
A

m
p
©

K

1

s
o
m
d
w
p
p
a
o
s
m
a
s
e
A
r
h
n
l
d
o

0
d

Computers and Chemical Engineering 30 (2006) 1670–1686

Control and optimization of multiscale process systems

Panagiotis D. Christofides a,∗, Antonios Armaou b

a Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
b Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, United States

Received 2 February 2006; received in revised form 9 May 2006; accepted 16 May 2006
Available online 14 July 2006

bstract
In this work, we present an overview of recently developed methods for control and optimization of complex process systems described by
ultiscale models. We primarily discuss methods developed in the context of our previous research work and use examples of thin film growth

rocesses to motivate the development of these methods and illustrate their application.
2006 Elsevier Ltd. All rights reserved.
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Over the last 10 years, increasingly tight product quality
pecifications have motivated extensive research on the devel-
pment of control and optimization methods for distributed and
ultiscale process systems using increasingly detailed process

escriptions. On one hand, for distributed process systems for
hich continuum laws are applicable, nonlinear distributed
arameter systems, such as nonlinear hyperbolic/parabolic
artial differential equations (PDEs), Navier–Stokes equations
nd population balance equations are employed for the design
f high-performance feedback controllers used to regulate
patial temperature and concentration profiles in advanced
aterials processing applications, achieve wave suppression

nd drag reduction in fluid dynamic systems and shape particle
ize distribution in particulate processes, respectively (see, for
xample, the special issues Christofides, 2002b; Christofides &
rmaou, 2005) and the books (Christofides, 2001, 2002a) for

epresentative results and references in these areas). On the other
and, for processes that involve coupling of macroscale phe-
omena with important phenomena at mesoscopic/microscopic

ength scales, multiscale systems coupling continuum-type
istributed parameter systems with molecular dynamics (MD)
r kinetic Monte-Carlo (MC/kMC) simulations are employed

∗ Corresponding author. Tel.: +1 310 794 1015; fax: +1 310 206 4107.
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ecause of their ability to describe phenomena which are
naccessible to continuum laws and equations.

An industrially important process where multiscale model-
ng is needed to adequately describe the coupling of macroscopic
nd microscopic phenomena is thin film growth. Thin films of
dvanced materials are currently used in a very wide range
f applications, e.g., microelectronic devices, optics, micro-
lectro-mechanical systems (MEMS) and biomedical products.
arious deposition methods have been developed and widely
sed to prepare thin films such as physical vapor deposition
PVD) and chemical vapor deposition (CVD). However, the
ependence of the thin film properties, such as uniformity,
omposition and microstructure, on the deposition conditions
s a severe constraint on reproducing the thin film’s perfor-

ance. Thus, real-time feedback control of thin film deposition,
ased on fundamental models, becomes increasingly important
n order to meet the stringent requirements on the quality of
hin films and reduce thin film variability. While deposition,
niformity and composition control can be accomplished on
he basis of continuum-type distributed parameter models (see,
or example, Christofides, 2001; Theodoropoulou, Adomaitis,

Zafiriou, 1999 for results on rapid thermal processing (RTP)
nd Armaou & Christofides, 1999; Ni et al., 2004, on plasma-
nhanced chemical vapor deposition (PECVD)), precise control

f thin film microstructure requires multiscale distributed mod-
ls that predict how the film state (microscopic scale) is affected
y changes in the controllable process parameters (macroscopic
cale).

mailto:pdc@seas.ucla.edu
dx.doi.org/10.1016/j.compchemeng.2006.05.025
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tion of the surface microstructure is available from the macro-
scopic model. Furthermore, the boundary conditions for the
mass transfer equation of the growing species depend on the
Fig. 1. Illustration of the thin film growth process.

In the remainder of this section, in order to discuss an example
f multiscale modeling and provide the necessary background
or presenting our methods for control and optimization of pro-
ess systems using multiscale models, we consider the growth
f a thin film from a fluid in a vertical, stagnation flow geome-
ry. The process is shown in Fig. 1. In this geometry, inlet fluid
ow forms a uniform boundary layer adjacent to the surface of

he substrate and precursor atoms diffuse through such a bound-
ry layer and deposit a thin film (Gadgil, 1993). Upon arrival at
he surface, the precursor atoms are adsorbed onto the surface.
ubsequently, adsorbed atoms may desorb to the gas phase or
igrate on the surface.
From a modeling point of view, the major challenge is the

ntegration of the wide range of length and time scales that the
rocess encompasses (Vlachos, 1997). Specifically, in the gas
hase, the processes of heat/mass transport can be adequately
odeled under the hypothesis of continuum, thereby leading

o PDE models for chamber temperature and species concentra-
ion. However, when the microstructure of the surface is studied,

icroscopic events such as atom adsorption, desorption and
igration have to be considered, and the length scale of interest

educes dramatically to the order of that of several atoms. Under
uch a small length scale, the continuum hypothesis is no longer
alid and deterministic PDEs cannot be used to describe the
icroscopic phenomena. Different approaches, such as Monte-
arlo simulation or molecular dynamics, should be employed

o model the evolution of surface microstructure.
Although different modeling approaches are needed to model

he macroscopic and microscopic phenomena of the pro-
ess, there are strong interactions between the macroscale and
icroscale phenomena. For example, the concentration of the

recursor in the inlet gas governs the rate of adsorption of atoms
n the surface, which, in turn, influences the surface roughness.
n the other hand, the density of the adatoms on the surface

ffects the rate of desorption of atoms from the surface to the gas
hase, which, in turn, influences the gas phase concentration of

he precursor. A multiscale model (Vlachos, 1997) is employed
n this work to capture the evolution of both macroscopic and

icroscopic phenomena of the thin film growth process as well
s their interactions. A set of PDEs derived from the mass,

r
m
t
e
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omentum and energy balances are used to describe the gas
hase dynamics. Kinetic MC simulation is employed to cap-
ure the evolution of surface microstructure. Furthermore, the
arameters of MC simulation such as the temperature and pre-
ursor concentration are provided by the solution of PDEs and
he results from the kinetic MC simulation are used to determine
he boundary conditions of the PDEs of the macroscopic model.
n the remainder of this section, we describe the model for the
as phase and the surface microstructure for the thin film growth
rocess of Fig. 1.

.1. Gas phase model

Under the assumption of axisymmetric flow, the gas phase
an be modeled through continuum type momentum, energy
nd mass balances as follows (Lam & Vlachos, 2001):

∂

∂τ

(
∂f

∂η

)
= ∂3f

∂η3 + f
∂2f

∂η2 + 1

2

[
ρb

ρ
−
(

∂f

∂η

)2
]

(1.1)

∂T

∂τ
= 1

Pr

∂2T

∂η2 + f
∂T

∂η
(1.2)

∂yi

∂τ
= 1

Scj

∂2yi

∂η2 + f
∂yi

∂η
. (1.3)

The following boundary conditions are used for η → ∞:

= Tbulk,
∂f

∂η
= 1, yj = yjb, j = 1, . . . , Ng (1.4)

nd for η → 0 (surface):

T = Tsurface, f = 0,
∂f

∂η
= 0

∂yj

∂η
= 0, for j �= growing

∂ygrowing

∂η
= Scgrowing(ra − rd)√

2aµbρb

(1.5)

here f is the dimensionless stream function, ra and rd are the
ates of adsorption and desorption, respectively, η the dimen-
ionless distance to the surface, ρ the density of the mixture, Pr
he Prandtl number, yj and Scj the mole fraction and Schmidt
umber of the species j, respectively, µb and ρb the viscosity
nd the density of the bulk, respectively, a the hydrodynamic
train rate and τ = 2at is the dimensionless time.

