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Abstract

In this work, we consider nonlinear singularly perturbed systems with time-varying uncertain variables, for which the fast
subsystem is asymptotically stable and the slow subsystem is input/output linearizable and possesses input-to-state stable (ISS)
inverse dynamics. For these systems, we synthesize a robust output feedback controller that ensures boundedness of the state and
enforces robust asymptotic output tracking with attenuation of the e!ect of the uncertain variables on the output of the closed-loop
system. The controller is constructed through combination of a high-gain observer with a robust state feedback controller synthesized
via Lyapunov's direct method. The proposed controller enforces the aforementioned properties in the closed-loop system, for initial
conditions, uncertainty and rate of change of uncertainty in arbitrarily large compact sets, provided that the singular perturbation
parameter is su$ciently small and the observer gain is su$ciently large. ( 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many industrial processes exhibit nonlinear behavior
and involve physicochemical phenomena occurring in
separate time-scales. It is well established that a direct
application of standard control methods to multiple-
time-scale processes, without accounting for the presence
of time-scale multiplicity, may lead to controller ill-con-
ditioning and/or closed-loop instability. To circumvent
these problems, the control of multiple-time-scale pro-
cesses is usually addressed within the framework of sin-
gular perturbations (e.g., Kokotovic, Khalil, & O'Reilly,
1986; Christo"des & Daoutidis, 1996).

In addition to nonlinearities and time-scale multiplic-
ity, many industrial processes involve unknown process
parameters and external disturbances. Therefore, the
problem of designing controllers for nonlinear systems
with uncertain variables, that enforce output tracking
with attenuation of the e!ect of the uncertain variables
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on the output, has received considerable attention. For
feedback linearizable nonlinear systems with time-vary-
ing uncertain variables that satisfy the so-called matching
condition, robust state feedback controllers have been
designed via Lyapunov's direct method to solve this
problem locally (the reader may refer to Corless (1993)
for a review of results in this area). Recently, for a class of
nonlinear systems with time-varying uncertain variables
that admit a disturbance-strict-feedback form without
zero dynamics, a robust output feedback controller was
designed in Khalil (1994) that solves this problem for
arbitrarily large initial conditions and uncertainty (semi-
global result). This result was generalized in Mahmoud
and Khalil (1996) to nonlinear systems with asymp-
totically stable zero dynamics. In Christo"des, Teel and
Daoutidis, (1996), robust state feedback controllers were
synthesized for nonlinear singularly perturbed systems
with time-varying uncertain variables.

In this work, we address the problem of synthesizing
a robust output feedback controller for nonlinear singu-
larly perturbed systems with uncertain variables, for
which the fast subsystem is asymptotically stable and the
slow subsystem is input/output linearizable and pos-
sesses input-to-state stable inverse dynamics. A dynamic
controller is synthesized, through combination of a
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high-gain observer with a robust state feedback control-
ler synthesized via Lyapunov's direct method, that en-
sures boundedness of the state and achieves arbitrary
degree of asymptotic attenuation of the e!ect of the
uncertain variables on the output of the closed-loop
system. The derived controller enforces the requested
objectives in the closed-loop system, for initial condi-
tions, uncertainty and rate of change of uncertainty in
arbitrarily large compact sets, as long as the singular
perturbation parameter is su$ciently small and the ob-
server gain is su$ciently large. A successful application of
the proposed control method to a chemical reactor
example can be found in Christo"des (1998).

2. Notation

f D ) D denotes the standard Euclidean norm, sgn( ) ) de-
notes the sign function, and sat( ) ) denotes the satura-
tion function, de"ned as

sat(s)"G
a
m

if s5a
m
,

s if !a
m
(s(a

m
,

!a
m

if s4!a
m
,

(1)

where s3R and a
m

is a positive real number. For
a vector x3R n, sat(x)"[sat(x

1
) sat(x

2
) 2 sat(x

n
)]T.

