothermic

reactions of the form A k1→D, A k2→U and A
k3→R take place,

where A is the reactant species, D is the desired product
and U; R are undesired byproducts. The feed to the reactor
consists of pure A at Wow rate F , molar concentration CA0
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Table 2
Process parameters and steady-state values for the reactor of Eq. (23)

V = 1000:0 l
R = 8:314 J=mol K
CA0s = 4:0 mol=l
TA0s = 300:0 K
VH1 =−5:0× 104 J=mol
VH2 =−5:2× 104 J=mol
VH3 =−5:4× 104 J=mol
k10 = 5:0× 104 min−1

k20 = 5:0× 103 min−1

k30 = 5:0× 103 min−1

E1 = 5:0× 104 J=mol
E2 = 7:53× 104 J=mol
E3 = 7:53× 104 J=mol
cp = 0:231 J=g K
& = 1000:0 g=l
F = 83:3 l=min
Ts = 390:97 K
CAs = 3:58 mol=l
CDs = 0:42 mol=l

and temperature TA0. Due to the non-isothermal nature of
the reactions, a jacket is used to remove/provide heat to the
reactor. Under standard modeling assumptions, a mathemat-
ical model of the process can be derived from material and
energy balances and takes the following form:

V
dT
dt

= F(TA0−T )+
3∑

i=1

(−VHi)
&cp

ki0e(−Ei=RT )CAV+
Q
&cp

;

V
dCA

dt
= F(CA0−CA)−

3∑
i=1

ki0e(−Ei=RT )CAV;

V
dCD

dt
=−FCD+k10e(−E1=RT )CAV; (23)

where CA and CD denote the concentrations of the species A
and D, T denotes the temperature of the reactor, Q denotes
rate of heat input/removal from the reactor, V denotes the
volume of the reactor, VHi, ki, Ei, i=1; 2; 3, denote the en-
thalpies, pre-exponential constants and activation energies
of the three reactions, respectively, cp and & denote the heat
capacity and density of the reactor. The values of the pro-
cess parameters and the corresponding steady-state values
are given in Table 2. It was veri,ed that these conditions
correspond to an unstable equilibrium point of the process
of Eq. (23).
The control problem is formulated as the one of regulat-

ing both the concentration of the desired product CD and the
reactor temperature T at the unstable steady-state by ma-
nipulating the inlet reactant concentration CA0 and rate of
heat input Q provided by the jacket. The control objective
is to be accomplished in the presence of: (1) exogenous
time-varying disturbances in the feed stream temperature,
(2) parametric uncertainty in the enthalpy of the three re-
action, and (3) hard constraints on the manipulated inputs.
De,ning x1 =T , x2 =CA, x3 =CD, u1 =Q, u2 =CA0−CA0s,

i=VHi−VHi0, i=1; 2; 3, 
4=TA0−TA0s, y1=x1, y2=x3,

where the subscript s denotes the steady-state values and
VHi0 are the nominal values for the enthalpies, the process
model of Eq. (23) can be written in the form of Eq. (1) with

f(x) =



F
V (TA0s − T ) +

3∑
i=1

(−VHi0)
&cp

ki0e(−Ei=RT )CA

F
V (CA0s − CA)−

3∑
i=1

ki0e(−Ei=RT )CA

− F
V CD + k10e(−E1=RT )CA


;

g1(x) =


1

&cpV

0

0

 ; g2(x) =


0
F
V

0

 ;

wi(x) =


ki0e(−Ei=RT )CA

0

0

 ; i = 1; 2; 3; w4(x) =


F
V

0

0

 ;

h1(x) = x1, and h2(x) = x3. To simulate the e?ect of un-
certainty on the process outputs, we consider a time vary-
ing function of the form of Eq. (18), with 
0 = 0:03TA0s, to
simulate the e?ect of external disturbances in the feed tem-
perature. We also consider a parametric uncertainty of 50%
in the values of the enthalpies. Therefore, the bounds on
the uncertain variables are taken to be 
bk = 0:5|(−VHk0)|,
k = 1; 2; 3; 
b4 = 0:03TA0s. Also, the following constraints
are imposed on the manipulated inputs: |u1|6 25 KJ=s and
|u2|6 4:0 mol=l.
For this process, the relative degrees of the process out-

puts, with respect to the vector of manipulated inputs, are
r1 = 1, and r2 = 2, respectively. Using Eq. (3), it can be
veri,ed that the decoupling matrix C(x) is non-singular and
that the assumptions of Theorem 2 are satis,ed. In order to
proceed with controller synthesis, we initially use the fol-
lowing coordinate transformation (in error variables form):


e1

e2

e3

=


�(1)1 − v1

�(2)1 − v2

�(2)2 − v(1)2

=


h1(x)− v1

h2(x)− v2

Lfh2(x)



=


x1 − v1

x3 − v2

− F
V CD + k30e(−E1=RT )CA

 (24)

to cast the process model in its input–output form of
Eq. (7), which is used directly for output feedback con-
troller design. The necessary controller, whose practical
implementation requires measurements of T and CD only,
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consists of a combination of two high-gain observers
(equipped with appropriate saturation ,lters) that provide
estimates of the process states and a bounded robust static
feedback component. The static component is designed,
with the aid of the explicit synthesis formula in Eqs. (9)–
(11), using a quadratic Lyapunov function of the form
V = eTPe, where

