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Abstract

In this work, a hybrid control scheme, uniting bounded control with model predictive control (MPC), is proposed for the stabilization
of linear time-invariant systems with input constraints. The scheme is predicated upon the idea of switching between a model predictive
controller, that minimizes a given performance objective subject to constraints, and a bounded controller, for which the region of constrained
closed-loop stability is explicitly characterized. Switching laws, implemented by a logic-based supervisor that constantly monitors the
plant, are derived to orchestrate the transition between the two controllers in a way that safeguards against any possible instability or
infeasibility under MPC, reconciles the stability and optimality properties of both controllers, and guarantees asymptotic closed-loop
stability for all initial conditions within the stability region of the bounded controller. The hybrid control scheme is shown to provide,
irrespective of the chosen MPC formulation, a safety net for the practical implementation of MPC, for open-loop unstable plants, by
providing a priori knowledge, through o:-line computations, of a large set of initial conditions for which closed-loop stability is guaranteed.
The implementation of the proposed approach is illustrated, through numerical simulations, for an exponentially unstable linear system.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Virtually all practical control systems are subject to hard
constraints on their manipulated inputs. One of the key lim-
itations imposed by input constraints is the restriction on
the set of initial states of the closed-loop system that can be
steered to the origin with the available control action. For a
control policy to be e:ective in dealing with the problem of
input constraints, it needs to provide not only the stabilizing
feedback control law, but also an explicit characterization of
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the set of initial conditions starting from where constrained
closed-loop stability is guaranteed. The absence of an a
priori explicit characterization of this set can make an im-
pact on the practical implementation of the given control
policy by requiring extensive closed-loop simulations over
the whole set of possible initial conditions, to check for
stability, or by limiting the operation within an unnecessar-
ily small and conservative neighborhood of the operating
point. These considerations have motivated signi.cant work
on the design of stabilizing bounded control laws that guar-
antee explicitly de.ned, large regions of attraction for the
closed-loop system (e.g., Lin & Sontag, 1991; Teel, 1992).
Recently, in El-Farra and Christo.des (2001, 2003), a class
of bounded robust Lyapunov-based nonlinear controllers,
inspired in part by the results on bounded control originally
presented in Lin and Sontag (1991), was developed. The
controllers enforce robust stability in the closed-loop system
and provide, at the same time, an explicit characterization
of the region of guaranteed closed-loop stability. Despite
their well-characterized stability and constraint-handling
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properties, the above controllers are not necessarily op-
timal with respect to an arbitrary performance criterion
(in El-Farra & Christo.des, 2001, it is shown that these
controllers are inverse optimal with respect to meaningful
costs).
Currently, model predictive control (MPC), also

known as receding horizon control (RHC), is one of
the few control methods for handling constraints within
an optimal control setting. Numerous research inves-
tigations into the stability properties of MPC have
led to a plethora of MPC formulations that focus on
closed-loop stability (see, for example, Allgower &
Chen, 1998; Morari & Lee, 1999; Mayne, Rawlings, Rao,
& Scokaert, 2000) for extensive surveys of these develop-
ments). For open-loop stable and integrating linear systems
with bounded inputs, in.nite horizon formulations have
been developed that are globally stabilizing (e.g., Rawlings
& Muske, 1993; Zheng & Morari, 1995). This progress
notwithstanding, the issue of obtaining, a priori (i.e. before
controller implementation), an analytic characterization of
the region of constrained closed-loop stability for MPC
controllers remains to be adequately addressed, particularly
for open-loop (exponentially) unstable plants where, unlike
stable plants, stabilization is the overriding requirement.
Part of the diHculty in this regard owes to the fact that,
unlike in analytical bounded control, the stability of MPC
feedback loops depends on a complex interplay between
several factors such as the stabilizability of the initial condi-
tion, the penalties in the performance index, and the choice
of the control horizon. A priori knowledge of the stabil-
ity region of MPC requires an explicit characterization of
these interplays. This diHculty can have an impact on the
implementation of MPC on unstable plants by requiring
extensive closed-loop simulations over the whole set of
possible initial conditions, to check for stability.
Motivated by the above, we propose in this paper a con-

troller switching strategy that merges the bounded control
approach with MPC in a way that allows both approaches to
complement the stability and optimality properties of each
other. The guiding principle in realizing this strategy is the
idea of decoupling optimality from the characterization of
the region of constrained closed-loop stability. Speci.cally,
by relaxing the optimality requirement, an explicit bounded
feedback control law is designed and an explicit large es-
timate of the region of constrained closed-loop stability,
which is not unnecessarily conservative, is computed. An
optimal MPC controller that minimizes a given cost func-
tional subject to the same constraints is then designed and
implemented within the stability region of the bounded con-
troller. Switching laws, that place appropriate restrictions
on the evolution of the closed-loop trajectory under MPC
within the stability region are then constructed to orchestrate
the transition between the two controllers in a way that guar-
antees closed-loop stability for all initial conditions within
the stability region. The switching scheme is shown to pro-
vide a safe mechanism for the practical implementation of

