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Abstract

This work addresses the problem of global exponential stabilization of the Kuramoto–Sivashinsky equation (KSE) subject
to periodic boundary conditions via distributed static output feedback control. Under the assumption that the number of
measurements is equal to the total number of unstable and critically stable eigenvalues of the KSE and a necessary and
su�cient stability condition is satis�ed, linear static output feedback controllers are designed that globally exponentially
stabilize the zero solution of the KSE. The controllers are designed on the basis of �nite-dimensional approximations of
the KSE which are obtained through Galerkin’s method. The theoretical results are con�rmed by computer simulations of
the closed-loop system. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The KSE is a nonlinear dissipative fourth-order partial di�erential equation (PDE) of the form
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; (1)

where �¿ 0 is the so-called instability parameter, which describes incipient instabilities in a variety of physical
and chemical systems. Examples include falling liquid �lms [8], unstable ame fronts [21,19,22], Belouzov–
Zabotinskii reaction patterns [16,17] and interfacial instabilities between two viscous uids [14]. Analytical
and numerical studies of the dynamics of Eq. (1) with periodic boundary conditions (e.g., [23,8,13,15])
have revealed the existence of steady and periodic wave solutions, as well as chaotic behavior for very small
values of �.
In addition to the existence of complex solution patterns, the above studies have revealed that the dominant

dynamics of the KSE can be adequately characterized by a small number of degrees of freedom (e.g., [23]).
Motivated by this, we recently addressed [2,1] the design of linear/nonlinear �nite-dimensional output feedback
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controllers for stabilization of the zero solution of the KSE on the basis of ordinary di�erential equation (ODE)
approximations, obtained through linear/nonlinear Galerkin’s method, that accurately describe the dominant
dynamics. However, even though these control algorithms achieve stabilization of the zero solution of the
KSE for any value of the instability parameter �, their application is limited to local (i.e., for su�ciently
small initial conditions) stabilization. This limitation motivates the study of the problem of global stabilization
of the KSE. In this direction, a nonlinear boundary feedback controller was proposed in [18] that enhances
the rate of convergence to the spatially uniform steady state of the KSE for values of � for which this steady
state is naturally stable.
In this paper, we consider the problem of global exponential stabilization of the zero solution, x(z; t)=0, of

the KSE with periodic boundary conditions, for any value of the instability parameter �, via distributed static
output feedback control. Under the assumptions that the number of measurements is equal to the total number
of unstable and critically stable eigenvalues of the KSE and a necessary and su�cient stability condition
is satis�ed, linear static output feedback controllers are designed that achieve global (i.e., for every initial
condition) stabilization of the x(z; t) = 0 solution of Eq. (1). The proposed output feedback controllers are
designed on the basis of ODE approximations of the KSE obtained through Galerkin’s method. Numerical
simulations of the closed-loop system, for di�erent values of the instability parameter, con�rm the theoretical
results.

2. Preliminaries

We consider the integrated form of the controlled Kuramoto–Sivashinsky equation
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subject to the periodic boundary conditions

@jx
@z j (−�; t) =

@jx
@z j (+�; t); j = 0; : : : ; 3; (3)

and the initial condition

x(z; 0) = x0(z); (4)

where x ∈ L2p(−�; �) is the state of the system, L2p(−�; �) denotes the space of square integrable func-
tions that satisfy the boundary conditions of Eq. (3) (i.e., L2p(−�; �) = {x ∈ L2(−�; �): (@jx=@z j)(−�; t) =
(@jx=@z j)(+�; t); j=0; : : : ; 3}); z is the spatial coordinate, � is the instability parameter which is assumed to be
known, t is the time and 2� is the length of the spatial domain, x0(z) ∈ L2p([−�; �]) is the initial condition, m
is the number of manipulated inputs (i.e., variables that can be manipulated externally to modify the dynamics
of Eq. (2) in a desired fashion), ui(t) is the ith manipulated input, bi(z) is the actuator distribution function
(i.e., bi(z) determines how the control action computed by the ith control actuator, ui(t), is distributed (e.g.,
point or distributed actuation) in the spatial interval [−�; �]); ym