P =


1 0 0

0
√
3 1

0 1
√
3

 ; (25)

which is also used to compute an estimate of the region
of guaranteed closed-loop stability, using Eq. (12). The
high-gain observers are designed using Eq. (21) and consist
of a replica of the linear part of the input–output dynamics
of Eq. (7) plus a linear gain multiplying the discrepancy
between the actual and the estimated values of the out-
puts. The output feedback controller takes the following
form:

˙̃y (1)
1 = L1a

(1)
1 (y1 − ỹ (1)

1 );

˙̃y (2)
1 = ỹ(2)

2 + L2a
(2)
1 (y2 − ỹ(2)

1 );

˙̃y(2)
2 = L2

2a
(2)
2 (y2 − ỹ(2)

1 );

u=− 1
2R

−1(sat(ỹ))(L̂ RgV )T; (26)

where ỹ(1)
1 , ỹ(2)

1 , ỹ(2)
2 are the estimates of the reactor

temperature, reactant concentration, and desired product
concentration, respectively, and the saturation ,lter is de-
,ned as

sat(ỹ( j)
i ) =


a( j)m; i; ỹ( j)

i ¿ a( j)m

ỹ ( j)
i ; −a( j)m; i6 ỹ( j)

i 6 a( j)m; i;

−a( j)m; i; ỹ( j)
i 6− a( j)m; i

 : (27)

The following values were used for the controller and ob-
server parameters: (=3:5, )=0:0001, &=0:001, L1 =100,
a(1)1 = 10, L2 = 400, a(2)1 = 40, and a(2)2 = 400, a(1)m;1 = 395,

a(2)m;1 = 4 and a(2)m;2 = 0:5 to ensure that the process outputs
satisfy a relation of the form lim supt→∞ |yi− vi|6 0:0005,
i = 1; 2.
Closed-loop simulations were performed to evaluate the

robust stabilization capabilities of the output feedback con-
troller, starting from an initial condition inside the stability
region, and compare its performance with that of the state
feedback controller and the open-loop response. Figs. 8
and 9 depict the controlled outputs (desired product con-
centration and reactor temperature) and manipulated inputs
(inlet reactant concentration and rate of heat input) pro,les,
respectively, under output feedback control (solid lines),
under state feedback control (dashed lines) assuming all
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Fig. 8. Controlled outputs: desired product concentration (top) and reactor
temperature (bottom) pro,les under the bounded robust multivariable
output feedback controller (solid), under the corresponding state feedback
controller (dashed), for initial condition within the region of guaranteed
stability, and under open-loop conditions (dotted).

process states are available for measurement, and under no
control (dotted lines). It is clear, from the comparison with
the open-loop pro,les, that the output feedback controller
successfully drives both controlled outputs to the desired
steady state while simultaneously attenuating the e?ect of
disturbances and model uncertainty on the process outputs
and generating control action that respects the constraints
imposed. Note that the controlled outputs and manipu-
lated inputs’ pro,les obtained under the output feedback
controller (solid lines) are very close to the pro,les ob-
tained under the state feedback controller (dashed lines).
This closeness, starting from the same initial condition,
illustrates two important features of the output feedback
design. The ,rst is the fact that, by selecting the observer
gains to be su>ciently large, the performance of the out-
put feedback controller approaches (or recovers) that of
the state feedback controller. Since the process response
under state feedback control can be shown to be optimal
(in the inverse sense) with respect to a meaningful cost
(see Remark 5), the performance of the output feedback
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Fig. 9. Manipulated inputs: inlet reactant concentration (top) and rate
of heat input (bottom) pro,les under the bounded robust multivariable
output feedback controller (solid), and under the corresponding state
feedback controller (dashed), for an initial condition within the region of
guaranteed stability.

controller then is near-optimal (with respect to the same
cost). The second feature is that the set of admissible initial
conditions, starting from where stability of the constrained
closed-loop system is guaranteed under state feedback,
remains practically preserved when the observer gain is
su>ciently large.

7. Connections with MPC

The purpose of this section is to put the bounded
robust Lyapunov-based control approach, proposed in this
paper, in perspective with respect to the nonlinear model pre-
dictive control approach, for control of uncertain nonlinear
processes with input constraints. Currently, in the Chemical
Process Industry, MPC is the most established advanced
control technique, whose success in several commercial ap-
plications is well-documented in the literature. The popular-
ity of this approach stems largely from its ability to handle,
among other issues, multivariable interactions, constraints,

