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Dynamics of a reaction-diffusion system with Brusselator kinetics under feedback control
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This paper studies the dynamics of the reaction-diffusion Brusselator model with Neumann and Dirichlet
boundary conditions, under linear and nonlinear modal feedback control. The bifurcation parameters are for the
Neumann problem the concentration of one of the reactants and for the Dirichlet problem the diffusion
coefficient of one of the reactants. The study of the dynamics of the system is based on methods of bifurcation
theory and the application of Poincameaps. A direct comparison of the dynamics of the open-loop and
closed-loop systems establishes that the use of feedback control significantly suppresses the rich open-loop
dynamics. In addition, the superiority of the nonlinear controller over a linear controller, in attenuating the
effect of bifurcations on the output of the closed-loop system, and the ability of the nonlinear controller to
stabilize the system states at the spatially uniform solution provided the number of manipulated inputs is
sufficiently large are shown for both the Neumann and Dirichlet problgg#063-651X%99)05201-0

PACS numbeps): 05.45.Gg

I. INTRODUCTION formed. Finally, the effect of linear modal feedback control
on the open-loop dynamics of the FitzHugh-Nagumo model
Reaction-diffusion(RD) systems arise frequently in the was studied irf15].

study of chemical and biological phenomena and are natu- In this paper we present a study of the dynamics of the
rally modeled by parabolic partial differential equations RD Brusselator model with Neumann and Dirichlet bound-
(PDEQ The dynamics of RD systems has been the Subject oy conditions, under nonlinear and linear modal feedback
intense research activity over the past decades. The reasorc@ntrol. The bifurcation parameters are for the Neumann
that RD systems exhibit very rich dynamic behavior includ-pProblem the concentration of one of the reactants and for the

ing periodic and quasiperiodic solutions and chésee, for ~ Dirichlet problem the diffusion coefficient of one of the re-
example[1—4] for some results and reference ljsts actants. The main objective of the study, which is based on
A RD system whose dynamics has been studied exterethods of bifurcation theory and the application of Poin-
sively is the Brusselator reaction scheme in one- and twocaremaps, is to determine to what extent the rich dynamic
dimensional domains. If6—7] extensive bifurcation studies Pehavior exhibited by the open-loop system is suppressed by
of the Brusselator model showed that the system exhibitéhe use of feedback control. The paper is structured as fol-
very rich dynamic behavior for different regions in the pa-lows. Initially, the process model is presented and an analy-
rameter space. If8] the dynamics of the Brusselator model Sis of the open-loop system is performed to determine values

with Dirichlet boundary conditions was studied using theOf the bifurcation parameter for which Hopf bifurcations oc-
|ength of the domain as the bifurcation parameter and evicur. Then the nonlinear modal feedback controller is Synthe-
dence of chaotic behavior was presented. Theoretical justifSized and the closed-loop system is analyzed. Finally, the

cation of the existence of aperiodic solutions based on bifurProjections of the Poincammaps on suitably chosen planes
cation theory was presented [®], while secondary and ©f the open-loop and closed-loop systems, for various values
homoclinic bifurcations were analyzed [10-17 for the of the bifurcation parameter, as well as the closed-loop out-

Brusselator reaction scheme for both one- and twoPutresponses and spatial profiles of the process states under

dimensional domains. nonlinear and linear control, are presented and compared.
Even though the analysis of complex dynamics of RD
systems has been a research subject for more than 30 years, Il. PROCESS DESCRIPTION AND MODEL

the use of feedback control to supress complex dynamics of . . :
RD systems and the study of the dynamics of RD systems. We consider an_lsothermal membrane r_eactor, shpwn in
under feedback control have been addressed only recently. f{9- 1, where the diffusive phenomena are important in one
[13] a linear adaptive control strategy was applied to thedimension and the following Brusselator reaction scheme
Gray-Scott model in order to control the formation of pat- [2kes place:

terns in a one-dimensional domain, while[i¥] an experi-

mental application of linear modal feedback control for sup- A—X,
pressing chaotic temporal fluctuations of spatiotemporal

thermal patterns on a catalytic wafer was reported.8lha B+X—Y+D,
feedback controller based on the singular value decomposi-

