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Technical Notes and Correspondence 

Singular Perturbations and Input-to-State Stability 

Panagiotis D. Christofides and Andrew R. Tee1 

Abstract-This paper establishes a type of total stability for the input- 
to-state stability property with respect to singular perturbations. In 
particular, if the boundary layer system is uniformly globally asymptoti- 
cally stable and the reduced system is input-to-state stable with respect to 
disturbances, then these properties continue to hold, up to an arbitrarily 
small offset, for initial conditions, disturbances, and their derivatives in 
an arbitrarily large compact set as long as the singular perturbation 
parameter is sufficiently small. 

I. INTRODUCTION 
Many physical and chemical systems involve dynamical phe- 

nomena occurring in different time scales. Representative examples 
of nonlinear multiple-time scale systems include chemical reaction 
networks [2], high-purity distillation columns 11 31, electromechanical 
networks [4], flexible mechanical systems [7],  etc. Typically, such 
processes are modeled within the mathematical framework of' singular 
perturbations [12]. These models are then used as a basis for 
the design of control systems. However, the majority of models 
are characterized by disturbances, unknown model parameters, etc., 
complicating further the stability analysis and controller design for 
such systems. 

Motivated by the above, the problem of analyzing the stability 
properties of nonlinear singularly perturbed systems has received 
considerable attention in the literature. Early results focused on local 
results or imposed growth conditions on the nonlinearities of the 
system (see 191 and [SI for example). More recently, for systems 
without disturbances, Saberi and Khalil [16] developed a set of 
sufficient interconnection conditions, expressed in terms of Lyapunov 
functions and their derivatives, to guarantee asymptotic stability of 
a point. Da and Corless [7] followed the same approach to study 
the asymptotic stability of a class of nonlinear singularly perturbed 
systems whose fast dynamics are marginally stable. Other methods 
based on the so-called geometric approach for singularly perturbed 
systems have also been proposed 131. For systems with disturbances, 
approaches based on Lyapunov's second method have been proposed 
(see [6] for example) to derive sufficient conditions that guarantee 
boundedness of the trajectories of the system. 

In this note, we address the analysis of singularly perturbed 
nonlinear systems having a reduced system that is input-to-state stable 
(see [ 171) with respect to disturbances. We will show that this property 
is robust, in a sense to be made precise in Theorem I ,  to uniformly 
globally asymptotically stable singular perturbations. Our result is 
novel in that absolutely no interconnection or growth conditions are 
required, and the disturbances are not required to be small and/or 
slowly varying. The robustness we obtain is of a "total stability" type 
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with a flavor similar to the total stability result reported on in [18]. 
To establish our result, we will generate lemmas regarding the input- 
to-state stability property which are natural generalizations of [18, 
Lemma 3.2 and Th. 21. An alternative, Lyapunov-based approach, 
based on an idea in [l], can be found in [5]. 

We 

11. NOTATION AND DEFINITIONS 
I . I denotes the standard Euclidean norm, and I ,  denotes the 
identity matrix of dimension 71, x n. 
For any measurable (with respect to the Lebesgue measure) 
function B : I R 2 0  + E l r L ;  l lSl1 denotes ess.sup.(O(t)l; t 2 0. 
For any strictly positive real number p,  I I B p I l  denotes esssup. 

For a signal u ( t )  defined on [O. T )  and for each T E [0> T ) ,  uT 
is a signal defined on [O,m) given by 

l O ( t ) l >  t 2 P .  

A function y: IR 20 4 IR20 is said to be of class I< if it is 
continuous, nondecreasing, and is zero at zero. It is of class 
I<- if, in addition, it is strictly increasing and unbounded. 
A function 8: IR20 x R>o -+ E320 is said to be of class K L  
if, for each fixed t ,  the function R(.,t) is of class li and, for 
each fixed s, the function $(.s, .) is nonincreasing and tends to 
zero at infinity. 
will work with various forms of the "input-to-state" stability 

property for systems of the form 

where .I' E IR" denotes the vector of state variables, U I  t IR?. 
' ~ 2  E ELr'' denote vectors of input variables (disturbances), and d is 
locally Lipschitz on IRrL x IR" x IR'". 

UeJinition 1: Let q u l  and yl12 be two functions of class I<. The 
system in (2) is said to be input-to-state stable (ISS) with Lyapunov 
gain (rU,.  ylL2) if there exist a smooth function V :  IR'" + IR.20, 
three functions n 1,  az. a 3  of class Ii, ,  and two functions rul ~ ru, 
of class IC such that for all r E RIL, all E lR"; w% E IR", and 
all s 2 0: 

1 )  

U'L(IX1) I V ( X )  I .2(1.1) 

2) 

12:1 2 mLX{j/,LI ( I 'Ul  l ) ,%L2(I~U2l)} 

d T' 
d. 