� ∈ R denotes a measured output, and s�(z) is
a known smooth function of z which is determined by the location and type of the measurement sensors (e.g.,
point/distributed sensing). We note that in the case of point actuation (sensing) which inuences (measures)
the system at z0 (i.e., bi(z) or s�(z) is equal to �(z − z0) where �(·) is the standard Dirac function), we
approximate the function �(z − z0) by the �nite value 1=2� in the interval [z0 − �; z0 + �] (where � is a small
positive real number) and zero elsewhere in [ − �; �]. Finally, in L2p([ − �; �]), we de�ne the inner product
and norm: (!1; !2)=

∫ �
−� !1(z)!2(z) dz; ‖!1‖2 =(!1; !1)1=2 where !1; !2 are two elements of L2p([−�; �]).
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The dynamics of Eq. (2) depend heavily on the value of �. To make this point clear, we compute the
linearization of the system of Eq. (1) around x(z; t) = 0, which takes the form
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(5)

and consider the corresponding eigenvalue problem
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where �n denotes an eigenvalue and �n denotes an eigenfunction. A direct computation of the solution of the
above eigenvalue problem yields �0 = 0 with  0(z) = 1=

√
2�, and �n = −�n4 + n2 (�n is an eigenvalue of

multiplicity two) with eigenfunctions �n(z)=(1=
√
�)sin(nz) and  n(z)=(1=

√
�)cos(nz); n=1; : : : ;∞. Clearly,

a pair of eigenvalues of the system of Eq. (5) crosses the imaginary axis when

�=
1
n2

; n= 1; : : : ;∞: (8)

Apparently, the smallest value of �, for which the x(z; t) = 0 solution of the system of Eq. (5) is about to
become unstable is �=1 and when 1=n2¿�¿ 1=(n+1)2, the system of Eq. (5) has 2n positive eigenvalues.
The above stability analysis implies that the spatially uniform steady state, x(z; t)=0, of the nonlinear system

of Eqs. (1)–(3) is locally unstable when �¡ 1. Instead, there is a generation of stable spatially non-uniform
stationary solutions as well as spatially non-uniform periodic solutions, while for very small values of � no
stable solutions exist and the system of Eq. (2) exhibits chaotic behavior (the reader may refer to [8,15] for
detailed characterizations of the solution patterns for various ranges of values of �).

3. Static output feedback control

In this section, we synthesize output feedback controllers that globally stabilize the system of Eqs. (2)
and (3) at x(z; t) = 0. We initially use Galerkin’s method to derive ODE approximations of the system
of Eq. (2) that capture the dynamics of the unstable modes. Expanding the solution of the system of
Eq. (2) in an in�nite series in terms of the eigenfunctions of the operator of Eq. (6), we obtain
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where �n(t); �n(t) are time-varying coe�cients and �n(z) = (1=
√
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√
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�)cos(nz). Substituting the above expansion for the solution, x(z; t), into the system of Eq. (2) and taking
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�)cos(nz) of the operator of Eq. (6) (note that the operator of Eq. (6) subject to the boundary

condition of Eq. (7) is self-adjoint, i.e., �n(z) = �∗
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n (z)), the following in�nite

system of ODEs is obtained:
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Owing to its in�nite-dimensional nature, the system of Eq. (10) cannot be directly used for the design of
controllers that can be implemented in practice (i.e., the practical implementation of controllers which are
designed on the basis of this system will require the computation of in�nite sums which cannot be done by
a computer). Instead, we will base the controller design on linear �nite-dimensional approximations of this
system. Moreover, the maximum number of eigenvalues of A which are identical, for any �, is four, and thus,
the use of �ve control actuators is su�cient for stabilizing any stabilizable �nite-dimensional approximation
of the system of Eq. (10) with linear state feedback (four control actuators are needed due to the presence of
four identical unstable eigenvalues and one control actuator is needed to ensure that the conservation of mass
condition,