tion of the spatial differential operator was used to control 2X+Y—3X,
complex dynamics of the Brusselator model and a detailed

bifurcation analysis of the closed-loop system was per- X—E.
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\B x(0,t)=x(1t)=0. (5)
__________________________ ~ e system of equatio clearly admits the uniform in
N The system of equationd) clearly admits the unif
A x MEMBRANE space steady state solutioh,0) for both sets of boundary
B+X —= Y+D conditions.
2X+Y —= 3X
X —E Ill. DYNAMICAL ANALYSIS OF THE OPEN-LOOP
SYSTEM
In this section we considdr to be the bifurcation param-
eter for the Neumann problem amy, to be the bifurcation
""""""""""""""" parameter for the Dirichlet problem and perform spectral
AB analyses of the linearization of the system of equatidns

for both the Neumann and the Dirichlet problem, in order to
FIG. 1. Isothermal membrane reactor. analytically derive the values df,D, for which Hopf bifur-

cations occur in the open-loop system, i.e., Ef. with
In the above reaction schem@,B are the reactants and u(zt)=0 (see als(5,6,9 for similar analyses We concen-
X,Y,D are the products. The concentration of reactans  trate on Hopf bifurcations because our intention is to study a
assumed to be constant throughout the reactor with Value part of the parametric space where only Hopf bifurcations
Assuming that the concentrations are properly scaled sucare possible.
that the kinetic constants are set equal to 1 and seking For the Neumann problem a straightforward computation
=X—-Xsandx,=Y—Y, whereX;=a andYs=b/a are the of the eigenvalues and eigenfunctions of the Laplacian op-
spatially uniform steady stategote that all concentration eratorA, subject to the boundary conditions of E4), yields
variables are dimensionlésshe dynamics of the process are uo=0, ¢o(2)=1, u,=—n?m2, and ¢,(z)=v2 cosfin2);
described by the system of parabolic PDEs n=1,....0, wherew, is an eigenvalue and,(z) is an eigen-
function. Expanding the solution of the system of equations
(1) in an infinite series in terms of the eigenfunctions of the

ax ,
— =DAXx+Ax+f(x)+cu(zt) in Q (1) Laplacian operator, we obtain

at

subject to the initial condition X (2.1) i O bo(2), =12 ®)
i ) = an’i n 3 =1,4,
X(2,0)=Xo(2), 2 n-0

wherea,, j(t) are time-varying coefficients. Substituting the

where Q=[0,1], x=[x; %], x QX[0+*)=R% % 4 - , - -

A . . pansion(6) into the system of equatior{$) and taking the
€L7([0,1]) (the usual Hilbert space of square integrablej,q hroduct in2([0,1]) with the adjoint eigenfunctions of
functiong, i = 1,2, z denotes the spatial coordinatejenotes

. ; . , _ _ > A, the following system of infinite ordinary differential equa-
(dimensionlesstime, A is the one-dimensional Laplacian tions is obtained:

operator,D andA are constant matrices of the form
ag1=(b—1)ag +a’ag+ fo,

5|Pr O _{b—l a’®
- 0 D2' - —b —az’ d0’2=—bao,l—a2aovl—fo,
7
f(x) is a nonlinear function of the form dn,lz(—”2W2D1+ b—1)an,+ azan,2+fn, @
1 N (2.2 2 _
f(x)=h(Xq,%,) _1}, ano= —bay 1= (N“mDyt+a) ay—fp,

(3) where

©

fo= qubn(Z)h( E anyl(t)¢n(z),n§0 ano(t) én(2) |dz,

n=0

b
h(x1.%2) =~ X3+ 2ax; X+ X2 .

c=[1 0]", andu(z,t) is the deviation of the concentration

of speciesA from the reference valua, which will be con- n=0,.... (8)
sidered later as the manipulated variable for the control prob- _ )
lem. For the above system, a pair of eigenvalues crosses the