MPC, especially for open-loop unstable systems, by provid-
ing, through o:-line computations, a priori knowledge of a
large set of initial conditions for which closed-loop stability
is guaranteed.
The idea of switching, between di:erent controllers (or

models), for the purpose of achieving some objective that
either cannot be achieved or is more diHcult to achieve us-
ing a single controller has been widely used in the literature,
and in a variety of contexts (e.g., Rugh & Shamma, 2000;
Hespanha et al., 2001; Bemporad & Morari, 1999; Banerjee
& Arkun, 1998; Aufderheide, Prasad, & Bequette, 2001). In
this work, switching is employed between two structurally
di:erent, though complementary, control approaches as a
tool for reconciling the objectives of optimal stabilization
of the constrained closed-loop system (through MPC) and
the a priori (o:-line) determination of set of initial condi-
tions for which closed-loop stability is guaranteed (through
bounded control). The rest of the paper is organized as fol-
lows. In Section 2, we present the class of systems consid-
ered and review brieIy how the constrained control prob-
lem is addressed in both bounded control and MPC. We
then proceed in Section 3 to formulate the controller switch-
ing problem and propose a number of switching schemes
that, with varying degrees of Iexibility, address the prob-
lem. Finally, the implementation of the proposed switching
schemes is demonstrated through numerical simulations.

2. Preliminaries

In this work, we consider continuous-time linear
time-invariant (LTI) systems with input constraints, with
the following form:

ẋ(t) = Ax(t) + Bu(t); u(t)∈U ⊂ Rm; (1)

where x = [x1 · · · xn]′ ∈Rn denotes the vector of state
variables, u = [u1 · · · um]′ is the vector of manipulated
inputs, taking values in a compact and convex subset,
U := {u∈Rm : ‖u‖6 umax}, where umax¿0 is the magni-
tude of input constraints. The matrices A and B are constant
n × n and n × m matrices, respectively. The pair (A; B)
is assumed to be controllable. Throughout the paper, the
notation ‖ · ‖ is used to denote the standard Euclidean norm
of a vector, while the notation ‖ · ‖Q refers to the weighted
norm, de.ned by ‖x‖2Q = x′Qx for all x∈Rn, where Q is
a positive de.nite symmetric matrix and x′ denotes the
transpose of x. Furthermore, the notation x(T−) is used to
denote the limit of x(t) as T is approached from the left,
i.e. x(T−) = limt→T− x(t). We assume that measurements
of the entire state, x(t), are available for all t.

2.1. Bounded Lyapunov-based control

Consider the Lyapunov function candidate V = x′Px,
where P is a positive-de.nite symmetric matrix that satis.es
the Riccati equation

A′P + PA− PBB′P =− OQ (2)
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for some positive-de.nite matrix OQ. Using this Lyapunov
function, we can construct, using Sontag’s formula for
bounded controls proposed in Lin and Sontag (1991)
(see also El-Farra and Christo.des, 2001), the following
bounded nonlinear controller:

u(x) =−2k(x)B′Px := b(x); (3)

where

k(x) =


 LfV +

√
(LfV )2 + (umax‖(LgV )′‖)4

‖(LgV )′‖2
[
1 +

√
1 + (umax‖(LgV )′‖)2

]

 ; (4)

LfV=x′(A′P+PA)x and (LgV )′=2B′Px. This control law is
continuous everywhere in the state space and smooth away
from the origin. For the above controller, one can show, us-
ing a Lyapunov argument, that whenever the closed-loop
state trajectory evolves within the state space region de-
scribed by the set

�(umax) = {x∈Rn: LfV ¡umax‖(LgV )′‖} (5)

the resulting control action respects the constraints
(i.e. ‖u‖6 umax) and enforces, simultaneously, the
negative-de.niteness of the time-derivative of the Lyapunov
function, V̇ ¡ 0, along the trajectories of the closed-loop
system. Note that the size of the set � depends on the
magnitude of the constraints in a way such that, the tighter
the constraints, the smaller the region described by this set.
Starting from any initial state within �(umax), asymptotic
stability of the constrained closed-loop system can be guar-
anteed, provided that the closed-loop trajectory remains
within the region described by �(umax). To ensure this, we
consider initial conditions that belong to an invariant sub-
set (preferably the largest) which we denote by �(umax).
This idea was also used in El-Farra and Christo.des (2001)
in the context of bounded robust control of constrained
nonlinear systems. A common way of constructing such a
subset is using the level sets of V , i.e.

