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Abstract

In this work, we present an overview of recently developed methods for control and optimization of complex process systems described by
multiscale models. We primarily discuss methods developed in the context of our previous research work and use examples of thin film growth
processes to motivate the development of these methods and illustrate their application.
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1. Multiscale process systems: thin film growth

Over the last 10 years, increasingly tight product quality
specifications have motivated extensive research on the devel-
opment of control and optimization methods for distributed and
multiscale process systems using increasingly detailed process
descriptions. On one hand, for distributed process systems for
which continuum laws are applicable, nonlinear distributed
parameter systems, such as nonlinear hyperbolic/parabolic
partial differential equations (PDEs), Navier—Stokes equations
and population balance equations are employed for the design
of high-performance feedback controllers used to regulate
spatial temperature and concentration profiles in advanced
materials processing applications, achieve wave suppression
and drag reduction in fluid dynamic systems and shape particle
size distribution in particulate processes, respectively (see, for
example, the special issues Christofides, 2002b; Christofides &
Armaou, 2005) and the books (Christofides, 2001, 2002a) for
representative results and references in these areas). On the other
hand, for processes that involve coupling of macroscale phe-
nomena with important phenomena at mesoscopic/microscopic
length scales, multiscale systems coupling continuum-type
distributed parameter systems with molecular dynamics (MD)
or kinetic Monte-Carlo (MC/kKMC) simulations are employed
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because of their ability to describe phenomena which are
inaccessible to continuum laws and equations.

An industrially important process where multiscale model-
ing is needed to adequately describe the coupling of macroscopic
and microscopic phenomena is thin film growth. Thin films of
advanced materials are currently used in a very wide range
of applications, e.g., microelectronic devices, optics, micro-
electro-mechanical systems (MEMS) and biomedical products.
Various deposition methods have been developed and widely
used to prepare thin films such as physical vapor deposition
(PVD) and chemical vapor deposition (CVD). However, the
dependence of the thin film properties, such as uniformity,
composition and microstructure, on the deposition conditions
is a severe constraint on reproducing the thin film’s perfor-
mance. Thus, real-time feedback control of thin film deposition,
based on fundamental models, becomes increasingly important
in order to meet the stringent requirements on the quality of
thin films and reduce thin film variability. While deposition,
uniformity and composition control can be accomplished on
the basis of continuum-type distributed parameter models (see,
for example, Christofides, 2001; Theodoropoulou, Adomaitis,
& Zafiriou, 1999 for results on rapid thermal processing (RTP)
and Armaou & Christofides, 1999; Ni et al., 2004, on plasma-
enhanced chemical vapor deposition (PECVD)), precise control
of thin film microstructure requires multiscale distributed mod-
els that predict how the film state (microscopic scale) is affected
by changes in the controllable process parameters (macroscopic
scale).
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Fig. 1. Illustration of the thin film growth process.

In the remainder of this section, in order to discuss an example
of multiscale modeling and provide the necessary background
for presenting our methods for control and optimization of pro-
cess systems using multiscale models, we consider the growth
of a thin film from a fluid in a vertical, stagnation flow geome-
try. The process is shown in Fig. 1. In this geometry, inlet fluid
flow forms a uniform boundary layer adjacent to the surface of
the substrate and precursor atoms diffuse through such a bound-
ary layer and deposit a thin film (Gadgil, 1993). Upon arrival at
the surface, the precursor atoms are adsorbed onto the surface.
Subsequently, adsorbed atoms may desorb to the gas phase or
migrate on the surface.

From a modeling point of view, the major challenge is the
integration of the wide range of length and time scales that the
process encompasses (Vlachos, 1997). Specifically, in the gas
phase, the processes of heat/mass transport can be adequately
modeled under the hypothesis of continuum, thereby leading
to PDE models for chamber temperature and species concentra-
tion. However, when the microstructure of the surface is studied,
microscopic events such as atom adsorption, desorption and
migration have to be considered, and the length scale of interest
reduces dramatically to the order of that of several atoms. Under
such a small length scale, the continuum hypothesis is no longer
valid and deterministic PDEs cannot be used to describe the
microscopic phenomena. Different approaches, such as Monte-
Carlo simulation or molecular dynamics, should be employed
to model the evolution of surface microstructure.

Although different modeling approaches are needed to model
the macroscopic and microscopic phenomena of the pro-
cess, there are strong interactions between the macroscale and
microscale phenomena. For example, the concentration of the
precursor in the inlet gas governs the rate of adsorption of atoms
on the surface, which, in turn, influences the surface roughness.
On the other hand, the density of the adatoms on the surface
affects the rate of desorption of atoms from the surface to the gas
phase, which, in turn, influences the gas phase concentration of
the precursor. A multiscale model (Vlachos, 1997) is employed
in this work to capture the evolution of both macroscopic and
microscopic phenomena of the thin film growth process as well
as their interactions. A set of PDEs derived from the mass,

momentum and energy balances are used to describe the gas
phase dynamics. Kinetic MC simulation is employed to cap-
ture the evolution of surface microstructure. Furthermore, the
parameters of MC simulation such as the temperature and pre-
cursor concentration are provided by the solution of PDEs and
the results from the kinetic MC simulation are used to determine
the boundary conditions of the PDEs of the macroscopic model.
In the remainder of this section, we describe the model for the
gas phase and the surface microstructure for the thin film growth
process of Fig. 1.

1.1. Gas phase model

Under the assumption of axisymmetric flow, the gas phase
can be modeled through continuum type momentum, energy
and mass balances as follows (Lam & Vlachos, 2001):
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where f'is the dimensionless stream function, r, and rq are the
rates of adsorption and desorption, respectively, n the dimen-
sionless distance to the surface, p the density of the mixture, Pr
the Prandtl number, y; and Sc; the mole fraction and Schmidt
number of the species j, respectively, up and py, the viscosity
and the density of the bulk, respectively, a the hydrodynamic
strain rate and t =2at is the dimensionless time.

Although the macroscopic model describes the evolution of
the precursor concentration and temperature (which influence
the configuration of the growing surface), no direct informa-
tion of the surface microstructure is available from the macro-
scopic model. Furthermore, the boundary conditions for the
mass transfer equation of the growing species depend on the
rate of adsorption and desorption. Therefore, a microscopic
model is necessary to model the surface microstructure and
to determine the boundary conditions of the mass transfer
equation.
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1.2. Surface microstructure model

The thin film growth of Fig. 1 includes three processes: the
adsorption of atoms from the gas phase to the surface, the desorp-
tion of atoms from the surface to the gas phase and the migration
of atoms on the surface. In this study, we consider multilayer
growth and assume that all the surface sites are available for
adsorption at all times, therefore, the adsorption rate is treated
as site independent. For an ideal gas, the adsorption rate is given
by the kinetic theory (Lam & Vlachos, 2001):

soP
A/ ZﬂkaCm[

where sq is the sticking coefficient, k the Boltzmann constant,
P the partial pressure of the precursor, Cyy the concentration of
sites on the surface, m the molecular weight of the precursor
and 7 is the gas phase temperature above the surface. The rate
of desorption of an atom depends on the atom’s local micro-
environment (i.e., interactions with nearest neighbors) and the
local activation energy. Under the consideration of only first
nearest neighbor interactions, the desorption rate of an atom
from the surface with » first nearest neighbors is:

(1.6)

rag =

(n) nE 1.7
ra(n) =vo exp | —— .
d 0 €Xp T
where E is the energy associated with a single bond on the surface
and vy is the frequency of events, which is determined by the
following expression:

Eq4
Vo = kd() eXp (_kT) (1.8)

where kqo is an event frequency constant and E4 is the
energy associated with desorption. Finally, surface migration
is modeled as desorption followed by re-adsorption (Gilmer &
Bennema, 1972), and the migration rate is given by:

nk
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where A is associated with the energy difference that an atom on
a flat surface has to overcome in jumping from one lattice site
to an adjacent one and A is given as:
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where Ey, is the energy associated with migration.