We will consider the system of equatio®) with two ~ imaginary axis when
different sets of boundary conditions(i) the Neumanr(no —h — 2,12 2 -
flux) boundary conditions b=by=1+at+n*m(Di+ Do), n=0.ie. (9
Apparently, the smallest value &f where a Hopf bifur-
X (0f)= X (11)=0 (4) cation occurqsee[16] for a justification of this fact for the
az """ gz infinite-dimensional cagds

and (i) the Dirichlet boundary conditions bo=1+a?, (10)
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for which the system of equatiori) admits a periodic uni- ers to estimate the values af, ;(t) from measurements of

form in space solution. We note that this periodic solution isthe process output, could be employed to regulate the pro-

also an invariant set for the system of equatighs with cess. The reader may refer b9] for a methodology for

D,=D,=0. output feedback controller synthesis for quasilinear parabolic
For the Dirichlet problem the corresponding eigenvaluesPDE systems using the concept of approximate inertial mani-

and eigenfunctions of the Laplacian operaiosubject to the fold.

boundary conditions of Eq5) are u,= —n?7? and ¢,(2)

=v2 sin(hmz), n=1,...,0. Expanding again the solution of A. Output regulation

the system of equationd) in an infinite series in terms of

the eigenfunctions of the Laplacian operator, we obtain We consider as controlled output the mean value of the

concentration of the componeKt

©

Xi(Z,t): E an,i(t)¢n(z)u i= 112! (11) y(t)z f Xl(Z,t)dZ (15)
Q

n=1

Substituting the expansiaill) into the system of equations
(1) and taking the inner product ir?([0,1]) with the adjoint
eigenfunctions ofA, we obtain y(t) =g (1) (16)

or in terms of the modal coefficients

an1=(—n*m’Dy+b—1)an+a%anytf,, for the Neumann problem and
(12
ano=—Dban1—(N?m?Dy+a?) an ,—fr, i
y(t)= 2, gnana(t) 17
whereg,=0 if nis even andy,=2v2/nw if nis odd andf, iodd
is defined in the same way as E8). Note that in this case

the odd modes. that the output satisfies max.|y(t)|<e, wheree is a small

For the above system, assuming ti@j=\D,=\d, Positive number that depends on the desired closed-loop per-

ues crosses the imaginary axis when is distributed uniformly in space, i.eu(z,t) =u(t).
Applying nonlinear geometric control methods to the sys-
b—1-a? tems of equation$7) and(12), one can derive the following
d:dn:—nzwz()\+1)v n=1,... (13)  feedback laws: (i) For the Neumann problem
The largest value ofl where a Hopf bifurcation occurs for u=—(b—1+K)y—aag,~fo (18)

the Dirichlet problem is fon=1: and (i) for the Dirichlet problem

g _b—l—a2
T2 (A +1)

o

14
(14 U=—(b—1+K)y+r > naya(t)—a2
n odd

for which the system of equatior{4) admits a periodic so- . .
lution. Note that this periodic solution is nonuniform in
space because the eiggnfunction of the mode where the bi- Xn%d gnan,z(t)_n%d Infalt), (19
furcation occurs is spatially dependent.
which induce the following output response in the corre-
IV. FEEDBACK CONTROL: ANALYSIS OF THE CLOSED- sponding closed-loop systems:
LOOP SYSTEM
y=—Ky, (20)

In this section we assume that measurements of the coef-
ficients a,i(t) are available and synthesize a nonlinearwhereK>0 is an adjustable parameter. The application of
modal feedback controller for the system of equatitiishy ~ the controller of Eq(18) [Eq. (19)] to the system of equa-
using geometric control methodi&7] (see alsd 18] for an  tions(7) [(12)] would directly lead to the satisfaction of the
alternative approach for the design of nonlinear feedbackontrol objective max...|y(t)|<e in the closed-loop system
controllers for parabolic PDE systejn3he assumption that for both problems, for any values @0, b, andd. How-
the a, (t) are known allows studying the dynamics of the ever, the implementation of these controllers would require
closed-loop system under a feedback controller that does nt¢thte computation of infinite sums, which cannot be done in
introduce additional dynamics in the closed-loop systempractice. Therefore, we approximate the above controllers
This is important because it allows a fair comparison bewith the following ones that involve finite sumé&) For the
tween the dynamics of the open-loop and closed-loop sysNeumann problem
tems as well as a precise evaluation of the ability of feedback
control to suppress the complex open-loop dynamics. In u=—(b—1+ K)y—azao,z—fo (21
practice, whenever measurementsagf;(t) are not avail-
able, output feedback controllers, which utilize state observand (ii) for the Dirichlet problem
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N N N
u=—(b—1+K)y+r > nayi(t)=a® > gnant)— 2 gafalt), (22)
n odd n odd n odd
where
N N
fn:fﬂd’n(z)h(n_EnA an,l(t)(;bn(z)rn:n ‘ an,z(t)({bn(z) dz, n=ngyi,....N, (23
T
and n,;,=0 for the Neumann problem and,,;,=1 for the B. Spatial profile stabilization