∫ �
−� x(z; t) dz = 0, is satis�ed at steady state). We note that even though the use of �ve control

actuators is su�cient to stabilize any stabilizable �nite-dimensional approximation of the system of Eq. (10)
with linear state feedback, it is not necessary. For example, when � = 0:4, A possesses only two identical
unstable eigenvalues, and thus, stabilization can be achieved with three control actuators; see simulation section
for a numerical demonstration of this point.
Assuming that the number of unstable eigenvalues of the system of Eq. (5) is 2l (i.e., 1=l2¿�¿ 1=(l+1)2)

and using m control actuators (where m65), the in�nite set of ODEs of Eq. (11) can be written in the
following form:

�̇u = Au�u + Buu− f̃u;

�̇s = As�s + Bsu− f̃s;

ym = Su�u + Ss�s;

(12)
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where �u = [�0 �1 �1 �2 �2 · · · �l �l]T; �s = [�l+1 �l+1 · · · ]T; f̃u = [0 f1� f1� f2� f2� · · · fl� fl�]
T; f̃s =

[fl+1� fl+1� fl+2� fl+2� · · · ]T; ym = [ym
1 ym

2 · · · ym
p ]
T; u ∈ Rm and

Au=




0 0 0 0 · · · 0 0

0 −�+ 1 0 0 · · · 0 0

0 0 −�+ 1 0 · · · 0 0

...
...

...
... · · · ...

...

0 0 0 0 · · · −l4�+ l2 0

0 0 0 0 · · · 0 −l4�+ l2



; Bu =




b01� b02� · · · b0m�

b11� b12� · · · b1m�

b11� b12� · · · b1m�

...
... · · · ...

bl
1� bl

2� · · · bl
m�

bl
1� bl

2� · · · bl
m�



;

(13)

As =



−(l+ 1)4�+ (l+ 1)2 0 0 0 · · · 0 0

0 −(l+ 1)4�+ (l+ 1)2 0 0 · · · 0 0
...

...
...

... · · · ...
...


 ; (14)

Bs =



bl+1
1� bl+1

2� · · · bl+1
m�

bl+2
1� bl+2

2� · · · bl+2
m�

...
... · · · ...


 ; Su =




s01� s11� s11� · · · sl1� sl1�
...

... · · · ...
...

...

s0p� s1p� s1p� · · · slp� slp�


 ; (15)

Ss =



sl+11� sl+11� · · ·
...

... · · ·
sl+1p� sl+1p� · · ·


 : (16)

The following assumption is needed in order to obtain estimates of the states �u of the system of Eq. (12)
from the measurements ym

� ; � = 1; : : : ; p.

Assumption 1. p=2l+1 (i.e., the number of measurements is equal to the number of eigenvalues which are
in the closed right-half of the complex plane), and the inverse of the operator Su exists so that �̂u = S−1

u ym,
where �̂u is an estimate of �u.

Theorem 1 that follows provides a necessary and su�cient condition under which, for a given value of �,
there exists a linear static output feedback controller that uses �ve control actuators and 2l+1 measurements
to globally exponentially stabilize the zero solution of the Kuramoto–Sivashinsky equation.

Theorem 1. Let the number of unstable eigenvalues of the system of Eq. (5) be 2l (i.e.; 1=l2¿�¿ 1=
(l + 1)2); m = 5 and Assumption 1 hold. Then; the existence of a matrix K so that the following in�nite
range matrix:

Acl =

[
Au + BuK BuKS−1

u Ss

BsK As + BsKS−1
u Ss

]
(17)

is Hurwitz (i.e.; it possesses eigenvalues with strictly negative real part); is necessary and su�cient for the
following output feedback controller:

u= KS−1
u ym; (18)