--r' V ( : r )  = -@(.E, U I . U U 2 )  I -.3(1.1) 

3) 

- / U ,  (8) = a; ' (ua ( ; i~ ' , ( s ) ) ) , ru , ( s )  = a ; 1 ( a 2 ( % 2 ( s ) ) ) .  ( 3 )  

A relationship between the above property and a bound on the state 
x as a function of time (as proposed in [17]) is given below. See [ 191 
for related converse theorem?. 
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Lemma Or If system (2) is ISS with Lyapunov gain (ru, ,  ru2)  
then there exists a function ,9 of class I i L  such that for each 
;CO E IR" and for each pair of measurable, essentially bounded inputs 
ul(.), u z ( . ) ,  the solution of (2) with ~ ( 0 )  = 50 exists for each t 2 0 
and satisfies 

I4t)l I P( I40)L t )  + 7u1( l l~ l I l )  + 7 u 2 ( l l 4 l ) .  (4) 

Proof! From the hypothesis of the lemma and the results of [17] 
or [ I  1, Th. 4.101, there exists a function p of class ILL such that for 
each 50 E IR" and for each pair of measurable, essentially bounded 
inputs ~ u l ( ~ ) , u ~ ( . ) ,  the solution of (2) with ~ ( 0 )  = zo exists for 
each t 2 0 and satisfies 

Iz(t)l I P(I.(o)l,t) + G 1 ( 4 m a x { L  ~ l l ~ l l l ~ ~ - k u 2 ~ I l ' ~ z l l ~ ~ ) ) .  
( 5 )  

Then the lemma follows from the fact that for any pair o f  nonnegative 
real numbers ( g l ?  . q 2 )  

-1 
rbl (m(rn;tx{gll 9 2 ) ) )  I max { ~ ' ( m ( a ) ) ,  a l l ( m  ( ~ 2 ) ) )  

I ~cT'(a2(gi  j )  + aT1(a2(g2)). (6) 

111. SINGULARLY PERTURBED SYSTEMS 
We will focus on singularly perturbed nonlinear systems with the 

following state-space description: 

j. = f ( Z , Z , O ( t ) , E )  

t i  = g ( r ,  z .  0 ( t ) .  E )  
(7) 

where ;I' E EL" and z E lRp denote vectors of state variables, 
0 E IRq denotes the vector of the disturbances, and F is a small 
positive parameter. The functions f and g are locally Lipschitz on 
IR'l x lRp x E l q  x [0 , t )  for some F > 0. The input vector 0(t) in 
(7) may represent constant or time-varying (not necessarily slowly) 
parameters, tracking signals and/or exogenous disturbances. In what 
follows, for simplicity, we will suppress the time-dependence in the 
notation of the vector of input variables e ( t ) .  

A standard procedure that is followed for the analysis of systems 
in the form of (7) is the decomposition of the original system into 
separate reduced-order systems, each one associated with a different 
time scale. This procedure is called two-time scale decomposition 
[12]. Formally, it can be done by setting t = 0 in which case the 
dynamics of the state vector z becomes instantaneous and (7) takes 
the form 

where z ,  denotes a quasisteady state for the fast state vector 2. 

Assumption 1 states that the singularly perturbed system in (7) is 
in standard fo rm.  

Assumption I :  The algebraic equation g(z, z, ,  0 . 0 )  = 0 possesses 
a unique root 

Z S  = h ( z , Q j  (9) 

with the properties that h :  IR"' x ELq -+ IR? and its partial derivatives 
(g), are locally Lipschitz. 

Substituting (9) into (S), the following locally Lipschitz system is 
obtained: 

i. = f(z. h(z ,  e ) ,  8; 0). (10) 

The dynamical system in (10) is. called the reduced system or slow 
subsystem. The inherent two-time scale behavior of the system of (7) 
can be analyzed by defining a fast time scale 

and the new coordinate y := z - h ( ~ , 0 ) .  In the ( 2 ,  y) coordinates, 
and with respect to the T time scale, the ringularly perturbed system 
in (7) takes the form 

d X  

d r  
- = E f ( Z ,  h ( z ,  e )  + y. e .  E )  

(1 r = g(z,h(z,6') + Y . 8 , E )  (12) 

Setting E equal to zero, the following locally Lipschitz system is 
obtained: 

~ = g ( X .  k ( J ,  0 )  + Y, $,0).  (13) d:Y 
dr 

Here, z and 0 are to' be thought of as constant vectors. In what 
follows, we will refer to the dynamical system in ( 1  3) as the fast 
subsystem or the boundary layer system. The assumptions that follow 
state our stability requirements on the slow and fast subsystems. 

Assumption 2: The reduced system in (10) is ISS with Lyapunov 
gain 7. 

