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Abstract

This work addresses the problem of designing a fault-tolerant control system for fluid dynamic systems modeled by highly-

dissipative partial differential equations (PDEs) with constrained control actuators. The proposed approach is predicated upon the

idea of coordinating feedback controller synthesis and switching between multiple, spatially-distributed control actuator

configurations. Using appropriate finite-dimensional approximations of the PDE system, a stabilizing feedback controller is

designed for a given actuator configuration, and an explicit characterization of the constrained stability region is obtained.

Switching laws are then derived, on the basis of these stability regions, to orchestrate the switching between the control actuator

configurations, in a way that guarantees constraint satisfaction and preserves closed-loop stability of the infinite-dimensional system

in the event of actuator failures. The results are demonstrated through an application of the proposed methodology to the

suppression of wave formation in falling liquid films via the stabilization of the zero solution of the one-dimensional Kuramoto�/

Sivashinsky equation (KSE), with periodic boundary conditions, subject to actuator constraints and failures.
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1. Introduction

The development of general and practical control

algorithms for nonlinear PDEs that describe fluid flow

processes (e.g. Navier�/Stokes equations, Kuramoto�/

Sivashinsky equation (KSE)) is a fundamental problem

whose practical significance ranges from feedback con-

trol of turbulence for drag reduction, to suppression of

fluid mechanical instabilities in coating processes and

suppression of waves exhibited by falling liquid films.

For example, drag reduction through active feedback

control may have a significant impact on the design and

operation of underwater vehicles, airplanes and auto-

mobiles since, according to some estimates, keeping the

flow over the surface of a vehicle laminar could yield up

to 30% reduction in fuel consumption. Active control of

fluid flow can be achieved by injection of polymers,
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mass transport through porous walls (e.g. blowing/

suction) and application of electro-magnetic forcing.

An example fluid dynamic system, which will be used

throughout paper to demonstrate the results, is the
KSE. The KSE is a nonlinear dissipative partial

differential equation (PDE) of the form:
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where n�/0 is the so-called instability parameter, which
describes incipient instabilities in a variety of physical

and chemical systems, including falling liquid films

(Chen & Chang, 1986), unstable flame fronts (Siva-

shinsky, 1980), Belouzov�/Zabotinskii reaction patterns

(Kuramoto & Tsuzuki, 1976) and interfacial instabilities

between two viscous fluids (Hooper & Grimshaw, 1985).

Both the dynamics and control of the KSE with periodic

boundary conditions have been the subject of significant
research work. Dynamical studies have led to the

discoveries of steady and periodic wave solutions,

chaotic behavior for very small values of n , and the

mailto:pdc@seas.ucla.edu


N.H. El-Farra et al. / Computers and Chemical Engineering 27 (2003) 1913�/19241914
fact that the dominant dynamics of the KSE can be

adequately characterized, by a small number of degrees

of freedom (see e.g. Temam, 1988; Chen & Chang, 1986;

Greene & Kim, 1988; Kevrekidis, Nicolaenko & Scovel,
1990). Control studies of the KSE have focused on a

variety of problems, including the design of finite-

dimensional output feedback controllers for stabiliza-

tion of the zero solution of the KSE based on ODE

approximations (Armaou & Christofides, 2000), the

global stabilization of the KSE via distributed static

output feedback control (Christofides & Armaou, 2000),

stabilization enhancement via boundary control (Liu &
Krstic, 2001), adaptive stabilization (Kobayashi, 2002)

and robust control (Hu & Temam, 2001).

While the above research efforts have led to a number

of systematic approaches for control of the KSE and

other fluid dynamic systems, a common theme of these

approaches is the use of a fixed spatial arrangement (or

configuration) of control actuators/measurement sen-

sors in order to accomplish the desired control objec-
tives. There are many practical situations, however,

where it may be desirable and sometimes even necessary,

to consider multiple actuator/sensor configurations and

switch between them in a specific manner, in order to

achieve the control objectives. One example is the

problem of actuator failure where, upon the detection

of a fault in a control actuator, it may be necessary to

switch to an alternative actuator, placed at a different
spatial location, in order to preserve stability of the

closed-loop system. Spatially-distributed switching be-

tween control actuators in this case provides a means for

fault-tolerant control. In other cases, switching between

actuator configurations may be motivated by some

additional performance objective, such as the desire to

optimize a given performance criterion or accommodate

inherently competing control objectives that cannot be
reconciled using a single actuator configuration.

In previous works, we considered a class of linear (El-

Farra & Christofides, 2003a) and quasi-linear (El-Farra

& Christofides, 2003d) second-order parabolic PDE

systems, and developed a method for handling control

actuator failures by integrating feedback and switching

among a pre-selected set of spatially-distributed control

actuator configurations. The developed method, based
on Lyapunov techniques, provides explicit feedback

laws and precise switching conditions for guaranteeing

closed-loop stability in the presence of actuator failures,

and was successfully applied to representative examples

of diffusion-reaction processes and a tubular reactor

with recycle.