Dirichlet problem. The value oN will be determined to

ensure that the control objective max|y(t)|<e is enforced ;o centration profile in the case whde-b, andd<d, for

in the closed-loop system. . _ the Neumann and Dirichlet problems, respectively. This
We proceed with a closed-loop stability analysis for the,yqy g naturally entail stabilizing every unstable mode of the

Neumann problem. Substituting the controller of EB1)  ,hen joop system by using more than one manipulated input.
into the system of equation&), the infinite-dimensional 14 this end’ let us define the outputs

closed-loop system takes the form

We now consider the problem of stabilizing the entire

. yi=ai’1, i:nmin,...,M, (26)
ao1= —Kag 1+ (fo—fo),
whereM denotes the higher integer such thqi is unstable,
o= —bag— azao,z— fo, and considerM +1—n,,, manipulated inputgit can be
shown by applying standard controllability theory to the lin-
an1=(—n?m?Dy+b—1)a, +a%a,,+f,, (24  earization of the system of equatiof®§ that the use oM
+1—npyi; Manipulated inputs suffices to stabilize the entire

an o= —bay 1— (nN?7°Dy+a%) an ,— T, spatial profild. We will assume that thith manipulated in-
put acts uniformly in the spatial intervdk;,z,,] and is
n=1,...,, zero elsewhere, which implies that
where f,, is defined in Eq.8). The controller of Eq.(21) M+ 2 "min
stabilizes the first two modes, i.e., the two-dimensional sys-  Y(zD= 2:1 Ui([H(z=2z)—H(z=z4)], (27)
tem
. R where H(z) denotes the standard Heaviside functian,
ap1= —Kag 1+ (fo—Tfo), =0, Zy+14n,, =1, andz 1>z
. ) (25 Following the same approach as in the output regulation
@p2=~bagi—a g~ fo, problem, we address the controller design problem on the

basis of ordinary differential equatiof®DES9 that describe
the dynamics of the unstable modes of the PDE system. Spe-
cifically, the equations for the unstable modes of the Neu-

nentially stabilizes the infinite-dimensional closed-loop sys-,ann o -
X problenithe development for the Dirichlet problem is
tem of equation$24) at the steady stat@®,0) and the output similar and will be omitted for brevityare

approaches 0 asymptotically. However, this stabilizing ac-
tion does not preclude the presence of bifurcations in the M+1
infinite—dimensipnal closed-loop system of equati(m@ for ag1=(b—1)ag,+ 32aoyz+ fot 2 (Zi1—Z)U;,
b>b;. In particular, whenb>b, the spatially uniform =1
steady state solutiof®,0) is not stable because the remaining (28)
uncontrolled modes exhibit oscillatory behavior. Further- an1=(—n?m?Dy+b—1)ap +a%a, + f,
more, in this case max., y(t)#0 because of the inexact can- M+1
?Zeélll)ation of the nonlinear terms in the system of equations + - 2 [sin(n7z 1) —sin(n@z)]u;
. i=1

A similar analysis can be also performed for the Dirichlet
problem, with the modification that the control law of Eq. n=1,..M.
(22) leaves the even modes of the infinite-dimensional sys-
tem of equations(12) completely unaffected. This again The selection of;, 1<i<M +1, is made so that the linear-
means that ifd<d,, then the(0,0) steady state becomes ization of the above system is controllable. The control law
unstable and the positively invariant set consists of mords synthesized, using geometric control methptg, to ex-
complicated orbits in the infinite-dimensional state spaceponentially stabilize the system of equatid@8) and induce
Again, whend<d, the max_.. y(t)#0 because of the inex- a decoupled closed-loop resporitiee explicit formulas for
act cancellation of the nonlinear terms in the closed-loop; are omitted for brevity followed by the truncation of the
system. infinite sums(note that we must havd>M) to end up with

for which the eigenvalues ang, ;= —K and\g = — a’. We
also note that wheb<b,, the controller of Eq(21) expo-
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FIG. 2. Poincaranaps of the Neumann problem fés) b=17.01,(b) b=17.075,(c) b=17.095,(d) b=17.11,(e) b=17.14, and(f)
b=17.17.