�(umax) = {x∈Rn: x′Px6 cmax} (6)

where cmax¿ 0 is the largest number for which all nonzero
elements of �(umax) are contained within �(umax). The
invariant region, described by the set �(umax), provides an
estimate of the stability region, starting from where the ori-
gin of the constrained closed-loop system under the con-
trol law of Eqs. (3)–(4) is guaranteed to be asymptotically
stable.

Remark 1. The bounded control law of Eqs. (3)–(4) will be
used in Section 3 to illustrate the basic idea of the proposed
hybrid control scheme. Our choice of using this particular
design is motivated by its explicit structure and well-de.ned
region of stability. However, our results are not restricted to
this particular design. Any other analytical bounded control
law, with an explicit structure and well-de.ned region of

stability, can be used including, for example the bounded
controls developed in Teel (1992) for certain classes of con-
strained linear systems.

Remark 2. The exact computation of the null controllable
region, for general constrained linear systems, remains an
open problem in control (e.g., see Hu, Lin, & Qiu, 2002 for
some recent results in this area). Most research has there-
fore focused on obtaining an estimate of the domain of at-
traction under a given stabilizing feedback law. A common
and computationally convenient way of providing this es-
timate is through Lyapunov-based invariant regions (level
sets). While these regions do not necessarily capture the en-
tire domain of attraction, we will use them throughout the
paper only for a concrete illustration of the basic ideas of
the results. It is possible to obtain better (i.e. less conserva-
tive) estimates by using, for example, combination of sev-
eral Lyapunov functions.

2.2. Model predictive control

We consider model predictive control of the system de-
scribed by Eq. (1). For this case, MPC at state x and time t
is conventionally obtained by solving, on-line, a .nite hori-
zon optimal control problem of the form

P(x; t) : min{J (x; t; u) | u∈ S}; (7)

where S = S(t; T ) is the family of piecewise continuous
functions (functions continuous from the right), with period
�, mapping [t; t + T ] into U; T is the speci.ed horizon. A
control u(·) in S is characterized by the sequence {u[k]}
where u[k] := u(k�). A control u(·) in S satis.es u(t) =
u[k] for all t ∈ [k�; (k + 1)�). The performance index is
given by

J (x; t; u(·)) =
∫ t+T

t
[‖xu(s; x; t)‖2Q + ‖u(s)‖2R] ds

+F(x(t + T )); (8)

where R andQ are strictly positive de.nite, symmetric matri-
ces, xu(s; x; t) denotes the solution of Eq. (1), due to control
u, with initial state x at time t, and F(·) denotes the termi-
nal penalty. In addition to penalties on the state and control
action, the objective function may also include penalties on
the rate of input change, reIecting limitations on actuator
speed (e.g., a large valve requiring few seconds to change
position). The minimizing control u0(·)∈ S is then applied
to the plant over the interval [k�; (k + 1)�) and the proce-
dure is repeated inde.nitely. This de.nes an implicit model
predictive control law

M (x) := u0(t; x; t): (9)

It is well known that the control law de.ned by Eqs. (7)–
(9) is not necessarily stabilizing. To achieve closed-loop
stability, early versions of MPC focused on tuning the
horizon length, T , and/or increasing the terminal penalty
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(see Bitmead, Gevers, & Wertz, 1990, for a critique of
these approaches), while more recent formulations focused
on imposing stability constraints on the optimization (see
Allgower & Chen, 1998; Mayne et al., 2000 for surveys
of di:erent constraints proposed in the literature and the
concomitant theoretical issues). Obviously, even when
stability constraints are imposed on the optimization, any
guarantee of closed-loop stability remains contingent upon
making the appropriate choice of the initial condition,
which must belong to the stability region of the MPC
controller which, in turn, is a complex function of the
constraints, the performance objective, and the horizon
length. However, the implicit nature of the MPC control
law, obtained through repeated on-line optimization, limits
our ability to obtain, a priori, an explicit characterization
of the admissible initial conditions starting from where
the given MPC controller (with .xed performance index
and horizon length) is guaranteed to enforce asymptotic
closed-loop stability. Therefore, the initial conditions are
tested usually through closed-loop simulations which can
add to the computational burden prior to the implementation
of MPC.