In the present work, we focus on the problem of

coupling feedback and switching between actuator
configurations for fault-tolerant control of fluid dy-

namic systems modeled by highly-dissipative PDEs with

constrained control actuators. The results constitute a

generalization of our previous work (El-Farra & Chris-
tofides, 2003a,d) to higher-order (e.g. fourth in the case

of the KSE) dissipative PDEs that can model fluid

flows. The problem is addressed on the basis of finite-

dimensional Galerkin approximations of the PDE
system and entails the integrated synthesis, via Lyapu-

nov techniques, of stabilizing nonlinear feedback con-

trollers together with stabilizing switching laws that

orchestrate the switching between the admissible control

actuator configurations, in a way that respects actuator

constraints, accommodates inherently conflicting con-

trol objectives, and guarantees closed-loop stability.

Precise conditions that guarantee stability of the con-
strained closed-loop system under switching are pro-

vided. The proposed control methodology is

demonstrated through an application to the problem

of suppression of wave formation, achieved via the

stabilization of the zero solution, U (z , t )�/0, of the

KSE with periodic boundary conditions, in the presence

of control actuator constraints and faults.
2. Preliminaries

2.1. Mathematical description

To demonstrate the proposed fault-tolerant control

methodology, we consider the one-dimensional KSE

with distributed control as our model system:
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subject to the periodic boundary conditions:
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and the initial condition:

U(z; 0)�U0(z) (5)

where U (z , t ) is the state of the system; z � /[�/p , p ], the

spatial coordinate; t , the time; n , the instability para-

meter; ui � /[�/Umax, Umax]ƒ/R, the ith constrained
manipulated input; l , the total number of manipulated

inputs; bi(z), the ith actuator distribution function (i.e.

bi (z ) determines how the control action computed by

the ith control actuator; ui(t), is distributed (e.g. point

or distributed actuation) in the spatial interval [�/p , p ]),

ym
k � /R denotes a measured output; and sk(z) is a known

smooth function of z which is determined by the

location and type of the measurement sensors (e.g.
point/distributed sensing). Whenever the control action

enters the system at a single point z0, with z0 � /[�/p , p ]

(i.e. point actuation), the function bi(z) is taken to be
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nonzero in a finite spatial interval of the form [z0�/m ,

z0�/m ], where m is a small positive real number, and zero

elsewhere in [�/p , p ].

For a precise presentation of our results, we cast the
system of Eq. (2) as an infinite dimensional system in the

Hilbert space H([�/p , p ];R), with H being the space of
sufficiently smooth vector functions defined on [�/p , p ]

that satisfy the boundary condition of Eq. (4), with inner

product and norm:

(v1; v2)� g
p

�p

(v1(z); v2(z))Rdz;

½½v1½½2� (v1; v1)
1

2

(6)

where v1, v2 are two elements of H([�/p , p ];R) and the

notation (-, -)R denotes the standard inner product in R.

Defining the state function x on H([�/p , p ];R) as:

x(t)�U(z; t); t�0; z � [�p; p]; (7)

the operator A in H([�/p , p ];R) as:
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and the input, and measured output operators as:

Bu�
Xl

i�1

biui; Sx�(s; x) (9)

the system of Eqs. 2�/5 takes the form:

ẋ�Ax�Bu�f (x); x(0)�x0

ym�Sx (10)

where f (x (t))�/�/U (@U /@z) and x0�/U0(z ).

For A, we can formulate the following eigenvalue
problem:
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where ln denotes an eigenvalue and f̄n denotes an

eigenfunction of A (the notation f̄n denotes all the
eigenvalues of A including c0, cn , fn which are given
below). A direct computation of the solution of the

above eigenvalue problem yields l0�/0 with c0(z)�
1=

ffiffiffiffiffiffi
2p

p
and ln �/�/vn4�/n2 (ln is an eigenvalue of

multiplicity two) with eigenfunctions fn(z)�
(1=

ffiffiffi
p

p
)sin(nz) and cn(z)�(1=

ffiffiffi
p

p
)cos(nz) for n�/1, . . .,

�. We also define the eigenspectrum of A, s(A), as the

set of all eigenvalues of A, i.e. s(A)�/{l1, l2, . . .}. We

note that the fact that A has a pure real point spectrum

is a result of the fact that the linear part of the spatial

differential operator of the KSE with periodic boundary

conditions is self-adjoint and the problem is considered

in a bounded domain.
From the expression of the eigenvalues, it follows

that, for a fixed value of n�/0, the number of unstable

eigenvalues of A is finite and the distance between two

consecutive eigenvalues (i.e. ln and ln�1) increases as n

increases. Furthermore, for a fixed value of n�/0, s(A)

can be partitioned as s(A)�/s1(A)�s2(A), where

s1(A) contains the first m (with m finite) ‘‘slow’’

eigenvalues (i.e. s1(A)�/{l1, . . ., lm}) and s2(A)

contains the remaining ‘‘fast’’ eigenvalues (i.e.

s2(A)�/{lm�1, . . .} where lm�1B/0). To capture the

separation between the ‘‘slow’’ and ‘‘fast’’ eigenvalues,

we define the parameter e�/jl1j/jlm�1j (note that e0/0

as m 0/�). The separation between the ‘‘slow’’ and

‘‘fast’’ eigenvalues suggests that the dominant dynamics

of the KSE can be described by a finite-dimensional

system and motivates applying Galerkin’s method to the

system of Eq. (10) to derive an approximate finite-

dimensional system (see Section 3.1 below).
Remark 1 . A physical system that can be described by

the KSE is the motion of a liquid film falling down on a

vertical wall (Chen & Chang, 1986). In this case, U (z , t)

is the film height. Such a system has been found

experimentally to exhibit wavy behavior of the type

predicted by the KSE for values of n smaller than 1 (see

also Fig. 2). In many instances, it is desirable to suppress

wavy behavior by using control actuators that add/

remove fluid mass via blowing/suction. In this case, the

control input enters directly into the PDE and does not

appear in the boundary conditions. This physical

problem is consistent with the formulation of Eq. (2)

since we consider distributed control actuation. Note

that problems for which the inputs enter directly into the

KSE but nonlinearly can be readily handled within our

formulation by simply solving for u through the

inversion of a nonlinear algebraic equation.