to ensure that the x(z; t) = 0 solution of the closed-loop system (Eqs. (2)–(17)) is exponentially stable; for
any initial condition in L2p([− �; �]) and any 1=l2¿�¿ 1=(l+ 1)2.
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Remark 1. The requirement on matrix Acl depends on the structure of the matrices Bu; Su, and therefore, on
the shape of the actuator distribution functions bi and the measurement sensor-shape functions s� which, for
most practical applications, cannot be chosen by the control designer. Whenever the requirement on matrix
Acl is not satis�ed, one can use more than �ve control actuators to ensure that the system of Eq. (12) is
stabilizable via output feedback. Furthermore, the requirement of Assumption 1 that the inverse of the operator
Su exists is necessary for the solution of the output feedback control problem, and clearly depends on the
shape and location of the measurement sensors. However, this requirement does not appear to be restrictive
from a practical standpoint (see numerical results in the next section). Finally, we note that the requirement
m = 5 in Theorem 1 is imposed to ensure stabilization of the closed-loop system even for values of � for
which A possesses four identical unstable eigenvalues; clearly, it is possible to achieve stabilization of the
KSE with a smaller number of control actuators as long as the matrix Acl is stable (see Section 4 for such
an example).

Remark 2. Even though the matrix Acl of Eq. (17) has in�nite range, the fact that the eigenvalues of
the matrix As grow in a fourth-order fashion in the left-half of the complex plane implies that there ex-
ists an N su�ciently large so that the veri�cation of the stability of Acl can be done on the basis of a
�nite-dimensional approximation obtained by keeping the �rst (2l + 1 + 2N ) rows and columns of Acl (this
fact is numerically veri�ed in Section 4). This means that the design of the gain matrix K which stabilizes
the closed-loop system (Eqs. (2)–(18)) can be done on the basis of a (2l + 1 + 2N )-dimensional system
utilizing standard pole-placement methods for static output feedback of �nite-dimensional systems (see, for
example, [4, Section 13:5] for details). This fact can be also rigorously established by using a singular per-
turbation formulation of the closed-loop system similar to the one employed in [9] to show stability of a
parabolic PDE system under robust output feedback control. The details of this analysis are given in the
appendix.

Remark 3. When the measurement sensor shape functions are chosen so that S−1
u Ss = 0 (which implies that

�̂u = �u; state feedback case), the matrix Acl of Eq. (17) simpli�es to

Acl =

[
Au + BuK 0

BsK As

]
(19)

and the in�nite-dimensional stabilizability requirement of Theorem 1 reduces to the one of stability of the
�nite-dimensional matrix Au + BuK (i.e., the pair [Au Bu] should be controllable).

Remark 4. On the other hand, when the distribution functions of the control actuators are chosen so that
Bs = 0 (which implies that no spill-over [2] e�ect is present in the closed-loop system), the matrix Acl of
Eq. (17) simpli�es to

Acl =

[
Au + BuK BuKS−1

u Ss

0 As

]
(20)

and the stabilizability requirement of Theorem 1 again reduces to the one of stability of Au + BuK .

Remark 5. Even though static output feedback control requires a larger number of measurements (2l + 1
versus m, with m65) for small values of � and is more sensitive to measurement noise than dynamic output
feedback, we prefer to use static feedback of ym in the controller of Eq. (18) because it allows us to globally
exponentially stabilize the zero solution; this is not possible when linear �nite-dimensional dynamic output
feedback control is used [2].

Remark 6. The exponential stability of the closed-loop system ensures a certain degree of robustness with
respect to su�ciently small disturbances and uncertainty in process parameters (i.e., �, bn

i�; b
n
i�; s�), as well as

robustness of the closed-loop system with respect to fast and asymptotically stable unmodeled dynamics (for
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example, actuator and sensor dynamics). The problem of designing robust controllers that explicitly account
and compensate for the presence of uncertainty will not be addressed in this paper; the reader may refer to
[9] for results on robust control of parabolic PDE systems.

Remark 7. We note that the proposed approach can also be employed to compute necessary and su�cient
conditions for the global exponential stabilization of the zero solution of the KSE subject to nonperiodic
boundary conditions (such as the ones studied in [18]) via distributed static output feedback control.

Remark 8. Even though the proposed approach allows achieving global stabilization of the zero solution of
the KSE, improved local convergence rates of the state of the closed-loop system to the zero solution can be
achieved by utilizing nonlinear controllers constructed on the basis of ODE models obtained from combination
of Galerkin’s method with approximate inertial manifolds (see [1] for details and [5,6,20] for other applications
of inertial manifold theory to control of nonlinear distributed parameter systems). Furthermore, it is important
to note that the L2p exponential convergence of x(z; t) to the zero solution does not necessarily lead to pointwise
convergence.