3. Uniting bounded control and MPC: a hybrid control
strategy

By comparing the bounded and MPC controller designs
reviewed in the previous section, some tradeo:s with re-
spect to their stability and optimality properties are ob-
served. For example, while the bounded controller possesses
a well-de.ned region of admissible initial conditions that
guarantee closed-loop stability in the presence of constraints,
the performance of this controller is not guaranteed to be
optimal with respect to an arbitrary performance criterion
(in El-Farra & Christo.des, 2001 we show that a more gen-
eral class of bounded robust controllers are inverse optimal
with respect to a meaningful, though not speci.ed a pri-
ori, cost functional that imposes penalty on the state and
control action). On the other hand, the MPC controller is
well-suited for handling constraints within an optimal con-
trol setting; however, the analytical characterization of its
set of admissible initial conditions is a more diHcult task
than it is through bounded control. In this section, we show
how to reconcile the two approaches by means of a switch-
ing scheme that combines the desirable properties of both
approaches.

3.1. Problem formulation and overview of solution

Consider the linear time-invariant system of Eq. (1), sub-
ject to input constraints, ‖u‖6 umax, for which the bounded
controller of Eqs. (3)–(4) and MPC controller of Eqs. (7)–
(9) have been designed. We formulate the controller switch-
ing problem as the one of designing a set of switching laws
that orchestrate the transition between the MPC controller
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Fig. 1. A schematic representation of the hierarchical hybrid control
structure merging the bounded and MPC controllers.

and the bounded controller in a way that: (1) respects input
constraints, (2) guarantees asymptotic stability of the origin
of the closed-loop system starting from any initial condition
in the set �(umax) de.ned in Eq. (6) and (3) guarantees re-
covery of the MPC optimal performance whenever the perti-
nent stability criteria are met. For a precise statement of the
problem, we .rst cast the system of Eq. (1) as a switched
system of the form

ẋ = Ax + Bui(t); ‖ui‖6 umax; i(t)∈{1; 2}; (10)

where i : [0;∞) → {1; 2} is the switching signal which is
assumed to be a piecewise continuous (from the right) func-
tion of time, implying that only a .nite number of switches
between the two controllers is allowed on any .nite inter-
val of time. The index i(t), which takes values in the .-
nite set {1; 2}, represents a discrete state that indexes the
control input, u, with the understanding that i(t) = 1 if and
only if ui(x(t)) =M (x(t)) (i.e. MPC is used) and i(t) = 2
if and only if ui(x(t)) = b(x(t)) (i.e. bounded control is
used). The value of i(t) is determined by a higher-level su-
pervisor responsible for executing the transition between the
two controllers. Our goal is to construct a switching law
of the form i(t) =  (x(t); t) that provides the supervisor
with the switching times that ensure stabilizing transitions
between the two controllers. This, in turn, determines the
time-course of the discrete state i(t). A schematic represen-
tation of the proposed hybrid control structure is depicted
in Fig. 1.
In the remainder of this section, we present two switch-

ing schemes that address this problem. The .rst scheme is
formalized in Theorem 1 (Section 3.2) and focuses primar-
ily on closed-loop stability using classical MPC formula-
tions, while the second scheme deals with feasibility-based
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V(x)=Cmax
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Fig. 2. A schematic representation of the implementation of the
stability-based switching scheme of Theorem 1.

switching and shows how more advanced MPC formula-
tions can also be accommodated by adjusting the switching
logic appropriately. The proof of Theorem 1 is given in the
appendix.

3.2. Stability-based controller switching

Theorem 1. Consider the constrained LTI system of Eq.
(10), with any initial condition x(0) = x0 ∈�(umax), where
�(umax) was de7ned in Eq. (6), under the model predic-
tive controller of Eqs. (7)–(9). Also let Ts ¿ 0 be the
earliest time for which the closed-loop state under MPC
satis7es

−‖x(T−
s )‖2OQ+‖B′Px(T−

s )‖2+2x′(T−
s )PBu(T

−
s )¿0

(11)

then the switching rule

i(t) =

{
1 06 t ¡Ts;

2 t¿Ts;
(12)

where i(t) = 1 ⇔ ui(x(t)) = M (x(t)) and i(t) = 2 ⇔
ui(x(t)) = b(x(t)), guarantees that the origin of the con-
strained closed-loop system is asymptotically stable.

Remark 3. Theorem 1 describes a stability-based switching
strategy for control of linear systems with input constraints.
The three main components of this strategy include the
bounded controller, the MPC controller, and a higher-level
supervisor that orchestrates the switching between the two
controllers. The implementation of this hybrid strategy is
best understood through the following stepwise procedure
(see Fig. 2):

• Given the system model of Eq. (1) and the constraints on
the input, design the bounded controller using Eqs. (3)–
(4). Given the performance objective and a choice of the
horizon length, design the MPC controller.