Although the macroscopic model describes the evolution of
he precursor concentration and temperature (which influence
he configuration of the growing surface), no direct informa-
ate of adsorption and desorption. Therefore, a microscopic
odel is necessary to model the surface microstructure and

o determine the boundary conditions of the mass transfer
quation.
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.2. Surface microstructure model

The thin film growth of Fig. 1 includes three processes: the
dsorption of atoms from the gas phase to the surface, the desorp-
ion of atoms from the surface to the gas phase and the migration
f atoms on the surface. In this study, we consider multilayer
rowth and assume that all the surface sites are available for
dsorption at all times, therefore, the adsorption rate is treated
s site independent. For an ideal gas, the adsorption rate is given
y the kinetic theory (Lam & Vlachos, 2001):

a = s0P√
2πmkTCtot

(1.6)

here s0 is the sticking coefficient, k the Boltzmann constant,
the partial pressure of the precursor, Ctot the concentration of

ites on the surface, m the molecular weight of the precursor
nd T is the gas phase temperature above the surface. The rate
f desorption of an atom depends on the atom’s local micro-
nvironment (i.e., interactions with nearest neighbors) and the
ocal activation energy. Under the consideration of only first
earest neighbor interactions, the desorption rate of an atom
rom the surface with n first nearest neighbors is:

d(n) = ν0 exp

(
−nE

kT

)
(1.7)

here E is the energy associated with a single bond on the surface
nd ν0 is the frequency of events, which is determined by the
ollowing expression:

0 = kd0 exp

(
−Ed

kT

)
(1.8)

here kd0 is an event frequency constant and Ed is the
nergy associated with desorption. Finally, surface migration
s modeled as desorption followed by re-adsorption (Gilmer &
ennema, 1972), and the migration rate is given by:

m(n) = ν0A exp

(
−nE

kT

)
(1.9)

here A is associated with the energy difference that an atom on
flat surface has to overcome in jumping from one lattice site

o an adjacent one and A is given as:

= exp

(
Ed − Em

kT

)
(1.10)

here Em is the energy associated with migration.
The formation of the thin film by adsorption, migration and

esorption is a stochastic process because: (a) the exact time
nd location of the occurrence of one specific surface micro-
rocess (adsorption, migration or desorption) are unknown and
b) the probability with which each surface micro-process may
ccur is only available. Therefore, the surface evolution model
hould be established based on probability theory. Specifically,

e treat the surface micro-processes as Poisson processes, which
eans that the following assumptions are made (Feller, 1975;
ichthorn & Weinberg, 1991; Gillespie, 1976; Melsa & Sage,
973): (1) the probability that k events occur in the time interval

h
m
i
d
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t, t + T) is independent of t, (2) the probability that k events
ccur in the time interval (t, t + T) is independent of the number
f events occurring in any nonoverlapping time interval, and
3) the probability that an event occurs in an infinitesimal time
nterval (t, t + dt) is equal to W dt (where W is the mean count
ate of the event), and the probability of more than one event
ccurring in an infinitesimal time interval is negligible.

Based on these three assumptions, the time evolution of prob-
bilities that the surface is in one specific configuration can be
erived. The configuration of a surface is characterized as the
eight of each surface atom at each surface site. If P(α, t) repre-
ents the probability that the system is in configuration α at time
, based on Assumptions 2 and 3 above, we have the following
quation for P(α, t + dt):

(α, t + dt) = P(α, t)P0α +
∑
β

P(β, t)P1β (1.11)

here P0α is the probability that no event occurs in the time
nterval (t, t + dt) given that the surface is in configuration α at
, P(β, t) is the probability that the surface is in configuration

at t and P1β is the probability that one event occurs in the
ime interval (t, t + dt) given that the surface is in configuration

at t, and the occurrence of this event results to a transition
rom configuration β to configuration α. P0α and P1β have the
ollowing expressions (a detailed proof can be found in Gillespie,
992). Specifically,

0α = 1 −
∑
β

Wβα dt (1.12)

here Wβα dt is the probability that an event occurs in the time
nterval (t, t + dt) which results in a transition from configuration

to a configuration β, therefore,
∑

βWβα dt is the probability
hat any one event occurs in the time interval (t, t + dt) provided
hat the surface configuration is α at t. Moreover,

1β = Wαβ dt (1.13)

here Wαβ dt is the probability that an event happens in the time
nterval (t, t + dt) and the occurrence of this event results to a
ransition from configuration β to configuration α. By substitut-
ng Eqs. (1.12) and (1.13) into Eq. (1.11) and setting dt → 0, we
btain a differential equation describing the time evolution of
he probability that the surface is in configuration α, Eq. (1.14):

dP(α, t)

dt
=
∑
β

P(β, t)Wαβ −
∑
β

P(α, t)Wβα. (1.14)

Eq. (1.14) is the so-called “master equation” (ME) for a
tochastic process. The ME has a simple, linear structure, how-
ver, it is difficult to write the explicit mathematical form of Eq.
1.14) for any realistic system because the number of the possi-
le states is extremely large for most systems of a realistic size.
or example, for a system with 10 × 10 sites and a maximum

eight of 1, the number of configurations is 2100 ≈ 1030. This
akes the direct solution of Eq. (1.14), for any system of mean-

ngful size, using numerical methods for integration of ordinary
ifferential equations (e.g., Runge–Kutta) impossible.
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Monte-Carlo techniques provide a way to obtain unbiased
ealizations of a stochastic process, which is consistent with
he ME. The consistency of the Monte-Carlo simulation to the

E is based on the fact that in a Monte-Carlo simulation, a
ime sequence of Monte-Carlo events is constructed following

probability density function which is derived based on the
ame assumptions (Assumptions 1–3 above) as those used in the
erivation of the master equation (Gillespie, 1976). A Monte-
arlo event is characterized by both the type of the event and the

ite in which the event is executed. We use e(x; i, j) to represent a
onte-Carlo event of type x executed on the site (i, j) and N × N

s the size of the lattice. The sequence of Monte-Carlo events can
e constructed based on the probability density function, F(τ,
). In particular, F(τ, e)dτ is the probability at time t that event e
ill occur in the infinitesimal time interval (t + τ, t + τ + dτ) and

an be computed by:

(τ, e) = We exp(−Wtotτ). (1.15)

Monte-Carlo simulation constructs the sequence of events
ollowing the probability density function shown in Eq. (1.15).
here are many Monte-Carlo algorithms available to simulate
stochastic dynamic process. In the following calculations, the
inetic Monte-Carlo simulation algorithm developed by Vlachos
1997) is used. This algorithm is a modification of the so-called
direct” method developed by Gillespie (1976). Specifically,
nce the lattice is set and the probabilities of the three events
re determined based on the corresponding rate expressions, a
inetic Monte-Carlo simulation is executed as follows: first, a
andom number is generated to select an event to be run based
n the following probability:

(e|τ) = We

Wtot
(1.16)

hen, a second random number is generated to select the site from
he list of all available sites where the chosen event will be exe-
uted. This algorithm guarantees that every trial is successful and
s efficient compared to traditional null event algorithms (Reese,
aimondeau, & Vlachos, 2001). Upon an executed event, a time

ncrement dτ is computed by Fichthorn and Weinberg (1991) and
am and Vlachos (2001):

τ = − ln ξ

ra × NT + ν0(1 + A)
∑5

m=1Nm exp
(−mE

kT

) (1.17)

here ξ is a random number in the (0,1) interval, NT the total
umber of sites on the lattice and Nm is the number of atoms
hat have m neighbors on the surface.

In the remainder of this manuscript, we present an overview
f recently developed methods for control and optimization of
omplex process systems on the basis of multiscale models. We
ill begin with control methods which directly utilize kinetic
onte-Carlo models, continue with results on the construction
f closed-form stochastic PDEs from kinetic Monte-Carlo data
nd discuss their use in model-based predictive control and close
ith a method for optimization of process systems involving
ultiscale objectives.

l

u
a
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. Control using kinetic Monte-Carlo models

Methodologies for surface properties (e.g., surface rough-
ess) estimation and control using kinetic Monte-Carlo models
ave recently been developed in Lou and Christofides (2003a,b)
nd Ni and Christofides (2005b) and have been successfully
pplied (Lou & Christofides, 2004) to control surface roughness
n a GaAs deposition process using experimentally determined

odel parameters. Furthermore, a method to construct reduced
rder approximations of the master equation was also reported in
allivan and Murray (2004) and Gallivan et al. (2004). Surface

oughness is a property of interest from a control point of view
ince it directly influences device properties. In this manuscript,
he roughness, r, is represented by the number of broken bonds
n the surface (Raimondeau & Vlachos, 2000):

=

∑
(|hi+1,j − hi,j| + |hi−1,j − hi,j|
+|hi,j+1 − hi,j| + |hi,j−1 − hi,j|)

2 × N × N
+ 1 (2.18)

here N × N is the dimension of the square lattice and hi,j is the
umber of atoms at site (i, j). For the thin film growth process
f Fig. 1, the control problem is to achieve a desired surface
oughness level by manipulating the substrate temperature. To
ddress this problem, we need to develop an estimation scheme
hat will utilize roughness estimates obtained at discrete time
nstants (sampling times) to provide estimates of the surface
oughness for all times. We present an estimation scheme which
mploys kinetic Monte-Carlo simulations of the surface together
ith roughness measurements obtained at discrete time instants

o produce estimates of the surface roughness for all times. The
asic idea is to construct a bank of ‘parallel running’ kinetic
onte-Carlo simulators of the surface based on small lattice size
odels to capture the dominant roughness evolution and utilize

he available surface roughness measurements to improve upon
he predictions of the kinetic Monte-Carlo simulators to obtain
ccurate surface roughness estimates.

