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Dynamics of a reaction-diffusion system with Brusselator kinetics under feedback control
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This paper studies the dynamics of the reaction-diffusion Brusselator model with Neumann and Dirichlet
boundary conditions, under linear and nonlinear modal feedback control. The bifurcation parameters are for the
Neumann problem the concentration of one of the reactants and for the Dirichlet problem the diffusion
coefficient of one of the reactants. The study of the dynamics of the system is based on methods of bifurcation
theory and the application of Poincare´ maps. A direct comparison of the dynamics of the open-loop and
closed-loop systems establishes that the use of feedback control significantly suppresses the rich open-loop
dynamics. In addition, the superiority of the nonlinear controller over a linear controller, in attenuating the
effect of bifurcations on the output of the closed-loop system, and the ability of the nonlinear controller to
stabilize the system states at the spatially uniform solution provided the number of manipulated inputs is
sufficiently large are shown for both the Neumann and Dirichlet problems.@S1063-651X~99!05201-0#

PACS number~s!: 05.45.Gg
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I. INTRODUCTION

Reaction-diffusion~RD! systems arise frequently in th
study of chemical and biological phenomena and are n
rally modeled by parabolic partial differential equatio
~PDEs!. The dynamics of RD systems has been the subjec
intense research activity over the past decades. The reas
that RD systems exhibit very rich dynamic behavior inclu
ing periodic and quasiperiodic solutions and chaos~see, for
example,@1–4# for some results and reference lists!.

A RD system whose dynamics has been studied ex
sively is the Brusselator reaction scheme in one- and t
dimensional domains. In@5–7# extensive bifurcation studie
of the Brusselator model showed that the system exhi
very rich dynamic behavior for different regions in the p
rameter space. In@8# the dynamics of the Brusselator mod
with Dirichlet boundary conditions was studied using t
length of the domain as the bifurcation parameter and
dence of chaotic behavior was presented. Theoretical jus
cation of the existence of aperiodic solutions based on bi
cation theory was presented in@9#, while secondary and
homoclinic bifurcations were analyzed in@10–12# for the
Brusselator reaction scheme for both one- and tw
dimensional domains.

Even though the analysis of complex dynamics of R
systems has been a research subject for more than 30 y
the use of feedback control to supress complex dynamic
RD systems and the study of the dynamics of RD syste
under feedback control have been addressed only recent
@13# a linear adaptive control strategy was applied to
Gray-Scott model in order to control the formation of pa
terns in a one-dimensional domain, while in@14# an experi-
mental application of linear modal feedback control for su
pressing chaotic temporal fluctuations of spatiotempo
thermal patterns on a catalytic wafer was reported. In@8# a
feedback controller based on the singular value decomp
tion of the spatial differential operator was used to cont
complex dynamics of the Brusselator model and a deta
bifurcation analysis of the closed-loop system was p
PRE 591063-651X/99/59~1!/372~9!/$15.00
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formed. Finally, the effect of linear modal feedback cont
on the open-loop dynamics of the FitzHugh-Nagumo mo
was studied in@15#.

In this paper we present a study of the dynamics of
RD Brusselator model with Neumann and Dirichlet boun
ary conditions, under nonlinear and linear modal feedb
control. The bifurcation parameters are for the Neuma
problem the concentration of one of the reactants and for
Dirichlet problem the diffusion coefficient of one of the re
actants. The main objective of the study, which is based
methods of bifurcation theory and the application of Po
carémaps, is to determine to what extent the rich dynam
behavior exhibited by the open-loop system is suppresse
the use of feedback control. The paper is structured as
lows. Initially, the process model is presented and an an
sis of the open-loop system is performed to determine va
of the bifurcation parameter for which Hopf bifurcations o
cur. Then the nonlinear modal feedback controller is synt
sized and the closed-loop system is analyzed. Finally,
projections of the Poincare´ maps on suitably chosen plane
of the open-loop and closed-loop systems, for various val
of the bifurcation parameter, as well as the closed-loop o
put responses and spatial profiles of the process states u
nonlinear and linear control, are presented and compare

II. PROCESS DESCRIPTION AND MODEL

We consider an isothermal membrane reactor, shown
Fig. 1, where the diffusive phenomena are important in o
dimension and the following Brusselator reaction sche
takes place:

A→X,

B1X→Y1D,

2X1Y→3X,

X→E.
372 ©1999 The American Physical Society
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PRE 59 373DYNAMICS OF A REACTION-DIFFUSION SYSTEM . . .
In the above reaction scheme,A,B are the reactants an
X,Y,D are the products. The concentration of reactantB is
assumed to be constant throughout the reactor with valub.
Assuming that the concentrations are properly scaled s
that the kinetic constants are set equal to 1 and settingx1
5X2Xs andx25Y2Ys , whereXs5a andYs5b/a are the
spatially uniform steady states~note that all concentration
variables are dimensionless!, the dynamics of the process a
described by the system of parabolic PDEs

]x

]t
5DDx1Ax1 f ~x!1cu~z,t ! in V ~1!

subject to the initial condition

x~z,0!5x0~z!, ~2!

where V5@0,1#, x5@x1 x2#T, x: V3@0,1`)→R2, xi
PL2(@0,1#) ~the usual Hilbert space of square integrab
functions!, i 51,2,z denotes the spatial coordinate,t denotes
~dimensionless! time, D is the one-dimensional Laplacia
operator,D andA are constant matrices of the form

D5FD1

0
0

D2
G , A5Fb21

2b
a2

2a2G ,
f (x) is a nonlinear function of the form

f ~x!5h~x1 ,x2!F 1
21G ,

~3!

h~x1 ,x2!5
b

a
x1

212ax1x21x1
2x2 .

c5@1 0#T, andu(z,t) is the deviation of the concentratio
of speciesA from the reference valuea, which will be con-
sidered later as the manipulated variable for the control pr
lem.

We will consider the system of equations~1! with two
different sets of boundary conditions:~i! the Neumann~no
flux! boundary conditions

]x

]z
~0,t !5

]x

]z
~1,t !50 ~4!

and ~ii ! the Dirichlet boundary conditions

FIG. 1. Isothermal membrane reactor.
ch

b-

x~0,t !5x~1,t !50. ~5!

The system of equations~1! clearly admits the uniform in
space steady state solution~0,0! for both sets of boundary
conditions.

III. DYNAMICAL ANALYSIS OF THE OPEN-LOOP
SYSTEM

In this section we considerb to be the bifurcation param
eter for the Neumann problem andD2 to be the bifurcation
parameter for the Dirichlet problem and perform spect
analyses of the linearization of the system of equations~1!,
for both the Neumann and the Dirichlet problem, in order
analytically derive the values ofb,D2 for which Hopf bifur-
cations occur in the open-loop system, i.e., Eq.~1! with
u(z,t)50 ~see also@5,6,9# for similar analyses!. We concen-
trate on Hopf bifurcations because our intention is to stud
part of the parametric space where only Hopf bifurcatio
are possible.

For the Neumann problem a straightforward computat
of the eigenvalues and eigenfunctions of the Laplacian
eratorD, subject to the boundary conditions of Eq.~4!, yields
m050, f0(z)51, mn52n2p2, and fn(z)5& cos(npz);
n51,...,̀ , wheremn is an eigenvalue andfn(z) is an eigen-
function. Expanding the solution of the system of equatio
~1! in an infinite series in terms of the eigenfunctions of t
Laplacian operator, we obtain

xi~z,t !5 (
n50

`

an,i~ t !fn~z!, i 51,2, ~6!

wherean,i(t) are time-varying coefficients. Substituting th
expansion~6! into the system of equations~1! and taking the
inner product inL2(@0,1#) with the adjoint eigenfunctions o
D, the following system of infinite ordinary differential equa
tions is obtained:

ȧ0,15~b21!a0,11a2a0,21 f 0 ,

ȧ0,252ba0,12a2a0,12 f 0 ,
~7!

ȧn,15~2n2p2D11b21!an,11a2an,21 f n ,

ȧn,252ban,12~n2p2D21a2!an,22 f n ,

where

f n5E
V

fn~z!hS (
n50

`

an,1~ t !fn~z!,(
n50

`

an,2~ t !fn~z!D dz,

n50,...,̀ . ~8!

For the above system, a pair of eigenvalues crosses
imaginary axis when

b5bn511a21n2p2~D11D2!, n50,...,̀ . ~9!