O(e) denotes the standard order of magnitude notation
i.e., d(e)"O(e) if there exist positive constants k and
c such that Dd(e)D4kDeD, ∀DeD(c. ¸

f
h denotes the Lie

derivative of a scalar "eld h with respect to the vector
"eld f. ¸k

f
h denotes the kth order Lie derivative and

¸
g
¸k~1
f

h denotes the mixed Lie derivative.
f For any measurable (with respect to the Lebesgue

measure) function h :R
z0

PR m, DDhDD denotes
ess sup Dh(t)D, t50. For any strictly positive real num-
ber o, DDhoDD denotes ess sup Dh(t)D, t5o.

f A function c : R
z0

PR
z0

is said to be of class K if
it is continuous, increasing and is zero at zero. It is of
class K

=
, if in addition, it is proper. A function

b : R
z0

]R
z0

PR
z0

is said to be of class K¸ if, for
each "xed t, the function b( ) , t) is of class K and, for
each "xed s, the function b(s, ) ) is nonincreasing and
tends to zero at in"nity.

3. Preliminaries

We consider single-input single-output nonlinear
singularly perturbed systems with uncertain variables
of the form

x5 "f
1
(x, h(t))#Q

1
(x, h(t))z#g

1
(x, h(t))u,

ez5 "f
2
(x, h(t))#Q

2
(x, h(t))z#g

2
(x, h(t))u,

y"h(x),

(2)

where x3R n and z3R p denote vectors of state variables,
u3R denotes the manipulated input, h3R q denotes the
vector of the uncertain time-varying variables, y3R de-
notes the controlled output, and e is a small positive
parameter. f

1
(x, h(t)), f

2
(x, h(t)), g

1
(x, h(t)) and g

2
(x, h(t)) are

su$ciently smooth vector functions, Q
1
(x, h(t)) and

Q
2
(x, h(t)) are su$ciently smooth matrices, and h(x) is

a su$ciently smooth scalar function.
Setting e"0 in the system of Eq. (2) and assuming that

Q
2
(x, h) is invertible uniformly in x3R n, h3R q, the fol-

lowing slow subsystem is obtained:

x5 "F(x, h)#G(x, h)u,

y"h(x),
(3)

where F(x, h)"f
1
(x, h)!Q

1
(x, h)[Q

2
(x, h)]~1f

2
(x, h) and

G(x, h)"g
1
(x, h)!Q

1
(x, h)[Q

2
(x, h)]~1g

2
(x, h). De"ning

the fast time-scale q"t/e, deriving the representation of
the system of Eq. (2) in the q time scale, and setting e"0,
the following fast subsystem is obtained:

dz

dq
"f

2
(x, h)#Q

2
(x, h)z#g

2
(x, h)u, (4)

where x can be considered equal to its initial value x(0)
and h can be viewed as constant.

Assumption 1. The matrix Q
2
(x, h) is Hurwitz uniformly

in x3R n, h3R q.

De5nition [(Sontag, 1989)]. The system in Eq. (3) (with
u,0) is said to be input-to-state stable (ISS) with respect
to h if there exist a function b of class K¸ and a function
c of class K such that for each x

0
3R n and for each

measurable, essentially bounded input h( ) ) on [0,R) the
solution of Eq. (3) with x(0)"x

0
exists for each t50 and

satis"es

Dx(t)D4b(Dx(0)D, t)#c(DDhDD), ∀t50. (5)

4. Robust output feedback controller synthesis

Motivated by the assumption of global asymptotic
stability of the fast dynamics of the system of Eq. (2), we
will synthesize the requisite robust dynamic output feed-
back controller on the basis of the slow subsystem of Eq.
(3). To this end, we will need to impose the following
three assumptions on the slow subsystem of Eq. (3). The
"rst assumption is motivated by the requirement of out-
put tracking and states the existence of a coordinate
change that renders the system of Eq. (3) partially
linear.

46 P.D. Christoxdes / Automatica 36 (2000) 45}52



Assumption 2. There exists an integer r and a set of
coordinates

C
f

gD"C
f
1

f
2
F

f
r

g
1
F

g
n~r

D"X(x)"C
h(x)

¸
F
h(x)

F

¸r~1
F

h(x)

s
1
(x)

F

s
n~r

(x)
D, (6)

where s
1
(x),2, s

n~r
(x) are nonlinear scalar functions of

x, such that the reduced system of Eq. (3) takes the form:

fQ
1
"f

2
,

F
fQ
r~1

"f
r
,

fQ
r
"¸r

F
h(X~1(f, g), h)#¸

G
¸r~1

F
h(X~1(f, g), h)u,

g5
1
"(

1
(f, g),

F

g5
n~r

"(
n~r

(f, g),

y"f
1
, (7)

where ¸
G
¸r~1
F

h(x, h)O0 for all x3R n, h3R q.