Specifically, in the kinetic MC simulation, the size of the lat-
ice influences the accuracy of the results and the computational
emand. Roughly speaking, the computational complexity of
he algorithm we adopt in this work is O(N4) and the magnitude
f the fluctuation in the solution is O(1/N2) where N is the size
f the lattice. The fourth-order dependence on computational
omplexity and the second-order dependence of fluctuations on
he size of the lattice leave room for reducing the solution time
ith relatively small loss of accuracy. In our simulations, when

he size of the lattice is reduced to 30 × 30, the solution time of
he kinetic Monte-Carlo simulation is comparable to the real-
ime process evolution and the average values of the surface
oughness approximate well the average values of these vari-
bles, which are obtained by running the kinetic Monte-Carlo
imulation on a 120 × 120 lattice (this is a sufficiently large lat-
ice to ensure simulation results which are independent of the

attice size).

However, the outputs from a kinetic Monte-Carlo simulation
sing a 30 × 30 lattice contain significant stochastic fluctuations,
nd thus, they cannot be directly used for feedback control (such
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ig. 2. Surface roughness from a kinetic Monte-Carlo simulation which uses a
0 × 20 lattice.

n approach would result to significant fluctuations of the control
ction which could perturb unmodeled (fast) process dynamics
nd should be avoided).

The fluctuations on the values of the outputs obtained from
he kinetic Monte-Carlo simulation using the 30 × 30 lattice can
e reduced by independently running several small lattice kinetic
onte-Carlo simulations with the same parameters and averag-

ng the outputs of the different runs. Fig. 2 shows the surface
oughness obtained from a Monte-Carlo simulation which uses
20 × 20 lattice. Fig. 3 shows the surface roughness obtained

rom the computation of the average of six independent kinetic
onte-Carlo simulations which utilize a 20 × 20 lattice. These

esults show that when the outputs from multiple kinetic Monte-
arlo simulations that use small lattices are averaged, surface

oughness fluctuations can be significantly reduced.
The predicted profiles of surface roughness, which are

btained from kinetic Monte-Carlo simulation based on mul-

iple small lattice models, still contain stochastic fluctuations
nd are not robust (due to the open-loop nature of the calcu-
ation) with respect to disturbances and variations in process

ig. 3. Surface roughness from the computation of the average of six indepen-
ent kinetic Monte-Carlo simulations which utilize a 20 × 20 lattice.
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arameters. To alleviate these problems, we combine the small
attice kinetic Monte-Carlo simulators with an adaptive filter, to
eject the stochastic fluctuations on the surface roughness and
rowth rate profiles, and a measurement error compensator to
mprove the estimates of these variables using on-line measure-

ents. To simplify the notation of the mathematical formulas,
e only present the general structure of the adaptive filter and
f the measurement error compensator. Specifically, the adap-
ive filter is a second-order dynamical system with the following
tate-space representation:

dŷr

dτ
= y1

dy1

dτ
= K

τI

(yr − ŷr) − 1

τI
y1

(2.19)

here yr is the output of the kinetic Monte-Carlo simulation
ased on multiple small lattice models, ŷr the filter output, K the
lter gain and τI is the time constant. To accelerate the response
f the filter and avoid large overshoot, τI = 0.5/K. To achieve both
ast tracking of the dynamics of the outputs and efficient noise
ejection, the gain of the filter is adaptively adjusted according
o the following law:

(τ) = K0
|f τ

τ−
τyr(t) dt − f τ−
τ
τ−2
τyr(t) dt|


τ2 + Ks (2.20)

here K0 is a constant, Ks the steady state gain for the adap-
ive filter and 
τ is the dimensionless time interval between
wo updates of K. Although a better tracking performance is
xpected when a small 
τ is used, a very small 
τ will intro-
uce the effect of stochastic roughness fluctuations on the filter
ain and estimates and should be avoided; the specific value
f the appropriate 
τ is a function of the significance of the
tochastic roughness fluctuations and its computation can be
chieved through numerical simulation of the estimator for dif-
erent values of 
τ. The measurement error compensator uses
he available on-line measurements to produce improved esti-

ates of the surface roughness. The state-space representation
f the measurement error compensator is:

de

dτ
= Ke(yh(τmi ) − ŷ(τmi )); τmi < τ ≤ τmi+1

i = 1, 2, . . .

(2.21)

nd the final roughness estimates are computed by:

ˆ = ŷr + e. (2.22)

In the above equations, Ke is the compensator gain, e the
stimated model error, which is used to compensate the model
utput, ŷ the roughness estimates, ŷr the filtered output from
kinetic Monte-Carlo simulator which uses a small lattice (or
ultiple small lattice models) and yh is the output of a kinetic
onte-Carlo simulator which uses the large lattice (in an exper-

mental set-up yh could be obtained from the measurement
ensor). Since the roughness measurements are only available at

iscrete points in time τm = [τm1 , τm2 , . . .], the right-hand side
f Eq. (2.21) is computed at the time a roughness measurement
s available and is kept in this value in the time interval between
wo available roughness measurements.
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ig. 4. Surface roughness profiles from the estimator (solid line) and from a
inetic Monte-Carlo simulation which uses a 120 × 120 lattice model (dashed
ine).

The combination of the adaptive filter and the measurement
rror compensator functions as an estimator, which is capable to
ccurately predict the evolution of surface roughness and growth
ate during the thin film growth by using measurements of the
recursor concentration above the substrate. In this work, we
ssume that measurements of precursor concentration above the
ubstrate are available; when such measurements are not avail-
ble, a state estimator can be constructed on the basis of the PDE
odel that describes the gas phase species concentrations and

he temperature to obtain estimates of this quantity (for estima-
or design methods for PDE systems, see Christofides, 2001).
ig. 4 shows the surface roughness profile computed by the esti-
ator, which uses a kinetic Monte-Carlo simulator based on

ix 20 × 20 lattice models (solid lines); it is compared with the
urface roughness profile obtained from a kinetic Monte-Carlo
imulator which uses a 120 × 120 lattice model. The sampling
ime τmi+1 − τmi = 3. The results clearly show that the devel-
ped estimator can accurately predict the evolution of the surface
oughness; this is the result of the use of kMC models in the
stimation scheme coupled with measurements at distinct time
nstants to correct for model error. Note also that the developed
stimator can be used for real-time feedback control since, the
omputational time needed to run kinetic Monte-Carlo simula-
ion based on six 20 × 20 lattice models is comparable to the
eal-time process evolution. Finally, the reader may refer to Lou
nd Christofides (2003a) for simulation results that demonstrate
hat a proportional-integral (PI) controller that achieves very
ood performance on the basis of continuous roughness mea-
urements exhibits very poor closed-loop performance when
easurements at distinct time instants are used; in the same sim-

lation set-up, the combination of the above estimation scheme
ith the PI controller allows achieving excellent closed-loop
erformance.

Referring to the selection of the lattice size, it is important

o point out that while kinetic Monte-Carlo simulation based
n multiple 20 × 20 lattice models can adequately capture the
volution of the surface roughness in the specific thin film growth
roblem under consideration, the dimension of the small lattice
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n general should be chosen so that the interactions between the
urface atoms are adequately captured, and also that it is large
nough to describe all the spatio-temporal phenomena occurring
n the surface (e.g., cluster formation). Furthermore, the small
attice should be chosen to provide accurate estimates of the
esired properties to be controlled. For example, in the case of
urface roughness, this quantity is defined as the average number
f broken bonds for every surface atoms and the microscopic unit
nvolved is an individual atom. When a small 20 × 20 lattice is
sed, the computation of surface roughness involves hundreds of
urface atoms, which is adequate to obtain the expected value.
owever, when the property of interest is, for example, step
ensity, a larger lattice is needed to obtain a convergent average
alue from the kinetic Monte-Carlo simulation.