and optimization requirements, all in a consistent, systematic
manner. This success notwithstanding, a number of impor-
tant theoretical and practical problems, particularly within
the nonlinear context, continue to be active areas of research.
Our objective here is to highlight some of the implications of
the proposed Lyapunov-based control approach for dealing
with some of these problems and assisting the capabilities
of the MPC approach. In particular, we illustrate how the
same conceptual tools, put forth by the Lyapunov-based ap-
proach, can be used to address the issue of providing a priori
closed-loop stability guarantees for the MPC algorithm. To-
wards this end, we will initially highlight, brieWy, how the
control problem is formulated within the MPC framework
and what are the main tools required to solve it, for con-
strained uncertain nonlinear processes. For a more in-depth
discussion of the theoretical and practical issues within
model predictive control, the reader is referred to the follow-
ing extensive reviews (Morari & Lee, 1991; Lee & Cooley,
1997; Mayne, 1997; Rawlings, 1999) and the references
therein.
To simplify our discussion, let us consider ,rst the nom-

inal case where no modeling errors or disturbances are
present (
k ≡ 0 in Eq. (1)). Also since the MPC algorithm
is typically implemented with digital computers, we will
use the discrete version of Eq. (1)

xk+1 = f(xk) + g(xk)uk : (28)

For this case, MPC is conventionally formulated as solving
on-line a ,nite horizon optimal control problem of the form

min
Uk

p∑
i=1

xTk+i|kQxk+i|k +
m−1∑
i=0

uTk+i|kRuk+i|k ; (29)

xk+i|k ∈X; i = 1; : : : ; p; (30)

uk+i|k ∈V; i = 0; : : : ; m− 1; (31)

where xk+i|k stands for the prediction of xk+i based on xk|k ,
and the vector Uk = [uTk|k ; · · · ; uTk+m−1|k ]

T represents the in-
put trajectory to be computed. Q and R are positive de,nite
matrices,p is the prediction horizon,m is the number of con-
trol moves, and Eqs. (30) and (31) represent the hard con-
straints on the future states and manipulated inputs. At each
kth sample time, information is received about the current
state of the process and based on this information together
with the process model, the dependence of future states on
the future manipulated inputs can be predicted. The future
input trajectory is then determined according to the given
optimality criterion and implemented until the next sample
time, when the entire process is repeated based on new infor-
mation. What results therefore is a discrete feedback control
law uk = )(xk|k) that is given implicitly through the opti-
mization problem, which must be solved at each time step.
Note that since the future input trajectory is computed solely
on the basis of the current information, MPC is an open-loop
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optimal control policy. The open-loop formulation allows
for signi,cant reduction in the complexity of the problem,
by avoiding the intractable dynamic programming problem
arising from optimal feedback control, but can also lead to
a worse performance than what is achievable with feedback
control (Lee & Cooley, 1997). A conceptual parallel to be
noted here is that the Lyapunov-based control approach
proposed in this work also avoids the intractable Hamilton–
Jacobi–Bellman equation (HJB) (or the HJI equation in the
case with uncertainty) which is the optimality condition for
the stabilization problem, though through inverse, rather
than open-loop, optimal control. What results in this case
therefore is an explicit feedback law (see Theorem 1) that is
optimal with respect to a meaningful (though not speci,ed
a priori) cost functional. Note also that, in both approaches,
performance deterioration problems, such as process di-
rectionality in constrained multivariable processes, do not
arise since the constraints are explicitly accounted for in the
controller design.
When the process of Eq. (28) is linear, the cost quadratic,

the sets X and V convex, the MPC optimization problem
reduces to a quadratic program for which e>cient software
exists and, consequently, a number of control-relevant is-
sues have been explored, including issues of closed-loop
stability, performance, implementability, and constraint
satisfaction. However, when the system is non-linear, the
optimization problem will be, in general, non-convex, even
if the cost functional and constraints are convex, and there-
fore a host of di>culties impacting on the implementability
of the model predictive controller, ensue (see Mayne (1997)
for a detailed discussion of these issues). In addition to the
computational di>culties of solving a non-linear optimiza-
tion problem at each time step, the implementation of MPC
in this case comes without any well-established closed-loop
properties, even nominal ones (Rawlings, 1999). Unless a
non-linear MPC controller is exhaustively tested by simu-
lation over the whole range of potential initial states, doubt
will always remain as to whether or not a state will be
encountered for which an acceptable solution to the ,nite
horizon problem can be found. Note, in contrast, that the
bounded nonlinear feedback controller of Eqs. (9)–(11),
comes with well-characterized closed-loop stability and
performance properties (both nominal and in the presence
of uncertainty) through the inequality of Eq. (12), which
is suited for the practical computation of the set of feasible
initial states starting from where the constrained closed-loop
system is guaranteed to be stable (see also Remark 1). We
will return to this point shortly in our discussion to illustrate
how similar ideas for characterizing the stability region can
be used to provide a priori stability guarantees for the MPC
approach.
Let us now turn our attention to the problem of con-

trolling nonlinear systems with both model uncertainty and
input constraints. Addressing the problem within an MPC
framework in this case usually leads to a min–max formu-
lation. For example, consider the case of time-varying un-

certainty and let us assume that 
k is a time sequence and

k ∈[ ∀k where [ is a compact set. The following min–max
MPC formulation can be derived from game theory (Lee &
Cooley, 1997):

min
Uk

max

k|k ;:::;
k+p−1|k

p∑
i=1

xTk+i|kQxk+i|k +
m−1∑
i=0

uTk+i|kRuk+i|k ; (32)

xk+i|k ∈X; i = 1; : : : ; p; (33)

uk+i|k ∈V; i = 0; : : : ; m− 1; (34)


k+i|k ∈[; i = 0; : : : ; p− 1: (35)