• Compute the stability region estimate for the bounded
controller, �(umax), using Eqs. (5)–(6).

• Initialize the closed-loop system, using the MPC con-
troller, at any initial condition x0 within �(umax).

• Monitor the evolution of the closed-loop trajectory (by
checking Eq. (11) at each time) until the earliest time, Ts,
that Eq. (11) is met.

• At the earliest time that Eq. (11) is met, discontinue MPC
implementation, switch to the bounded controller and im-
plement it for all future times.

Remark 4. The relations of Eqs. (11)–(12) represent the
switching rule that the supervisor observes when deciding
if a switch between the two controllers is needed. The im-
plementation of this rule requires only the evaluation of
the algebraic expression on the left-hand side in Eq. (11),
which is the rate at which the Lyapunov function (used in
designing the bounded controller and characterizing its sta-
bility region) grows or decays along the trajectories of the
closed-loop system. By observing this rule, the supervisor is
essentially tracking the temporal evolution of V under MPC,
so that whenever an increase in V is detected after its initial
implementation, MPC is disengaged from the closed-loop
and the bounded controller is switched in, thus steering
the closed-loop trajectory to the origin asymptotically. This
logic guarantees that, under MPC, the closed-loop trajectory
never escapes �(umax) before the bounded controller can
be switched in. The idea of designing the switching logic
based on monitoring the state’s temporal evolution with re-
spect to the stability region was introduced in El-Farra and
Christo.des (2002) for control of switched (multi-modal)
nonlinear systems with input constraints.

Remark 5. In the case when Eq. (11) is never ful.lled, i.e.
the Lyapunov function continues to decay monotonically
along the closed-loop trajectories under MPC, the switching
rule of Eq. (12) ensures that only MPC is implemented for
all times (no switching occurs) since it is asymptotically
stabilizing. In this case, the optimal performance of MPC is
fully recovered.

Remark 6. Note that the proposed approach does not turn
�(umax) into a stability region for MPC. What the approach
does, however, is turn �(umax) into a stability region for
the switched closed-loop system. The value of this can be
understood in light of the diHculty in obtaining, a priori,
an analytical characterization of the set of admissible initial
conditions that the MPC controller can steer to the origin
in the presence of input constraints. By using the bounded
controller as a fall-back controller, the switching scheme al-
lows us to safely initialize the closed-loop system anywhere
within �(umax) using MPC, with the guarantee that the
bounded controller can always intervene (through switch-
ing) to “rescue” closed-loop stability in case the closed-loop
starts to become unstable under MPC (due, e.g., to a poor
choice of the initial condition or improper tuning of MPC).
This safety feature distinguishes the bounded controller from
other fall-back controllers that could be used, such as PID
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controllers, which do not provide a priori knowledge of the
constrained stability region and, therefore, do not guaran-
tee a safe transition in the case of unstable plants. For these
controllers, a safe transition is critically dependent on is-
sues such as whether or not the operator is able to properly
tune the controller online, which, if not achieved, can pos-
sibly result in instability and/or performance degradation.
The transition from the MPC to the bounded controller, on
the other hand, is not fraught with such uncertainty and is
always safe because of the a priori knowledge of the stabil-
ity region. This aspect helps make plant operation safer and
smoother.

Remark 7. In contrast to Lyapunov-based MPC ap-
proaches (e.g. contractive MPC (Polak & Yang, 1993),
CLF-based RHC, (Primbs, Nevistic, & Doyle, 2000), the
Lyapunov-based stability condition is enforced at the su-
pervisory level, via continuous monitoring of V (t), rather
than being incorporated as an inequality constraint in
the optimization problem. This fact may help reduce the
complexity of the optimization problem, without loss of
stability, by reducing the number of constraints involved.
The underlying idea here is that of decoupling the stabil-
ity requirement from optimality. In the proposed hybrid
scheme, it is switching to the bounded controller, with its
well-de.ned stability region, that safeguards against po-
tential closed-loop instability arising as a consequence of
implementing MPC, for which the stability region is not
known a priori. On the other hand, MPC provides, by de-
sign, the desired optimal performance under constraints.
The switching logic then ensures that any such optimal
solution is implemented only when it is asymptotically
stabilizing.