We now turn our attention to the design and evaluation of
multivariable feedback control structure, based on kinetic
onte-Carlo models, used to control the surface roughness and

rowth in the thin film growth process of Fig. 1 by manipulating
he substrate temperature and inlet precursor concentration. A
iagram of the multivariable control system using the estima-
or/controller structure with interaction compensation is shown
n Fig. 5. G1(s) is the transfer function between the substrate tem-
erature and the growth rate and G2(s) is the transfer function
etween the inlet precursor mole fraction and the growth rate.
tep tests were used to identify the expression and parameters
f G1(s) and G2(s).

A closed-loop system simulation is performed to evaluate
he effectiveness of the multivariable estimator/control struc-
ure with interaction compensation. Initially, the substrate tem-
erature is T = 800 K and the inlet precursor mole fraction is
.0 × 10−5; these conditions correspond to a growth rate of about
80 ML/s and a surface roughness of about 1.8. The proposed
ultivariable control system (Fig. 5) is applied to the process to

egulate the growth rate and surface roughness to the desired set-
oint values. The controller successfully drives both the surface
oughness and the growth rate to the desired set-point values; the
eader may refer to Lou and Christofides (2003b) for a detailed
imulation study. Fig. 6 shows the surface roughness under mul-
ivariable control with interaction compensation.

. Control using stochastic PDEs

While it is possible in certain examples to use kinetic Monte-
arlo models for real-time estimation and control, there are
any applications where closed-form models are needed, owing

o their computational efficiency, to carry out system-level anal-
sis as well as design and implementation of real-time model-
ased feedback control systems. Motivated by this, several meth-
ds were reported in Armaou, Siettos, & Kevrekidis (2004),
rmaou, Kevrekidis, & Theodoropoulos (2005), Mastny et al.

2005) and Siettos et al. (2003) to identify linear deterministic
odels from outputs of kinetic Monte-Carlo simulators which
ere subsequently used to design controllers using linear control
heory to control macroscopic variables that are low statistical
oments of the microscopic distributions (e.g., surface cover-

ge, which is the zeroth moment of adspecies distribution on a
attice). This approach was recently extended to the construc-
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Fig. 5. Diagram of multivariable feedback

ion of nonlinear models (Armaou, 2005) and the subsequent
esign of nonlinear controllers (Armaou, 2005; Siettos et al.,
005). In this direction, other results also include the construc-
ion of linear/nonlinear deterministic models from input/output
ata using system identification techniques (Drew et al., 2004;
usli et al., 2005; Wolfrum et al., 2005). However, to control
igher statistical moments of the microscopic distributions, such
s the surface roughness (the second moment of height distribu-
ion on a lattice), or even the microscopic configuration (such as
he surface morphology), linear or nonlinear deterministic mod-
ls may not be sufficient, because the effect of the stochastic
ature of the microscopic processes becomes very significant
nd must be addressed both in the model construction and con-
roller design. In such a case, stochastic differential equation

odels should be used. It turns out that there is a significant
ody of literature in the area of statistical physics (e.g., Marsili,

aritan, Toigo, & Banavar, 1996; Park, Kim, & Park, 2002;
vedensky, 2003) focusing on the construction of stochastic
DE models for thin film growth processes by appropriately
veraging microscopic process rules in the context of discrete

ig. 6. Closed-loop surface roughness under multivariable feedback
ontrol—surface roughness set-point value is 1.5.
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ol system with interaction compensation.

attice models. Specifically, stochastic PDE models have been
eveloped to describe the evolution of the height profile for
urfaces in certain physical and chemical processes such as
pitaxial growth (Vvedensky, Zangwill, Luse, & Wilby, 1993)
nd ion sputtering (Lauritsen, Cuerno, & Makse, 2003). Tak-
ng advantage of these results, we (Lou & Christofides, 2005b)
resented a method for feedback control of surface roughness
n a thin film growth process whose surface height fluctuation
an be described by the Edwards–Wilkinson equation (Edwards

Wilkinson, 1982), a second-order stochastic parabolic PDE
see also Lou & Christofides, 2005a, for results on linear covari-
nce control of surface roughness in a sputtering process using
he stochastic Kuramoto–Sivashinsky equation). Specifically, a
eedback controller was designed based on the stochastic PDE
odel and successfully applied to the kMC model of the deposi-

ion process regulating the surface roughness to desired values.
owever, the construction of stochastic PDE models for thin
lm growth processes directly based on microscopic process
ules is a very difficult task. This issue has prohibited the devel-
pment of stochastic PDE models, and subsequently the design
f model-based feedback control systems, for realistic deposi-
ion processes which are, in general, highly complex.

.1. Construction of stochastic PDEs

Motivated by this practical problem, we recently presented
Ni & Christofides, 2005a) a systematic method for the con-
truction of linear stochastic PDE models for feedback control
f surface roughness in thin film deposition. To present the essen-
ial components of this method, we focus on a thin film growth
rocess taking place on a one-dimensional lattice (extensions
o two-dimensions are notationally involved and can be found

n Ni & Christofides (2005c)). Without any a priori knowledge
f the deposition process, we assume that there exists a one-
imensional linear stochastic PDE of the following general form
hat can adequately describe the evolution of the surface of the
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hin film during the deposition:

∂h

∂t
= c + c0h + c1

∂h

∂x
+ c2

∂2h

∂x2 + · · · + cw

∂wh

∂xw
+ ξ(x, t)

(3.23)

here x ∈ [0,π] is the spatial coordinate, t is the time, h(x, t) is
he height of the surface at position x and time t, and ξ(x, t) is a
aussian noise with zero mean and covariance:

ξ(x, t)ξ(x′, t′)
〉 = ς2δ(x − x′)δ(t − t′) (3.24)

here δ(·) is the Dirac function. Furthermore, the coefficients c
nd cj in Eq. (3.23) and the parameter ς2 in Eq. (3.24) depend
n the process parameters (gas flow rates, substrate temperature,
tc.) pi(t):

c = C[p1(t), p2(t), . . . , pd(t)]

cj = Cj[p1(t), p2(t), . . . , pd(t)]

ς2 = Cξ[p1(t), p2(t), . . . , pd(t)]

, j = 0, . . . , w (3.25)

here C(·), Cj(·) and Cξ(·) are nonlinear functions to be deter-
ined.
The stochastic PDE of Eq. (3.23) is subjected to the following

eriodic boundary conditions:

∂jh

∂xj
(0, t) = ∂jh

∂xj
(π, t), j = 0, . . . , w − 1 (3.26)

nd the initial condition:

(x, 0) = h0(x) (3.27)

To study the dynamics of Eq. (3.23), we initially consider the
igenvalue problem of the linear operator of Eq. (3.23), which
akes the form:

Aφn(x) = c0φn(x) + c1
dφn(x)

dx
+ c2

d2φn(x)

dx2

+ · · · + cw

dwφn(x)

dxw
= λnφn(x)

djφn

dxj
(0) = djφn

dxj
(π), j = 0, . . . , w − 1,

n = 1, . . . ,∞

(3.28)

hereλn denotes an eigenvalue andφn denotes an eigenfunction.
direct computation of the solution of the above eigenvalue

roblem yields:

λn = c0 + I2nc1 + (I2n)2c2 + · · · + (I2n)wcw

φn(x) =
√

1

π
eI2nx, n = 0, ±1, . . . ,±∞

(3.29)

here λn denotes the nth eigenvalue, φn(x) denotes the nth eigen-
unction and I = √−1.