Solution to the above program computes an open-loop
input trajectory that minimizes the “worst-case” cost for
the chosen prediction horizon. It is to be noted that the
state constraint of Eq. (33) must be satis,ed for all possi-
ble sequences of 
k+i|k . The above optimization, which is
non-convex in general (even for linear systems), must be
solved on-line at each time step. In addition to the concomi-
tant computational di>culties associated with this opti-
mization, the above approach does not provide any explicit
guarantees for closed-loop stability. Note that although the
Lyapunov-based control approach proposed in Theorem
1 accounts explicitly for nonlinearities, uncertainty, and
input constraints, it does not account explicitly for state
constraints. To deal with this problem, one may formulate
the constrained states as additional outputs to be controlled.
Obviously, this may require the use of more control inputs
and is therefore restricted to cases where the number of state
constraints is not too large. It is to be noted also that the
MPC formulation allows for incorporating state constraints
directly as part of the constrained optimization problem (see
Eq. (33)), though an actual solution to the nonlinear min–
max optimization problem is, in general, di>cult to obtain.
In addition to providing a solution to the control problem

for uncertain nonlinear systems with input constraints, the
Lyapunov-based approach also suggests a systematic way
of obtaining closed-loop stability guarantees for the MPC
algorithm. The idea here is to incorporate the Lyapunov sta-
bility condition of Eq. (14) (using a pre-determined control
Lyapunov function as is done, for example, in contractive
MPC (Yang & Polak, 1993) and CLF-based Receding
Horizon Control (Primbs, Nevistic, & Doyle, 2000; Rawls
& Freeman, 2000) as an additional inequality constraint
on the optimization problem. This condition represents a
constraint on the control input and applies only to the initial
control action, and not the entire manipulated input trajec-
tory computed, since it is only the ,rst control move in
that sequence that is actually implemented. Satisfaction of
this constraint guarantees closed-loop stability. Then, using
techniques similar to those used in deriving Eq. (12), one
can obtain an estimate of the closed-loop stability region
associated with the MPC controller. For example, when

k ≡ 0, it is not di>cult to see that a condition of the form

LfV 6− umax|(LgV )T| (36)
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is su>cient to guarantee that the Lyapunov function
decreases monotonically along the trajectories of the
closed-loop system (i.e., V̇ ¡ 0) regardless of the control
input, so long as it satis,es the constraints (i.e., for any
|u|6 umax). Therefore, if the set described by Eq. (36)
contains the origin in its interior, one can obtain a set of
feasible initial conditions (by computing the largest in-
variant subset within) starting from where the constrained
,nite horizon optimization problem is guaranteed to have a
solution for every point in the set. Note that the condition
derived in Eq. (36) is more conservative than the one in
Eq. (12). This owes to the fact that the estimate of Eq.
(12) applies speci,cally to the bounded robust controller
of Eqs. (9)–(11) while the estimate of Eq. (36) is inde-
pendent of the control law. A similar expression to that of
Eq. (36) can be derived to estimate the stability region and
provide stability guarantees when uncertainty is present.
More research work is needed in this direction to estab-
lish, rigorously, these possible links with model predictive
control (see El-Farra, Mhasker, & Christo,des (2002) for
recent results in this direction) and address computational
issues that arise in the practical implementation of non-
linear MPC.

8. Conclusions

A Lyapunov-based nonlinear controller design method-
ology, for MIMO nonlinear processes with uncertain
dynamics, actuator constraints, and incomplete state mea-
surements, was developed. Under the assumption that all
process states are accessible for measurement, the approach
led to the explicit synthesis of bounded robust multivari-
able nonlinear feedback controllers that enforce stability
and robust asymptotic reference-input tracking in the con-
strained uncertain closed-loop system and provide, at the
same time, an explicit characterization of the region of
guaranteed closed-loop stability. When complete state mea-
surements are not available, a combination of the bounded
robust state feedback controllers with high-gain state ob-
serves and appropriate saturation ,lters, was employed to
synthesize bounded robust multivariable output feedback
controllers that require only measurements of the outputs
for practical implementation. The resulting output feed-
back design was shown to inherit the same closed-loop
stability and performance properties of the state feedback
controller and, in addition, practically preserve the region
of guaranteed closed-loop stability obtained under state
feedback. The developed state and output feedback con-
trollers were applied successfully to non-isothermal chem-
ical reactor examples with uncertainty, input constraints,
and incomplete state measurements. Finally, a discussion
was provided to put the proposed Lyapunov-based ap-
proach in perspective with respect to the nonlinear model
predictive control approach, and the implications of our
results in the practical implementation of MPC were
highlighted.

Appendix A.