Apparently, the smallest value ofb where a Hopf bifur-
cation occurs~see@16# for a justification of this fact for the
infinite-dimensional case! is

b0511a2, ~10!
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374 PRE 59KARAFYLLIS, CHRISTOFIDES, AND DAOUTIDIS
for which the system of equations~1! admits a periodic uni-
form in space solution. We note that this periodic solution
also an invariant set for the system of equations~1! with
D15D250.

For the Dirichlet problem the corresponding eigenvalu
and eigenfunctions of the Laplacian operatorD subject to the
boundary conditions of Eq.~5! are mn52n2p2 and fn(z)
5& sin(npz), n51,...,̀ . Expanding again the solution o
the system of equations~1! in an infinite series in terms o
the eigenfunctions of the Laplacian operator, we obtain

xi~z,t !5 (
n51

`

an,i~ t !fn~z!, i 51,2, ~11!

Substituting the expansion~11! into the system of equation
~1! and taking the inner product inL2(@0,1#) with the adjoint
eigenfunctions ofD, we obtain

ȧn,15~2n2p2D11b21!an,11a2an,21 f n ,
~12!

ȧn,252ban,12~n2p2D21a2!an,22 f n ,

wheregn50 if n is even andgn52&/np if n is odd andf n
is defined in the same way as Eq.~8!. Note that in this case
the manipulated variableu appears only in the equations fo
the odd modes.

For the above system, assuming thatD15lD25ld,
wherel is a constant positive parameter, a pair of eigenv
ues crosses the imaginary axis when

d5dn5
b212a2

n2p2~l11!
, n51,...,̀ . ~13!

The largest value ofd where a Hopf bifurcation occurs fo
the Dirichlet problem is forn51:

d15
b212a2

p2~l11!
, ~14!

for which the system of equations~1! admits a periodic so-
lution. Note that this periodic solution is nonuniform
space because the eigenfunction of the mode where th
furcation occurs is spatially dependent.

IV. FEEDBACK CONTROL: ANALYSIS OF THE CLOSED-
LOOP SYSTEM

In this section we assume that measurements of the c
ficients an,i(t) are available and synthesize a nonline
modal feedback controller for the system of equations~1! by
using geometric control methods@17# ~see also@18# for an
alternative approach for the design of nonlinear feedb
controllers for parabolic PDE systems!. The assumption tha
the an,i(t) are known allows studying the dynamics of th
closed-loop system under a feedback controller that does
introduce additional dynamics in the closed-loop syste
This is important because it allows a fair comparison
tween the dynamics of the open-loop and closed-loop s
tems as well as a precise evaluation of the ability of feedb
control to suppress the complex open-loop dynamics.
practice, whenever measurements ofan,i(t) are not avail-
able, output feedback controllers, which utilize state obse
s
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ers to estimate the values ofan,i(t) from measurements o
the process output, could be employed to regulate the
cess. The reader may refer to@19# for a methodology for
output feedback controller synthesis for quasilinear parab
PDE systems using the concept of approximate inertial m
fold.

A. Output regulation

We consider as controlled output the mean value of
concentration of the componentX:

y~ t !5E
V

x1~z,t !dz ~15!

or in terms of the modal coefficients

y~ t !5a0,1~ t ! ~16!

for the Neumann problem and

y~ t !5 (
n odd

`

gnan,1~ t ! ~17!

for the Dirichlet problem. The control objective is to ensu
that the output satisfies maxt→`uy(t)u<e, wheree is a small
positive number that depends on the desired closed-loop
formance specifications, by using one manipulated input
is distributed uniformly in space, i.e.,u(z,t)5u(t).

Applying nonlinear geometric control methods to the sy
tems of equations~7! and~12!, one can derive the following
feedback laws: ~i! For the Neumann problem

u52~b211K !y2a2a0,22 f 0 ~18!

and ~ii ! for the Dirichlet problem

u52~b211K !y1r (
n odd

`

nan,1~ t !2a2

3 (
n odd

`

gnan,2~ t !2 (
n odd

`

gnf n~ t !, ~19!

which induce the following output response in the cor
sponding closed-loop systems:

ẏ52Ky, ~20!