Assumption 3: The equilibrium y = 0 of the boundary layer 
system in (13) is globally asymptotically stable, uniformly in .c E 
IR". 0 E I R q .  

The main result of this note is given in the following theorem (the 
proof is given in Seclion V). 

Theorem I :  Consider the singularly perturbed sysl.eni in (7) and 
suppose Assumptions L-3 hold and that 0 ( t )  is absolutely continuous. 
Define y = z - 1 1  (x. 0 )  and let 7 be the function given by Assumption 
2. Then there exist functions [L> p, of class I i L ,  and for each 
pair of positive real numbers (6, d ) ,  there is an F* > 0 such that 
if mnx{jc(O)I, ly(O)l, 11011. I lS l l }  _< 6 and e E ( O , E * ] ,  [hen, for all 
t 2 0 

Remark I :  When g does not depend on 8. B ( f ) ,  (can simply be 
measurable and there is no requirement on llell (if 6' (exists). 

R e m a r k 2 :  We emphasize that the result of Theorem 1 can be 
applied to arbitrarily la.rge initial conditions (.(U), y (  O ) ) ,  uncertainty 
0 ( t ) ,  and rate of change of uncertainty B(t). Furthermore, this result 
is novel even in the undisturbed case (i.e., 0 ( t )  5 0) in that no growth 
or interconnection conditions are imposed to establish boundedness 
of the trajectories (compare with the discussion in Section VI). 

Remark 3: In principle, a value for F* can be extracted from the 
proof of the theorem. However, as is the case for most general 
singular perturbation results for nonlinear systems (e.g., [ 161 and [7]), 
this value will typically be quite conservative. 

Iv. FURTHER FACTS ABOUT INPUT-TO-STATE STABILITY 

In this section, we give three lemmas on the input-to-state stability 
property that will be used in the proof of Theorem 1. These lemmas 
are natural extensions of results given in [ 181 and should be useful as 
tools for other nonlinear stability results. Throughout, the lemmas will 
refer to (2). When applying these lemmas in the proof of Theorem 
1, we may be considering systems with three groups of inputs. The 
results for these cases are completely straightforward extensions of 
the cases presented below. 

The first lemma is reminiscent of [18, Lemma 3.21. 
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Lemmu I :  Assume that (2) with u . ~ ( t )  E 0 is input-to-state stable 
with Lyapunov gain Then, there exist an 711 x ' r n  matrix B ( r ,  U I )  

of smooth functions, invertible for all .T E IR", 111 E W that satisfies 
B(x ,  ( 1 1 )  = I n L X m  in a neighborhood of the origin, and a function 
yug of class I<% such that the system 

j. = +(:I;, u1,13(.c,  U I ) U Z )  (16) 

is input-to-state stable with Lyapunov gain (yI l ,  - / u 2 ) .  Furthermore, 
if ylLl is of class IC,, then the matrix B can be chosen to be 
independent of U ] .  

Proof: From the hypothesis of the lemma and Definition 1, we 
have that there exist a smooth function V: IR" + IR>o,  - class IC, 
fhnctions a L. an. u3, and a class IC function such that part I of 
(3) holds and 

. av 
D z [ X I  2 :/tL, (1'uil) --I' V - @ ( s , u I , U )  5 - u : ~ ( I . c ~ )  (17) 

where iu, (s) = IZ ; '  ((cl (s))) is a function of class IC. Defining 
& := B ( s ,  u 1 ) u ~  and computing the time-derivative of the function 
Ti along the trajectories of (16), we get 

Since o is locally Lipschitz and b. is smooth, and using (17), we 
have that there exist a class I<, function Q1 and also a positive real 
number L 2 1 such that 

Let us now define the class I<, function i U , ( s )  := IEL;Y{S,C/;~ 

(2 (1  + L ) ( s ) ) } .  and let b ( s )  be a smooth function that satisfies 
h ( s )  G 1 in a neighborhood of the origin (i.e., there exists a 51 > 0 
such that b ( s )  E 1. V s t [O.Sl]) and moreover is chosen so that 
the inequality 

Finally, we have 

1x1 2 ~nax{iu1(l~1l), l~,21,c7;1(2(1 + L ) ( l U Z O ) )  =3 
' I  v 5 -,.3(I.EI). (26) 

But from the definition of 5u2 we have (22). 
We finally note that whenever the function Tu,  is of class IC,, 

the inequality 1.1 I 5 5;: (1x1) can be used in the second inequality 
of (24) to get a new ICm function which depends only on 1x1. In 
this case, by choosing b ( s )  to satisfy (20) for this new G I ,  one can 
then choose L?(Ic;uI) = ~ ( I I C I ) I ~ ~ , , ~ ,  i.e., independent of U I .  0 

Lemma 2 that follows is reminiscent of [18, Th. 21. 
Lemma 2: Assume that (2) with u z ( t j  G 0 is input-to-state stable 

with Lyapunov gain r lLl .  Then, there exist a function 13 of class 
ICL, a continuous nonincreasing function a:lR>, -+ IRzo, and 
a function ytL2 of class IC such that for each-x" E IR", each 
essentially bounded input ul (.), and each essentially bounded input 
S U ~ ( . )  satisfying I Iuz(I  5 a(max{lz(0)l, 1 1 u L 1 / } ) ,  the solution of (2) 
with ~ ( 0 )  = 20 exists for each t 2 0 and satisfies (4). 