The formation of the thin film by adsorption, migration and
desorption is a stochastic process because: (a) the exact time
and location of the occurrence of one specific surface micro-
process (adsorption, migration or desorption) are unknown and
(b) the probability with which each surface micro-process may
occur is only available. Therefore, the surface evolution model
should be established based on probability theory. Specifically,
we treat the surface micro-processes as Poisson processes, which
means that the following assumptions are made (Feller, 1975;
Fichthorn & Weinberg, 1991; Gillespie, 1976; Melsa & Sage,
1973): (1) the probability that k events occur in the time interval

(¢, t+7) is independent of ¢, (2) the probability that k events
occur in the time interval (¢, #+ T) is independent of the number
of events occurring in any nonoverlapping time interval, and
(3) the probability that an event occurs in an infinitesimal time
interval (¢, t+d¢) is equal to Wdr (where W is the mean count
rate of the event), and the probability of more than one event
occurring in an infinitesimal time interval is negligible.

Based on these three assumptions, the time evolution of prob-
abilities that the surface is in one specific configuration can be
derived. The configuration of a surface is characterized as the
height of each surface atom at each surface site. If P(c, f) repre-
sents the probability that the system is in configuration « at time
t, based on Assumptions 2 and 3 above, we have the following
equation for P(«, t+df):

P(a,t +dr) = P(a, )Pou + Y _P(B.1)P1
s

(1.11)

where Py, is the probability that no event occurs in the time
interval (¢, + dr) given that the surface is in configuration « at
t, P(B, 1) is the probability that the surface is in configuration
B at t and Pig is the probability that one event occurs in the
time interval (¢, #+ df) given that the surface is in configuration
B at ¢, and the occurrence of this event results to a transition
from configuration B to configuration «. Py, and Pyg have the
following expressions (a detailed proof can be found in Gillespie,
1992). Specifically,

Poy =1—3 Wpydt
8

(1.12)

where Wg, dt is the probability that an event occurs in the time
interval (z, ¢ + df) which results in a transition from configuration
« to a configuration B, therefore, pWpa dt is the probability
that any one event occurs in the time interval (¢, £+ df) provided
that the surface configuration is « at r. Moreover,

Pl/g = Waﬁdt (1.13)

where Wy g dt is the probability that an event happens in the time
interval (¢, t+df) and the occurrence of this event results to a
transition from configuration f to configuration «. By substitut-
ing Eqgs. (1.12) and (1.13) into Eq. (1.11) and setting df — 0, we
obtain a differential equation describing the time evolution of
the probability that the surface is in configuration «, Eq. (1.14):

dP(c, 1)
e Zﬂjp(ﬁ, HW, —Zﬂjp(a, NWe.

(1.14)

Eq. (1.14) is the so-called “master equation” (ME) for a
stochastic process. The ME has a simple, linear structure, how-
ever, it is difficult to write the explicit mathematical form of Eq.
(1.14) for any realistic system because the number of the possi-
ble states is extremely large for most systems of a realistic size.
For example, for a system with 10 x 10 sites and a maximum
height of 1, the number of configurations is 2!%0 22 1030, This
makes the direct solution of Eq. (1.14), for any system of mean-
ingful size, using numerical methods for integration of ordinary
differential equations (e.g., Runge—Kutta) impossible.
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Monte-Carlo techniques provide a way to obtain unbiased
realizations of a stochastic process, which is consistent with
the ME. The consistency of the Monte-Carlo simulation to the
ME is based on the fact that in a Monte-Carlo simulation, a
time sequence of Monte-Carlo events is constructed following
a probability density function which is derived based on the
same assumptions (Assumptions 1-3 above) as those used in the
derivation of the master equation (Gillespie, 1976). A Monte-
Carlo event is characterized by both the type of the event and the
site in which the event is executed. We use e(x; i, j) to represent a
Monte-Carlo event of type x executed on the site (i, j) and N x N
is the size of the lattice. The sequence of Monte-Carlo events can
be constructed based on the probability density function, F(z,
e). In particular, F(t, e)dr is the probability at time ¢ that event e
will occur in the infinitesimal time interval (t+ t, f+ T +dt) and
can be computed by:

F(z, e) = W, exp(—Wioc 7). (1.15)

Monte-Carlo simulation constructs the sequence of events
following the probability density function shown in Eq. (1.15).
There are many Monte-Carlo algorithms available to simulate
a stochastic dynamic process. In the following calculations, the
kinetic Monte-Carlo simulation algorithm developed by Vlachos
(1997) is used. This algorithm is a modification of the so-called
“direct” method developed by Gillespie (1976). Specifically,
once the lattice is set and the probabilities of the three events
are determined based on the corresponding rate expressions, a
kinetic Monte-Carlo simulation is executed as follows: first, a
random number is generated to select an event to be run based
on the following probability:

We
P(e|t) = W

tot

(1.16)

then, a second random number is generated to select the site from
the list of all available sites where the chosen event will be exe-
cuted. This algorithm guarantees that every trial is successful and
is efficient compared to traditional null event algorithms (Reese,
Raimondeau, & Vlachos, 2001). Upon an executed event, a time
increment dt is computed by Fichthorn and Weinberg (1991) and
Lam and Vlachos (2001):

—1In &
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where £ is a random number in the (0,1) interval, Nt the total
number of sites on the lattice and N,, is the number of atoms
that have m neighbors on the surface.

In the remainder of this manuscript, we present an overview
of recently developed methods for control and optimization of
complex process systems on the basis of multiscale models. We
will begin with control methods which directly utilize kinetic
Monte-Carlo models, continue with results on the construction
of closed-form stochastic PDEs from kinetic Monte-Carlo data
and discuss their use in model-based predictive control and close
with a method for optimization of process systems involving
multiscale objectives.

2. Control using Kkinetic Monte-Carlo models

Methodologies for surface properties (e.g., surface rough-
ness) estimation and control using kinetic Monte-Carlo models
have recently been developed in Lou and Christofides (2003a,b)
and Ni and Christofides (2005b) and have been successfully
applied (Lou & Christofides, 2004) to control surface roughness
in a GaAs deposition process using experimentally determined
model parameters. Furthermore, a method to construct reduced
order approximations of the master equation was also reported in
Gallivan and Murray (2004) and Gallivan et al. (2004). Surface
roughness is a property of interest from a control point of view
since it directly influences device properties. In this manuscript,
the roughness, r, is represented by the number of broken bonds
on the surface (Raimondeau & Vlachos, 2000):

> (hi1,j — hijl + [hi—1j — hij|
+lhi 1 — hijl + hij—1 — hi 1) n
2x NxN

r =

1 (2.18)

where N x N is the dimension of the square lattice and &; ; is the
number of atoms at site (i, j). For the thin film growth process
of Fig. 1, the control problem is to achieve a desired surface
roughness level by manipulating the substrate temperature. To
address this problem, we need to develop an estimation scheme
that will utilize roughness estimates obtained at discrete time
instants (sampling times) to provide estimates of the surface
roughness for all times. We present an estimation scheme which
employs kinetic Monte-Carlo simulations of the surface together
with roughness measurements obtained at discrete time instants
to produce estimates of the surface roughness for all times. The
basic idea is to construct a bank of ‘parallel running’ kinetic
Monte-Carlo simulators of the surface based on small lattice size
models to capture the dominant roughness evolution and utilize
the available surface roughness measurements to improve upon
the predictions of the kinetic Monte-Carlo simulators to obtain
accurate surface roughness estimates.