3.3. Switching using advanced MPC formulations

In Theorem 1, a classical MPC formulation (with no sta-
bility constraints) was used as an example to illustrate the
basic idea of controller switching and how it can be used to
aid MPC implementation. The value of the hybrid control
structure (see Fig. 1), however, is not restricted to classical
MPC formulations, and extends to any MPC formulation,
for which a priori knowledge of the set of admissible ini-
tial conditions is lacking (or computationally expensive to
obtain). The structure can be adapted to more advanced ver-
sions of MPC by appropriate design of the switching logic.
To illustrate this point, consider the case when advanced
MPC algorithms, that employ stability constraints in the op-
timization formulation, are used to compute the control ac-
tion. An example of such formulations is the following:

min
u(·)

∫ t+T

t
(x′(s)Qx(s) + u′(s)Ru(s)) ds;

s:t: ẋ(t) = Ax(t) + Bu(t); x(0) = x0;

u(·)∈ S; x(t + T ) = 0 (13)

maxΩ(       )

1V(x)=C

V(x)=Cmax

V(x)=C2

u

"Switch"

x (0) Stability region
Bounded controller’s

Bounded Control
MPC 

Check MPC feasibility 
"No switching"

Check MPC feasibility

Fig. 3. A schematic representation of feasibility-based switching using a
stability-handling MPC formulation.

which uses a terminal equality constraint (other types
of stability constraints, such as control Lyapunov func-
tion (CLF)-based inequality constraints of the form
V (x(t + T ))¡V (x(t)) can be treated similarly). By in-
corporating stability conditions as part of the constrained
optimization problem, asymptotic stability under MPC can
be guaranteed provided that the initial optimization yields
a feasible solution. However, inclusion of the stability
constraints does not, by itself, provide any a priori ex-
plicit knowledge of the feasible initial conditions, which
must then be identi.ed through simulations. This obser-
vation suggests that the hybrid control structure can be
used here to safeguard closed-loop stability in the event
of MPC infeasibility. Speci.cally, in lieu of monitoring
the growth of V , a di:erent switching logic, based on
feasibility of the optimization in Eq. (13), needs to be
implemented. The switching algorithm in this case can be
summarized as follows (see also Fig. 3 for a schematic
representation):

• Given any initial condition x0 within �(umax), check,
o:-line, whether the constrained optimization in Eq. (13)
yields a feasible solution. If a solution exists, no switch-
ing is needed and MPC can be implemented for all time.

• If an initial feasible solution is not found, implement the
bounded controller instead, i.e. set u(0) = b(x0).

• While the bounded controller is in the closed-loop, con-
tinue to check, o:-line, and as frequently as desired, the
feasibility of the optimization in Eq. (13).

• At the earliest time that a feasible solution is found, switch
to theMPC controller, else the bounded controller remains
active.

The above discussion underscores an important attribute of
the proposed hybrid control structure, and that is the fact
that it is not proposed as a substitute for stability constraints
(even though it guarantees stability when the MPC formula-
tion is not stabilizing), but as a reliable fall-back mechanism
from which any MPC formulation can bene.t.
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Remark 8. An important issue in the practical implemen-
tation of MPC is the selection of the horizon length. It is
well known that this selection can have a profound e:ect
on nominal closed-loop stability, and results are available
in the literature that establish, under certain assumptions,
the existence of “suHciently large” .nite horizons that en-
sure stability (e.g., Rawlings & Muske, 1993; Chmielewski
& Manousiouthakis, 1996). However, a priori knowledge
(without closed-loop simulations) of the minimum horizon
length that guarantees feasibility or closed-loop stability,
from an arbitrary initial condition, is currently not available.
Therefore, in practice the horizon length is typically cho-
sen based on heuristic criteria, tested through closed-loop
simulations, and varied, if necessary, to achieve stability.
Note that in all the switching schemes proposed in Sec-
tion 3, closed-loop stability is maintained independent of
the horizon length, and therefore selection of the horizon
length can be made solely on the basis of what is computa-
tionally practical for the size of the optimization problem,
without increasing, unnecessarily, the horizon length (and
consequently the computational load) out of concern for
stability.

Remark 9. The supervisory checks required in the imple-
mentation of the switching scheme do not incur any ad-
ditional computational costs beyond that involved in MPC
implementation alone. In the event that MPC is infeasible
from a given initial condition (e.g., due to insuHcient num-
ber of control moves), the supervisor, checks as frequently
as desired, the initial feasibility of the MPC by actually solv-
ing the optimization problem at each time step and imple-
menting the resulting solution (if found). If a solution is not
found at a given time step, the supervisor implements the
bounded controller (an inexpensive algebraic computation)
and continues, in the mean time, to solve the optimization
until it .nds a feasible solution to implement.