Prooj? Referring to (2),  we note that a direct application of 
Lemma 1 yields that there exist an m x rri matrix B ( s ,  u1 1 of smooth 
functions, invertible for all IC E IRrL,  u l  E E", and a function 7 6 ,  

of class K ,  such that the following system: 

.i = +(r,  u1. B(.T,U1)ii2) (27) 

is input-to-state stable with Lyapunov gain (rUl, 7 ~ ~ ) .  Using Lemma 
0, there exists a function [I of class 11715 such that for each zo E lR" 
and for each essentially bounded pair of inputs u 1 ( . ) . 6 2 ( - ) ,  the 
solution of (27) with r ( 0 )  = .TO exists for each t 2 0 and satisfies 

Ix(t)l I ,@(l4())I,t) + 7 U l ~ l l ' ~ l I l ~  + 1 ~ 2 ( 1 1 W .  (28) 

In the case where U 2  is only locally essentially bounded on [O, l?), 
we have by causality that for each t E [O,T) 

IJ-(t)l I 3(14fl)I.t) + ~ U ~ ( l l ~ l I l )  + YiLa( l l~2, l l ) .  (29) 

Identifying i2 = Bp1(s .u l )u2 ,  and using that u l  and u 2  are 
assumed to be essentially bounded, if [O; T )  represents the maximal 
interval of definition for (27), then for each t E [O, T )  

I.(t)l I $(l2:(0)l.t) + r ~ L * ( l l ~ l l l )  +ynn(llB;lII 11.211+ 1lu211+). 

(30) 
TheproofofLemma 1 gives tha tB(z , 'u l )  has theformh(lXI)Imx,n,  
where b ( s )  is a smooth function that satisfies 0 < b ( s )  I 1, for all 
s E IR, and b ( s )  1, for all s t [U, b l ] ,  where 51 is some positive 
real number. Let L 2 1 and let Q z  be a function of class IC, such 
that 

1 
b(P(ls(O)l?O) + YlL, ( I l ~ U l  I I )  + k ( 1 )  + I I , ~ L I I I )  

I L + Q,z(max{ls(O)(. 11~111)). (31) 

Define the continuous nonincreasing function p i . )  as a ( s )  := (k (L+ 
* Z ( s )  j)-'. Note that since L 2 1, a ( s )  5 1 for all s E IR. We will 
show that if lluzll I a(rnax{lx(O)(.IIuilI}) then 1' is defined on 

[O. 'CO) and & 5 1. Let 7" E (0 ,T )  be the maximal time such 
that for all f t [O, T'j 
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I A. (33)  2 
From (30) and the fact I/uzI/ 5 .(max{I~(O)l,l/ulli}), it follows 
that for all t E [O.T') 

111L2114 

b(B(ldO)I,O) + ~ u l ~ l l ~ l l l )  + 7 z 2 0 )  + 11.111) I 

I ( L  + Qz(max{ldO)l, l l ~ l l l } j j ~ ~ ( ~ ~ ~ ~ ~ { l ~ ( ~ ) l ,  11~11l>) 

(34) 
1 
2 
I -. 

Again using continuity of IC and the fact that T' is maximal, we must 
have that T' = T. This implies that the quantity I 1 ~ z l i h / b ( l ] ~ l l  + 
11u111) (and hence ~ ~ u Z ~ ~ ~ / ~ ( ~ ~ X ~ ~ ~ ) j  is bounded on [0 ,T) .  So using 
(30), z must be bounded on [O,T). From the definition of T, 
we must have T = ix, and we also have that (4) holds with 

Lemma 3: Referring to (2),  assume that (4) holds for each zo E 
IR", each essentially bounded input u1(.) ,  and each essentially 
bounded input uz( . )  such that l l u ~ l l  5 a(rnax{!z(O)l, 11u111)). 
Then, for each pair of positive real numbers (6, cl), there exists 
a positive real number p* such that for each p t (O ,p* ] ,  if 
Inax{iz(o)I, Ib1III I 6 and I luz I I  I ~(~nax{Ir(O)l + 2, Iiu1II)), 

then the solution of (2) with z(0) = 20 exists for each t 2 0 and 
satisfies 

Y u , ( S )  = Y & q .  0 

I4t)l I P( I40 ) l : t )  +7711(IIu?II) + % 2 ( l l ~ ; l l j  +d.  (35) 

In case where (4) holds for all essentially bounded inputs u2(.), (35)  
holds for all ( 1 ~ ( 0 ) , u l ,  u z )  that satisfy niax{lz(O)l, ~ ~ u 1 ~ ~ , 1 1 ~ ~ 1 1 }  5 
6. 