Proof of Theorem 1. Consider the representation of the
closed-loop system in terms of the transformed coordinates
(e; �) introduced in Eqs. (6) and (7):

ė= Rf(e; �; Rv)− 1
2

m∑
i=1

Rgi(e; �; Rv)R−1(x)L RgiV

+
q∑

k=1

Rwk(e; �; Rv)
k ;

�̇=�(e; �; Rv; 
);

yi = e(i)1 + vi; i = 1; : : : ; m; (A.1)

where �(·) = [�1(·) · · · �n−∑ri
(·)]T. We now follow

a procedure to establish both asymptotic stability and
reference-input tracking in the closed-loop system of Eq.
(A.1). Initially, we show that the controller of Eqs. (9)–(11)
satis,es the constraints within the region described by the
set ,(
b; umax) in Eq. (12). Then, using a Lyapunov argu-
ment we show that, starting from any initial condition that
belongs to any invariant subset of ,⊂-, the state feed-
back controller of Eqs. (9)–(11) asymptotically stabilizes
the closed-loop e-subsystem and derive bounds that capture
the evolution of the states of the e and � subsystems. Next,
a small gain argument is invoked to show that the trajec-
tories of the e–� interconnected closed-loop system remain
bounded for all times. Finally, we show that the states of
the full closed-loop system of Eq. (A.1) converge to the
origin and that the outputs satisfy the relation of Eq. (13).
Step 1: To prove that the control law of Eqs. (9)–(11)

satis,es the constraints within the region described by the
set ,(
b; umax), we have from Eqs. (9) and (10) that

|u(x)|6
∣∣∣∣12 R−1(x)

∣∣∣∣ |(L RgV )T|

6
|L∗

Rf
V +

√
(L∗∗

Rf
V )2 + (umax|(L RgV )T|)4|

|(L RgV )T|[1 +√1 + (umax|(L RgV )T|)2] : (A.2)

From the de,nitions of L∗
Rf
V and L∗∗

Rf
V in Eq. (11) and

the fact that &¿ 0, it is clear that if L∗∗
Rf
V 6 umax|(L RgV )T|,

then we also have L∗
Rf
V 6 umax|(L RgV )T|. Therefore, for any

x∈,, the following estimates hold:

(L∗∗
Rf V )26 (umax|(L RgV )T|)2;

L∗
RfV 6 umax|(L RgV )T|: (A.3)

Substituting the above estimates into Eq. (A.2) yields

|u(x)|6 umax|(L RgV )T|[1 +√1 + (umax|(L RgV )T|)2]
|(L RgV )T|[1 +√1 + (umax|(L RgV )T|)2] :

= umax: (A.4)
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Step 2: Consider the smooth, positive-de,nite radially un-
bounded function, V : R

∑
i
ri → R¿0, V = eTPe as a Lya-

punov function candidate for the e-subsystem of Eq. (A.1).
Computing the time-derivative of V along the trajectories
of the closed-loop e-subsystem, we get

V̇ = L RfV + L RgVu+
q∑

k=1

L RwkV
k

= L RfV −
L∗

Rf
V +

√
(L∗∗

Rf
V )2 + (umax|(L RgV )T|)4

[1 +
√
1 + (umax|(L RgV )T|)2]


+

q∑
k=1

L RwkV
k

6

(
L RfV + (

q∑
k=1

|L RwkV |
bk

)

−
L∗

Rf
V +

√
(L∗∗

Rf
V )2 + (umax|(L RgV )T|)4

[1 +
√
1 + (umax|(L RgV )T|)2]

 : (A.5)

After performing some algebraic manipulations, the above
inequality can be re-written as

V̇ 6 >(e; �; Rv)

+


q∑

k=1

bk |L RwkV |()− (( − 1)|2Pe|=|2Pe|+ ))− &(|2Pe|2=|2Pe|+ ))

[1 +
√
1 + (umax|(L RgV )T|)2]

 ; (A.6)

where

>(e; �; Rv) =

 (L RfV + (
q∑

k=1

kb|L RwkV |)√1 + (umax|(L RgV )T|)2 −

√
(L∗∗

Rf
V )2 + (umax|(L RgV )T|)4

[1 +
√

1 + (umax|(L RgV )T|)2]

 : (A.7)

To analyze the sign of V̇ in Eq. (A.6), we will initially study
the sign of the term >(e; �; Rv) on the right-hand side. It is
clear that the sign of this term depends on the sign of the
term L RfV +(

∑q
k=1 
kb|L RwkV |. To this end, we consider the

following two cases:
Case 1: L∗∗

Rf
V 6 0.

Since L∗∗
Rf
V = L RfV + &|2Pe| + (

∑q
k=1 |L RwkV |
bk and &

is a positive real number, the fact that L∗∗
Rf
V 6 0 implies

that L RfV + (
∑q

k=1 |L RwkV |
bk 6 0. As a result, we have
that >(e; �; Rv)6 0 and the time-derivative of V in this case
satis,es the following bound:

V̇ 6


q∑

k=1

bk |L RwkV |(()− (( − 1)|2Pe|)=(|2Pe|+ )))− &(|2Pe|2=(|2Pe|+ )))

[1 +
√

1 + (umax|(L RgV )T|)2]

 ≡ �(e; �; Rv): (A.8)

Case 2: 0¡L∗∗
Rf
V 6 umax|(L RgV )T|.