Specifically, in the kinetic MC simulation, the size of the lat-
tice influences the accuracy of the results and the computational
demand. Roughly speaking, the computational complexity of
the algorithm we adopt in this work is O(N*) and the magnitude
of the fluctuation in the solution is O(1/N?) where N is the size
of the lattice. The fourth-order dependence on computational
complexity and the second-order dependence of fluctuations on
the size of the lattice leave room for reducing the solution time
with relatively small loss of accuracy. In our simulations, when
the size of the lattice is reduced to 30 x 30, the solution time of
the kinetic Monte-Carlo simulation is comparable to the real-
time process evolution and the average values of the surface
roughness approximate well the average values of these vari-
ables, which are obtained by running the kinetic Monte-Carlo
simulation on a 120 x 120 lattice (this is a sufficiently large lat-
tice to ensure simulation results which are independent of the
lattice size).

However, the outputs from a kinetic Monte-Carlo simulation
using a 30 x 30 lattice contain significant stochastic fluctuations,
and thus, they cannot be directly used for feedback control (such
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Fig. 2. Surface roughness from a kinetic Monte-Carlo simulation which uses a
20 x 20 lattice.

an approach would result to significant fluctuations of the control
action which could perturb unmodeled (fast) process dynamics
and should be avoided).

The fluctuations on the values of the outputs obtained from
the kinetic Monte-Carlo simulation using the 30 x 30 lattice can
be reduced by independently running several small lattice kinetic
Monte-Carlo simulations with the same parameters and averag-
ing the outputs of the different runs. Fig. 2 shows the surface
roughness obtained from a Monte-Carlo simulation which uses
a 20 x 20 lattice. Fig. 3 shows the surface roughness obtained
from the computation of the average of six independent kinetic
Monte-Carlo simulations which utilize a 20 x 20 lattice. These
results show that when the outputs from multiple kinetic Monte-
Carlo simulations that use small lattices are averaged, surface
roughness fluctuations can be significantly reduced.

The predicted profiles of surface roughness, which are
obtained from kinetic Monte-Carlo simulation based on mul-
tiple small lattice models, still contain stochastic fluctuations
and are not robust (due to the open-loop nature of the calcu-
lation) with respect to disturbances and variations in process

24 T T T T

- - s
(=] @
T T
L L

SURFACE ROUGHNESS
L

0 10 20 30 40 50 60
T

Fig. 3. Surface roughness from the computation of the average of six indepen-
dent kinetic Monte-Carlo simulations which utilize a 20 x 20 lattice.

parameters. To alleviate these problems, we combine the small
lattice kinetic Monte-Carlo simulators with an adaptive filter, to
reject the stochastic fluctuations on the surface roughness and
growth rate profiles, and a measurement error compensator to
improve the estimates of these variables using on-line measure-
ments. To simplify the notation of the mathematical formulas,
we only present the general structure of the adaptive filter and
of the measurement error compensator. Specifically, the adap-
tive filter is a second-order dynamical system with the following
state-space representation:

dyr "

dr

dy; K A 1 (2.19)
—=—0r——-—n

dr TJ T

where y; is the output of the kinetic Monte-Carlo simulation
based on multiple small lattice models, J; the filter output, K the
filter gain and 77 is the time constant. To accelerate the response
of the filter and avoid large overshoot, 71 = 0.5/K. To achieve both
fast tracking of the dynamics of the outputs and efficient noise
rejection, the gain of the filter is adaptively adjusted according
to the following law:

| e aede® dr — fT300velt) di
0 AT?
where Ko is a constant, K the steady state gain for the adap-
tive filter and At is the dimensionless time interval between
two updates of K. Although a better tracking performance is
expected when a small At is used, a very small At will intro-
duce the effect of stochastic roughness fluctuations on the filter
gain and estimates and should be avoided; the specific value
of the appropriate At is a function of the significance of the
stochastic roughness fluctuations and its computation can be
achieved through numerical simulation of the estimator for dif-
ferent values of At. The measurement error compensator uses
the available on-line measurements to produce improved esti-
mates of the surface roughness. The state-space representation
of the measurement error compensator is:

K(r) =K + K (2.20)

e A
— = KeOn(tmy) — ¥(@m;))s Ty < T < Ty

dr (2.21)
i=1,2,...

and the final roughness estimates are computed by:

Y= +e. (2.22)

In the above equations, K. is the compensator gain, e the
estimated model error, which is used to compensate the model
output, y the roughness estimates, J; the filtered output from
a kinetic Monte-Carlo simulator which uses a small lattice (or
multiple small lattice models) and yy, is the output of a kinetic
Monte-Carlo simulator which uses the large lattice (in an exper-
imental set-up y, could be obtained from the measurement
sensor). Since the roughness measurements are only available at
discrete points in time 7,, = [T, Tmy, - - -], the right-hand side
of Eq. (2.21) is computed at the time a roughness measurement
is available and is kept in this value in the time interval between
two available roughness measurements.



P.D. Christofides, A. Armaou / Computers and Chemical Engineering 30 (2006) 16701686 1675

2.2+

SURFACE ROUGHNESS

0 10 20 30 40 50 60
T

Fig. 4. Surface roughness profiles from the estimator (solid line) and from a
kinetic Monte-Carlo simulation which uses a 120 x 120 lattice model (dashed
line).

The combination of the adaptive filter and the measurement
error compensator functions as an estimator, which is capable to
accurately predict the evolution of surface roughness and growth
rate during the thin film growth by using measurements of the
precursor concentration above the substrate. In this work, we
assume that measurements of precursor concentration above the
substrate are available; when such measurements are not avail-
able, a state estimator can be constructed on the basis of the PDE
model that describes the gas phase species concentrations and
the temperature to obtain estimates of this quantity (for estima-
tor design methods for PDE systems, see Christofides, 2001).
Fig. 4 shows the surface roughness profile computed by the esti-
mator, which uses a kinetic Monte-Carlo simulator based on
six 20 x 20 lattice models (solid lines); it is compared with the
surface roughness profile obtained from a kinetic Monte-Carlo
simulator which uses a 120 x 120 lattice model. The sampling
time T, — Tm; = 3. The results clearly show that the devel-
oped estimator can accurately predict the evolution of the surface
roughness; this is the result of the use of kMC models in the
estimation scheme coupled with measurements at distinct time
instants to correct for model error. Note also that the developed
estimator can be used for real-time feedback control since, the
computational time needed to run kinetic Monte-Carlo simula-
tion based on six 20 x 20 lattice models is comparable to the
real-time process evolution. Finally, the reader may refer to Lou
and Christofides (2003a) for simulation results that demonstrate
that a proportional-integral (PI) controller that achieves very
good performance on the basis of continuous roughness mea-
surements exhibits very poor closed-loop performance when
measurements at distinct time instants are used; in the same sim-
ulation set-up, the combination of the above estimation scheme
with the PI controller allows achieving excellent closed-loop
performance.

Referring to the selection of the lattice size, it is important
to point out that while kinetic Monte-Carlo simulation based
on multiple 20 x 20 lattice models can adequately capture the
evolution of the surface roughness in the specific thin film growth
problem under consideration, the dimension of the small lattice

in general should be chosen so that the interactions between the
surface atoms are adequately captured, and also that it is large
enough to describe all the spatio-temporal phenomena occurring
on the surface (e.g., cluster formation). Furthermore, the small
lattice should be chosen to provide accurate estimates of the
desired properties to be controlled. For example, in the case of
surface roughness, this quantity is defined as the average number
of broken bonds for every surface atoms and the microscopic unit
involved is an individual atom. When a small 20 x 20 lattice is
used, the computation of surface roughness involves hundreds of
surface atoms, which is adequate to obtain the expected value.
However, when the property of interest is, for example, step
density, a larger lattice is needed to obtain a convergent average
value from the kinetic Monte-Carlo simulation.

We now turn our attention to the design and evaluation of
a multivariable feedback control structure, based on kinetic
Monte-Carlo models, used to control the surface roughness and
growth in the thin film growth process of Fig. 1 by manipulating
the substrate temperature and inlet precursor concentration. A
diagram of the multivariable control system using the estima-
tor/controller structure with interaction compensation is shown
inFig. 5. G (s) is the transfer function between the substrate tem-
perature and the growth rate and G;(s) is the transfer function
between the inlet precursor mole fraction and the growth rate.
Step tests were used to identify the expression and parameters
of G(s) and Go(s).