To present the method that we use for parameter identification
f the stochastic PDE of Eq. (3.23), we first derive an infinite-

rder stochastic ODE representation of Eq. (3.23) using modal
ecomposition and parameterize the infinite-order stochastic
DE system using kMC simulation. We first expand the solution
f Eq. (3.23) in an infinite series in terms of the eigenfunctions of

t
z

emical Engineering 30 (2006) 1670–1686 1677

he operator of Eq. (3.28) as follows (i.e., the Fourier expansion
n the complex form):

(x, t) =
∞∑

n=−∞
zn(t)φn(x) (3.30)

here zn(t) are time-varying coefficients. Substituting the above
xpansion for the solution, h(x, t), into Eq. (3.23) and taking the
nner product, the following system of infinite stochastic ODEs
s obtained:

dzn

dt
= λnzn + czn + ξn(t), n = 0, ±1, . . . , ±∞ (3.31)

nd the initial conditions:

n(0) = zn0, n = 0, ±1, . . . ,±∞ (3.32)

here czn = c
∫ π

0 φn(x) dx (apparently cz0 = c
√

π and czn = 0 ∀
�= 0), ξn(t) = ∫ π

0 ξ(x, t)φn(x) dx and zn0 = ∫ π

0 h0(x)φn(x) dx.
The covariances of ξn(t) can be computed as 〈ξn(t)〉 = 0 and

ξn(t)ξ∗
n(t′)

〉 = ς2δ(t − t′) (ξ∗
n is the complex conjugate of ξn,

he superscript star is used to denote complex conjugate in the
emainder of this manuscript). We note that ξn(t) is a complex
aussian random variable and the probability distribution func-

ion of the Gaussian distribution, P(ξn, t), on the complex plane
ith zero mean and covariance ς2δ(t − t′) is defined as follows:

(ξn, t) = 1√
2πςδ(t − t′)

eξnξ∗
n/2ς2δ(t−t′) (3.33)

To parameterize this system of infinite stochastic ODEs, we
rst derive the analytic expressions for the statistical moments
f the stochastic ODE states, including the expected value and
ovariance. By comparing the analytical expression to the sta-
istical moments obtained by multiple kMC simulations, the
arameters of the stochastic ODE system (i.e., λn and ς) can
e determined.

The analytic solution of Eq. (3.31) is obtained as follows to
erive the expressions for the statistical moments of the stochas-
ic ODE states:

n(t) = eλntzn0 + (eλnt − 1)czn

λn

+ θn(t) (3.34)

here θn(t) is a complex random variable of normal distribution
ith zero mean and covariance

〈
θn(t)θ∗

n(t)
〉 = ς2(e(λn+λ∗

n)t −
/λn + λ∗

n). Therefore, the expected value (the first stochastic
oment) and the covariance (the second stochastic moment) of

tate zn can be expressed as follows:

〈zn(t)〉 = eλntzn0 + (eλnt − 1)czn

λn〈
zn(t)z∗

n(t)
〉 = ς2 e(λn+λ∗

n)t − 1

λn + λ∗
n

+ 〈zn(t)〉 〈zn(t)〉∗ (3.35)
n = 0, ±1, . . . ,±∞.

Eq. (3.35) holds for any initial condition zn0. Since we are able
o choose any initial thin film surface for simulation, we choose
n0 = 0 (i.e., the initial surface is flat, h(x, 0) = 0) to simplify our
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alculations. In this case, Eq. (3.35) can be further simplified as
ollows (note that czn = 0, ∀n �= 0):

〈zn(t)〉 = 0〈
zn(t)z∗

n(t)
〉 = ς2 e(λn+λ∗

n)t − 1

λn + λ∗
n

= ς2 e2Re(λn)t − 1

2Re(λn)

n = ±1, . . . ,±∞

(3.36)

here Re(λn) denote the real part of λn, and for z0(t), it follows
rom Eq. (3.35) with λ0 = 0 that

〈z0(t)〉 = lim
λ0→0

(eλ0t − 1)cz0

λ0
= tcz0 = t

√
πc〈

z2
0(t)
〉 = ς2t + t2πc2.

(3.37)

It can be seen in Eq. (3.36) that the statistical moments of each
tochastic ODE state depend only on the real part of the corre-
ponding eigenvalue, and therefore, to determine the imaginary
art of the eigenvalue we construct an extra equation related to
he expected value of Re[λn(t)]2 (not shown here due to space
imitations). We note that �n would be a complex number if
he linear operator A is not self-adjoint i.e., for example, when
dd-partial-derivatives are present in the stochastic PDE see
Eq. (3.29)).

Based on the above results, we proposed a systematic
rocedure to construct linear stochastic PDEs for the deposition
rocess based on a kinetic Monte-Carlo code used to simulate
he deposition process and generate surface snapshots. The
roposed procedure includes the following steps: first, we
esign a set of simulation experiments that cover the complete
ange of process operation; second, we run multiple simulations
or each simulation experiment to obtain the trajectories of the
rst and second statistical moments of the states (i.e., Fourier
oefficients) computed from the surface snapshots; third, we
ompute the eigenvalues of the linear operator and covariance
f the Gaussian noise based on the trajectories of the statistical
oments of the states for each simulation experiment, and

etermine the model parameters of the stochastic PDE (i.e., the
re-derivative coefficients and the order of the stochastic PDE);
nally, we investigate the dependence of the model parameters
f the stochastic PDE on the process parameters and determine
he least-square-optimal form of the stochastic PDE model
ith model parameters expressed as functions of the process
arameters.

Because there are only two process parameters considered
n the deposition process studied in this work, the growth rate

and the substrate temperature T, the simulation experiment
esign is straightforward. Specifically, different W values and T
alues are evenly selected from the range of process operation
f interest and simulation experiments are executed with every
elected W value for each selected T value. Therefore, we start
ur demonstration of the model construction methodology with
he identification of the eigenvalues and covariance. Also, we
ote that the trajectories of the statistical moments for each sim-

lation experiment are computed based on 100 simulation runs
aking place with the same process parameters.

Since for a flat initial surface, the covariance of each state
zn(t)z∗

n(t)
〉

should be able to be predicted by Eq. (3.36), there-

t
i
s
c

Fig. 7. Covariance profiles of z10, z20, z30 and z40.

ore, we can fit ς2 and Re(λn) in Eq. (3.36) for the profile of
zn(t)z∗

n(t)
〉
. In order to obtain the profile of

〈
zn(t)z∗

n(t)
〉

we
eed to generate snapshots of the thin film surface during each
eposition simulation and compute the values of zn(t). Since the
attice consists of discrete sites, we let h(kL, t) be the height
rofile of the surface at time t with lattice constant L (k denotes
he coordinate of a specific surface site), and compute zn(t) as
ollows:

n(t) =
kmax∑
k=0

h(kL, t)
∫ (k+1)L

kL

φ∗
n(x) dx (3.38)

here kmaxL = π (i.e., the lattice is mapped to the domain [0,π]).
ubstituting Eq. (3.29) into Eq. (3.38), we can derive the fol-

owing expression for zn(t):

zn(t) =
kmax∑
k=0

h(kL, t) e−2kLnI

2
√

πnI
(1 − e−2LnI )

n = ±1, . . . ,±∞
(3.39)

nd for z0(t), we have,

0(t) =
kmax∑
k=0

h(kL, t)
L√
π

= t
√

πW. (3.40)

Fig. 7 shows the typical covariance profiles of different states
n a growth process. It can be seen that despite the very differ-
nt time scales of the states, our method can still generate very
mooth profiles for both the fast states (such as z40, whose time
cale is less than 50 s) and the slow states (such as z10, whose
ime scale is larger than 1000 s).

Fig. 8 shows the eigenvalues identified from thin film depo-
itions occurring under the same operating conditions but sim-
lated with different lattice size (we note that the identified
igenvalues are considered real since the imaginary part of the
igenvalues identified turned out to be very small). It can be seen

hat the identified spectra are very close to each other when n
s rescaled with the corresponding lattice size. This is expected,
ince, φn(x) is a basis of the domain of operator A, and is a
omplex function of the frequency n. Accordingly, n/kmax is the
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Fig. 9. Expected surface roughness profiles generated by kMC simulation
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temperatures, for different growth rates. The reader may refer
to Ni and Christofides (2006) for additional model validation
results. Of course, the ultimate test of the validity of the model
ig. 8. Eigenvalue spectra of the infinite stochastic ODE systems identified
rom the kMC simulation of the deposition process with different lattice size:

max = 100, 500, 1000 and 2000.

ength scale of the surface fluctuation described by φn(x) when
lattice of size kmax is mapped to the domain of [0,π] (we note

hat, for the same reason, the covariance values should be scaled
ith the inverse of the lattice size, 1/kmax, in order to carry out
meaningful comparison).

It can also be seen in Fig. 8 that the eigenspectra are very close
o the parabolic reference curve, which implies that a second-
rder stochastic PDE system of the following form would be able
o describe the evolution of the surface height of this deposition
rocess:

∂h

∂t
= c + c2

∂2h

∂x2 + ξ(x, t) (3.41)

n which c, c2 and the covariance of the Gaussian noise ξ, ς, all
epend on the microscopic processes and operating conditions.