Remark 10. The switching schemes proposed in this work
di:er, both in their objective and implementation, from other
MPC formulations involving switching which have appeared
earlier in the literature. For example, in dual mode MPC
(Michalska & Mayne, 1993) the strategy includes switching
from MPC to a locally stabilizing controller once the state is
brought near the origin by MPC. The purpose of switching
in this approach is to relax the terminal equality constraint
whose implementation is computationally burdensome for
nonlinear systems. However, the set of initial conditions for
whichMPC is guaranteed to steer the state close to the origin
is not explicitly known a priori. In contrast, switching from
MPC to the bounded controller is used in our work only
to prevent any potential closed-loop instability arising from
implementing MPC without the a priori knowledge of the
admissible initial conditions. So depending on the stability
properties of the chosen MPC, switching may or may not
occur, and if it occurs, it can take place near or far from the
origin. Finally, we note that the notion of “switching” from

a predictive to an unconstrained LQR controller, for times
beyond a .nite control horizon, has been used in Sznaier
and Damborg (1987), Chmielewski and Manousiouthakis
(1996), and Scokaert and Rawlings (1998), in the context of
determining a .nite horizon that solves the in.nite horizon
constrained LQR problem.

4. Simulation example

Consider the following linear system

ẋ =

[
0:5 0:25

0:5 1

]
x +

[
1 0

0 1

]
u; (14)

where both inputs u1; u2 are constrained in the interval
[− 5; 5] and the open-loop system has an unstable equilib-
rium point at the origin (A has two positive eigenvalues).
We initially use Eqs. (3)–(4) to design the bounded con-
troller and construct its stability region via Eqs. (5)–(6).
The matrix P is chosen to be

P =

[
1:1362 0:8102

0:8102 1:8658

]
:

For theMPC controller, the parameters in the objective func-
tion of Eq. (8) are chosen as penalty on the states, Q = qI ,
with q=1, penalty on the control inputs, R= rI , with r=3
and a horizon length of T = 1. The resulting quadratic pro-
gram is solved using the MATLAB subroutine QuadProg,
and the set of ODEs are integrated using the MATLAB
solver ODE45.
As shown by the solid curve in Fig. 4, applying the MPC

controller from the initial condition x0 = [6 − 2]′ (which
belongs to the stability region of the bounded controller, �,
represented by the ellipse in Fig. 4) leads to closed-loop
instability. The corresponding input and output pro.les are
shown by the solid lines in Fig. 5. Using the switching
scheme of Theorem 1, however, we .nd that the supervisor
detects an increase in V at t = 0:425 and therefore immedi-
ately switches at this time from the MPC controller to the
bounded controller in order to preserve closed-loop stabil-
ity. As expected, the bounded controller asymptotically sta-
bilizes the plant (see dotted lines in Figs. 4 and 5). It is im-
portant to note that one could try to tune the horizon length
further in order to achieve stability using the MPC con-
troller. For example, we see from the dashed lines in Figs. 4
and 5 that stability can be achieved by increasing the hori-
zon length to T = 1:5. However, this conclusion could not
be reached a priori, i.e. before running the closed-loop sim-
ulation in its entirety to check whether the choice T =1:5 is
appropriate. In contrast, closed-loop stability starting from
the given initial condition, is guaranteed, a priori, under the
switching scheme of Theorem 1.
In the following set of simulation runs, we demonstrate

an application of the feasibility-based switching scheme,
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Fig. 4. Closed-loop state trajectory under MPC with T =1 (solid), under
the switching scheme of Theorem 1 with T =1 (dotted), and under MPC
with T = 1:5 (dashed).
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Fig. 5. Input and closed-loop state pro.les under MPC with T =1 (solid),
under the switching scheme of Theorem 1 with T =1 (dotted), and under
MPC with T = 1:5 (dashed).

proposed in Section 3.3, which uses a stable version of MPC,
speci.cally, one employing a terminal equality constraint.
For theMPC controller, the parameters in the objective func-
tion (Eq. (13)) are chosen as q= 1 and r = 1. The horizon
length is chosen to be T=1:2. As shown by the solid lines in
Fig. 6, starting from an initial condition x0=[2 −2]′, MPC is
found to be feasible and is therefore implemented and kept
in the closed-loop for all times driving the trajectory asymp-
totically to the origin. The corresponding input and output
pro.les are shown by the solid lines in Fig. 7. The scenario,
therefore, represents a reasonably well-tunedMPC for initial
conditions around the origin. Now suppose that, after settling
at the origin, a temporary disturbance drives the closed-loop
trajectory to the point xi=[5 −5]′ (which is still within the
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Fig. 6. Closed-loop state trajectory starting close to the origin using MPC
with T = 1:2 (solid) and from a point farther away in state space using
the switching scheme with a horizon length T = 1:2 (dotted) and using
only MPC with T = 1:5 (dashed).
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Fig. 7. Input and closed-loop state pro.les starting close to the origin
using MPC with T = 1:2 (solid) and from a point farther away in state
space using the switching scheme with a horizon length T =1:2 (dotted)
and using only MPC with T = 1:5 (dashed).