A closed-loop system simulation is performed to evaluate
the effectiveness of the multivariable estimator/control struc-
ture with interaction compensation. Initially, the substrate tem-
perature is 7=800K and the inlet precursor mole fraction is
2.0 x 107; these conditions correspond to a growth rate of about
180 ML/s and a surface roughness of about 1.8. The proposed
multivariable control system (Fig. 5) is applied to the process to
regulate the growth rate and surface roughness to the desired set-
point values. The controller successfully drives both the surface
roughness and the growth rate to the desired set-point values; the
reader may refer to Lou and Christofides (2003b) for a detailed
simulation study. Fig. 6 shows the surface roughness under mul-
tivariable control with interaction compensation.

3. Control using stochastic PDEs

While it is possible in certain examples to use kinetic Monte-
Carlo models for real-time estimation and control, there are
many applications where closed-form models are needed, owing
to their computational efficiency, to carry out system-level anal-
ysis as well as design and implementation of real-time model-
based feedback control systems. Motivated by this, several meth-
ods were reported in Armaou, Siettos, & Kevrekidis (2004),
Armaou, Kevrekidis, & Theodoropoulos (2005), Mastny et al.
(2005) and Siettos et al. (2003) to identify linear deterministic
models from outputs of kinetic Monte-Carlo simulators which
were subsequently used to design controllers using linear control
theory to control macroscopic variables that are low statistical
moments of the microscopic distributions (e.g., surface cover-
age, which is the zeroth moment of adspecies distribution on a
lattice). This approach was recently extended to the construc-
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Fig. 5. Diagram of multivariable feedback control system with interaction compensation.

tion of nonlinear models (Armaou, 2005) and the subsequent
design of nonlinear controllers (Armaou, 2005; Siettos et al.,
2005). In this direction, other results also include the construc-
tion of linear/nonlinear deterministic models from input/output
data using system identification techniques (Drew et al., 2004;
Rusli et al., 2005; Wolfrum et al., 2005). However, to control
higher statistical moments of the microscopic distributions, such
as the surface roughness (the second moment of height distribu-
tion on a lattice), or even the microscopic configuration (such as
the surface morphology), linear or nonlinear deterministic mod-
els may not be sufficient, because the effect of the stochastic
nature of the microscopic processes becomes very significant
and must be addressed both in the model construction and con-
troller design. In such a case, stochastic differential equation
models should be used. It turns out that there is a significant
body of literature in the area of statistical physics (e.g., Marsili,
Maritan, Toigo, & Banavar, 1996; Park, Kim, & Park, 2002;
Vvedensky, 2003) focusing on the construction of stochastic
PDE models for thin film growth processes by appropriately
averaging microscopic process rules in the context of discrete

SURFACE ROUGHNESS

60 70 80 90 100

Fig. 6. Closed-loop surface roughness under multivariable feedback

control—surface roughness set-point value is 1.5.

lattice models. Specifically, stochastic PDE models have been
developed to describe the evolution of the height profile for
surfaces in certain physical and chemical processes such as
epitaxial growth (Vvedensky, Zangwill, Luse, & Wilby, 1993)
and ion sputtering (Lauritsen, Cuerno, & Makse, 2003). Tak-
ing advantage of these results, we (Lou & Christofides, 2005b)
presented a method for feedback control of surface roughness
in a thin film growth process whose surface height fluctuation
can be described by the Edwards—Wilkinson equation (Edwards
& Wilkinson, 1982), a second-order stochastic parabolic PDE
(see also Lou & Christofides, 2005a, for results on linear covari-
ance control of surface roughness in a sputtering process using
the stochastic Kuramoto—Sivashinsky equation). Specifically, a
feedback controller was designed based on the stochastic PDE
model and successfully applied to the kMC model of the deposi-
tion process regulating the surface roughness to desired values.
However, the construction of stochastic PDE models for thin
film growth processes directly based on microscopic process
rules is a very difficult task. This issue has prohibited the devel-
opment of stochastic PDE models, and subsequently the design
of model-based feedback control systems, for realistic deposi-
tion processes which are, in general, highly complex.

3.1. Construction of stochastic PDEs

Motivated by this practical problem, we recently presented
(Ni & Christofides, 2005a) a systematic method for the con-
struction of linear stochastic PDE models for feedback control
of surface roughness in thin film deposition. To present the essen-
tial components of this method, we focus on a thin film growth
process taking place on a one-dimensional lattice (extensions
to two-dimensions are notationally involved and can be found
in Ni & Christofides (2005¢)). Without any a priori knowledge
of the deposition process, we assume that there exists a one-
dimensional linear stochastic PDE of the following general form
that can adequately describe the evolution of the surface of the
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thin film during the deposition:

M eteohtal+ Ph bt enih e
oh _ oo ¥R TR ’
o (T TN Cwgew TEF
(3.23)

where x € [0,7] is the spatial coordinate, ¢ is the time, A(x, ?) is
the height of the surface at position x and time ¢, and &(x, 7) is a
Gaussian noise with zero mean and covariance:

(8(x, NEW, 1)) = ¢*8(x — X)8(t — 1)

where §(-) is the Dirac function. Furthermore, the coefficients ¢
and ¢; in Eq. (3.23) and the parameter ¢? in Eq. (3.24) depend
on the process parameters (gas flow rates, substrate temperature,
etc.) pi(1):

(3.24)

c=C[pi(t), p2(t), ..., pa(®]
¢j=Cilp1®), p2(t), ..., pa@®], j=0,...,w (3.25)
§2 = Ce[pi(t), pa(t), ..., pa(®)]

where C(-), C(-) and C¢(-) are nonlinear functions to be deter-
mined.

The stochastic PDE of Eq. (3.23) is subjected to the following
periodic boundary conditions:

8jhO _8jh =0 1 3.26
@(,t)—@(ﬂ,t), J=0U,...,w— ( )
and the initial condition:

h(x, 0) = ho(x) (3.27)

To study the dynamics of Eq. (3.23), we initially consider the
eigenvalue problem of the linear operator of Eq. (3.23), which
takes the form:

2
Ay(5) = o) + e D 4 ¢, LD
dx dx
d¥¢,(x) _

+---+cy I An@n(x) (3.28)
dp,  dlg, .
o ©0) = ™ m, j=0,...,w—1,
n=1,...,00

where A, denotes an eigenvalue and ¢,, denotes an eigenfunction.
A direct computation of the solution of the above eigenvalue
problem yields:

dn = co+ I2ncy + (I2n)%ca + - + (I2n)V ¢y
1

On(x) = \/7612'”‘, n=0,=%l1,...,+00
T

where A, denotes the nth eigenvalue, ¢, (x) denotes the nth eigen-
function and I = +/—1.

To present the method that we use for parameter identification
of the stochastic PDE of Eq. (3.23), we first derive an infinite-
order stochastic ODE representation of Eq. (3.23) using modal
decomposition and parameterize the infinite-order stochastic
ODE system using kMC simulation. We first expand the solution
of Eq. (3.23) in an infinite series in terms of the eigenfunctions of

(3.29)

the operator of Eq. (3.28) as follows (i.e., the Fourier expansion
in the complex form):

o]

he, )= > z2a(On(x)

n=—0oo

(3.30)

where z,,(?) are time-varying coefficients. Substituting the above
expansion for the solution, A(x, ¢), into Eq. (3.23) and taking the
inner product, the following system of infinite stochastic ODEs
is obtained:

dz,

ar =Mzn+cm+ &0, n=0,%1,...,+c0 (3.31)
and the initial conditions:
722(0) =zp0, n=0,%£1,...,*00 (3.32)

where ¢, = ¢ fon ¢n(x) dx (apparently c,o = ¢/ and ¢, =0V
n#0), &, (1) = [ &(x, )p(x) dx and 2,0 = [ ho(x)epy (x) dx.