Remark 2 . The consideration of approximate point

control is motivated by the fact that most experimental

point control actuators (including the ones that add/

remove fluid mass via blowing/suction) have finite (but

small) support and the fact that bi(z)�/d (z�/z0) (where

d ( �/) is the standard Dirac function) is not an element, of

H([�/p , p ];R).
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2.2. Problem formulation

Consider the system of Eq. (2), where the manipulated

inputs ui are constrained in the interval [�/Umax, Umax]
and assume that available at our disposal is a family of

N (with N finite) control actuator configurations, of

which only one configuration can be used for control at

any given time instance. Each of these N configurations

consists of a spatially-distinct arrangement of the

control actuators, which we denote by z̄k(t); k�/1, . . .,

N . In this notation, the index k (t) denotes the actuator

configuration being active at time t , while z̄k is a column
vector whose components represent the corresponding

spatial locations of the actuators associated with the k th

configuration. To ensure controllability of the system,

we allow only a finite number of switches between

configuration over finite time. The problem is how to

coordinate switching between the different control

actuator configurations, in the event of actuator failure,

in a way that respects actuator constraints and guaran-
tees closed-loop stability. To address this problem, we

formulate the following objectives. Initially, Galerkin’s

method is used to derive a nonlinear finite-dimensional

ODE system that captures the dominant dynamics of

the KSE. Next, the ODE approximation is used as the

basis for the synthesis of bounded nonlinear output

feedback controllers of the general form:

u�p(ym; umax; z̄k) (13)

that enforce asymptotic stability and reference-input

tracking in the constrained closed-loop system and

provide an explicit characterization of the stability

region, associated with each control actuator configura-

tion. The controller synthesis is carried out via Lyapu-

nov-based control techniques and is inspired by the

results on bounded control in Lin and Sontag (1991).

Finally, a set of switching rules is derived to determine
which of the N control actuator configurations can be

engaged at any given time, and an upper bound on the

separation between the slow and fast eigenvalues, which

guarantees stability of the closed-loop infinite-dimen-

sional system, is computed.
3. Fault-tolerant control system design

3.1. Galerkin’s method

We apply Galerkin’s method to the system of Eq. (10)

to derive an approximate finite-dimensional system. Let

Hs , Hf be modal subspaces of A, defined as Hs �/

span/ff̄1; f̄2; . . . ; f̄mg and Hf �/span/ff̄m�1; f̄m�2g
(the existence of Hs , Hf follows from the properties
of A). Defining the orthogonal projection operators Ps

and Pf such that xs �/Psx , xf �/Pfx , the state x of the

system of Eq. (10) can be decomposed as:
x�xs�xf �Psx�Pf x (14)

Applying Ps and Pf to the system of Eq. (10) and
using the above decomposition for x , the system of Eq.

(10) can be equivalently written in the following form:

dxs

dt
�Asxs�Bsu�fs(xs; xf )

@xf

@t
�Af xf �Bf u�ff (xs; xf )

ym�Sxs�Sxf

xs(0)�Psx(0)�Psx0; xf (0)�Pf x(0)�Pf x0 (15)

where As �/PsA, Bs �/PsB, fs �/Ps f , Af �/PfA,
Bf �/PfB and ff �/Pf f and the partial derivative

notation in (@xf /@t) is used to denote that the state xf

belongs in an infinite-dimensional space. In the above

system, As is a diagonal matrix of dimension m �/m of
the form A�/diag{lj} , fs(xs , xf ) and ff (xs , xf) are

Lipschitz vector functions, and Af is an unbounded
differential operator which is exponentially stable (fol-
lowing from the fact that lm�1B/0 and the selection of

Hs , Hf ). Neglecting the fast and stable infinite-dimen-
sional xf -subsystem in the system of Eq. (15), the

following m -dimensional slow system is obtained:

dx̃s

dt
�Asx̃s�Bsu�fs(x̃s; 0)

ỹm�Sx̃s (16)

where the tilde symbol in x̃s and ỹm denotes that these

variables are associated with a finite-dimensional sys-
tem.