Remark 9. We note that the approach that we followed for controller synthesis based on �nite-dimensional
approximations of the Kuramoto–Sivashinsky equation obtained via Galerkin’s method is motivated from the
fact that the dominant dynamics of the equation are characterized by a �nite (small) number of degrees
of freedom. This approach has been successfully used to control parabolic PDEs arising in the context of
transport-reaction processes (see, for example, [3,11,12,7]).

Proof of Theorem 1. Part 1: We initially show that if the condition of Eq. (17) holds, then the controller
of Eq. (18) exponentially stabilizes the Kuramoto–Sivashinsky equation without the term −x(@x=@z). Under
the controller of Eq. (18), the closed-loop system without the term −x(@x=@z) takes the form

@x
@t
=−�

@4x
@z4

− @2x
@z2

+ bKS−1
u ym; (21)

where b = [b1 b2 · · · bm]. Applying Galerkin’s method to the above system, the following in�nite set of
ordinary di�erential equations is obtained:

�̇u = Au�u + BuKS−1
u (Su�u + Ss�s);

�̇s = As�s + BsKS−1
u (Su�u + Ss�s)

(22)

or

[
�̇u

�̇s

]
=

[
Au + BuK BuKS−1

u Ss

BsK As + BsKS−1
u Ss

][
�u

�s

]
: (23)

From the above system, it is clear that the existence of a matrix K so that the matrix of Eq. (17) is Hurwitz
is necessary and su�cient for the local exponential stability of the zero solution of the closed-loop system of
Eq. (21) for 1=l2¿�¿ 1=(l+ 1)2.
Part 2: In this part of the proof, we use a Lyapunov argument to show that a linear static output feedback

controller of the form of Eq. (18) that exponentially stabilizes the closed-loop system of Eq. (21), ensures
also global exponential stability of the zero solution of the Kuramoto–Sivashinsky equation with the term
−x(@x=@z). To this end, we �rst use the fact that exponential stability of the system of Eq. (23) implies that
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there exists a positive constant c such that the linear self-adjoint closed-loop operator

�Ax =−�
@4x
@z4

− @2x
@z2

+ bK




∫ �

−�
s1(z)x(z; t) dz

∫ �

−�
s2(z)x(z; t) dz

∫ �

−�
s3(z)x(z; t) dz

· · ·∫ �

−�
s2l(z)x(z; t) dz

∫ �

−�
s2l+1(z)x(z; t) dz




; (24)

satis�es (x; �Ax)6− c ‖x‖22. Now, multiplying the nonlinear closed-loop system
@x
@t
=−�

@4x
@z4

− @2x
@z2

− x
@x
@z
+ bKS−1

u ym; (25)

by x and integrating from [− �; �] and using the notation of Eq. (24), we obtain∫ �

−�
x
@x
@t
dz =

∫ �

−�
x �Ax dz −

∫ �

−�
x2

@x
@z
dz: (26)

Using the boundary conditions of Eq. (3), one can show that (see [23] for details)∫ �

−�
x2

@x
@z
dz = 0; (27)

which implies that Eq. (26) can be written as

1
2
d
dt

‖x‖22 =(x; �Ax)6− c ‖x‖22 : (28)

From the above inequality, the exponential stability of the solution, x(z; t) = 0, of the closed-loop system
(Eq. (21)), for any initial condition in L2p([− �; �]), follows.