The covariances of &,(f) can be computed as (£,(f)) =0 and
(E,(0E()) = ¢28(t — 1) (£} is the complex conjugate of &,
the superscript star is used to denote complex conjugate in the
remainder of this manuscript). We note that &,(¢) is a complex
Gaussian random variable and the probability distribution func-
tion of the Gaussian distribution, P(&,, f), on the complex plane
with zero mean and covariance ¢28(t — ') is defined as follows:

* 2 ’
e§:z§n/2§ 8(t_t)

PEn, 1) = (3.33)

1

Vgt —1)

To parameterize this system of infinite stochastic ODEs, we
first derive the analytic expressions for the statistical moments
of the stochastic ODE states, including the expected value and
covariance. By comparing the analytical expression to the sta-
tistical moments obtained by multiple kMC simulations, the
parameters of the stochastic ODE system (i.e., A, and ¢) can
be determined.

The analytic solution of Eq. (3.31) is obtained as follows to
derive the expressions for the statistical moments of the stochas-
tic ODE states:

" = Dew

2n(t) = ez +
An

+ 6,(1) (3.34)
where 6,() is a complex random variable of normal distribution
with zero mean and covariance (0,(1)0;(t)) = 2 (et _
1/Ay + A}). Therefore, the expected value (the first stochastic
moment) and the covariance (the second stochastic moment) of
state 7, can be expressed as follows:
Ant
e — 1)c
(an (D) = ez + S Den
An
An+2p)t
e )t — 1
NzZE@)) = 2=
(zZi(0)) = ¢ T

n=0,=l1,...,+oo.

T+ {zn(®) (D) (3.35)

Eq. (3.35) holds for any initial condition z,,9. Since we are able
to choose any initial thin film surface for simulation, we choose
Zn0 =0 (i.e., the initial surface is flat, h(x, 0) =0) to simplify our
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calculations. In this case, Eq. (3.35) can be further simplified as
follows (note that c,, =0, Yn # 0):

(za(0) =0
e()\n+)\x)t — 1

* _ 2 _
(zazh()) = ¢ A S

R Q2ReG) _ |

2Re(An)

(3.36)

n==Il,...,£00

where Re(2,,) denote the real part of A, and for zo(?), it follows
from Eq. (3.35) with A9 =0 that

(ekgt — Dcgo
—_——— = [C = [\/TTC
2o Z0 \/_ (3.37)

<Z%(t)> = %t + *nc?.

{zo(1)) = Aloiglo

Itcan be seen in Eq. (3.36) that the statistical moments of each
stochastic ODE state depend only on the real part of the corre-
sponding eigenvalue, and therefore, to determine the imaginary
part of the eigenvalue we construct an extra equation related to
the expected value of Re[A, ()]? (not shown here due to space
limitations). We note that A, would be a complex number if
the linear operator A is not self-adjoint i.e., for example, when
odd-partial-derivatives are present in the stochastic PDE see
(Eq. (3.29)).

Based on the above results, we proposed a systematic
procedure to construct linear stochastic PDEs for the deposition
process based on a kinetic Monte-Carlo code used to simulate
the deposition process and generate surface snapshots. The
proposed procedure includes the following steps: first, we
design a set of simulation experiments that cover the complete
range of process operation; second, we run multiple simulations
for each simulation experiment to obtain the trajectories of the
first and second statistical moments of the states (i.e., Fourier
coefficients) computed from the surface snapshots; third, we
compute the eigenvalues of the linear operator and covariance
of the Gaussian noise based on the trajectories of the statistical
moments of the states for each simulation experiment, and
determine the model parameters of the stochastic PDE (i.e., the
pre-derivative coefficients and the order of the stochastic PDE);
finally, we investigate the dependence of the model parameters
of the stochastic PDE on the process parameters and determine
the least-square-optimal form of the stochastic PDE model
with model parameters expressed as functions of the process
parameters.

Because there are only two process parameters considered
in the deposition process studied in this work, the growth rate
W and the substrate temperature 7, the simulation experiment
design is straightforward. Specifically, different W values and T
values are evenly selected from the range of process operation
of interest and simulation experiments are executed with every
selected W value for each selected T value. Therefore, we start
our demonstration of the model construction methodology with
the identification of the eigenvalues and covariance. Also, we
note that the trajectories of the statistical moments for each sim-
ulation experiment are computed based on 100 simulation runs
taking place with the same process parameters.

Since for a flat initial surface, the covariance of each state
<z,, "z} (t)> should be able to be predicted by Eq. (3.36), there-

2.59

—m—Z

<Z.Zy>

t(s)

Fig. 7. Covariance profiles of zj¢, 220, 230 and z4o.

fore, we can fit g2 and Re(A,) in Eq. (3.36) for the profile of
<zn(t)z;;(t)>. In order to obtain the profile of <zn(t)z:(t)> we
need to generate snapshots of the thin film surface during each
deposition simulation and compute the values of z,,(). Since the
lattice consists of discrete sites, we let h(kL, ) be the height
profile of the surface at time ¢ with lattice constant L (k denotes
the coordinate of a specific surface site), and compute z,(f) as
follows:

Kmax (k+1)L

zn(t) =Y h(kL, 1) /
k=0 k

where kpax L =7 (i.e., the lattice is mapped to the domain [0,7]).
Substituting Eq. (3.29) into Eq. (3.38), we can derive the fol-
lowing expression for z,(?):

¢r(x)dx (3.38)

L

kmax I’l(kL, t) e—ZkLnI

w®=

(1 _ e—2LnI)

—  2mnl (3.39)
n==l,...,+00
and for zp(¢), we have,

Kimax L
20(t) = gh(u, t)ﬁ = 1JTW. (3.40)

Fig. 7 shows the typical covariance profiles of different states
in a growth process. It can be seen that despite the very differ-
ent time scales of the states, our method can still generate very
smooth profiles for both the fast states (such as z49, whose time
scale is less than 50s) and the slow states (such as zj9, whose
time scale is larger than 1000 s).

Fig. 8 shows the eigenvalues identified from thin film depo-
sitions occurring under the same operating conditions but sim-
ulated with different lattice size (we note that the identified
eigenvalues are considered real since the imaginary part of the
eigenvalues identified turned out to be very small). It can be seen
that the identified spectra are very close to each other when n
is rescaled with the corresponding lattice size. This is expected,
since, ¢,(x) is a basis of the domain of operator A, and is a
complex function of the frequency n. Accordingly, n/kpyax is the
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Fig. 8. Eigenvalue spectra of the infinite stochastic ODE systems identified
from the kMC simulation of the deposition process with different lattice size:
kmax =100, 500, 1000 and 2000.

length scale of the surface fluctuation described by ¢,(x) when
a lattice of size kpyax is mapped to the domain of [0,7r] (we note
that, for the same reason, the covariance values should be scaled
with the inverse of the lattice size, 1/kmax, in order to carry out
a meaningful comparison).

Itcan also be seen in Fig. 8 that the eigenspectra are very close
to the parabolic reference curve, which implies that a second-
order stochastic PDE system of the following form would be able
to describe the evolution of the surface height of this deposition
process:

dh #h
o =T
in which ¢, ¢, and the covariance of the Gaussian noise &, ¢, all
depend on the microscopic processes and operating conditions.

We proceed now with the derivation of the parameters of the
stochastic PDE of Eq. (3.41). From Eqs. (3.37) and (3.40), we
can see that ¢ = W for all cases. However, ¢, and g2 identified for
different deposition settings can be very different, therefore, we
need to investigate their dependence on the deposition parame-
ters to obtain their empirical explicit expressions. ¢ and ¢? are
evaluated for assorted deposition conditions and a lattice size of
1000 (i.e., kmax = 1000) is used for all the simulation runs in our
study. To derive explicit expressions for ¢> and ¢? as functions
of T and W, we evaluate these values for different 7 and W and
the results are shown below:

+&(x, 1) (3.41)

—32.0024-0.05117—-0.1620W

k2. (3.42)
AT, W) =5.137 x 10787 + 3.2003 x 10> W.