whereK.0 is an adjustable parameter. The application
the controller of Eq.~18! @Eq. ~19!# to the system of equa
tions ~7! @~12!# would directly lead to the satisfaction of th
control objective maxt→`uy(t)u<e in the closed-loop system
for both problems, for any values ofe>0, b, andd. How-
ever, the implementation of these controllers would requ
the computation of infinite sums, which cannot be done
practice. Therefore, we approximate the above control
with the following ones that involve finite sums:~i! For the
Neumann problem

u52~b211K !y2a2a0,22 f̂ 0 ~21!

and ~ii ! for the Dirichlet problem
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u52~b211K !y1r (
n odd

N

nan,1~ t !2a2 (
n odd

N

gnan,2~ t !2 (
n odd

N

gnf̂ n~ t !, ~22!

where

f̂ n5E
V

fn~z!hS (
n5nmin

N

an,1~ t !fn~z!, (
n5nmin

N

an,2~ t !fn~z!D dz, n5nmin ,...,N, ~23!
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and nmin50 for the Neumann problem andnmin51 for the
Dirichlet problem. The value ofN will be determined to
ensure that the control objective maxt→`uy(t)u<e is enforced
in the closed-loop system.

We proceed with a closed-loop stability analysis for t
Neumann problem. Substituting the controller of Eq.~21!
into the system of equations~7!, the infinite-dimensional
closed-loop system takes the form

ȧ0,152Ka0,11~ f 02 f̂ 0!,

ȧ0,252ba0,12a2a0,22 f 0 ,

ȧn,15~2n2p2D11b21!an,11a2an,21 f n , ~24!

ȧn,252ban,12~n2p2D21a2!an,22 f n ,

n51,...,̀ ,

where f n is defined in Eq.~8!. The controller of Eq.~21!
stabilizes the first two modes, i.e., the two-dimensional s
tem

ȧ0,152Ka0,11~ f 02 f̂ 0!,
~25!

ȧ0,252ba0,12a2a0,22 f 0 ,

for which the eigenvalues arel0,152K andl0,252a2. We
also note that whenb,b1 , the controller of Eq.~21! expo-
nentially stabilizes the infinite-dimensional closed-loop s
tem of equations~24! at the steady state~0,0! and the output
approaches 0 asymptotically. However, this stabilizing
tion does not preclude the presence of bifurcations in
infinite-dimensional closed-loop system of equations~24! for
b.b1 . In particular, whenb.b1 the spatially uniform
steady state solution~0,0! is not stable because the remaini
uncontrolled modes exhibit oscillatory behavior. Furth
more, in this case maxt→` y(t)Þ0 because of the inexact can
cellation of the nonlinear terms in the system of equatio
~24!.

A similar analysis can be also performed for the Dirich
problem, with the modification that the control law of E
~22! leaves the even modes of the infinite-dimensional s
tem of equations~12! completely unaffected. This agai
means that ifd,d2 , then the~0,0! steady state become
unstable and the positively invariant set consists of m
complicated orbits in the infinite-dimensional state spa
Again, whend,d2 the maxt→` y(t)Þ0 because of the inex
act cancellation of the nonlinear terms in the closed-lo
system.
-
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e

-

s
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e
.
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B. Spatial profile stabilization

We now consider the problem of stabilizing the ent
concentration profile in the case whereb.b1 andd,d2 for
the Neumann and Dirichlet problems, respectively. T
would naturally entail stabilizing every unstable mode of t
open-loop system by using more than one manipulated in
To this end, let us define the outputs

yi5a i ,1 , i 5nmin ,...,M , ~26!

whereM denotes the higher integer such thata i ,1 is unstable,
and considerM112nmin manipulated inputs@it can be
shown by applying standard controllability theory to the li
earization of the system of equations~1! that the use ofM
112nmin manipulated inputs suffices to stabilize the ent
spatial profile#. We will assume that thei th manipulated in-
put acts uniformly in the spatial interval@zi ,zi 11# and is
zero elsewhere, which implies that

u~z,t !5 (
i 51

M112nmin

ui~ t !@H~z2zi !2H~z2zi 11!#, ~27!

where H(z) denotes the standard Heaviside function,z1
50, zM111nmin

51, andzi 11.zi .
Following the same approach as in the output regulat

problem, we address the controller design problem on
basis of ordinary differential equations~ODEs! that describe
the dynamics of the unstable modes of the PDE system. S
cifically, the equations for the unstable modes of the N
mann problem~the development for the Dirichlet problem
similar and will be omitted for brevity! are

ȧ0,15~b21!a0,11a2a0,21 f 01 (
i 51

M11

~zi 112zi !ui ,

~28!
ȧn,15~2n2p2D11b21!an,11a2an,21 f n

1
&

np (
i 51

M11

@sin~npzi 11!2sin~npzi !#ui ,

n51,...,M .