3.2. Coordinating feedback and switching

Having obtained a finite-dimensional model that

describes the dominant dynamics of the KSE, we

proceed in this section to describe the proposed proce-

dure for designing the fault-tolerant control system, on

the basis of the finite-dimensional approximation in Eq.
(16). To this end, and since our objective is the

stabilization of the zero solution of the KSE, we define

the controlled outputs as the slow modes of the KSE,

and assume, for simplicity, that the number of inputs is

equal to the number of slow modes. Though not

discussed in this paper explicitly, the results can be

generalized to address the problem of reference-input

tracking. With this in mind, the slow modes of the KSE
can be described by the following m -dimensional

system:

ȧs(t)�Fas(t)�Ḡ(z̄k)u(t)� f̃ (as(t)) (17)

where as (t )�/[a1(t), . . ., am(t)]T � /Rm , ai(t) is the
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amplitude of the i th eigenmode, x̃s(t)�
a

m

j�1 aj(t)f̄j(z); (xs(t); f̄j)�aj(t)(f̄j; f̄j); F is an m �/

m diagonal matrix of the form F�/diag{lj}, Ḡ is an

m �/m matrix whose (i , k )th element is given by Ḡik�
f̄(z̄k); and f̃ (�) is a nonlinear, locally Lipschitz function

of its argument. Finally, we define f̄ (as)�Fas� f̃ (as)

and denote by ḡi the i th column of the matrix Ḡ:/
The design procedure consists of three basic steps.

These include: (1) the synthesis of a stabilizing feedback

controller; (2) the characterization of the constrained

stability region associated with each control actuator

configuration; and (3) the design of a switching law that
orchestrates the re-configuration of control actuators in

a way that guarantees closed-loop stability in the event

of actuator failure. Below is a brief description of each

step.
3.2.1. Feedback controller synthesis

The first step in designing the fault-tolerant control

system is to synthesize a feedback controller that

enforces closed-loop stability in the presence of input

constraints. This task is carried out on the basis of the

finite-dimensional slow system of Eq. (17) using Lyapu-
nov techniques. In particular, using a quadratic Lyapu-

nov function of the form V�/as
TFas, where F is a

positive-definite symmetric matrix that satisfies the

inequality FTF�/FF�/F/ḠḠT
/FB/0, we synthesize the

following bounded nonlinear feedback law (the detailed

calculations for controller synthesis and the construc-

tion of the stability region can be found in El-Farra and

Christofides, 2003b):

u��r(as; uk
max; z̄k)(LḠV )T (z̄k) (18)

where

r(as; uk
max; z̄k)

�
Lf̄�V �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Lf̄�V )2 � (uk

max½(LḠV )T (z̄k)½)4
q

½(LḠV )T (z̄k)½2[1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � (uk

max½(LḠV )T (z̄k)½)2
q

]
(19)

where z̄k� [z̄k1
; z̄k2

; . . . ; zkm
]T ; k�/1, . . ., N , Lf̄�V �

Lf̄ V�r½as½
2; r�/0, LḠV is a row vector of the form

[Lḡ1
V . . . Lḡm

V ]: The notation umax
k is used to indicate the

magnitude of actuator constraints associated with the

k th configuration. This number is allowed to vary from

one configuration to another. The scalar function r( �/) in

Eqs. 18�/19 can be thought of as a nonlinear controller

gain. This Lyapunov-based gain, which depends on both

the magnitude of actuator constraints, umax
k , and the

actuator configuration used, z̄k; is shaped in a way that

guarantees constraint satisfaction and asymptotic
closed-loop stability within a well-characterized region

in the state space. The characterization of this region is

discussed in the next step.
3.2.2. Characterization of stability regions

Given that actuator constraints place fundamental

limitations on both the initial conditions and actuator

locations that can be used for stabilization, it is
important for the control system designer to explicitly

characterize these limitations by identifying, for each

actuator configuration, the set of feasible initial condi-

tions starting from where the constrained closed-loop

system is asymptotically stable. As will be discussed in

step 3 below, this characterization is necessary for the

design of an appropriate switching scheme that ensures

fault-tolerance. The control law designed in step 1
provides such a characterization. Specifically, for this

control law, one can show (see El-Farra & Christofides,

2003b for a detailed proof) that the set described by:

U(uk
max; z̄k)�fas �Rm:Lf̄�V 5uk

max½(LḠV )T (z̄k)½g (20)

represents a set where the control action satisfies the

constraints and the time-derivative of the Lyapunov

function is negative-definite along the trajectories of the
closed-loop system of Eq. (17). Note that the size of this

set depends, as expected, on the magnitude of the

constraints. In particular, the set becomes smaller as

the constraints become tighter (smaller umax
k ). Note also

that the set U(umax
k , z̄k) is parameterized by the actuator

locations because the matrix Ḡ in Eq. (17) depends on

the actuator locations. Therefore, for a given actuator

configuration (fixed z̄k); one can use the above inequal-
ity to estimate the stability region associated with this

configuration. This is done by constructing the largest

invariant subset of U, which we denote by V(umax
k , z̄k):

Confining the initial conditions within the set V(umax
k ,

z̄k) ensures that the closed-loop trajectory stays within

the region defined by U(umax
k , z̄k); and thereby V

continues to decay monotonically, for all times that

the k th actuator configuration is active.
3.2.3. Switching logic for actuator re-configuration

Having designed the feedback control law in step 1,

and characterized the stability region associated with

each actuator configuration in step 2, the final step in

the control system design procedure is to derive a

switching rule that orchestrates the re-configuration of

the control actuators in the event of actuator failure.
This rule determines which of the backup actuator

configurations can be activated, in the event of actuator

failure, in order to preserve closed-loop stability. The

need for a switching rule stems from the fact that even if

the controller enforces closed-loop stability for each

actuator configuration individually, closed-loop stabi-

lity of the switched system is not guaranteed unless

restrictions are placed on the switching logic. In
particular, owing to the limitations imposed by input

constraints on the stability region for each actuator

configuration, switching from the current malfunction-
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ing actuator configuration to a well-functioning, but

arbitrarily selected, backup configuration will not help

preserve closed-loop stability if the state of the system,

at the time of actuator failure, lies outside the stability
region of the chosen backup configuration. In this case,

stabilization using this configuration would require

more control action than is allowed by its constraints.