In this case, we have

(L∗∗
Rf V )26 (umax|(L RgV )T|)2 (A.9)

and therefore

−
√
(L∗∗

Rf
V )2 + (umax|(L RgV )T|)4

=−
√
(L∗∗

Rf
V )2 + (umax|(L RgV )T|)2(umax|(L RgV )T|)2

6− (L∗∗
Rf V )

√
1 + (umax|(L RgV )T|)2: (A.10)

Substituting the estimate of Eq. (A.10) in the expression for
V̇ in Eqs. (A.6) and (A.7) yields

V̇ =
−&|2Pe|√1 + (umax|(L RgV )T|)2
[1 +

√
1 + (umax|(L RgV )T|)2] + �(e; �; Rv)

6 �(e; �; Rv): (A.11)

From the above analysis, it is clear that whenever
L∗∗

Rf
V 6 umax|(L RgV )T|, the inequality of Eq. (A.8) holds. To

guarantee that the state of the closed-loop system satis,es
L∗∗

Rf
V 6 umax|(L RgV )T| for all time, we con,ne the initial

conditions within an invariant subset - embedded within

the region described by Eq. (12). Therefore, starting from
any x(0)∈-, the inequality of Eq. (A.8) holds. Referring
to this inequality, note that since (¿ 1 and &¿ 0, it is
clear that, whenever |2Pe|¿)=((−1), the ,rst term on the
right-hand side is strictly negative, and therefore V̇ satis,es

V̇ 6− &|2Pe|2
(|2Pe|+ ))[1 +

√
1 + (umax|(L RgV )T|)2]

6− k1|e|2
(|2Pe|+ ))[1 +

√
1 + (umax|(L RgV )T|)2] ; (A.12)
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where k1 = 4&?min(P2)¿ 0. To study the behavior of V̇
when |2Pe|6)=(( − 1), we ,rst note that since the func-
tions Rwk(e; �; Rv) are smooth and vanish when e = 0, then
there exists positive real constants )∗

1 , .k ; k=1; : : : ; q, such
that if )6)∗

1 , the bound | Rwk(e; �; Rv)|6 .k |e|, holds for
|2Pe|6)=((− 1). Using this bound, we obtain the follow-
ing estimates:
q∑

k=1


bk |L RwkV |()− (( − 1)|2Pe|)

6
q∑

k=1


bk |L RwkV |)

=
q∑

k=1


bk | Rwk‖2Pe|)

6 k2)
q∑

k=1


bk.k |e|2 ∀|2Pe|6 )
( − 1

; (A.13)

where k2 = 2
√

?max(P2)¿ 0. Substituting the estimate of
Eq. (A.13) directly into Eq. (A.8), we get

V̇ 6

 (k2)
q∑

k=1

bk.k − k1)|e|2

(|2Pe|+ ))[1 +
√
1 + (umax|(L RgV )T|)2]


∀|2Pe|6 )

( − 1
: (A.14)

If ) is su>ciently small to satisfy the bound )6 k1=
k2
∑q

k=1 .k
bk ≡ )∗
2 , then it is clear from Eqs. (A.12)–

(A.14) that the last inequality in Eq. (A.12) is satis,ed,
irrespective of the value of |2Pe|. In summary, we have that
for any initial condition in the invariant set - (where Eq.
(12) holds ∀t¿ 0), there exists )∗ ≡ min{)∗

1 ; )
∗
2} such

that if )6)∗, V̇ satis,es

V̇ 6
−k1|e|2

(|2Pe|+ ))[1 +
√

1 + (umaxL RgV )2]

¡ 0 ∀e �= 0: (A.15)

Consequently, there exists a function �e of class KL (see
Khalil, 1996 for details) such that the following ISS inequal-
ity holds for the e states of the system of Eq. (A.1)

|e(t)|6 �e(|e(0)|; t) ∀t¿ 0 (A.16)

and the origin of the e-subsystem is asymptotically stable.
From Assumption 2, we have that the � subsystem of Eq.
(A.1) possesses an ISS property with respect to e which
implies that there exists a function �� of class KL and a
function �� of class K such that the following ISS inequality
holds:

|�(t)|6 ��(|�(0)|; t) + ��(‖e‖) ∀t¿ 0 (A.17)

uniformly in 
, Rv. Using the inequalities of Eqs. (A.16) and
(A.17), it can be shown by means of a small gain argument,
similar to that used in Christo,des and Teel (1996) and
Christo,des et al. (1996), that the full closed-loop system
is asymptotically stable for all initial conditions inside the
invariant set -. The asymptotic output tracking result can
,nally be obtained by simply taking the limsup of both sides
of Eq. (A.16) which yields

lim sup
t→∞

|e(t)|= 0 (A.18)

and, hence,

lim sup
t→∞

|e(i)1 (t)|= lim sup
t→∞

|yi(t)− vi(t)|= 0; i = 1; : : : ; m:

(A.19)

This completes the proof of the theorem.