The selection ofzi , 1, i ,M11, is made so that the linear
ization of the above system is controllable. The control l
is synthesized, using geometric control methods@17#, to ex-
ponentially stabilize the system of equations~28! and induce
a decoupled closed-loop response~the explicit formulas for
ui are omitted for brevity!, followed by the truncation of the
infinite sums~note that we must haveN.M ! to end up with
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FIG. 2. Poincare´ maps of the Neumann problem for~a! b517.01,~b! b517.075,~c! b517.095,~d! b517.11,~e! b517.14, and~f!
b517.17.
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practically implementable controllers. This results in t
equations for the output responses in the closed-loop sys

ȧn,152Kan,11en , n50,...,M , ~29!

whereen is the error due to the truncation of the nonline
terms. ForK.0, the steady statean,150, n50,...,M , of the
closed-loop ODE system is locally~i.e., for sufficiently small
initial conditions! exponentially stable. Furthermore, sin
all the unstable modes of the process have been include
the system of equations~28! and the nonlinear controllers d
not employ linear feedback of modes higher thanM11, the
open-loop stability of modes higher thanM11 ~i.e.,
aM1k,1 , k51,...,̀ ! is preserved in the closed-loop syste
Finally, the modesan,2 exponentially stabilize as the outpu
are exponentially stabilized. The above analysis implies
the steady state~0,0! of the closed-loop infinite-dimensiona
system is also locally exponentially stable.

V. NUMERICAL RESULTS

In this section we study the dynamics of the open-lo
and closed-loop systems for various values of the bifurca
parameter. The numerical values of the process and con
ler parameters were selected to be~i! a54, D150.01, D2
50.001,K580, e50.12, andN54 for the Neumann prob
lem and~ii ! a52, l52, b55.45, K580, e50.002, andN
54 for the Dirichlet problem. For these valuesb0517.0,
b1517.108 andd150.0152, d250.0038, respectively, for
the two problems. For the numerical simulation of the s
tem, we used finite differences for the spatial discretizat
~50 equispaced discretization points were chosen! and a vari-
able step size Runge-Kutta method for time integration.

Poincare´ maps are used as a means to present the dyn
behavior of the open-loop and closed-loop systems in a c
pact fashion. We selected to present the projection of
Poincare´ map defined asx1(0.3,t)50 and (dx1 /dt)(0.3,t)
m

r

in

.

at

p
n
ol-

-
n

ic
-

e

.0, on the plane (Xmid ,Ymid)5„x1(0.5,t)1a,x2(0.5,t)
1b/a…. We are going to use the term ‘‘Poincare´ map’’ for
the previously defined projection of the actual Poincare´ map
in order to be compatible with the literature@8,3#. It is also
reminded that a single point on the Poincare´ map indicates
periodic behavior, while a closed orbit indicates quasipe
odic behavior.

For the open-loop system the gradual change of the
namics of the Neumann problem, asb increases from the
value of the first Hopf bifurcationb0517.0, is shown in Fig.
2. The system evolves from a periodic solution~a! to solu-
tions with very complicated dynamics~b!–~f!. These solu-
tions seem to be globally stable, i.e., for a given value ofb,
the system trajectory starting from arbitrary initial conditio
ultimately approaches the attractor. We also verified throu
simulations that for values ofb that are very close tob0 ~as
the theory predicts!, the oscillations of the concentrations a

FIG. 3. Poincare´ maps for the closed-loop system of the Ne
mann problem under nonlinear~* ! and linear~s! controllers for~a!
b517.14, ~b! b517.17, ~c! b517.34, ~d! b517.44, and~e! b
517.64.
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PRE 59 377DYNAMICS OF A REACTION-DIFFUSION SYSTEM . . .
uniform in space, while for higher values ofb, symmetry-
breaking bifurcations occur that give rise to spatially nonu
form oscillations.