Pro($ First note that since (4) holds for the system in 
(2) for each essentially bounded input U;. ( . )  such that 1 ~ ~ ~ ~ 1 ~  5 
.(max{lz(0)l,liUlli}), and since niax{/.c(O)I, I l u I I I }  I 8 and 
llu211 5 u(max{lT(O)l + 2, I I ' u I  I t } ) ,  z ( t )  is bounded by a number 
depending on ( b ,  d ) ,  and thus 1i1 is bounded by a number depending 
on (6 ,d ) .  (In the case where (4) holds for all essentially bounded 
inputs uz( . ) ,  M depends only on 8.) Thus, there exists a positive 
real number M (depending on ( b , z )  j such that 

Iz(t)l 2 IZ(0)l + t M ,  vt 2 0. (36) 

Now, observe that for fixed s 2 0 and t 2 0, the term ;:7(s+TM, t -  
T) -P( s ,  t )  is nondecreasing as T 5 f increases, and for fixed s 2 0 
and T 2 0 it decreases to zero as t 4 cc. From these two facts, we 
have that for each pair of positive real numbers (6. i), there exists a 
positive real number T sufficiently large (without loss of generality, 
let T 2 1) such that 

P(.S + M , t  - 1) - R ( s , t )  5 d ,  VS E [O,S]. V t 2 T. (37) 

Define p* 5 1 such that 

p(~,o)  - O ( ~ .  t )  + t1v1 5 2- ti E [o. $1, v t E [o, p*] (38) 

and 

P ( s  + p* lM, t - p " )  - P( S .  t )  I d, v s t [O, $1, v t t [U. TI. 
(39) 

To establish the result of the lemma, we will show thait the bound 
in (35) holds for each p E (0. p ']  and all t 2 0 by examining the 
time intervals [ O ,  p * ] ,  [ p * ,  T] and [T, m), separately. First, note that 
s I /j(s,O) for all s 2 0 (consider (4) with l lu l l l  z= /Iu:,I/ = 0). 
Then, from (36) and using (38 ) ,  we get, for all t E [ ( I , p * ]  

Iz(t)l 5 P(I.(O)l.O) + t-%f 
5 a(lz(O)I. t)  + [ ; 3 ( l ~ ( O ) l , O )  - P(IZ(O)IJ)] + t M  

=: P(ls(0)l . t)  + d.  (40) 

Thus, (35 )  holds for all t E [0, p * ] .  For the remaining two intervals, 
note that using time invariance and (36) and (38 ) ,  we have that if 
I ( u z I (  i cJ(mx{lIC(O)l+d- Ilu111)) I a(max{lx(p*)l, Ib l I I I ) ,  then 
for all t t [ p * , x )  

I4 t l l  I w 4 P * ) l . t  - P * )  + YUl (\\.'I* 1 1 )  + ?U2 (\I.;* 1 1 )  
I "Lt) + lP(l.(P*)l,t - P * )  - P(l:do)l*t)l 

+ ?!U1 (\I4 \I) + Y"2 (1\4 1 1 ) .  (41) 

(Notice that if (4) holds for all essentially bounded inputs U:, (.), (41 ) 
holds for all (z(O).u1,uz)  that satisfy rnax{lcc(O)l,1)U11I,I]Ual/} 5 
8.) From (41), using (36) and (39), we have for all t Ct [ p * ,  T ]  

l4t ) l  I 3(l.cjO)l,t) + YUl (II.?* 1 1 )  + Yuz (11.f 1 1 )  + 
I P(Iz(o)I,t) +?ul(IIu?II) + ?uz(IIugIl) t 2. (42) 

Moreover, from (41), using (36), the fact that P ( s  + p * M ,  t - p * )  - 
/ ? ( s , t )  I P ( s  + M,t - 1) - [l '(s>t),  and (37), we have, for all 
t E [T.m) 

l4t) l  I o(l.(o)l,t) + [ ~ ~ ( l 4 0 ) l +  M ; t  - 1) - Pcl.(o)l.t,l 

I P(I4o)l. t)  + Tu,  ( 1 1 ~ ~ 1 1 )  + rt'2(II7L;II) + 2. 
+ 7.1 (+r* 1 1 )  + ?U2 (114- 1 1 )  