stability region of the bounded controller). After the distur-
bance disappears, MPC starting from this initial condition is
found to be infeasible and, therefore, the bounded controller
is employed instead. Implementation of the bounded con-
troller proceeds until the closed-loop trajectory crosses the
level set denoted by �2 in Fig. 6, which occurs at t = 0:6.
At this point, feasibility of MPC is checked again and the
MPC controller is found to be feasible. Consequently, the
bounded controller is terminated immediately and the MPC
controller is employed in the closed-loop for the remaining
time (inside �2). This scenario is shown by the dotted lines
in Figs. 6 and 7. Once again, note that using a higher value
of the horizon length, T = 1:5 can lead to MPC being
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feasible from the initial condition xi=[5 −5]′ (dashed lines
in Figs. 6 and 7). This implies that, once the closed-loop
state is driven by the disturbance to xi, a re-tuning of the
horizon length can make MPC feasible. However, a pri-
ori knowledge of the value of the horizon length that is
guaranteed to work could not be obtained, short of testing
feasibility at that condition. The prospect of disturbances
throwing the system around would therefore necessitate run-
ning extensive closed loop simulations to determine such a
value. The feasibility-based switching scheme, on the other
hand, clearly guarantees closed-loop stability for any value
of the horizon length. Following the disturbance, it drives
the closed-loop trajectory to a point at which the original
MPC controller (with T = 1:2) becomes feasible again and
can therefore be implemented. In this particular example,
feasibility was checked only at one level set. The frequency
of feasibility checking could be made larger by introducing
more level sets, or by checking feasibility at predetermined
times.

Appendix.

Proof of Theorem 1. Step 1: Consider the system of
Eq. (1), under the control law of Eqs. (3)–(4). Evaluat-
ing the time-derivative of the Lyapunov function along the
closed-loop trajectories

V̇ = LfV + LgVu

=
LfV

√
1+(umax‖(LgV )′‖)2−

√
(LfV )2+(umax‖(LgV )′‖)4[

1+
√
1+(umax‖(LgV )′‖)2

] :

(15)

It is clear from the last equality above that when
LfV ¡ 0, we have V̇ ¡ 0. Furthermore, when 06LfV ¡
umax‖(LgV )′‖, we have (LfV )2¡ (umax‖(LgV )′‖)2 and,
therefore,

−
√
(LfV )2+(umax‖LgV‖)4¡LfV

√
1+(umax‖(LgV )′‖)2:

(16)

Substituting the above estimate into the expression for V̇
in Eq. (15), we have that V̇ ¡ 0. To summarize: when-
ever LfV ¡umax‖(LgV )′‖, we have V̇ ¡ 0. Since �(umax)
is taken to be the largest invariant set, where this inequal-
ity holds for all x �= 0, then starting from any initial state
x(0)∈�(umax), the inequality of Eq. (5) holds for all times,
and consequently, V̇ ¡ 0; ∀ 0 �= x∈�(umax), which im-
plies that the closed-loop system, under the control law of
Eqs. (3)–(4) is asymptotically stable.
Step 2: Consider the switched system of Eq. (10), sub-

ject to the switching rule of Eqs. (11)–(12), with any
initial state x(0)∈�(umax). From the de.nition of Ts

given in Theorem 1, it is clear that if Ts is a .nite num-
ber, then V̇ (xM (t))¡ 0 ∀ 06 t ¡Ts, where the notation
xM (t) denotes the closed-loop state under MPC at time t,
which implies that x(t)∈�(umax) ∀ 06 t ¡Ts (or that

x(T−)∈�(umax)). This fact, together with the continuity
of the solution of the switched system, x(t), (which fol-
lows from the fact that the right-hand side of Eq. (10) is
continuous in x and piecewise continuous in t since only
.nite number of switches is allowed over any .nite time
interval) implies that, upon switching (instantaneously) to
the bounded controller at t = Ts, we have x(Ts)∈�(umax)
and u(t) = b(x(t)) for all t¿Ts. Therefore, from our anal-
ysis in step 1 we conclude that V̇ (xb(t))¡ 0 ∀ t¿Ts. In
summary, the switching rule of Eqs. (11)–(12) guarantees
that, starting from any x(0)∈�(umax); V̇ (x(t))¡ 0 ∀ 0 �=
x∈�(umax); ∀ t¿ 0, which implies that the switched
closed-loop system is asymptotically stable. Note that if no
such Ts exists, then we simply have V̇ (xM (t))¡ 0 ∀ t¿ 0
and the closed-loop system is, again, asymptotically stable.
This completes the proof of the theorem.
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