This observation underscores the main idea of the

proposed switching logic, which is to switch to the

actuator configuration for which the closed-loop state

resides within the stability region at the time of actuator

failure. Without loss of generality, let the initial actuator
configuration be k (0)�/1. and let T be the time when

this configuration fails, then the switching rule given by:

k(T)� j if as(T) �V(uj
max; z̄j);

j � f2; 3; . . . ; Ng
(21)

guarantees closed-loop asymptotic stability. The imple-

mentation of the above switching law requires monitor-

ing the closed-loop state trajectory with respect to the
stability regions associated with the various actuator

configurations.

Remark 3 . While the fault-tolerant control approach

outlined above has been developed on the basis of the

finite-dimensional system of Eq. (17), the large separa-

tion between the slow and fast eigenmodes of the spatial

differential operator of the KSE allows the application

of this approach to the infinite-dimensional system. In
particular, one can show (using the singular perturba-

tion formulation of Galerkin’s method; see Christofides,

2001) that the proposed feedback and switching scheme

guarantees asymptotic closed-loop stability for the

infinite-dimensional system of Eq. (2), provided that e

is sufficiently small. Note that from the definition of e , it

follows that e0/0 as m 0/�, which implies that stability

of the infinite-dimensional closed-loop system is guar-
anteed provided that m is sufficiently large. Even

though an estimate of how small e needs to be can, in

principle, be obtained using singular perturbation meth-

ods, such an estimate may be conservative in general

and, therefore, the appropriate number of slow modes is

usually tested via closed-loop simulations.

Remark 4 . The stability region associated with each

set of actuators is derived on the basis of the approx-
imate ODE model that describes the evolution of the

slow modes (with the fast modes neglected). This region

describes the set of initial slow states starting from

where the reduced-order model can be stabilized for a

given set of constrained control actuators. Due to the

error introduced by neglecting the fast modes, this

region is not exactly the same as the set of initial slow

states starting from where the full system can be
stabilized. However, if the separation between the slow

and fast modes is large enough, the stability region of

the approximate system will approach that of the slow
part of the full system. The discrepancy between the two

regions can be made small by including additional

modes in constructing the reduced-order model. Alter-

natively, for a given choice of the order of the
approximation (that is adequate for stabilization), one

can treat the effect of the fast states as a disturbance to

the approximate slow system and use this to further

constrain the size of the nominal stability region

originally derived by neglecting the fast states (e.g. see

El-Farra & Christofides, 2003b for a discussion on the

construction of stability regions for constrained non-

linear systems with disturbances).
Remark 5 . The control objective in this work is to

achieve fault-tolerant stabilization of the infinite-dimen-

sional system without using an unnecessarily large

number of control actuators. Therefore, from a stability

point of view, only a small set (depending on the value

of n) of well-functioning control actuators is needed at

any given time to ensure closed-loop stability (which is

equal to the number of slow modes being controlled).
From a performance standpoint, however, the use of

multiple sets of actuators at a given time, simulta-

neously, could be useful. On the other hand, this can

increase the total cost of control implementation and

may not always yield appreciable performance improve-

ment. Furthermore, the simultaneous use of multiple

actuator sets, to improve performance, may not be

feasible in some cases due to the fundamental limitations
of actuator constraints that restrict the stability region

of each actuator set. Therefore, even though a given set

of actuators may be non-failing, it may not be possible

to use the actuators of that set at a given time if, at this

time, the state of the system is outside the corresponding

stability region. Using this set in conjunction with the set

of operating actuators may in fact lead to instability (see

Section 4 for examples).
Remark 6 . Due to the spatially-distributed nature of

the KSE control problem, the switching scheme pro-

posed in this paper differs from the schemes proposed in

hybrid controller design for lumped-parameter systems.

For lumped systems, with no spatial variation, the idea

is to achieve the control objectives by switching between

members of an a priori specified family of feedback

functions, whereas in the approach that we follow in this
work, we seek to achieve the control objectives by

switching between members of an a priori specified

family of spatially-distributed control actuator config-

urations, using the same feedback function (parameter-

ized by z̄k): The area of switched and hybrid controller

design for lumped systems is currently an active area of

research (e.g. see Bemporad & Morari, 1999; Liberzon &

Morse, 1999; El-Farra & Christofides, 2003c and the
references therein for results in this area).

Remark 7 . Under the assumption that the number of

measurements is equal to the number of slow modes and

that the inverse of the operator S exists (which can be



Fig. 1. Open-loop spatiotemporal profile of U (z , t ) for n�/0.2.