(43) 

0 

v. PROOF OF THEOREM 1 

To simplify notation, we assume E = m. The modifications are 
obvious for the case where 5 is finite. We analyze (7) in the (,z,y) 
coordinates. In the time scale T = t / c ,  the v dynamics are governed 
by 

!!!! = y(z.  h ( x .  Q) + y. Q, f )  
d r  

Since, by assumption, when t = 0 the point y = 0 is globally 
asymptotically stable uniformly in IC E IR". 8 E IR,?, there exist 
(see 114, ch. 21) three functions b l ,  b 2 ,  b3 of class I<=, and a smooth 
function W: IR" x IR" x IR4 4 the following conditions hold: 

b l  ( I V D  I W(Z.Y, Q) I b2(1Yl) 

Note the similarity between this property and what would be required 
for the boundary layer system to be ISS [with respect to (.,e)] 
with Lyapunov gains which are identically zero. Obtaining the time- 
derivative (in the T time scale) of W ( z ,  .y. 8) along the trajectories 
of (44) and performing calculations similar to the ones in the proofs 
of Lemmas 1 and 2, it can be shown that there exist a function 9, 
of class I iL ,  a continuous nonincreasing function m u :  IF(.?" t EL>", 
and a function of class I< such that for each yo E IR?, each 
triple of essentially bounded inputs O.e,z, and each f satisfying 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 41, NO. 11, NOVEMBER 1996 1649 

e 5 o,,(max{/y(O)/, IlOll .  l l B ' l l ,  l l.~l)}), the solution of (44) with 
y(0) = yo exists for each t 2 0 and satisfies 

l?/(t)l I I j Y  lU(0)l. ; + % , ( E ) .  (46) ( t ,  
The dynamics for IC are governed by 

j: = f(X. h(z .  e )  + y, e ,  t). (47) 

Using Assumption 2 and Lemma 1, we have that there exists a p x p 
matrix B(.E,B) of smooth functions, invertible for all z E El?, 
B E Eq, and a function 7~ of class Ii such that the system 

2 = f ( :L . ,  h ( z ;  e )  + B ( z ,  e)$ .  H , O )  (48) 

is ISS with respect to 0.17 with Lyapunov gain (7;ys).  Next, 
using Lemma 2, we have that there exist a function ,55, of class 
I i L ,  a continuous nonincreasing function 0,: IRzc 4 m.,,, and 
a function yc, of class li such that for each .EO E m", each 
pair of essentially bounded inputs 8. i ,  and each t satisfying t I 
u,(max{lz(O)l, I l O l l ,  11:(j11}), the solution of (47) with ~ ( 0 )  = 
exists for each t 2 0 and satisfies 

I&(t)l I /L(l49l.t) + r( l le l l )  + rY(IId1) +?<,(f) .  (49) 

Since we do not know a priori that z and are essentially bounded, 
to use the above inequalities we must work with the truncation of 
signals and exploit causality. Let ( h .  (I) be as given in the theorem 
so that niax{lz(0)1, Iy(O)l, I lO l l ,  11011) I b ,  and let 6, be a positive 
real number satisfying 

S, > R,(b. 0) + ~ ( b )  + d. (50) 

Note that since b7J(s;  0) 2 s ,  for all s E IR, 5 ,  > 6 and, using 
continuity with respect to initial conditions, we can define [O,T) 
with T > 0 to he the maximal interval in which llstll < 5, for all 
t E [O,T). To show by contradiction that T = '30 for sufficiently 
small, suppose T is finite. 

Using the fact that uy  is a continuous, nonincreasing function, 
it follows from the definition of T and causality that if F 5 
F 1  := ?,(aZ), then (461 holds for all t E [O,T). Then, since 
?/ = E 1 ( x , 6 ' ) y  and B(s .0 )  = b ( ~ X ~ ) I p x p ,  where X ( t )  = 
[ z T ( t )  O'(t)]' (see the proof of Lemma 1) we have for all t E [0, T )  

IIDrll = II(B-'(..e)Y)tll I ~ l ~ ~ - l ( ~ . ~ ~ ) ~ l l l l ~ ~ l l  

Define 

and note that since 0, ( s .  0) 2 8, b is nonincreasing and b ( s )  satisfies 
0 < h(s)  5 1 for all s E lR (see the proof of Lemma I) ,  it follows 
that 6 5 Si, and ll:&II 5 5, for all f E [O,T). 