We proceed now with the derivation of the parameters of the
tochastic PDE of Eq. (3.41). From Eqs. (3.37) and (3.40), we
an see that c = W for all cases. However, c2 and ς2 identified for
ifferent deposition settings can be very different, therefore, we
eed to investigate their dependence on the deposition parame-
ers to obtain their empirical explicit expressions. c2 and ς2 are
valuated for assorted deposition conditions and a lattice size of
000 (i.e., kmax = 1000) is used for all the simulation runs in our
tudy. To derive explicit expressions for c2 and ς2 as functions
f T and W, we evaluate these values for different T and W and
he results are shown below:

c2(T, W) = e−32.002+0.0511T−0.1620W

k2
max

ς2(T, W) = 5.137 × 10−8T + 3.2003 × 10−3W.

(3.42)

Therefore, the linear stochastic PDE model identified for the
eposition process is as follows:

∂h
(

e−32.002+0.0511T−0.1620W
)

∂2h
∂t
= W +

k2
max ∂x2 + ξ(x, t);

∂h

∂x
(0, t) = ∂h

∂x
(π, t), h(0, t) = h(π, t) (3.43)

F
a
t
k

nd stochastic PDE model for a 1000 s deposition with substrate tempera-
ure T = 550 K, thin film growth rate W = 0.1 monolayer s−1 and lattice size

max = 2000.

here 〈ξ(x, t)ξ(x′, t′)〉 = (5.137 × 10−8 T + 3.2003 × 10−3 W)δ
x − x′)δ(t − t′).

We now proceed with the validation of the stochastic PDE
odel of the thin film deposition process (Eq. (3.43)). Validation

xperiments are conducted for a number of deposition conditions
hich have not been used for the model construction.
Fig. 9 shows the expected roughness profile of a deposition

ith substrate temperature T = 550 K and thin film growth rate
= 0.1 monolayer s−1; Fig. 10 shows the roughness profile of

deposition with substrate temperature T = 700 K and thin film
rowth rate W = 2.5 monolayer s−1; we can see that the linear
tochastic PDE model constructed for the deposition process
s also very consistent with the kinetic Monte-Carlo simulation
n terms of surface roughness, at both low and high substrate
ig. 10. Expected surface roughness profiles generated by kMC simulation
nd stochastic PDE model for a 400 s deposition with substrate tempera-
ure T = 700 K, thin film growth rate W = 2.5 monolayer s−1 and lattice size

max = 2000.
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Fig. 11. Block diagram of the closed-loop system.

s the closed-loop performance achieved by the controller that is
esigned on the basis of this model and this is discussed in the
ext subsection.

.2. Predictive control using stochastic PDEs

We now proceed with the design of the feedback controller.
ince the thin film deposition is a batch process, the control
bjective is to control the final surface roughness of the thin film
o a desired level at the end of each deposition run by explicitly
ccounting for the presence of constraints on the manipulated
nput (an important problem that cannot be addressed by classi-
al (PID) control schemes). Therefore, we use an optimization-
ased control problem formulation. Fig. 11 shows the block
iagram of the closed-loop system. When a real-time surface
rofile measurement is obtained, the states of the infinite stochas-
ic ODE system, zn, are computed. Then, a substrate temperature

is computed based on states zn and the stochastic PDE model
nd applied to the deposition process. The substrate is held at
his temperature for the rest of the deposition until a different
alue is assigned by the controller. The value of T is determined
t each time t by solving, in real-time, an optimization problem
inimizing the difference between the estimated final surface

oughness and the desired level.
A standard procedure based on the active set method is used to

olve the optimization problem. A kMC code with a lattice size
max = 1000 is used to simulate the thin film deposition process,
nd the substrate temperature is restricted within 300–900 K.
he measurement interval, as well as the control interval, is set

o be 1 s. We limit the maximum number of states to be used (in
ur case, to m = 500) to guarantee the maximum possible compu-
ation time for each control action is within certain requirement,
owever, for most of the time the number of states needed by
he controller is much smaller.

Fig. 12 shows the surface roughness and substrate tempera-
ure profiles of a closed-loop deposition process with thin film
rowth rate W = 0.5 monolayer s−1. The control objective is to

rive the final surface roughness of the thin film to 1.0 mono-
ayer at the end of a 200 s deposition. It can be seen that the
nal surface roughness is controlled at the desired level while
n open-loop deposition with the same initial deposition con-

s
�

ig. 12. Surface roughness and substrate temperature profiles of a 200 s closed-
oop deposition process with thin film growth rate W = 0.5 monolayer s−1 and
nal roughness setpoint rset = 1.0 monolayer.

ition would lead to a 100% higher final surface roughness as
hown in Fig. 12. It is important to note that while the closed-loop
rofiles of Fig. 12 have been obtained under the assumption of
vailability of surface height profile measurements (state feed-
ack control), the stochastic PDE model of Eq. (3.43) can be
sed as the basis for the design of a state estimator that employs
n-line surface height measurements at specific spatial points to
stimate the entire surface height profile and the corresponding
oughness.

. Optimization using multiscale models

.1. Problem formulation and solution method

In this section, we discuss a method (Varshney & Armaou,
005a,b) for optimization of process systems involving multi-
cale optimization objectives. Consider a process whose domain

comprises of a subdomain �1 in which a closed-form macro-
copic process description is available and a subdomain �2 in
hich a microscopic process description is available. Mathe-
atically, the multiscale process can be represented as:

0 = A(x) + f (x, d), on �1

d =
n∑
i

di(z)(H(t − t̄i) − H(t − t̄i+1))
(4.44)

xm(ti) = �(xm(ti−1), δt, x|�), on �2

δt = ti − ti−1
(4.45)

(
x,

dx

dη

)
= 0, on �\� (4.46)

(
x̄s, x|�,

dx
)

= 0, on �. (4.47)
Eqs. (4.44) and (4.45) represent the macroscopic and micro-
copic descriptions of the process over the respective domains

1 and �2. It is assumed that �1 and �2 do not overlap and



nd Ch

s
p
s
a
o
s
n
t
r
a
v
e
a
I
i
c
i
c
w
t
t
t
t
c
d
r
a
T
s
l
t
x

E
2

w
t
l
w
i
m

d
s
t
g
d

i
a
b
r
b
t
o
2
e
(
c
p

fi
2
C
t
u
i
a
A
V
s
f
t
b
t
s
o

b
T
s
t
s
b
s
t
i
o
t
t
g

c
i
d

(

(

P.D. Christofides, A. Armaou / Computers a

hare a common interface �, and � = �1 ∪ �2 spans the whole
rocess domain. x(z) ∈ R

N denotes the vector of macroscopic
tate variables, xm(ti) is the vector of microscopic state vari-
bles at time-instant ti, z = [z1, z2, z3] ∈ Ω1 ⊂ R

3 is the vector
f spatial coordinates and � is the boundary of the macro-
copic domain �1. A(x) is a second-order dissipative, possibly
onlinear, spatial differential operator, f(x, d) is a nonlinear vec-
or function which is assumed to be sufficiently smooth with
espect to its arguments, d ∈ R

p is the vector of design vari-
bles and t̄i is the time-instant when the design variables are
aried. g(x(dx/dη)), defined on the boundary �\� is a nonlin-
ar vector function which is assumed to be sufficiently smooth,
nd η is the spatial direction perpendicular to the boundary �.
t is assumed that the time horizon over which all the dynam-
cs of the eigenmodes of Eq. (4.44) relax, tsi , is negligible in
omparison to δt̄i = t̄i+1 − t̄, implying that the process in �1
s operating under quasi-steady-state conditions. Function, �,
an be thought of as a black-box timestepper, which interacts
ith the macroscopic process model via an input/output struc-

ure and may be unknown in closed-form. It uses xm(ti−1) and
he macroscopic state at the interface � as input, evolves over the
ime-interval δt, and produces the state xm(ti). The vector func-
ion h(x̄s, x|�, dx/dη) represents the boundary conditions at the
ommon interface between the macroscopic and microscopic
omains, and x̄s represents the stationary-state of the “coarse”
ealization, x̄, of xm. It is assumed that such stationary state exists
nd is independent of the initial microscopic state, i.e., xm(t = 0).
he coarse variables, x̄, can be projected onto the microscopic
tate variables, xm, and vice versa, through the restriction and
ifting operations x̄ = L(xm), xm = l(x̄), respectively (note that
he lifting operation leads to a number of possible xm for a given
¯).