Fig. 2. (a) Evolution of the norm of the fast modes, af �/[a3,. . ., a30],

and of the two dominant modes, a1 and a2, for n�/1.2. (b) Evolution of

the norm of the fast modes (in deviation variable form), af
d �/[a3

d ,. . .,
a30

d ], and of the two dominant modes, a1
d and a2

d , for n�/0.2 (all modes

are in deviation variable form).
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ensured via appropriate selection of the measurement
sensors’ locations), an output feedback controller can be
designed by combining the state feedback controller of
Eqs. 18�/19 with an estimator that provides estimates for
the states of the approximate ODE model of Eq. (16)
from the measurements. While the estimation error
leads to some loss in the size of the stability region
obtained under state feedback, this loss can be made
small by increasing the order of the ODE approximation
and including more measurements. This approach,
therefore, allows us to asymptotically (as e0/0) recover

the state feedback stability region associated with each

control actuator configuration.
4. Simulation results

In this section, we demonstrate how the integrated

feedback and switching scheme outlined in Section 3.2

can be used to deal with the problem of actuator failure,

in the context of stabilizing the zero solution of the one-

dimensional KSE with periodic boundary conditions

and input constraints. For simplicity, we will consider

the KSE in the space of odd functions with spatial zero

mean. Introducing the Hilbert space H of sufficiently
smooth odd functions that satisfy the boundary condi-
tions of Eq. (4) and have spatial zero mean (i.e. �/v � /H,

f
p

�p
v(z)dz�0) and defining the state function x � /H as

x (t)�/U (z , t), �/z � /[�/p , p ], the system of Eqs. 2�/5 can

be written in the form of Eq. (10), where the domain of

definition of the spatial differential operator A now
takes the form:

x �D(A)

�
�

x �H([�p; p]; R);
@ jU

@zj
(�p; t)�

@ jU

@zj
(p; t);

j�0; . . . ; 3

� (22)

and the eigenvalue problem for A yields lj �/�/nj
4�/j2,

fj(z)�
ffiffiffiffiffiffiffiffi
1=p

p
sin(jz); j�/1, . . ., � (note that c0(z)�
ffiffiffiffiffiffiffiffiffiffi
1=2p

p
and cj(z)�

ffiffiffiffiffiffiffiffi
1=p

p
cos(jz) j�/1, . . ., � are not

considered here since we focus only on odd functions

with spatial zero mean).

Linearizing the system around the spatially uniform

steady-state, we observe that, for n�/0.2, the system

possesses two unstable eigenvalues. Using a 30th order
Galerkin discretization of the KSE, we simulate the

open-loop system with n�/0.2 (higher-order discretiza-

tions led to identical results). The resulting spatiotem-

poral evolution of U (z , t) is depicted in Fig. 1 and

clearly shows that the spatially uniform steady-state,

U (z , t)�/0, is unstable for n�/0.2. The control objec-

tive, therefore, is to stabilize the system at this unstable

steady-state. To achieve this objective, we consider the
first two eigenvalues to be the dominant ones and use

standard Galerkin’s method to derive the following

second-order model (to be used for controller design)

that describes the temporal evolution of the amplitudes

of the first two eigenmodes:

ȧ1(t)

ȧ2(t)

� �
�

l1 0

0 l2

� �
a1(t)

a2(t)

� �
�

f1(z̄1) f1(z̄2)

f2(z̄1) f2(z̄2)

� �
u1

u2

� �

�
f1(a1; a2)

f2(a1; a2)

� �
(23)

where (/ ˙̃xs; fi)�/ai(t)(fi , fi), i�/1, 2. z̄1 and z̄2 are the
locations of the two point actuators used for stabiliza-

tion. The explicit forms of the terms f1(a1, a2) and f2(a1,

a2) are omitted for brevity. The system of Eq. (23) is



Fig. 3. (a) Stability regions for configuration A (umax�/2.0, z1�/0.3p ,

z2�/0.7p ) (solid ellipse) and for configuration B (umax�/2.0, z1�/ 0.1p,

z2�/0.9p) (dashed ellipse). (b) Closed-loop state profile (state feed-

back) for (a1(0), a2(0))�/(0.2, 1.5) using configuration A without

switching. (c) Corresponding manipulated input profiles for u1 (solid)

and u2 (dashed).
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derived by assuming that point actuation is applied to

the system. When the point actuation is approximated

by a control action applied to a small spatial interval,

the closed-loop simulation results are almost identical to
those obtained by using the system of Eq. (23). Before

proceeding with controller synthesis on the basis of the

above system, we first demonstrate that the first two

modes indeed capture the dominant dynamics of the

nonlinear KSE. To this end, we simulate the open-loop

system, using the high (30th) order Galerkin discretiza-

tion, for two values of the instability parameter, n�/1.2

and 0.2. For each value, we plot the norm of the vector
of ‘‘fast’’ modes, af �/[a3. . .a30] and the amplitude of the

first two modes on a three-dimensional plot. The results

are shown in Fig. 2, where the top plot shows the result

for n�/1.2 (where the zero steady-state is globally

asymptotically stable), while the bottom plot shows

the result for n�/0.2 (where the zero steady-state is

unstable and the system moves to a spatially non-

uniform steady-state; see Fig. 1). In the bottom plot,
for convenience, the results are presented in terms of the