We note that the change of variables of Eq. (6) is
independent of h and hQ , and invertible, since, for every x,
the variables f, g are uniquely determined by Eq. (6). This
implies that if we can estimate the values of f, g for all
times, using appropriate state observers, then we auto-
matically obtain estimates of x for all times. This prop-
erty will be exploited later to synthesize a state estimator
for the system of Eq. (3) on the basis of the system of
Eq. (7).

Assumption 3. The system

g5
1
"(

1
(f, g),

F

g5
n~r

"(
n~r

(f, g) (8)

is ISS with respect to f with bg(Dg(0)D, t)"KgDg(0)De~at

where Kg , a are positive real numbers and Kg51.

Following Christo"des et al. (1996), the requirement of
input-to-state stability of the system of Eq. (8) with respect
to f is imposed to allow the synthesis of a robust state
feedback controller that enforces the requested properties
in the closed-loop system for arbitrarily large initial condi-
tions and uncertain variables. On the other hand, the
requirement that bg(Dg(0)D, t)"Kge~at implies that the in-
verse dynamics with f(t),0 are globally exponentially
stable, which allows incorporating in the robust output
feedback controller a dynamical system identical to the

one of Eq. (8) that provides estimates of the variables g.
Finally, we assume that there exist functions that capture
the size of the uncertain term in the system of Eq. (7).

Assumption 4. The term ¸
G
¸r~1
F

h(x, h) has known con-
stant sign for all x3R n, h3R q, and there exist known
functions c

1
(x, t), c

2
(x, t) such that the following condi-

tions are satis"ed:

D¸d¸r~1
F

h(x, h)D4c
1
(x, t), (9)

0(c
2
(x, t)4D¸

G
¸r~1
F

h(x, h)D, (10)

where d(x,h)"[F(x, h)!F
/0.

(x)], for all x3R n, h3R q.

Theorem 1 below provides the main result of this
paper.

Theorem 1. Consider the uncertain singularly perturbed
nonlinear system of Eq. (2), for which Assumptions 1}4 hold,
under the robust output feedback controller :

y85 "C
!¸a
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b
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h(x( )!v(k~1)) K#/ H.

x("X~1(sat(y8 ),u)), a
k
, b

k
are parameters chosen so that

the polynomials sr#a
1
sr~1#2#a

r~1
s#a

r
"0,

b
r
sr~1#b

r~1
sr~2#2#b

2
s#b

1
"0 are Hurwitz,

and /, s are adjustable positive parameters. Then,
for each set of positive real numbers d

x
, d

z
, dh, dhQ , dv6 , d,

there exists /H(s)'0 and for each /3(0,/H(s)],
there exists an eH(/)'0, such that if /3(0,/H], e6"
maxMe, 1/¸N3(0, eH(/)], sat( ) )"minM1, f

.!9
/D ) DN( ) ) with

f
.!9

being the maximum value of the vector [f
1
f
2
2f

r
] for
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DfD4bf(df,0)#d where bf is a class KL function and df is the
maximum value of the vector [h(x)¸

F
h(x)2¸r~1

F
h(x)] for

DxD4d
x
, Dx(0)D4d

x
, Dz(0)D4d

z
, DDhDD4dh, DDhQ DD4dhQ , DDv6 DD

4d
v6
, Dy8 (0)D4df, u(0)"g(0)#O(e6 ), the output of the

closed-loop system satisxes a relation of the form

lim sup
t?=

Dy(t)!v(t)D4d. (12)

Remark 1. The robust output feedback controller of Eq.
(4) consists of a linear gain observer (see, for example,
Khalil, 1994) which provides estimates of the derivatives
of the output y up to order r!1, denoted as
y8
0
,y8

1
,2,y8

r~1
, and thus estimates of the variables

f
1
,2, f

r
(note that from Assumption 2 it follows directly

that f
k
"dk~1y/dtk~1, k"1,2, r), and observer that

simulates the inverse dynamics of the system of Eq. (7),
and a static state feedback controller, synthesized via
Lyapunov's direct method (see Christo"des et al., 1996
for details), that attenuates the e!ect of the uncertain
variables on the output and enforces reference input
tracking. To eliminate the peaking phenomenon asso-
ciated with the high-gain observer, we use the saturation
function, sat, to eliminate wrong estimates of the output
derivatives for short times.