(&

(W) =

Therefore, the linear stochastic PDE model identified for the
deposition process is as follows:

o - 0 —32.002+0.05117-0.1620W \ 52p, PT
oh _ . X, 1),
Bt krznax sz

oh oh
—0,)=—@r, 1), h,1)=h(m1) (3.43)
0x 0x
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Fig. 9. Expected surface roughness profiles generated by kMC simulation
and stochastic PDE model for a 1000s deposition with substrate tempera-
ture T=550K, thin film growth rate W=0.1 monolayer s—! and lattice size
kmax =2000.

where (£(x, HEW, 7)) =(5.137 x 1078 T +3.2003 x 1073 W)8
(x—=x)8(t—1).

We now proceed with the validation of the stochastic PDE
model of the thin film deposition process (Eq. (3.43)). Validation
experiments are conducted for anumber of deposition conditions
which have not been used for the model construction.

Fig. 9 shows the expected roughness profile of a deposition
with substrate temperature 7=550K and thin film growth rate
W=0.1 monolayer s~ !; Fig. 10 shows the roughness profile of
a deposition with substrate temperature 7="700 K and thin film
growth rate W=2.5 monolayer s~'; we can see that the linear
stochastic PDE model constructed for the deposition process
is also very consistent with the kinetic Monte-Carlo simulation
in terms of surface roughness, at both low and high substrate
temperatures, for different growth rates. The reader may refer
to Ni and Christofides (2006) for additional model validation
results. Of course, the ultimate test of the validity of the model

r(ML)

0.5 ——kMC 50 runs
————— sPDE 800 modes
0.0 . T L T T T T T ) T ) T T T T 1
0 50 100 150 200 250 300 350 400

t(s)

Fig. 10. Expected surface roughness profiles generated by kMC simulation
and stochastic PDE model for a 400s deposition with substrate tempera-
ture 7=700K, thin film growth rate W=2.5 monolayer s~! and lattice size
kmax =2000.
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Fig. 11. Block diagram of the closed-loop system.

is the closed-loop performance achieved by the controller that is
designed on the basis of this model and this is discussed in the
next subsection.

3.2. Predictive control using stochastic PDEs

We now proceed with the design of the feedback controller.
Since the thin film deposition is a batch process, the control
objective is to control the final surface roughness of the thin film
to a desired level at the end of each deposition run by explicitly
accounting for the presence of constraints on the manipulated
input (an important problem that cannot be addressed by classi-
cal (PID) control schemes). Therefore, we use an optimization-
based control problem formulation. Fig. 11 shows the block
diagram of the closed-loop system. When a real-time surface
profile measurement is obtained, the states of the infinite stochas-
tic ODE system, z,,, are computed. Then, a substrate temperature
T is computed based on states z, and the stochastic PDE model
and applied to the deposition process. The substrate is held at
this temperature for the rest of the deposition until a different
value is assigned by the controller. The value of T'is determined
at each time 7 by solving, in real-time, an optimization problem
minimizing the difference between the estimated final surface
roughness and the desired level.

A standard procedure based on the active set method is used to
solve the optimization problem. A kMC code with a lattice size
kmax = 1000 is used to simulate the thin film deposition process,
and the substrate temperature is restricted within 300-900 K.
The measurement interval, as well as the control interval, is set
to be 1 s. We limit the maximum number of states to be used (in
our case, to m = 500) to guarantee the maximum possible compu-
tation time for each control action is within certain requirement,
however, for most of the time the number of states needed by
the controller is much smaller.

Fig. 12 shows the surface roughness and substrate tempera-
ture profiles of a closed-loop deposition process with thin film
growth rate W=0.5 monolayer s~!. The control objective is to
drive the final surface roughness of the thin film to 1.0 mono-
layer at the end of a 200s deposition. It can be seen that the
final surface roughness is controlled at the desired level while
an open-loop deposition with the same initial deposition con-
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Fig. 12. Surface roughness and substrate temperature profiles of a 200 s closed-
loop deposition process with thin film growth rate W=0.5 monolayer s~' and
final roughness setpoint rg¢ = 1.0 monolayer.

dition would lead to a 100% higher final surface roughness as
shown in Fig. 12. Itis important to note that while the closed-loop
profiles of Fig. 12 have been obtained under the assumption of
availability of surface height profile measurements (state feed-
back control), the stochastic PDE model of Eq. (3.43) can be
used as the basis for the design of a state estimator that employs
on-line surface height measurements at specific spatial points to
estimate the entire surface height profile and the corresponding
roughness.

4. Optimization using multiscale models
4.1. Problem formulation and solution method

In this section, we discuss a method (Varshney & Armaou,
2005a,b) for optimization of process systems involving multi-
scale optimization objectives. Consider a process whose domain
Q comprises of a subdomain €21 in which a closed-form macro-
scopic process description is available and a subdomain €25 in
which a microscopic process description is available. Mathe-
matically, the multiscale process can be represented as:

0=AXx)+ f(x,d), on

- i} _ 4.44
d=> di@)H{—T)— H(t —Fi11) @49
Xm(t) = M(xp (8i—1), 81, x|y),  on2 4.45)
St=1t; —t;iq

()

glx,— ) =0, onl\y (4.46)

dn

dx

h ()‘cs,xh, dT)) =0, ony. 4.47)

Egs. (4.44) and (4.45) represent the macroscopic and micro-
scopic descriptions of the process over the respective domains
Q1 and 2;. It is assumed that €21 and €2, do not overlap and
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share a common interface vy, and Q= U Q; spans the whole
process domain. x(z) € RY denotes the vector of macroscopic
state variables, x;,(#;) is the vector of microscopic state vari-
ables at time-instant t;, z = [z, 22, 23] € 21 C R3 is the vector
of spatial coordinates and I' is the boundary of the macro-
scopic domain 1. A(x) is a second-order dissipative, possibly
nonlinear, spatial differential operator, f(x, d) is a nonlinear vec-
tor function which is assumed to be sufficiently smooth with
respect to its arguments, d € R? is the vector of design vari-
ables and 7; is the time-instant when the design variables are
varied. g(x(dx/dn)), defined on the boundary I'\'y is a nonlin-
ear vector function which is assumed to be sufficiently smooth,
and 7 is the spatial direction perpendicular to the boundary T'.
It is assumed that the time horizon over which all the dynam-
ics of the eigenmodes of Eq. (4.44) relax, f;, is negligible in
comparison to &§f; = f;4+1 — f, implying that the process in €21
is operating under quasi-steady-state conditions. Function, IT,
can be thought of as a black-box timestepper, which interacts
with the macroscopic process model via an input/output struc-
ture and may be unknown in closed-form. It uses x,,(#;_;) and
the macroscopic state at the interface vy as input, evolves over the
time-interval 8¢, and produces the state x,,(#;). The vector func-
tion A(Xs, x|y, dx/dn) represents the boundary conditions at the
common interface between the macroscopic and microscopic
domains, and X represents the stationary-state of the “coarse”
realization, X, of x,,. It is assumed that such stationary state exists
and is independent of the initial microscopic state, i.e., x,,,(t=0).
The coarse variables, X, can be projected onto the microscopic
state variables, x,,, and vice versa, through the restriction and
lifting operations X = L(x,,), X, = I(X), respectively (note that
the lifting operation leads to a number of possible x,, for a given
X).

A general optimization problem for the multiscale system of
Egs. (4.44)—(4.47) can be formulated as (Varshney & Armaou,
2005a,b):

n

min G % .87 = Y [ Gl d. 87 8z
: Q
l

s.t.
Ax) + f(x,d) =0,

dx B dx
g\ x, — = 0 on F, h Xg, Xy — = 07 onvy
dn dn

px,d) <0, VzeQ

(4.48)

where G(x, X, d, 6;) is the objective functional and measures
the process performance at both macroscopic and microscopic
levels and p(x, X, d) is the vector of inequality constraints
which may include bounds on state and design variables. Time-
intervals 87 and design variables d; (of Eq. (4.44)) are the opti-
mization variables.