Now, from the conditions under which (49) holds, and using that 
cz i s  nonincreasing, it follows from Lemma 3 that there exists a 
positive real number p < T such that if 

f 5 e p  := u r ( 6 c  + d / 2 )  

I uz(rnnx{l.40)l + d / 2 .  I lBll, llitllt) Vt  E [().TI (53) 

then the solution of (47) with .x (O)  = L O  exists for all t t [O, T )  
and satisfies 

Combining (51) and (54), i f f  5 min{t l ,  E L }  then for all t E [O.T) 

Since the last two terms converge to zero as t goes to zero, there exists 
an FJ > 0 such that if E 5 rnin(e1. € 2 ,  € 3 1 ,  then for all t E [U; 7') 

I4f) l  5 &(IX(O)I,t) + 3(11a? + d. (56)  

From the definition of 6,, the assumption that T is finite and has 
continuity of X, there must exist some positive real number k such 
that llzt I/ < 6,, for all t E [O, T + k ) .  This contradicts that T is 
maximal. Hence, T = x' and (14) holds for all t 2 0. Finally, letting 
€4 be such that rcy ( e )  I d for all F t [0,t4], it follows that both 
(14) and (15) hold for 6 E (0. F * ]  where E* = min(t1, F g ,  € 3 ,  €4). 

VI. DISCUSSION OF LOCAL PROPERTIES 

Note that even with H ( t )  0, Theorem 1 does not provide 
any result concerning stability of or convergence to the origin. To 
guarantee such properties further assumptions are required. Indeed, 
consider the singularly perturbed system 

e4 = --% + t L  

where 1' E IR, z E R. One can easily see that the above system is 
in standard form, h(.c. 0)  = 0, and its fast dynamics 

d?J - 
- -.v 

possess a globally exponentially stable equilibrium ( y  = 0). More- 
over, the reduced system takes the form 

2 = -T (59) 

which clearly possesses a globally asymptotically stable equilibrium 
(:r = 0). Thus, the assumptions of Theorem 1 are satisfied, and its 
result can be applied. However, the origin is not an asymptotically 
stable equilibrium for (57). This can be easily seen considering the 
linearization of (57) around the origin 

3 

E = %  

ti = --% + e. 
which possesses an eigenvalue in the right half of the complex plane 
for all positive values of 6.  It is clear from the above example that 
we cannot draw any conclusions about the stability properties of the 
equilibrium point of the full order system from knowledge of the 
stability properties of the reduced-order systems without some type 
of additional interconnection condition. There are several possible 
interconnection conditions that can be imposed to guarantee stability 
of and convergence to the origin. Most efficient conditions are 
essentially related to the small gain theorem (see [21] and [15]) in 
one way or another. Saberi and Khalil provide Lyapunov conditions 
in [16] which are closely related to small gain conditions in an 
La setting. An L,  nonlinear small gain condition is given in [20] 
and [ lo]. Perhaps the most straightforward, although conservative, 
interconnection condition i s  the assumption that with B ( t )  0, the 
origin of the slow and fast subsystems are locally exponentially stable. 
In this case, it can be shown [16] that there exists t sufficiently 
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small such that the origin of (7) is locally exponentially stable and 
that the basin of attraction does not shrink as t becomes small. In 
general, when a local interconnection condition is given that has this 
“nonshrinking” property, the result of Theorem 1 can be used to show 
stability and convergence from an arbitrary large compact set under 
Assumptions 1-3. This is obtained by choosing d,, d, sufficiently 
small to guarantee convergence in finite time to the domain of 
attraction of the origin. 

REFERENCES 

A. Bacciotti, “Linear feedback: The local and potentially global stabi- 
lizability of’ cascade systems,” in Proc. Nonlinear Contr. Syst. Design 
Symp., Bordeaux, France, 1992, pp. 21-25. 
V. V. Breusegem and G. Bastin, “Reduced order dynamical modeling 
of reaction systems: A singular perturbation approach,” in Proc. 30th 
Conf Dec. Contr., Brighton, England, 1991, pp. 1049-1054. 
C.-C. Chen and J.-G. Hsieh, “A simple criterion for global stabiliaability 
of a class of nonlinear singularly perturbed systems,” Int. J. Contr., vol. 
59, pp. 583-591, 1994. 
J. H. Chow, Time Scale Modeling of Dynamic Networks. New York: 
Springer-Verlag, 1982. 
P. D. Christofides and A. R. Teel, “Singular perturbations and input-to- 
state stability,” i n  Proc. 3rd European Contr. Con$, Rome, Italy, 1995, 
pp. 1845-1850. 
M. Corless, F. Garofalo, and L. Glielmo, “New results on composite 
control of singularly perturbed uncertain linear systems,” Automutica, 
vol. 29, pp. 387400, 1993. 
D. Da and M. Corless, “Exponential stability of a class of nonlinear 
singularly perturbed systems with marginally stable boundary layer 
systems,” in Proc. Amer. Contr. Conf, San Francisco, CA, 1993, pp. 
3 101-3 105. 
P. Habets, “A consistency theorem of singular perturbations of differ- 
ential equations,” SIAM J. Appl. Math., vol. 26, no. I ,  pp. 136-153, 
1974. 
F. Hoppensteadt, “Singular perturbations on the infinite interval,” Trans. 
Amer. Math. Soc., vol. 123, pp. 521-535, 1966. 
Z.-P. Jiang, A. R. Teel, and L. Praly, “Small-gain theorem for ISS 
systems and applications,” Math. Contr. Signals Syst., vol. 7 ,  no. 2, 