Proof of Theorem 2. The proof of this theorem consists
of three parts. In the ,rst part, we use a singular pertur-
bation formulation to represent the closed-loop system and
show that the resulting fast subsystem is globally exponen-
tially stable. In the second part, we focus on the closed-loop
reduced (slow) system and derive bounds for its states.
Then, in the third part, we use a technical lemma proved
in Christo,des (2000), to establish that these bounds con-
tinue to hold up to an arbitrarily small o?set, for arbitrarily
large compact subsets of the stability region obtained under
state feedback. The resulting bounds are then analyzed to
establish asymptotic and local exponential stability of the
full closed-loop system, which is then used to establish Eq.
(22), provided that ) and R: are su>ciently small.
Part 1: De,ning the auxiliary error variables

ê(i)j = Lri−j
i (y( j−1)

i − ỹ(i)
j ), j = 1; : : : ; ri, the vectors

e(i)o = [ê(i)1 ê(i)2 · · · ê(i)ri ]
T, eo = [e(1)

T

o e(2)
T

o · · · e(m)
T

o ]T, the
parameters :i = 1=Li, the matrices Ãi and the vector b̃:

Ãi =



−a(i)1 1 0 · · · 0

−a(i)2 0 1 · · · 0

...
...

...
. . .

...

−a(i)ri−1 0 0 · · · 1

−a(i)ri 0 0 · · · 0


; b̃=



0

0

...

0

1


; (A.20)

where i=1; : : : ; m, the system of Eq. (1) under the controller
of Eq. (21) takes the following form:

:iė(i)o = Ãie(i)o + :ib̃ i(x; x̂; 
; ); Rv); i = 1; : : : ; m;

!̇=�(sat(ỹ); !);

ẋ = f(x)− 1
2

m∑
i=1

gi(x)R−1(x̂)L̂ RgiV+
q∑

k=1

wk(x)
k(t)

(A.21)
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where  i(x; x̂; 
; ); Rv) is a Lipschitz function of its argument.
Owing to the presence of the small parameters :i that mul-
tiply the time derivatives ė(i)o , the system of Eq. (A.21)
can be, in general, a multiple-time-scale system. Therefore,
the results proved in Khalil (1987) will be used to es-
tablish exponential stability of the fast dynamics. De,ning
R: = max{:i}; i = 1; : : : ; m, multiplying each e(i)o -subsystem
by R:=:, introducing the fast time-scale RB = t= R: and setting
R:= 0, the closed-loop fast subsystem takes the form:
deo
d RB

=
R:
:
Ãieo; i = 1; : : : ; m: (A.22)

The above system possesses a triangular (cascaded) struc-
ture, with the constant matrices Ãi being Hurwitz. There-
fore, it satis,es Assumption 3 in Khalil (1987) and, since
R:=:¿ 1, the same approach, as in Khalil (1987), can be used
to deduce that the origin of this system is globally exponen-
tially stable, i.e. there exists real numbers k3¿ 1; a3 ¿ 0
such that

|eo( RB)|6 k3|eo(0)|e−a3 RB ∀ RB¿ 0: (A.23)

Part 2: Using the coordinate change of Eq. (6) and (20),
together with the notation introduced thereafter, we can
re-write the closed-loop system of Eq. (A.21) in the follow-
ing form:

:iė o = Ãieo + :ib̃ i(e; �; x̂; 
; ); Rv);

!̇=�(sat(ỹ); !);

ė= Rf(e; �; Rv)− 1
2

m∑
i=1

Rgi(e; �; Rv)R−1(x̂)L̂giV

+
q∑

k=1

Rwk(e; �; Rv)
k ;

�̇=�(e; Rv; �);

yi = e(i)1 + vi; i = 1; : : : ; m: (A.24)

Consider the above system with R:=max{:i}=0. Using the
result of Theorem 1 in Khalil and Esfandiari (1993), it can
be shown that �(0)=!(0)+O( R:) implies �(t)=!(t)+O( R:),
∀ t¿ 0 and therefore �(t) = !(t) ∀t¿ 0, when R: = 0. The
closed-loop reduced (slow) system of Eq. (A.24) there-
fore reduces to the one studied in the proof of Theorem
1 (see Eq. (A.1)) under state feedback, where we have
already shown that given any initial condition such that
|x(0)|6 .s, there exists )∗ ¿ 0 such that if )6)∗ and
|x(0)|6 .s, the closed-loop system is asymptotically stable.
Consequently, the denominator expression in Eq. (A.15) is
bounded and there exist real numbers ke ¿ 0; k1¿ 1; a1 ¿ 0
such that if |e(0)|6 .e; |�(0)|6 .�; ‖ Rv‖6 . Rv, where .s =
T−1(.e; .�; . Rv), we have that V̇ satis,es V̇ 6 − ke|e|2 and
the e states of the closed-loop system satisfy

|e(t)|6 k1|e(0)|e−a1t ∀t¿ 0 (A.25)

which shows that the origin of the e-subsystem is ex-
ponentially stable. From this result and the fact that the