Finite-dimensional approximations to the semi-infinite
dimensional program of Eq. (4.48) can be obtained through
spatial discretization of the equality constraints and of the objec-
tive functional to formulate a finite-dimensional nonlinear pro-
gram (NLP). Brute-force spatial discretization employing finite-
difference/finite-element (FD/FE) techniques typically results

in a large set of algebraic equations, and subsequent storage
and computational requirements of the formulated NLP may
become prohibitive requiring the use of specially designed algo-
rithms for large-scale optimization problems. Inclusion of black-
box timesteppers into the multiscale model further increases
the computational demands. To address this issue, nonlinear
order reduction for dissipative PDEs (Armaou & Christofides,
2002; Bendersky & Christofides, 2000) using Karhuenen—Loéve
expansion (KLE) is coupled with in situ adaptive tabulation
(Pope, 1997) to formulate reduced order multiscale models that
can be employed to efficiently solve multiscale optimization
problems.

The eigenspectrum of elliptic PDEs is characterized by a
finite number of dominant eigenmodes (Armaou & Christofides,
2000; Baker & Christofides, 2000; Baker, Armaou, &
Christofides, 2000; Christofides & Daoutidis, 1997), a property
that constitutes the basis for computing dominant eigenmodes
using KLE. These dominant eigenmodes can be identified empir-
ically by applying KLE on an appropriate ensemble (for details
about construction of the ensemble, the reader may refer to
Armaou & Christofides, 2002; Bendersky & Christofides, 2000;
Varshney & Armaou, 2006 and references therein) of PDE
solution data. These eigenmodes, known as empirical eigen-
functions, can be subsequently employed as basis functions in
the method of weighted residuals, to derive systems of alge-
braic equations, which have significantly smaller dimension
than those derived using FD/FE discretization methods. Sub-
sequently, the NLP can be solved using standard gradient-based
or direct search algorithms.

The calculation of coarse stationary states, X, through black-
box timesteppers is usually a computationally expensive task.
To facilitate efficient incorporation of black-box simulators,
stationary-state coarse solution data (i.e., X5) of black-box
timesteppers are tabulated offline for the entire realizable region
spanned by x|y. Necessary information from tabulated data can
be obtained through interpolation, as required by the macro-
scopic solver. We employ adaptive tabulation to tabulate only
the accessed region, which may be unknown a priori. The table
is constructed on demand, when interpolation results of previ-
ously tabulated data are not accurate. The efficiency of adaptive
tabulation increases if the accessed region is a small subset of
the realizable region and contains domains with relatively large
gradients.

An iterative solution algorithm that is applicable to a broad
class of multiscale processes modeled by Eqs. (4.44)—(4.47)
is outlined below (see Varshney & Armaou, 2005a,b for more
details).

(1) Select an arbitrary (but physically consistent) initial condi-
tion x,,,(¢=0) and x|, and evolve the black-box timestepper
till x reaches a stationary value (denoted as X;).

(2) Solve Eq. (4.44) subject to boundary conditions given by
Egs. (4.46) and (4.47), either analytically or numerically to
obtain new x|, denoted as x;.

(3) Repeat steps (1) and (2) to obtain x;, until x; — x/_  is
below an acceptable tolerance.



1682 P.D. Christofides, A. Armaou / Computers and Chemical Engineering 30 (2006) 1670—1686

I:I > Feed stream

\l hakhii

Effluent stream

Continuum
simulations

Microscopic
simulations

Waler

Heaters  Rotating pedestral

Fig. 13. Schematic of the reactor with split inlet configuration.

Subsequently, the reduced order model can be incorporated
as an equality constraint into standard search algorithms such as
BFGS, Luus—Jaakola, Hooke—Jeeves, etc., to obtain the optimal
solution.

4.2. Application to thin film growth

In this subsection, the above optimization methodology is
applied to a conceptual thin-film growth process, where the
objective is to compute an optimal time-varying process opera-
tion that simultaneously minimizes spatial thickness nonunifor-
mity and surface roughness of the deposited film at the end of
the process cycle; we note that this process is different from the
one considered in Sections 1 and 2. Fig. 13 depicts the schematic
of the reactor with split inlet configuration.

The bulk of the reactor is modeled using two-dimensional
axisymmetric PDEs in cylindrical coordinates derived from con-
tinuum conservation principles. The surface of the growing film
is modeled using kMC simulations. Fig. 13 also shows the
domains of definition of the two models. It should be noted that
the microscopic domain is infinitesimally thin. Substrate temper-
ature profiles are manipulated using three circular heaters with
heat being conducted in the in-between areas. Table 1 tabulates
the reactor geometry and process conditions. Gaseous species
A and B represent the precursors of a and b (components of
compound semiconductor ab) respectively and are assumed to
undergo the following gas phase reactions in the bulk of the

Table 1

Design and process parameters

Reactor radius 2in
Substrate radius (Ry) 1.5in
Number of inlets 3
Substrate to inlet distance (zg) 3in
Reactor pressure 0.1 atm
Inlet & reactor wall temperature 300K

Inlet velocity 80 cm/s
Substrate temperature (75) 900-1300 K
Inlet mass fraction of species A (Xa) 0.4 x 1072
Inlet mass fraction of species B (Xg) 0.6

Table 2

Process reaction scheme

Reaction ko E
GhHA—>A+C 1x 10" 39.9
SHA — a(s)+D - -
(S2) B— b(s) -4 -

 Rate calculated from kinetic theory of gases.

reactor and gas-surface reactions on the wafer surface, shown in
Table 2. Reaction G1 represents the thermal decomposition of
precursor A into A’ which adsorbs on the substrate (reaction S1).
The rate-parameter for adsorption of A’ (reaction S1) is assumed
to be that of an ideal gas, i.e., ky = so~/ RT/27 M, where s is the
sticking coefficient. The rate of adsorption of B (reaction S2) is
assumed to be equal to S1 so that the stoichiometry of the film
is preserved. In addition to adsorption, diffusion and desorption
of adsorbed species are other significant processes that affect
the structure of the surface. The rate of desorption of surface
species into the gas phase and the rate of surface diffusion are
given by:

—Eq+nAE/kgT

kpT
—E+nAE/kgT
K = kqoe . K= —— e EtnAE/ks

h
where £ is the Planck’s constant, E and Ej the energy barriers
for surface diffusion and desorption, respectively, AE the inter-
action energy between two neighboring adsorbed species and
ne{0,1,2,3,4} is the number of nearest neighbors. The values
of E, Eq9, AE and kqg are taken as 2.5,2.5,0.5eV and 1 x 1013,
respectively.

The macroscopic description of the process under consider-
ation is given by the following conservation equations:

V.(ow)=0; V-(puu)—V -T—pg=0
V- (pul) ==V -q— Y hWiw

(4.49)

k (4.50)
V(ouly) = =V jp + Wewy;  ke{l,2,3,4}
) VT
Jk = —DipVY, — DTJ{T

where p is the gas phase density, u the fluid velocity vector, T the
stress tensor, Cp the specific heat capacity, T the temperature, ¢
the heat flux due to conduction and &y, Wy and Y} are the partial
specific enthalpy, molecular weight and the mass fractions of gas
species. wg and j are the net production rate due to homogeneous
reactions and mass flux respectively of species k. Dy and Dry
in the flux equation correspond to mass diffusion and thermal
diffusion coefficients, respectively. The flux boundary condition
at the deposition surface is given by:

j = Rag = kaCurls — (ka) f(Cas, T, wara)

where R, is the net rate of adsorption, Ty the surface tem-
perature, (kq), Ca'|s and C, ¢ are the effective desorption rate,
concentration of A’ over the substrate and average surface con-
centration of adsorbed a(s), respectively. Function f describes
the influence of lateral interactions on the desorption rate, which
cannot be ascertained without knowledge of surface structure.
We employ kMC to account for the surface structure and esti-

4.51)
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mate the right hand side of Eq. (4.51), which links the two levels
of descriptions.