H. K. Khalil, Nonlinear Systems. 
P. V. Kokotovic, H. K. Khalil, and J. O’Reilly, Singular Perturbations 
in Control: Analysis and Design. 
J. Levine and P. Rouchon, “Quality control of binary distillation columns 
via nonlinear aggregated models,” Automutica, vol. 27, pp. 463480, 
1991. 
Y. Lin, “Lyapunov function techniques for stabilization,” Ph.D. disser- 
tation, Kutgers Univ., Oct. 1992. 
I. M. Y. Mareels and D. J. Hill, “Monotone stability of nonlinear 
feedback systems,” J. Math. Syst. Estimation Contr., vol. 2, pp. 215-291, 
1992. 
A. Saberi and H. Khalil, “Quadratic-type lyapunov functions for singu- 
larly perturbed systems,” IEEE Trans. Automat. Contr., vol. AC-29, pp. 
542-550, 1984. 
E. D. Sontag, “Smooth stabilization implies coprime factorization,” 
IEEE Trans. Automat. Contr., vol. 34, pp. 435443, 1989. 
~, “Further facts about input to state stabilization,” IEEE Trans. 
Automat. Contr., vol. 35, pp. 473416, 1990. 
E. D. Sontag and Y. Wang, “On characterizations of the input-to-state 
stability property” Syst. Contr. Lett., vol. 24, pp. 351-359, 1995. 
A. Tee1 and L. Praly, “Tools for semi-global stabilization by partial state 
and output feedback,” SIAM J. Contr. Optimization, vol. 33, no. 5 ,  pp, 
1443-1488, Sept. 1995. 
G. Zames, “On the input-output stability of time-varying nonlinear 
feedback systems-Part I,” IEEE Trans. Automat. Contr., vol. AC-11, 
pp. 228-238, 1966. 

pp. 95-120, 1995. 
New York: Macmillan, 1992. 

London: Academic, 1986. 

On The Stability Domain Estimation via a (Quadratic 
Lyapunov Function: Convexity and Optimality 

Properties for Polynomial Systems 

A. Tesi, F. Villoresi, and R. Genesio 

Abstract-The problem of estimating the stability domain of the origin 
of an n-order polynomial system is considered. Exploiting the structure 
of this class of systems it is shown that, for a given quadratic Lyapunov 
function, an estimate of the stability domain ran be obtained by solving 
a suitable convex optimization problem. This estimate 11s shown to be 
optimal for an important subclass including both quadratic and cubic 
systems, and its accuracy in the general polynomial case lis discussed via 
several examples. 

NOTATION 
ith basis vector. 
Identity matrix of order n. 
Positive definite (semidefinite) 
matrix. 
Negative definite (semidefinite) 
matrix. 
Skew-symmetric matrix. 
Factor of T = T’ :> U, i.e., T = 
TjTj.  
Induced lz-norm of matrix T. 
Maximum eigenvalue of T. 
Kronecker product of TI and TL. 
Affine linear matrix on U = 
[ V I ,  . . .  . ~ 1 1 ‘  E R‘. 

I. INTRODUCTION 
The problem of estimating the stability domain [usually called 

domain of attraction (DA)] of an equilibrium point is well known 
in the area of nonlinear system analysis and control. In spite of a 
lot of work (see [ I ] ,  [2], and references therein), there are no simple 
ways for finding reasonable guaranteed stability doma.ins especially 
when high-order general nonlinear systems are considered. Roughly 
speaking, a typical algorithm for computing estimates of the stability 
domain essentially consists of two distinct parts (see, for instance, 
[3]-[7]): i) a part where a Lyapunov function is selected according to 
some specified rules and ii) a part where an estimate of the domain 
of attraction is computed for the selected Lyapunov function. While 
part i) strongly depends on the used algorithm, part ii) is common to 
all the algorithms and irepresents the crucial point of the procedure. 
More precisely, part ii) requires one to compute the region where 
the derivative of the chosen Lyapunov function is negative definite 
and to embed the contour surfaces of the Lyapunov fumction within 
this region. This problem can be cast as a nonconvex optimization 
problem which is in general difficult to solve for the presence of 
local extrema. Most of the proposed approaches are based on gridding 
techniques (see, e.g., [3] and [4]) which make them not very effective 
for higher dimensional systems. More recently, a more efficient 
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