A general optimization problem for the multiscale system of
qs. (4.44)–(4.47) can be formulated as (Varshney & Armaou,
005a,b):

min G(x, x̄s, x, δt̄i) =
n∑
i

∫
�

G(x, x̄s, d, δt̄i) dz

s.t.

A(x) + f (x, d) = 0,

g

(
x,

dx

dη

)
= 0 on �, h

(
x̄s, x,

dx

dη

)
= 0, on �

p(x, d) ≤ 0, ∀ z ∈ �1

(4.48)

here G(x, x̄s, d, δt̄i) is the objective functional and measures
he process performance at both macroscopic and microscopic
evels and p(x, x̄, d) is the vector of inequality constraints
hich may include bounds on state and design variables. Time-

ntervals δt̄ and design variables di (of Eq. (4.44)) are the opti-
ization variables.
Finite-dimensional approximations to the semi-infinite

imensional program of Eq. (4.48) can be obtained through

patial discretization of the equality constraints and of the objec-
ive functional to formulate a finite-dimensional nonlinear pro-
ram (NLP). Brute-force spatial discretization employing finite-
ifference/finite-element (FD/FE) techniques typically results

(
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n a large set of algebraic equations, and subsequent storage
nd computational requirements of the formulated NLP may
ecome prohibitive requiring the use of specially designed algo-
ithms for large-scale optimization problems. Inclusion of black-
ox timesteppers into the multiscale model further increases
he computational demands. To address this issue, nonlinear
rder reduction for dissipative PDEs (Armaou & Christofides,
002; Bendersky & Christofides, 2000) using Karhuenen–Loéve
xpansion (KLE) is coupled with in situ adaptive tabulation
Pope, 1997) to formulate reduced order multiscale models that
an be employed to efficiently solve multiscale optimization
roblems.

The eigenspectrum of elliptic PDEs is characterized by a
nite number of dominant eigenmodes (Armaou & Christofides,
000; Baker & Christofides, 2000; Baker, Armaou, &
hristofides, 2000; Christofides & Daoutidis, 1997), a property

hat constitutes the basis for computing dominant eigenmodes
sing KLE. These dominant eigenmodes can be identified empir-
cally by applying KLE on an appropriate ensemble (for details
bout construction of the ensemble, the reader may refer to
rmaou & Christofides, 2002; Bendersky & Christofides, 2000;
arshney & Armaou, 2006 and references therein) of PDE
olution data. These eigenmodes, known as empirical eigen-
unctions, can be subsequently employed as basis functions in
he method of weighted residuals, to derive systems of alge-
raic equations, which have significantly smaller dimension
han those derived using FD/FE discretization methods. Sub-
equently, the NLP can be solved using standard gradient-based
r direct search algorithms.

The calculation of coarse stationary states, x̄s, through black-
ox timesteppers is usually a computationally expensive task.
o facilitate efficient incorporation of black-box simulators,
tationary-state coarse solution data (i.e., x̄s) of black-box
imesteppers are tabulated offline for the entire realizable region
panned by x|�. Necessary information from tabulated data can
e obtained through interpolation, as required by the macro-
copic solver. We employ adaptive tabulation to tabulate only
he accessed region, which may be unknown a priori. The table
s constructed on demand, when interpolation results of previ-
usly tabulated data are not accurate. The efficiency of adaptive
abulation increases if the accessed region is a small subset of
he realizable region and contains domains with relatively large
radients.

An iterative solution algorithm that is applicable to a broad
lass of multiscale processes modeled by Eqs. (4.44)–(4.47)
s outlined below (see Varshney & Armaou, 2005a,b for more
etails).

1) Select an arbitrary (but physically consistent) initial condi-
tion xm(t = 0) and x|�, and evolve the black-box timestepper
till x̄ reaches a stationary value (denoted as x̄s).

2) Solve Eq. (4.44) subject to boundary conditions given by

Eqs. (4.46) and (4.47), either analytically or numerically to
obtain new x|� denoted as x′

i.
3) Repeat steps (1) and (2) to obtain x′

i+1 until x′
i − x′

i+1 is
below an acceptable tolerance.
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Table 2
Process reaction scheme

Reaction k0 E

(G1) A → A′ + C 1 × 1014 39.9
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Fig. 13. Schematic of the reactor with split inlet configuration.

Subsequently, the reduced order model can be incorporated
s an equality constraint into standard search algorithms such as
FGS, Luus–Jaakola, Hooke–Jeeves, etc., to obtain the optimal

olution.

.2. Application to thin film growth

In this subsection, the above optimization methodology is
pplied to a conceptual thin-film growth process, where the
bjective is to compute an optimal time-varying process opera-
ion that simultaneously minimizes spatial thickness nonunifor-

ity and surface roughness of the deposited film at the end of
he process cycle; we note that this process is different from the
ne considered in Sections 1 and 2. Fig. 13 depicts the schematic
f the reactor with split inlet configuration.

The bulk of the reactor is modeled using two-dimensional
xisymmetric PDEs in cylindrical coordinates derived from con-
inuum conservation principles. The surface of the growing film
s modeled using kMC simulations. Fig. 13 also shows the
omains of definition of the two models. It should be noted that
he microscopic domain is infinitesimally thin. Substrate temper-
ture profiles are manipulated using three circular heaters with
eat being conducted in the in-between areas. Table 1 tabulates

he reactor geometry and process conditions. Gaseous species

and B represent the precursors of a and b (components of
ompound semiconductor ab) respectively and are assumed to
ndergo the following gas phase reactions in the bulk of the

able 1
esign and process parameters

eactor radius 2 in
ubstrate radius (Rs) 1.5 in
umber of inlets 3
ubstrate to inlet distance (z0) 3 in
eactor pressure 0.1 atm

nlet & reactor wall temperature 300 K
nlet velocity 80 cm/s
ubstrate temperature (Ts) 900–1300 K
nlet mass fraction of species A (XA) 0.4 × 10−2

nlet mass fraction of species B (XB) 0.6

t
s
s
r
i
d
a

j

w
p
c
c
t
c
W

S1) A → a(s) + D – –
S2) B → b(s) –a –

a Rate calculated from kinetic theory of gases.

eactor and gas-surface reactions on the wafer surface, shown in
able 2. Reaction G1 represents the thermal decomposition of
recursor A into A′ which adsorbs on the substrate (reaction S1).
he rate-parameter for adsorption of A′ (reaction S1) is assumed

o be that of an ideal gas, i.e., ka = s0
√

RT/2πM, where s0 is the
ticking coefficient. The rate of adsorption of B (reaction S2) is
ssumed to be equal to S1 so that the stoichiometry of the film
s preserved. In addition to adsorption, diffusion and desorption
f adsorbed species are other significant processes that affect
he structure of the surface. The rate of desorption of surface
pecies into the gas phase and the rate of surface diffusion are
iven by:

n
d = kd0 e−Ed0+n
E/kBT , kn

m = kBT

h
e−E+n
E/kBT (4.49)

here h is the Planck’s constant, E and Ed0 the energy barriers
or surface diffusion and desorption, respectively, 
E the inter-
ction energy between two neighboring adsorbed species and
∈ {0, 1, 2, 3, 4} is the number of nearest neighbors. The values
f E, Ed0, 
E and kd0 are taken as 2.5, 2.5, 0.5 eV and 1 × 1013,
espectively.

The macroscopic description of the process under consider-
tion is given by the following conservation equations:

∇ · (ρu) = 0; ∇ · (ρu u) − ∇ · T − ρg = 0

∇ · (ρuT ) = −∇ · q −
∑

k

hkWkẇ

∇ · (ρuYk) = −∇ · jk + Wkẇk; k ∈ {1, 2, 3, 4}
jk = −Dkρ∇Yk − DT,k

∇T

T

(4.50)

here ρ is the gas phase density, u the fluid velocity vector, T the
tress tensor, Cp the specific heat capacity, T the temperature, q
he heat flux due to conduction and hk, Wk and Yk are the partial
pecific enthalpy, molecular weight and the mass fractions of gas
pecies. ω̇k and jk are the net production rate due to homogeneous
eactions and mass flux respectively of species k. Dk and DT,k
n the flux equation correspond to mass diffusion and thermal
iffusion coefficients, respectively. The flux boundary condition
t the deposition surface is given by:

= Rad = kaCA′ |s − 〈kd〉f (Ca.s, T, wA′A′ ) (4.51)

here Rad is the net rate of adsorption, Ts the surface tem-
erature, 〈kd〉, CA′ |s and Ca.s are the effective desorption rate,
oncentration of A′ over the substrate and average surface con-

entration of adsorbed a(s), respectively. Function f describes
he influence of lateral interactions on the desorption rate, which
annot be ascertained without knowledge of surface structure.
e employ kMC to account for the surface structure and esti-
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Hooke–Jeeves search algorithm. The accuracy of the reduced
order model was validated using the full order model under var-
ious operating conditions. However, direct comparison of full
P.D. Christofides, A. Armaou / Computers a

ate the right hand side of Eq. (4.51), which links the two levels
f descriptions.