�-subsystem (with e=0) is locally exponentially stable, we
have that the e; � interconnected closed-loop reduced (slow)
system is also locally exponentially stable (see Khalil (1996)
for details). Therefore, given the set of positive real num-
bers (.e; .�; . Rv), there exists b¿ 0 such that if |e(0)|6 .e,
|�(0)|6 .�, ‖ Rv‖6 . Rv, the following bound holds

|C(t)|6 k2|C(0)|e−a2t ∀t¿ 0 (A.26)

for all |C(t)|6 b, where C(t) = [eT(t) �T(t)]T, for some
k2¿ 1, a2 ¿ 0. Note that since the static component of the
controller of Eq. (21) with x̂=x enforces asymptotic stability
in the closed-loop slow system, the state � of the closed-loop
slow system satis,es a bound of the following form ∀t¿ 0:

|�(t)|6 ��(.�; t); (A.27)

where �� is a class KL function and .� is the maximum value
of the vector [lT1 (x) lT2 (x) · · · lTm(x)]

T for |x|6 .b, where
li(x) = [hi(x) Lfhi(x) · · · Lri−1

f hi(x)]T.
Based on the above bound and following the results of

Khalil and Esfandiari (1993) and Teel and Praly (1995),
we disregard estimates of ỹ, obtained from the high-gain
observer, with norm |ỹ|¿��(.�; 0). Hence, we set sat(·) =
min{1; �max=| · |}(·) where �max is the maximum value of the
vector [�1 �2 · · · �r] for |�|6 ��(.�; 0).

Part 3: Having analyzed the stability properties of both
the fast and slow closed-loop systems in parts 1 and 2, re-
spectively, it can be shown, with the aid of calculations
similar to those performed in Christo,des and Teel (1996)
and El-Farra and Christo,des (2001b), that the inequali-
ties of Eq. (A.23) (derived for the fast system), and Eqs.
(A.25)–(A.27) (derived for the slow system) continue to
hold, for the states of the full closed-loop system, up to an
arbitrarily small o?set d for initial conditions in large com-
pact subsets (-b ⊂ -) where -b = {x∈Rm : |x|6 .b}
and �(.b; 0) + d6 .s, provided that the singular perturba-
tion parameter R: is su>ciently small. The requirement that
�(.b; 0)+d6 .s guarantees that during the initial boundary
layer (when the fast states have not decayed yet), the “slow”
states of the closed-loop system remain within the invariant
region -. Therefore, given the pair (.b; d), the set (.
, . Rv,
.�), and with )∈ (0; )∗], there exists R:(1) ¿ 0 such that if
R:∈ (0; R:(1)], |x(0)|6 .b; |ỹ|6.�; ‖
k‖6 .
; ‖ Rv‖6 . Rv, then,
for all t¿ 0, the states of the closed-loop singularly per-
turbed system satisfy

|e(t)|6 k1|e(0)|e−a1t + d;

|�(t)|6K�|�(0)|e−a2t + ��(‖e‖) + d;

|eo(t)|6 k3|eo(0)|e−a3(t=:) + d: (A.28)

The above inequalities imply that the trajectories of the
closed-loop singularly perturbed system will be bounded.
Furthermore, as t increases, they will be ultimately bounded
with an ultimate bound that depends on d. Since d is arbi-
trary, we can choose it small enough such that after a su>-
ciently large time, say t̃, the trajectories of the closed-loop
system are con,ned within a small compact neighborhood of
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the origin of the closed-loop system. Obviously, t̃ depends
on both the initial conditions and the desired size of the
neighborhood, but is independent of R:. For reasons that will
become obvious shortly, we choose d= b=4 and let t̃ be the
smallest time such that max{k1|e(0)|e−a1 t̃ ; K�|�(0)|e−a2 t̃ +
��(‖e‖); k3|eo(0)|e−a3 t̃=:}6d. Then it can be easily veri,ed
that

|C(t)|6 b; |eo(t)|6 b ∀t¿ t̃: (A.29)

Recall from Eqs. (A.23) and (A.26) that both the fast and
slow subsystems are exponentially stable within the ball of
Eq. (A.29). Then, a direct application of the result of The-
orem 9.3 in Khalil (1996) can be performed to show that
there exists R:(2) such that if R:6 R:(2), the singularly perturbed
closed-loop system is locally exponentially stable and, there-
fore, once inside the ball of Eq. (A.29), the closed-loop tra-
jectories converge to the origin as t → ∞.
To summarize, we have that given the pair of positive real

numbers (.b; d) such that �(.b; 0) + d6 .s, given the set
of positive real numbers (.
, . Rv, .�), and with )∈ (0:)∗],
there exists R:∗ ≡ min{ R:(1); R:(2)} such that if |x(0)|6 .b,
|ỹ(0)|6 .�, ‖
k‖6 .
, ‖ Rv‖6 . Rv, and R:∈ (0; R:∗], the
closed-loop trajectories are bounded and converge to the
origin as time tends to in,nity, i.e. the closed-loop system
is asymptotically stable. The asymptotic output tracking re-
sult can then be established by noting that from Eq. (A.26)
we have

lim sup
t→∞

|e(t)|= 0 (A.30)

and therefore

lim sup
t→∞

|e(i)1 (t)|= lim sup
t→∞

|yi(t)− vi(t)|= 0; i = 1; : : : ; m

(A.31)

This completes the proof of the theorem.
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