deviation from the stable, spatially non-uniform steady-

state in order to shift the equilibrium state to the origin,

i.e. af
d �/[a3

d . . .a30
d ] where ai

d �/ai �/ai ,s , i�/3, . . ., 30, and

ai ,s is the steady-state value of the ith mode that

corresponds to the spatially non-uniform stable steady-

state of the KSE with n�/0.2. In both plots, it is clear

that the dynamics of the high-order system converge
quickly to the subspace described by the first two

modes, implying that the first two modes are the

dominant ones. In particular, note that the norm of

the modes af �/[a3. . .a30] drops quickly to zero and that

beyond this point the entire system evolution is basically

captured by the evolution of the first two modes. These

results motivate the use of the system of Eq. (23) for the

synthesis of the controller, using Eqs. 18�/19, and the
switching law, using Eqs. 20�/21. The controller and

switching laws are then implemented on a high-order

Galerkin discretization (30th order) of the nonlinear

KSE (further increase in the order of the approximation

led to identical results). The closed-loop high-order

system is then integrated numerically, forward in time,

using explicit Euler method.

To illustrate different aspects of the proposed fault-
tolerant control scheme, we consider the following two

problems where switching is needed to preserve closed-

loop stability. In the first problem, two pairs of point

control actuators, placed at (/z̄1/�/ 0.3p , z̄2/�/0.7p) (con-

figuration A) and (/z̄1/�/0.1p , z̄2/�/0.9p) (configuration

B) are assumed to be available. Both pairs have the same

constraints of umax
A �/umax

B �/2.0, but only one config-

uration can be used for control at any given moment.
The question to be addressed here is: when is it feasible

to switch to configuration B given that a fault is detected

in the actuators of configuration A. In the second

problem, we assume that a third pair of actuators,
located at (/z̄1/�/0.2p , z̄2/�/0.8p) (configuration C) with

constraints of umax
C �/0.5 is also available (in addition to

configurations A and B). Again, only one of the three

configurations can be active at any given moment. The

problem here is to decide which of the two ‘‘fall-back’’

actuator configurations (B or C) should be activated,

once the actuators of configuration A fail. Basically, the

first problem deals with the issue of identifying the

appropriate switching times for a fixed re-configuration

strategy, while the second problem addresses the issue of



Fig. 4. (a) Closed-loop state profile (state feedback) for (a1(0),

a2(0))�/(0.2, 1.5) when configuration A fails at t�/3.5 and configura-

tion B is activated. (b) Corresponding manipulated input profiles for u1

(solid) and u2 (dashed).

Fig. 5. (a) Closed-loop state profile (state feedback) for (a1(0),

a2(0))�/(0.2, 1.5) when configuration A fails at t�/5 and configuration

B is activated. (b) Corresponding manipulated input profiles for u1

(solid) and u2 (dashed).
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how to select the appropriate actuator re-configuration

strategy among a family of possible choices, in order to

provide the necessary fault-tolerance.

The simulation results under state feedback control

are presented first. For the first problem, we initially use

Eq. (20) with r�/0.001 to compute the stability regions

for configurations A and B. To simplify the presentation

of our results, we show in Fig. 3a the set of admissible

initial conditions for the amplitudes, a1(0) and a2(0), of

the first two eigenmodes, respectively, for configuration

A (solid ellipse) and configuration B (dashed ellipse)

(note that xs(0)�/a1(0)f1(z )�/a2(0)f2(z )). From this

figure, it is clear that for an initial condition (a1(0),

a2(0))�/(0.2, 1.5), only configuration A can be used

initially since the initial condition is outside the stability

region for configuration B. Fig. 3b�/c depict, respec-

tively, the closed-loop state and manipulated input

profiles corresponding to this initial condition and using

configuration A. Clearly, the controller successfully

stabilizes the KSE at the desired steady-state. Now,

suppose that sometime after starting from this initial

condition, a fault is detected in configuration A. From

Fig. 3a, we see that switching to configuration B may or

may not solve the problem depending on when the

failure of A actually occurs. For example, consider the
case when A fails at t�/3.5. By monitoring the slow state

evolution over time, we find that the state is outside the

stability region for B at this time, as shown by point X

on the solid trajectory in Fig. 3a. Therefore, switching to

configuration B will not preserve closed-loop stability

(note that the solid trajectory settles at another steady-

state after switching at point X). This is also confirmed

by the unstable closed-loop state profile in Fig. 4a. The

corresponding profiles for both manipulated inputs are

shown in Fig. 4b which show that the inputs stay

saturated. Suppose now that configuration A fails at t�/

5. In this case, we see from the dashed trajectory in Fig.

3a that the state at this time is within the stability region

for configuration B (point Y) and, according to our

switching scheme, closed-loop stability can be main-

tained by switching to configuration B at this time (note

that the dashed trajectory in Fig. 3a converges to the

origin when configuration B is activated at point Y).

This is also demonstrated in Fig. 5 which shows that the

controller successfully stabilizes the KSE when config-

uration B is activated at t�/5.

We now turn our attention to the second problem.