Initially, precursor A flows through the innermost inlet and B
hrough the two outer inlets (ABB configuration of inlet). During
he process operation, the two gas streams in the two innermost
nlets can be interchanged to result in a distinct (BAB) inlet
onfiguration. The transient evolution of the process follow-
ng the switch is neglected (quasi-steady-state approximation).
t is proposed that by optimally switching from ABB to BAB
onfiguration and controlling the substrate temperature profile
efore and after the switching, both optimization objectives can
e realized. Mathematically, the optimization problem can be
ormulated as:

min F =
R0∫
0

{w1[T(r) − Tobj]
2 + w2R(r)} dr

s.t.

T =
n∑

i=1

δt̄iRdep; δt̄i = t̄i+1 − t̄i

uk =∑n
i=1uk,i[H(t̄i+1) − H(t̄i); k ∈ {1, 2, 3}

900 ≤ Ts(uk) ≤ 1300; Rdep = kaCA′ at �

(4.52)

here F is the objective functional, T the thickness of film at
he end of the process, Tobj the target thickness of the film, Rdep
he deposition rate of species a, R the surface roughness of the
eposited film, δt̄i the time-interval for ith switching, Ts the sur-
ace temperature, uk the magnitude of actuation and H(·) denotes
he standard Heaviside function; the explicit dependence of Ts on
k can be found in Varshney & Armaou (2005a). R0 is the cutoff
adius, which is taken to be a fraction of the substrate radius, thus
iscounting the unavoidable edge effects. The objective function
enalizes any deviation of final film thickness from the target
hickness (macroscopic objective) and high values of the spa-
ially averaged roughness of the film (microscopic objectives).
dditional constraints on the optimization problem arise from

he reduced order process model, whose explicit form is omitted
or brevity. The design variables of the optimization problem are
he magnitudes of actuation uk and the time-intervals δt̄i.

An ensemble of solution data (“snapshots”) was generated
y varying the substrate temperature (u1, u2 and u3) for both
BB and BAB inlet configurations and solving the resulting
ystem using the proposed multiscale algorithm. For the gen-
ration of snapshots, the macroscopic domain, �1, was dis-
retized using finite differences into 6201 nodes and the result-
ng system of nonlinear algebraic equations was solved using

Newton–Krylov-based solver. Specifically, an ensemble of
29 × 2 snapshots was generated. Three, 62 and 52 eigenfunc-
ions were identified using KLE, respectively, for temperature
nd mass fraction profiles of A and A′ across the reactor, which
aptured more than 99.999% of the energy of the ensemble.
ence, the reduced order model comprised of 117 (as opposed
o 6201 × 3) nonlinear algebraic equations. Coarse data of kMC
imulations was tabulated in accordance with in situ adaptive
abulation, as described earlier, which facilitated efficient link-
ng. In order to account for the effect of radial variation of

F
t
(
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ubstrate temperature and the concentration of precursor over
he substrate on the film microstructure, independent interpo-
ation was performed at each macroscopic discretization node
a full order model would require independent kMC at each of
hese nodes, thereby significantly increasing the computational
equirement). Depending upon the structure of the kMC simula-
or, the flow of information across the interface of the continuum
nd the discrete domains can be unidirectional or bidirectional.
or the current process, numerical simulations established that

nclusion of desorption into the kMC model had negligible effect
n the macroscopic solution of the multiscale system (this one-
ay coupling characteristic of this process is in contrast to the

ully coupled nature of the thin film growth process considered
n Sections 1 and 2).

Hence, in the reduced order process, model desorption was
ot included. Under this assumption the flow of information
as unidirectional and did not require multiple iterations. The

esulting reduced optimization problem was solved using the
ig. 14. Comparison of (a) deposition rate and (b) roughness profiles across
he wafer surface, with macroscale (Optimal 1) and multiscale objective
Optimal 2).
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Fig. 15. Initial (blue line) and final (green line) optimal surface temperature
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rofiles, for (a) macroscale only and (b) multiscale objective. (For interpretation
f the references to colour in this figure legend, the reader is referred to the web
ersion of the article.)

nd reduced order formulations was impossible owing to the
omputational requirements of the full order model. Further-
ore, once the empirical eigenfunctions and kMC-tables have

een constructed, they can be repeatedly employed in multiple
ptimization problems.

The optimization problem of Eq. (4.52) was solved in two
teps. Initially, spatial uniformity of the deposited film was the
nly optimization objective (i.e., ω1 �= 0, ω2 = 0). Subsequently,
he microscopic objective was included into the optimization.
he target film thickness Tobj was 5 × 10−6 m. Fig. 14a shows

he final film thickness across the wafer surface obtained for the
ptimal process operation with macroscopic objective and mul-
iscale objective (denoted as Optimal 1 and Optimal 2, respec-
ively). For comparison purposes, the final film thickness-profile
or time-invariant nominal process operation is also shown.

hickness nonuniformity, defined as
√

f (T − T )2/T , for
obj obj

BB inlet configuration was found to be 87.66 and 57.72% for
ubstrate temperature 1300 and 900 K, respectively. The corre-
ponding numbers were 215 and 188%, respectively, for BAB

•
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nlet configuration. For the optimal process operation, radial
onuniformity in the film was successfully reduced to 1.14 and
.5% for the former and latter cases, respectively. The corre-
ponding inlet switching times were 757 and 703 s, and the
ubstrate temperature profiles before and after switching are
hown in Fig. 15a and b, for macroscale and multiscale objec-
ives, respectively.

Inclusion of the microscopic objective resulted in the over-
ll increase of substrate temperature and the spatially averaged
urface roughness of the film decreased from 3.5 (for Opti-
al 1) to 1.7 (for Optimal 2), shown in Fig. 14b. It should

e noted that BAB configuration with Ts = 1300K would result
n the film with the lowest surface roughness, however such
peration is not optimal with respect to spatial film-thickness
niformity.

. Conclusions and future research problems

In this manuscript, we have provided a tutorial overview
f recently developed methods for control and optimization
f complex process systems described by multiscale models.
e primarily discussed methods developed in the context of

ur previous research work and used examples of thin film
rowth processes to motivate the development of these methods
nd illustrate their application. Specifically, we discussed: (a) a
ethod for control of surface roughness in thin film growth using

inetic Monte-Carlo models, (b) a method for the construction
f linear stochastic PDEs directly from data obtained by kinetic
onte-Carlo models and their subsequent use in the design of

redictive controllers for roughness control in thin film growth
nd (c) a method for computationally efficient optimization of
ultiscale process systems with multiscale objectives based on

eduction of the macroscopic PDEs using empirical eigenfunc-
ions and reduction of the kinetic Monte-Carlo models via in situ
daptive tabulation—this optimization method was applied to a
hin film growth process where the objective was to compute
n optimal time-varying process operation that simultaneously
inimizes spatial thickness nonuniformity and surface rough-

ess of the deposited film at the end of the process cycle.
While significant progress has been made over the last 5 years

n control and optimization of multiscale process systems, there
re still many unresolved, challenging problems both in theory
nd applications. Here is a list of unresolved issues that, in our
pinion, deserve to be studied:

Construction of nonlinear stochastic differential equations
from kinetic Monte-Carlo simulation data, as well as pre-
cise characterization of their accuracy, for processes where
the molecular scale interactions give rise to highly nonlinear
macroscopic behavior.
Design of nonlinear/robust controllers based on stochastic
linear/nonlinear models aiming at more direct and efficient
compensation of model uncertainty and disturbances on oper-

ating conditions.
Incorporation of dynamic behavior and uncertainty consid-
erations in the multiscale optimization problem formulation
and solution.
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Applications of the stochastic model construction, control and
optimization methods to experimental thin film growth pro-
cesses, as well as other complex processes where stochastic
phenomena are important (e.g., quantum-dot formation).
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