4. Numerical results

In this section, we evaluate, through computer simulations, the ability of the output feedback controller
of Eq. (18) to stabilize the system of Eqs. (2) and (3) at the steady state x(z; t) = 0. Two simulation runs
were performed for �= 0:4 and 0:2. For the numerical simulation of the KSE, we used a 51-order nonlinear
ordinary di�erential equation model obtained from the application of Galerkin’s method to the system of
Eq. (2) (the use of higher-order Galerkin approximations in simulating the open-loop system of Eqs. (2) and
(3) as well as the closed-loop system led to identical numerical results). In all the simulation runs, the system
is assumed to be at a spatially nonuniform initial condition

x0 =
1:0√
2�
+
2:5√
�

5∑
n=1

(sin(nz) + cos(nz)) ∈ L2p([− �; �]):

In the �rst simulation run, we set �=0:4 which implies that the linearized system of Eq. (5) possesses two
identical eigenvalues in the right-half of the complex plane. Therefore, the use of three control actuators and
three measurement sensors is necessary and su�cient for achieving stabilization of the closed-loop system.
One distributed control actuator with b1(z) = 1=

√
2�, two point control actuators placed at z = −�=2 and
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Fig. 1. Closed-loop spatio-temporal pro�le of x(z; t) (top �gure) and manipulated input pro�les (bottom �gure), for � = 0:4.

z = �=6 (i.e., b2(z) = �(z + (�=2)) and b3(z) = �(z − (�=6))), one distributed sensor with s1(z) = 1=
√
2� and

two-point measurement sensors placed at z=0:0 and z=−�=4 (i.e., sensor shape functions s2(z)= �(z− 0:0),
s3(z) = �(z + (�=4))) are used to stabilize the system of Eqs. (2) and (3) at x(z; t) = 0. The control actions,
u1(t); u2(t); u3(t), were computed from the formula of Eq. (18) with

K =



−4:000 −2:404 4:163

0:000 6:026 −3:478
0:000 0:000 −6:958


 (29)

to ensure that the matrix Acl is stable. Fig. 1 shows the closed-loop spatio-temporal pro�le of x(z; t) and
the pro�les of the three manipulated inputs. It is clear that the controller stabilizes the state of the system at
x(z; t) = 0, indicating that the use of three control actuators su�ces to stabilize the system for �= 0:4.
In the second simulation run, we used �=0:2 which implies that the linearized system of Eq. (5) possesses

four identical unstable eigenvalues (i.e., �1 = �2 = 0:8; both �1; �2 are eigenvalues of multiplicity 2), thus
requiring �ve control actuators and �ve measurement sensors of x(z; t) to stabilize the system at x(z; t)=0. One
distributed control actuator with b1(z)=1=

√
2�, four-point control actuators placed at z=�=2; z=�=6; z=−�=4

and z=−�=2, (i.e., b2(z)= �(z− (�=2)); b3(z)= �(z− (�=6)); b4(z)= �(z+(�=4)) and b5(z)= �(z+(�=2))),
one distributed measurement sensor with s1(z)=1=

√
2� and four-point measurement sensors placed at z=�=6,

z=�=4; z=−�=4 and z=−�=2, (i.e., s2(z)=�(z−(�=6)); s3(z)=�(z−(�=4)); s4(z)=�(z+(�=4)) and s5(z)=
�(z+ (�=2))) are used to stabilize the system at x(z; t) = 0. The control actions, u1(t); u2(t); u3(t); u4(t); u5(t),
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Fig. 2. Closed-loop spatio-temporal pro�le of x(z; t) (top �gure) and manipulated input pro�les (bottom �gure), for � = 0:2.

were computed from the formula of Eq. (18) with

K =




−4:000 0:000 3:621 0:298 −2:263
0:000 −2:836 −1:175 1:175 2:836

0:000 0:000 −3:836 −2:713 0:000

0:000 0:000 −3:322 3:323 0:000

0:000 2:836 −0:744 −2:531 2:836



; (30)

to ensure that the matrix Acl is stable. The closed-loop pro�le of x(z; t) and the pro�les of the �ve manipulated
inputs are displayed in Fig. 2. The stabilization of the state of the system at x(z; t)= 0, for �=0:2, has been
accomplished.
From the results of the simulation study, it is evident that the proposed control algorithm achieves stabi-

lization of the Kuramoto–Sivashinsky equation at x(z; t) = 0 for values of � for which the zero solution is
unstable.
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Appendix A