Proof of Theorem 1. Part 1: De"ning the auxiliary error
variables e(

i
"¸r~i(y(i~1)!y8

i
), i"1,2, r, the vector

e
0
"[e(

1
e(
2
2 e(

r
]T, the parameter k"1/¸, the matrix

A and the vector b:

A"C
!a

1
1 0 2 0 0

F F F } F F

!a
r~1

0 0 2 0 1

!a
r

0 0 2 0 0D, b"C
0

F

0

1D, (13)

the system of Eq. (2) under the controller of Eq. (4) takes
the form

ke5
0
"Ae

0
#kb)(x,x( , h, /, v6 ),

u5
1
"(

1
(sat(y8 ), u),

F
u5

n~r
"(

n~r
(sat(y8 ),u),

x5 "F(x, h)#G(x, h)a(x( , v6 ,/, t)

#Q
1
(x, h)[z!C(x, x( , h,/, v6 )],

ez5 "Q
2
(x, h)[z!C(x,x( , h, /, v6 )], (14)

where x("X~1(sat(y
d
!*(k)e

0
),u) and y

d
"

[y(0) y(1) 2 y(r~1)]T, *(k) is a diagonal matrix whose ith
diagonal element is kr~i, and )(x,x( , h, /, v6 ) is a Lipschitz
function of its argument and C(x,x( , h, /, v6 )"
![Q

2
(x, h)]~1[ f

2
(x, h)#g

2
(x, h)a(x( , v6 , /,t)]. Owing to

the presence of the small parameters k and e that multiply

the time derivatives e5 and z5 , respectively, the system of
Eq. (14) can be, in general, a three-time-scale one. There-
fore, the results proved in Khalil (1987), will be used to
establish asymptotic stability of the fast dynamics. De"n-
ing e6"maxMk, eN, multiplying the z-subsystem of Eq. (14)
with e6 /e and the e

0
-subsystem with e6 /k, introducing the

fast time-scale q6 "t/e6 and setting e6"0,

de
0

dq6
"

e6
k
Ae

0
,

dz

dq6
"

e6
e
Q

2
(x, h)[z!C(x, x( , h,/, v6 )].

(15)

The above system possesses a triangular (cascaded struc-
ture), the matrix A is Hurwitz and the matrix Q

2
(x, h) is

Hurwitz uniformly in x3R n, h3R q. Therefore, the sys-
tem of Eq. (15) satis"es the Assumption 3 in Khalil (1987)
and since e6 /k51, e6 /e51, the same approach as in Khalil
(1987) can be used to show that it possesses a globally
exponentially stable equilibrium manifold of the form
e
0
"0, z

s
"C(x,x, h,/, v6 ), for all values of k and e.

Part 2: In this part of the proof, we initially derive ISS
bounds, when e6"0, for the states of the system of Eq.
(14), in appropriately transformed coordinates, and then
use the result of the Lemma A.1 given in the appendix to
show that these bounds hold up to an arbitrarily small
o!set, for initial conditions, uncertainty and rate of
change of uncertainty in an arbitrarily large compact
set, provided that e6 is su$ciently small. De"ning the
variables e

z
"(z!C(x,x, h,/, v6 )), x"X~1(f, g),

e
i
"f

i
!v(i~1), i"1,2, r, e8

r
"e

r
#

r~1
+
k/1

(b
k
/b

r
)e

k
, and

the vector v8 "[v v(1) 2 v(r~1)]T, the closed-loop system
can be written as

ke5
0
"Ae

0
#kb)(e6 , e8

r
, v8 , g, x( , h, /, v6 ),

u5
1
"(

1
(sat(y8 ), u),

F
u5

n~r
"(

n~r
(sat(y8 ),u),

e5
1
"e

2
#e

z
(M

1
(e6 , e8

r
, v8 , g, h),

F

e5
r~1

"!