Initially, precursor A flows through the innermost inlet and B
through the two outer inlets (ABB configuration of inlet). During
the process operation, the two gas streams in the two innermost
inlets can be interchanged to result in a distinct (BAB) inlet
configuration. The transient evolution of the process follow-
ing the switch is neglected (quasi-steady-state approximation).
It is proposed that by optimally switching from ABB to BAB
configuration and controlling the substrate temperature profile
before and after the switching, both optimization objectives can
be realized. Mathematically, the optimization problem can be
formulated as:

Ro
min F = /{w1 [T(r) — Towj]* + waR(r)} dr
0

S.t.
n (4.52)
T= ZSEiRdepQ 8 =tiy1 — 4
i=1
up = Yo qukilHG) — HG);  kefl,2,3)
900 < Ts(ug) < 1300;  Rgep = kaCyr  aty

where F is the objective functional, T the thickness of film at
the end of the process, Tob; the target thickness of the film, Rgep
the deposition rate of species a, R the surface roughness of the
deposited film, &7; the time-interval for ith switching, T the sur-
face temperature, u; the magnitude of actuation and H(-) denotes
the standard Heaviside function; the explicit dependence of 7 on
ug can be found in Varshney & Armaou (2005a). Ry is the cutoff
radius, which is taken to be a fraction of the substrate radius, thus
discounting the unavoidable edge effects. The objective function
penalizes any deviation of final film thickness from the target
thickness (macroscopic objective) and high values of the spa-
tially averaged roughness of the film (microscopic objectives).
Additional constraints on the optimization problem arise from
the reduced order process model, whose explicit form is omitted
for brevity. The design variables of the optimization problem are
the magnitudes of actuation u; and the time-intervals 87;.

An ensemble of solution data (“snapshots”) was generated
by varying the substrate temperature (1, up and u3) for both
ABB and BAB inlet configurations and solving the resulting
system using the proposed multiscale algorithm. For the gen-
eration of snapshots, the macroscopic domain, €21, was dis-
cretized using finite differences into 6201 nodes and the result-
ing system of nonlinear algebraic equations was solved using
a Newton—Krylov-based solver. Specifically, an ensemble of
729 x 2 snapshots was generated. Three, 62 and 52 eigenfunc-
tions were identified using KLE, respectively, for temperature
and mass fraction profiles of A and A’ across the reactor, which
captured more than 99.999% of the energy of the ensemble.
Hence, the reduced order model comprised of 117 (as opposed
to 6201 x 3) nonlinear algebraic equations. Coarse data of kMC
simulations was tabulated in accordance with in situ adaptive
tabulation, as described earlier, which facilitated efficient link-
ing. In order to account for the effect of radial variation of

substrate temperature and the concentration of precursor over
the substrate on the film microstructure, independent interpo-
lation was performed at each macroscopic discretization node
(a full order model would require independent kMC at each of
these nodes, thereby significantly increasing the computational
requirement). Depending upon the structure of the kMC simula-
tor, the flow of information across the interface of the continuum
and the discrete domains can be unidirectional or bidirectional.
For the current process, numerical simulations established that
inclusion of desorption into the kMC model had negligible effect
on the macroscopic solution of the multiscale system (this one-
way coupling characteristic of this process is in contrast to the
fully coupled nature of the thin film growth process considered
in Sections 1 and 2).

Hence, in the reduced order process, model desorption was
not included. Under this assumption the flow of information
was unidirectional and did not require multiple iterations. The
resulting reduced optimization problem was solved using the
Hooke-Jeeves search algorithm. The accuracy of the reduced
order model was validated using the full order model under var-
ious operating conditions. However, direct comparison of full
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Fig. 14. Comparison of (a) deposition rate and (b) roughness profiles across
the wafer surface, with macroscale (Optimal 1) and multiscale objective
(Optimal 2).
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Fig. 15. Initial (blue line) and final (green line) optimal surface temperature
profiles, for (a) macroscale only and (b) multiscale objective. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of the article.)

and reduced order formulations was impossible owing to the
computational requirements of the full order model. Further-
more, once the empirical eigenfunctions and kMC-tables have
been constructed, they can be repeatedly employed in multiple
optimization problems.

The optimization problem of Eq. (4.52) was solved in two
steps. Initially, spatial uniformity of the deposited film was the
only optimization objective (i.e., w1 # 0, wz =0). Subsequently,
the microscopic objective was included into the optimization.
The target film thickness Topj was 5 x 10-%m. Fig. 14a shows
the final film thickness across the wafer surface obtained for the
optimal process operation with macroscopic objective and mul-
tiscale objective (denoted as Optimal 1 and Optimal 2, respec-
tively). For comparison purposes, the final film thickness-profile
for time-invariant nominal process operation is also shown.

Thickness nonuniformity, defined as / f(7 — I,bj)z /Tovj» for

ABB inlet configuration was found to be 87.66 and 57.72% for
substrate temperature 1300 and 900 K, respectively. The corre-
sponding numbers were 215 and 188%, respectively, for BAB

inlet configuration. For the optimal process operation, radial
nonuniformity in the film was successfully reduced to 1.14 and
1.5% for the former and latter cases, respectively. The corre-
sponding inlet switching times were 757 and 703 s, and the
substrate temperature profiles before and after switching are
shown in Fig. 15a and b, for macroscale and multiscale objec-
tives, respectively.

Inclusion of the microscopic objective resulted in the over-
all increase of substrate temperature and the spatially averaged
surface roughness of the film decreased from 3.5 (for Opti-
mal 1) to 1.7 (for Optimal 2), shown in Fig. 14b. It should
be noted that BAB configuration with 75 = 1300K would result
in the film with the lowest surface roughness, however such
operation is not optimal with respect to spatial film-thickness
uniformity.

5. Conclusions and future research problems

In this manuscript, we have provided a tutorial overview
of recently developed methods for control and optimization
of complex process systems described by multiscale models.
We primarily discussed methods developed in the context of
our previous research work and used examples of thin film
growth processes to motivate the development of these methods
and illustrate their application. Specifically, we discussed: (a) a
method for control of surface roughness in thin film growth using
kinetic Monte-Carlo models, (b) a method for the construction
of linear stochastic PDEs directly from data obtained by kinetic
Monte-Carlo models and their subsequent use in the design of
predictive controllers for roughness control in thin film growth
and (c) a method for computationally efficient optimization of
multiscale process systems with multiscale objectives based on
reduction of the macroscopic PDEs using empirical eigenfunc-
tions and reduction of the kinetic Monte-Carlo models via in situ
adaptive tabulation—this optimization method was applied to a
thin film growth process where the objective was to compute
an optimal time-varying process operation that simultaneously
minimizes spatial thickness nonuniformity and surface rough-
ness of the deposited film at the end of the process cycle.

While significant progress has been made over the last 5 years
on control and optimization of multiscale process systems, there
are still many unresolved, challenging problems both in theory
and applications. Here is a list of unresolved issues that, in our
opinion, deserve to be studied:

e Construction of nonlinear stochastic differential equations
from kinetic Monte-Carlo simulation data, as well as pre-
cise characterization of their accuracy, for processes where
the molecular scale interactions give rise to highly nonlinear
macroscopic behavior.

e Design of nonlinear/robust controllers based on stochastic
linear/nonlinear models aiming at more direct and efficient
compensation of model uncertainty and disturbances on oper-
ating conditions.

e Incorporation of dynamic behavior and uncertainty consid-
erations in the multiscale optimization problem formulation
and solution.



P.D. Christofides, A. Armaou / Computers and Chemical Engineering 30 (2006) 16701686 1685

e Applications of the stochastic model construction, control and
optimization methods to experimental thin film growth pro-
cesses, as well as other complex processes where stochastic
phenomena are important (e.g., quantum-dot formation).
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