practically implementable controllers. This results in the>0, on the plane Xmid» Ymia) = (X1(0.51) +a,x,(0.5¢)
equations for the output responses in the closed-loop system b/a). We are going to use the term “PoinCameap” for
) the previously defined projection of the actual Poinaasgp
an1=—Kapit+e,, n=0,.M, (29 in order to be compatible with the literatuf®,3). It is also
reminded that a single point on the Poincanap indicates
wheree, is the error due to the truncation of the nonlinear periodic behavior, while a closed orbit indicates quasiperi-
terms. ForK>0, the steady state, =0, n=0,...M, of the  odic behavior.
closed-loop ODE system is locallice., for sufficiently small For the open-loop system the gradual change of the dy-
initial conditiong exponentially stable. Furthermore, since namics of the Neumann problem, bsincreases from the
all the unstable modes of the process have been included ifalue of the first Hopf bifurcatiobv,=17.0, is shown in Fig.
the system of equatior(28) and the nonlinear controllers do 2. The system evolves from a periodic soluti@) to solu-
not employ linear feedback of modes higher thdr-1, the  tions with very complicated dynamid®)—(f). These solu-
open-loop stability of modes higher thaM+1 (i.e., tions seem to be globally stable, i.e., for a given valud,of
apm+ 1, k=1,..0) is preserved in the closed-loop system.the system trajectory starting from arbitrary initial conditions
Finally, the modesy, , exponentially stabilize as the outputs ultimately approaches the attractor. We also verified through
are exponentially stabilized. The above analysis implies thagimulations that for values df that are very close tb, (as
the steady statéd,0) of the closed-loop infinite-dimensional the theory predicis the oscillations of the concentrations are
system is also locally exponentially stable.

V. NUMERICAL RESULTS :: «®

In this section we study the dynamics of the open-loop saf
and closed-loop systems for various values of the bifurcation sl o
parameter. The numerical values of the process and control- B szl ¥
ler parameters were selected to )ea=4, D;=0.01,D, Mol X ©
=0.001,K=80, e=0.12, andN=4 for the Neumann prob- '
lem and(ii) a=2, A\=2, b=5.45,K=80, e=0.002, andN e 0 @
=4 for the Dirichlet problem. For these valubg=17.0, azr x o o0 ° ° o
b,=17.108 andd;=0.0152,d,=0.0038, respectively, for 3251 (a)
the two problems. For the numerical simulation of the sys- a24r
tem, we used finite differences for the spatial discretization 323 - o 2 —
(50 equispaced discretization points were chpsenl a vari- , X,

able step size Runge-Kutta method for time integration.

Poincaremaps are used as a means to present the dynamic FiG. 3. Poincaremaps for the closed-loop system of the Neu-
behavior of the open-loop and closed-loop systems in a coMmann problem under nonlineéf) and linear(©) controllers for(a)
pact fashion. We selected to present the projection of the=17.14, (b) b=17.17, (c) b=17.34, (d) b=17.44, and(e) b
Poincaremap defined ax;(0.3t)=0 and @x,/dt)(0.3}) =17.64.
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-1H

~2H

-3+

FIG. 4. Closed-loop response of the outgudf the Neumann
problem under a nonlinear controller with=17.14. FIG. 6. Evolution of the input for the Neumann problem under a
nonlinear controller.

uniform in space, while for higher values bf symmetry-
breaking bifurcations occur that give rise to spatially nonuni-they consist of one point indicating that the complicated
form oscillations. open-loop dynamics has been suppressed.