We show that given the value of the instability parameter �, if there exists a gain matrix K so that the
condition of Eq. (17) is satis�ed for a (2l+1+2N )-dimensional approximation of the closed-loop system of
Eq. (21) without the term −x(@x=@z), then the in�nite dimensional closed-loop system of Eqs. (2) and (18)
without the term −x(@x=@z) is also globally exponentially stable. Note that the nonlinear term −x(@x=@z) is
neglected because in the proof of theorem 1 we have shown that a linear static output feedback controller that
exponentially stabilizes the Kuramoto–Sivashinsky equation without the term −x(@x=@z), enforces also global
exponential stability of the zero solution of the Kuramoto–Sivashinsky equation when this term is present.
Given �, we �x l, and apply Galerkin’s method to the closed-loop system of Eq. (21) without the term

−x(@x=@z) to obtain the following in�nite set of ODEs:

�̇sl = Asl�sl + BslKS−1
u ym;

�̇f = Af�f + BfKS−1
u ym;

ym = Ssl�sl + Ss�f ;

(A.1)

where �sl = [�0 �1 �1 �2 �2 · · · �l+N �l+N ]T; �f = [�l+N+1 �l+N+1 · · · ]T, and the explicit structure of the
matrices Asl; Bsl; Af ; Bf ; Ssl; Ss is similar to the structure of the corresponding matrices in the system of Eq.
(12) and will be omitted for brevity.
Now, de�ning the parameter �= |�1|=|�l+N+1|¡ 1 and multiplying the �f -subsystem of Eq. (A.1) by �, we

obtain

�̇sl = Asl�sl + BslKS−1
u ym;

��̇f = Af ��f + �BfKS−1
u ym;

ym = Ssl�sl + Ss�f ;

(A.2)

where Af � = �Af . In the above system, the operators Asl and Af � generate semi-groups with growth rates
which are of the same order of magnitude, i.e., the solutions �sl and �f of the systems �̇sl = Asl�sl and
�̇f =Af ��f , respectively, satisfy: |�sl(t)|6K |�sl(0)|ek1t ; |�f (t)|6K |�f (0)|ek2t , where K; k1; k2 are real numbers,
and O(k1) = O(k2) (O(·) denotes the standard order of magnitude notation). This means that the system of
Eq. (A.2) is in the standard singularly perturbed form with �sl being the slow states and �f being the fast
states. The stability properties of this system can be analyzed within the singular perturbation framework
by decomposing it into reduced-order subsystems describing its behavior in the fast and slow time scales.
Speci�cally, the slow subsystem can be obtained by setting �=0 in the system of Eq. (A.2) that yields �f =0
and

�̇sl = Asl�sl + BslKS−1
u Ssl�sl: (A.3)

Under the assumption that there exists a gain matrix K so that the condition of Eq. (17) is satis�ed for a
(2l+1+2N )-dimensional approximation of the closed-loop system, we have that the above �nite-dimensional
system is exponentially stable. Furthermore, rewriting the system of Eq. (A.2) in the fast time-scale �= t=� and
setting �=0, the following system which describes the fast dynamics of the system of Eq. (A.2) is obtained:

d�f
d�

= Af ��f ; (A.4)

which is also exponentially stable. Finally, utilizing results from singular perturbation theory for systems of
the form of Eq. (A.2) in which the fast subsystem is an in�nite-dimensional system [10], we have that the
exponential stability of the slow and fast subsystems implies that there exists an �∗ such that if � ∈ (0; �∗],
the system of Eq. (A.2) is exponentially stable. From the de�nition of �, it follows directly that � decreases
as N increases, thereby implying that given �¿ 0, there exists an N ∗ su�ciently large (i.e., �∗ su�ciently
small) so that the design of the gain matrix K which stabilizes the in�nite dimensional closed-loop system
(Eqs. (2)–(18)) can be done on the basis of a (2l + 1 + 2N )-dimensional approximation of this system,
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provided N¿N ∗. Note that �∗ (and thus, N ∗) depends on all the matrices of the system of Eq. (A.2), and
thus, in turn, it depends on �, and the distribution functions of the measurement sensors and control actuators.
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