Figure 3 shows the Poincare´ maps for the closed-loop
system of the Neumann problem under the nonlinear mo
feedback controller of Eq.~21! for various values of the bi-
furcation parameterb. For each value ofb the Poincare´ map
consists of one point, indicating a periodic solution for t
closed-loop system. We note that this periodic behavio
spatially nonuniform because it occurs forn>1, where the
eigenfunctions of these modes are spatially dependent.
clear that the nonlinear controller suppresses the rich
namic behavior exhibited by the open-loop system. For
sake of comparison, we also study the dynamics of
closed-loop system under a linear controller obtained by
glecting the nonlinear termf̂ 0 in the controller of Eq.~21!,
i.e.,

u52~b211K !a0,12a2a0,2. ~30!

The Poincare´ maps of the closed-loop system, for differe
values of the bifurcation parameterb, are shown in Fig. 3;

FIG. 4. Closed-loop response of the outputy of the Neumann
problem under a nonlinear controller withb517.14.

FIG. 5. Closed-loop response of the outputy of the Neumann
problem under a linear controller withb517.14.
-

al

is

is
y-
e
e
e-

they consist of one point indicating that the complicat
open-loop dynamics has been suppressed.

Next we evaluate the ability of modal feedback control
attenuate the effect of bifurcations on the output of t
closed-loop system and enforce maxt→`uyu<0.12. Figure 4
shows the output of the closed-loop system under the n
linear controller of Eq.~21! for b517.14.b1 . Clearly, the
controller attenuates the effect of bifurcations on the clos
loop output ~note that the requirement maxt→`uyu<0.12 is
satisfied!, but it cannot completely eliminate their effect o
the output due to inexact cancellation of the nonlinear ter
in the system of equations~24!. Figure 5 shows the output o
the closed-loop system under the linear controller of Eq.~30!
for b517.14.b1 . The output again oscillates, but in th
case the amplitude of oscillation is much higher~the require-
ment maxt→`uyu<0.12 isnot satisfied; compare also Figs.
and 5; note the scale!. The inputs of the nonlinear and linea
controller are shown in Figs. 6 and 7 respectively.

For the Dirichlet problem the situation is different. In Fi
8 we show the Poincare´ maps for the open-loop system an
for a gradual decrease of the value ofd. Although for values

FIG. 6. Evolution of the input for the Neumann problem unde
nonlinear controller.

FIG. 7. Evolution of the input for the Neumann problem unde
linear controller.
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378 PRE 59KARAFYLLIS, CHRISTOFIDES, AND DAOUTIDIS
of d close to d1 there is only one attractor~the periodic
solution!, for smaller values ofd (d,d2) there are two at-
tractors~which are obtained for different sets of initial con
ditions and are reported also in@8#! that consist of quasiperi
odic and chaotic solutions. However, for even smaller val
of d the attractors seem to coincide or one of them seem
become unstable. It is worth noting that ford close tod3 the
attractor consists again of a periodic solution, but ford close
to d4 the attractor becomes again very complicated. For
closed-loop system under the nonlinear control of Eq.~22!
the corresponding Poincare´ maps are shown in Fig. 9. It i
clear again that the feedback law suppressed the rich dyn
ics of the open-loop system. Note also that the periodic
lution represented in the Poincare´ map by one point is ob-

FIG. 8. Poincare´ maps of the Dirichlet problem for~a! d
50.01, ~b! d50.002 03,~c! d50.002 01,~d! d50.001 98,~e! d
50.0015, and~f! d50.0008.

FIG. 9. Poincare´ maps for the closed-loop system of the Diric
let problem under nonlinear~* ! and linear~s! controllers for~a!
d50.002 03, ~b! d50.001 983 7, ~c! d50.0015, and ~d! d
50.0008.
s
to

e

m-
o-

tained for all sets of initial conditions, indicating that th
feedback law has made this periodic solution a global attr
tor.

In Figs. 10 and 11 we show the output behavior ford
50.001 983 7 under the nonlinear control law of Eq.~22!
with N54 and the linear control law that is obtained b
neglecting the nonlinear terms in Eq.~22!:

u52~b211K !y1r (
n odd

N

nan,1~ t !2a2 (
n odd

N

gnan,2~ t !.

~31!

It is clear again that the output oscillates, but in the case
the nonlinear control law the amplitude of the oscillation
much lower than in the case of the linear control law. No
again that the output behavior under the linear control d
not satisfy the requirement maxt→`uyu<0.002. The inputs of
the nonlinear and linear controller are shown in Figs. 12 a
13, respectively.