Figure 3 shows the Poincamaaps for the closed-loop Next we evaluate the ability of modal feedback control to
system of the Neumann problem under the nonlinear modadttenuate the effect of bifurcations on the output of the
feedback controller of Eq21) for various values of the bi- closed-loop system and enforce maxy|<0.12. Figure 4
furcation paramete. For each value o the Poincaranap  shows the output of the closed-loop system under the non-
consists of one point, indicating a periodic solution for thelinear controller of Eq(21) for b=17.14>b,. Clearly, the
closed-loop system. We note that this periodic behavior isontroller attenuates the effect of bifurcations on the closed-
spatially nonuniform because it occurs foe 1, where the loop output(note that the requirement max|y|<0.12 is
eigenfunctions of these modes are spatially dependent. It gatisfied, but it cannot completely eliminate their effect on
clear that the nonlinear controller suppresses the rich dythe output due to inexact cancellation of the nonlinear terms
namic behavior exhibited by the open-loop system. For thén the system of equatior(®4). Figure 5 shows the output of
sake of comparison, we also study the dynamics of théhe closed-loop system under the linear controller of (B6)
closed-loop system under a linear controller obtained by nefor b=17.14>b;. The output again oscillates, but in this
glecting the nonlinear terrfy, in the controller of Eq(21), ~ case the amplitude of oscillation is much higfe require-
ie., ment max._..|y|<0.12 isnot satisfied; compare also Figs. 4
and 5; note the scaleThe inputs of the nonlinear and linear
controller are shown in Figs. 6 and 7 respectively.

For the Dirichlet problem the situation is different. In Fig.

] 8 we show the Poincammaps for the open-loop system and
The Poincaremaps of the closed-loop system, for different for a gradual decrease of the valuedofAlthough for values
values of the bifurcation parametby are shown in Fig. 3;

u:_(b_1+ K)a’oyl_aza’oz. (30)

4 T T T v T

-0.15}

-1F
-0.25F

-2

-3

FIG. 5. Closed-loop response of the outgudf the Neumann FIG. 7. Evolution of the input for the Neumann problem under a
problem under a linear controller with=17.14. linear controller.
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Xumid Xmig
(a) (b
) 1%
A %
Y
Sy :
)::‘)" ’f;;d FIG. 10. Closed-loop response of the outyuif the Dirichlet
problem under a nonlinear controller fde=0.001 983 7.
| . F"}::_._ tained for all sets of initial conditions, indicating that the
= | = 2& . feedback law has made this periodic solution a global attrac-
i tor.
. In Figs. 10 and 11 we show the output behavior for
Xia Knia =0.001 983 7 under the nonlinear control law of Eg2)

@)

®

with N=4 and the linear control law that is obtained by

] neglecting the nonlinear terms in EQ2):
FIG. 8. Poincaremaps of the Dirichlet problem fofa) d

=0.01, (b) d=0.00203,(c) d=0.00201,(d) d=0.00198,(e) d N N
:0.0015, anc{f) d=0.0008. U:_(b_1+ K)y+r E nan’l(t)_aZE gnan,Z(t)'
n odd n odd
of d close tod; there is only one attractofthe periodic (32)

solution), for smaller values ofl (d<d,) there are two at-

tractors(which are obtained for different sets of initial con- It is clear again that the output oscillates, but in the case of
ditions and are reported also[i@]) that consist of quasiperi- the nonlinear control law the amplitude of the oscillation is
odic and chaotic solutions. However, for even smaller valuesnuch lower than in the case of the linear control law. Note
of d the attractors seem to coincide or one of them seems tagain that the output behavior under the linear control does
become unstable. It is worth noting that fbclose tod; the  not satisfy the requirement may,|y|<0.002. The inputs of
attractor consists again of a periodic solution, butdmiose the nonlinear and linear controller are shown in Figs. 12 and
to d, the attractor becomes again very complicated. For thd 3, respectively.

closed-loop system under the nonlinear control of &) Finally, for the profile stabilization case, we will consider
the corresponding Poincaraaps are shown in Fig. 9. It is the case of two unstable modes for both the Dirichlet and the
clear again that the feedback law suppressed the rich dynarhleumann problem, obtained for the following values of the
ics of the open-loop system. Note also that the periodic sobifurcation parameters: (i) b;<b=17.14<b, for the Neu-
lution represented in the Poincaneap by one point is ob- mann problem andii) d3<d=0.003<d, for the Dirichlet
problem. We considered two manipulated inputs acting uni-
formly in the intervalg0,3] and[3,1], respectively, i.e.,