The stability regions for configurations A, B, and C are

depicted in Fig. 6a by the solid, dashed, and dotted

ellipses, respectively. From this figure, it is easy to see



Fig. 6. (a) Stability regions for configuration A (umax�/2.0, z1�/0.3p ,

z2�/0.9p ) (solid ellipse); configuration B (umax�/2.0, z1�/0.1p , z2�/

0.9p ) (dashed ellipse), and configuration C (umax�/0.5, z1�/0.2p , z2�/

0.8p ). (b) Closed-loop state profile (state feedback) for (a1(0), a2(0))�/

(0.2, 1.5) when configuration A fails at t�/3.5 and configuration C is

activated. (b) Corresponding manipulated input profiles for u1 (solid)

and u2 (dashed).

Fig. 7. (a) Closed-loop state profile (state feedback) for (a1(0),

a2(0))�/(0.2, 1.5) when configuration A fails at t�/3.5 and configura-

tion B is activated. (b) Corresponding manipulated input profiles for u1

(solid) and u2 (dashed).
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that for the initial condition (a1(0), a2(0))�/(0.2, 1.5),

only configuration A is feasible initially. Suppose that

sometime after starting from this initial condition, say

t�/3.5, a fault is detected in configuration A and it

becomes necessary to switch to either configuration B or

C. Without using the switching rule of Eq. (21), it is not

clear which of the two configurations should be

activated at this time. Fig. 6b�/c depict, respectively,

the resulting closed-loop state and manipulated input

profiles when configuration C is chosen. We see in this
case that the controller is unable to stabilize the closed-

loop system at the desired steady-state. This is expected

since the state, at the time of switching, lies outside the

stability region for configuration C (see point X on the

solid trajectory in Fig. 6a). In contrast, by using the

switching logic of the fault-tolerant control scheme

proposed in Section 3, we conclude that it is configura-

tion B, not C, that should be activated because the

closed-loop trajectory at this time is inside the stability

region of B (see dashed trajectory in Fig. 6a). Fig. 7

depicts the results for this case which show that the

controller successfully stabilizes the closed-loop system

when B is activated instead of C. The switching law,

therefore, allows us to choose the appropriate actuator

re-configuration scheme.

For the case of output feedback control, measure-

ments from a pair of point sensors, located at z1�/0.35p

and z2�/0.65p , are used to obtain estimates of the first

two eigenmodes. The estimates are then used in the

implementation of the output feedback controller. Due

to the slight discrepancy between the stability regions

obtained under state and output feedback control (see

Remark 7), the switching law proposed in Eq. (21) is

used only as an approximate guide. The simulation

results for this case are consistent with the state



Fig. 8. (a) Closed-loop state profile (output feedback) for (a1(0),

a2(0))�/(0.2, 1.5) when configuration A fails at t�/3.5 and configura-

tion B is activated. (b) Corresponding manipulated input profiles for u1

(solid) and u2 (dashed).

Fig. 9. (a) Closed-loop state profile (output feedback) for (a1(0),

a2(0))�/(0.2, 1.5) when configuration A fails at t�/5 and configuration

B is activated. (b) Corresponding manipulated input profiles for u1

(solid) and u2 (dashed).
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feedback results for both problems. We present only the

results for the first problem. These are given in Figs. 8

and 9 which, respectively, show that the closed-loop

system becomes unstable when configuration A fails at

t�/3.5 and configuration B is activated, whereas closed-

loop stability is maintained by activating configuration

B when A fails at t�/5.0.

Remark 8 . The fact that the fast stable modes were

neglected in the controller design can result in some

degradation in the control performance when the

controller is implemented on the full (high-order)

system. If these modes die out sufficiently fast, then

such degradation will be minimal. However, since the

control objective is to achieve stabilization of the PDE

system, a second-order model that describes the evolu-

tion of the first two modes (which are unstable) was

found to be sufficient to design a controller that

stabilizes the zero solution of the KSE. Nonetheless, it

is possible to enhance the performance further by

keeping more modes in the reduced-order model in

order to obtain a better approximation of the full

system.

Remark 9 . It should be noted that, while the KSE

was used in this paper to demonstrate the design and

implementation of the proposed fault-tolerant control
scheme, the proposed approach can also be applied to

other dissipative PDEs that can model fluid dynamic

systems, such as the Burger’s equation (Baker, Armaou

& Christofides, 2000), the Korteweg�/de Vries Burgers

equation (Armaou & Christofides, 2000) and various

forms of the Navier�/Stokes equations (such as equa-
tions that describe two-dimensional transitional flow in

a channel (e.g. see Baker et al., 2000)).
5. Conclusions

A fault-tolerant control system design methodology

was proposed for fluid dynamic systems modeled by
highly-dissipative PDEs with constrained control actua-

tors. The central idea of the proposed method is that of

coordinating feedback controller synthesis and switch-

ing between multiple, spatially-distributed control ac-

tuator configurations. Using appropriate finite-

dimensional approximations of the PDE system, a

stabilizing feedback controller was designed for a given

actuator configuration, and an explicit characterization
of the constrained stability region was obtained. Switch-

ing laws were then derived, on the basis of these stability

regions, to orchestrate the transition between the control
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actuator configuration, in a way that guarantees con-

straint satisfaction and preserves closed-loop stability of

the infinite-dimensional system in the event of actuator

failures. The results were applied to the problem of
suppressing wave formation in falling liquid films via the

stabilization of the zero solution of the one-dimensional

KSE, with periodic boundary conditions, subject to

actuator constraints and failures.
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