Finally, for the profile stabilization case, we will consid
the case of two unstable modes for both the Dirichlet and
Neumann problem, obtained for the following values of t
bifurcation parameters: ~i! b1,b517.14,b2 for the Neu-
mann problem and~ii ! d3,d50.003,d2 for the Dirichlet
problem. We considered two manipulated inputs acting u
formly in the intervals@0,1

2# and @1
2,1#, respectively, i.e.,

u~z,t !5u1~ t !@H~z!2H~z2 1
2 !#1u2~ t !@H~z2 1

2 !

2H~z21!#. ~32!

FIG. 10. Closed-loop response of the outputy of the Dirichlet
problem under a nonlinear controller ford50.001 983 7.

FIG. 11. Closed-loop response of the outputy of the Dirichlet
problem under a linear controller ford50.001 983 7.
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The following control laws were implemented:~i! For the
Neumann problem

u152~K1b21!a0,12a2a0,22 f̂ 0

2
p

2&
~K1b212p2D1!a1,1

2
pa2

2&
a1,22

p

2&
f̂ 1 , ~33!

u252~K1b21!a0,12a2a0,22 f̂ 0

1
p

2&
~K1b212p2D1!a1,1

1
pa2

2&
a1,21

p

2&
f̂ 1 ~34!

and ~ii ! for the Dirichlet problem:

u152
p

2&
~ f̂ 11 f̂ 2!2

p

2&
@~b212p2D11K !a1,1

1a2~a1,21a2,2!1~b2124p2D11K !a2,1#, ~35!

FIG. 12. Evolution of the input for the Dirichlet problem und
a nonlinear controller.

FIG. 13. Evolution of the input for the Dirichlet problem und
a linear controller.
u252
p

2&
~ f̂ 12 f̂ 2!2

p

2&
@~b212p2D11K !a1,1

1a2~a1,22a2,2!2~b2124p2D11K !a2,1#, ~36!

in order to induce the closed-loop response of Eq.~29! and
hence stabilize the spatial profile at~0,0!. The initial condi-
tions were chosen to be piecewise uniform functions wit
very steep gradient at the center of the domain, in orde
test the controller performance under conditions of
smoothness in the initial condition. For both cases, it is
served in Figs. 14 and 15 that the controller very quick
moves the spatial profile close tox1(z,t)5x2(z,t)50. Note
that the rate of the stabilization depends also on the rate
which the first stable mode exponentially approaches z
This mode exhibits oscillatory behavior with exponentia
decreasing amplitude, which explains the pattern of the
cillation observed in the evolution of the spatial profil
@;cos(pz)cos(vt) in the Neumann problem an
;sin(3pz)cos(vt) in the Dirichlet problem, wherev is the
frequency of the oscillation#. The inputs, as it is shown in
Figs. 16 and 17, also very quickly approach the value
zero, indicating that the two outputs have also become
most zero in both cases. The above results indicate that e
though the distribution functions of the two control actuato
are quite sharp@note that b1(z)5H(z)2H(z20.5) and
b2(z)5H(z20.5)2H(z21)# and therefore the control ac
tions affect the modes of the PDE system that were not
cluded in the approximate ODE system used for contro

FIG. 14. Profile evolution of the Neumann problem under
nonlinear controller forb517.14.

FIG. 15. Profile evolution of the Dirichlet problem under a no
linear controller ford50.003.
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design ~spillover effect!, these modes are extremely stab
and attenuate the effect of spillover.

VI. CONCLUSIONS

In this paper we presented a study of the dynamics of
reaction-diffusion Brusselator model with Neumann and
richlet boundary conditions, under modal feedback cont
The main conclusions of our study are that~a! the use of
modal feedback control drastically suppresses the rich op
loop dynamics,~b! nonlinear control achieves significant

FIG. 16. Evolution of the inputs for the Neumann problem u
der a nonlinear profile regulating controller forb517.14.
e-

n

,

r-
e
-
l.

n-

better attenuation of the effect of bifurcations on the clos
loop output than linear control, and~c! the stabilization of
the entire spatial profile can be achieved by using a su
ciently large number of manipulated inputs.
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FIG. 17. Evolution of the inputs for the Dirichlet problem und
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