252

: ] u(z,t) =us()[H(2) ~H(z=3)]+ u(t)[H(z—3)
287 o —H(z-1)]. (32)
E " O

247
x ©

248} x @ 0@
° @
2.45}
244 . . . . . . .
" 2.06 207 208 2.09 21 211 212 213 214

Xrmid

FIG. 9. Poincarenaps for the closed-loop system of the Dirich-
let problem under nonlineai*) and linear(O) controllers for(a)
d=0.00203, (b) d=0.0019837, (c) d=0.0015, and(d) d
=0.0008.

FIG. 11. Closed-loop response of the outyuif the Dirichlet
problem under a linear controller faf=0.001 983 7.
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0.6

FIG. 12. Evolution of the input for the Dirichlet problem under

a nonlinear controller.

The following control laws were implemented) For the
Neumann problem

U]_: _(K+b_l)a0’1_ aza’o’z_’fo

k

2‘/? (K+b—1—772D1)a'1_1

ma® T

——— a0 —— g, 33
oy Y2 1 (33

U2:_(K+b_1)a0’1_a2a0’2_’f\0
+ = (K+b—1—7°D;)
— —1l—m o

V2 vk

ma® T

a12+— fl

+— (39
2v2 T 2V2

and (ii) for the Dirichlet problem:

u T (f,+1,) T [(b—1—2D+K)
= — - — 11— 1T o
1 1 2 2‘/2 1 1,1

+a%(ap ot az)+(b—1-47°Di+K)ay4, (35

0.6

0.4

0.2

-~0.2

FIG. 13. Evolution of the input for the Dirichlet problem under

a linear controller.
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0.1

0.05

-0.05

FIG. 14. Profile evolution of the Neumann problem under a
nonlinear controller fob=17.14.

u T (f,—1,) T [(b—1—m?D;+K)
= - - - —1L— 1T (64
Y Y, ' i

+a%(ap - a,)—(b—1—-47°D;+K)ay 4], (36)

in order to induce the closed-loop response of &§) and
hence stabilize the spatial profile @,0. The initial condi-
tions were chosen to be piecewise uniform functions with a
very steep gradient at the center of the domain, in order to
test the controller performance under conditions of no
smoothness in the initial condition. For both cases, it is ob-
served in Figs. 14 and 15 that the controller very quickly
moves the spatial profile close ¥g(z,t) =x»(z,t)=0. Note
that the rate of the stabilization depends also on the rate by
which the first stable mode exponentially approaches zero.
This mode exhibits oscillatory behavior with exponentially
decreasing amplitude, which explains the pattern of the os-
cillation observed in the evolution of the spatial profiles
[~cos@2)coswt) in the Neumann problem and
~sin(3wrZ)cost) in the Dirichlet problem, where is the
frequency of the oscillatigh The inputs, as it is shown in
Figs. 16 and 17, also very quickly approach the value of
zero, indicating that the two outputs have also become al-
most zero in both cases. The above results indicate that even
though the distribution functions of the two control actuators
are quite shargnote thatb;(z)=H(z)—H(z—0.5) and
b,(z)=H(z—0.5)—H(z—1)] and therefore the control ac-
tions affect the modes of the PDE system that were not in-
cluded in the approximate ODE system used for controller

0.15
0.1

~ 0.05
8

FIG. 15. Profile evolution of the Dirichlet problem under a non-
linear controller ford=0.003.
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FIG. 16. Evolution of the inputs for the Neumann problem un-

der a nonlinear profile regulating controller for=17.14.

design(spillover effec}, these modes are extremely stable

and attenuate the effect of spillover.

VI. CONCLUSIONS

KARAFYLLIS, CHRISTOFIDES, AND DAOUTIDIS
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FIG. 17. Evolution of the inputs for the Dirichlet problem under
a nonlinear profile regulating controller for=0.003.

better attenuation of the effect of bifurcations on the closed-
loop output than linear control, an@) the stabilization of
the entire spatial profile can be achieved by using a suffi-
ciently large number of manipulated inputs.

In this paper we presented a study of the dynamics of the

reaction-diffusion Brusselator model with Neumann and Di-
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