r~1
+
k/1

b
k

b
r

e
k
#e8

r
#e

z
(1

r~1
(e6 , e8

r
, v8 , g, h),

e85
r
"e

z
(M

r
(e6 , e8

r
, v8 , g, h)#¸r

F/0.
h(x)!v(r)

#¸d¸r~1
F

h(x,h)#
r~1
+
k/1

b
k

b
r

e
k`1

#¸
G
¸r~1
F

h(x, h)a(x( , v6 ,/, t),

g5
1
"(

1
(e6 , e8

r
, v8 , g)#e

z
(1

r`1
(e6 , e8

r
, v8 , g, h),

F

g5
n~r

"(
n~r

(e6 ,e8
r
, v8 , g)#e

z
(1

n
(e6 , e8

r
, v8 , g, h),

ez5 "Q
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(e6 , e8

r
, v8 , g, h)e

z
, (16)
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where (1
i
, i"1,2, n, are Lipschitz functions of their

arguments.
Step 1: Consider the system of Eq. (16) with

e6"maxMe,kN"0 and de"ne e6 "[e
1

e
2
2 e

r~1
]T and

g6 "[e6 T gT]T. Utilizing a standard Lyapunov function
argument, it is straightforward to show that there exist
positive real numbers, k

1
, a, c

e8 r
such that the following

ISS inequality holds for the reduced e6 subsystem:

De6 (t)D4k
1
e~atDe6 (0)D#c

e8 r
DDe8

r
DD. (17)

We now study the dynamics of the state e8
r

of the
system of Eq. (16) with e6"0 to show that it possesses an
ISS property with respect to e8

r
, e6 , v6 , g, h, and moreover the

magnitude of the gain function is bounded by /. In order
to prove this result, we initially need to show that for
the system of Eq. (16) u(0)"g(0)#O(e6 ) implies
g(t)"u(t)#O(e6 ), ∀t50. To this end, consider the
singularly perturbed system comprised of the states
e
0
,u, g, z of the system of Eq. (16). For this system, it is

straightforward to verify that it satis"es the assumptions
of Theorem 1 reported in Khalil and Esfandiari (1993).
Applying this theorem, we have that there exists a posit-
ive real number e

0
, such that for any positive real number

du satisfying du5max/DxD4d
xG

n~r
+
l/1

Dsl(x)DH where sl(x),

l"1,2, n!r are the functions de"ned in Assumption
2, the states (g,u) of this system, starting from any initial
conditions that satisfy g(0)"u(0)#O(e6 ) (with
maxMg(0),u(0)N4du), if e63(0, e

0
], satisfy g(t)"u(t)#

O(e6 ), ∀t50. Since g(t)"u(t), ∀t50, when e6"0, the
closed-loop slow system reduces to the one studied in
Christo"des et al. (1996). Thus, employing the same cal-
culations as those in Christo"des et al. (1996), one can
show that the following bound holds for the state e8

r
(t) of

the system of Eq. (16) with e6"0, for t50:

De8
r
(t)D4e~0.5tDe8

r
(0)D#c8 U(DDUDD), (18)

where c8 U(DUD)"minM//s,2/o(DUD)N, o is a class K
=

func-
tion and U"[e8

r8
e6 T gT hT v6 T]T. Now, we consider the

(e6 ,g)-subsystem of the system of Eq. (16) with e
z
"0. For

this system, it can be shown that the state g6 "[e6 T gT]T
possesses an ISS property with respect to e8

r
, and there-

fore, there exists a converse function, and the existence of
this function implies that there exist a function bg6 of class
K¸ and a function c6 g6 of class K such that the following
ISS inequality holds for the state g6 :

Dg6 (t)D4bg6 (Dg6 (0)D, t)#c6 g6 (DDe8 rDD). (19)

Finally, we note that the static component of the control-
ler of Eq. (4) with x("x, i.e., a(x, v6 ,/, t), enforces global
ultimate boundedness in the closed-loop slow system,
and thus, the state f of the closed-loop slow system
satis"es a bound of the following form ∀t50:

Df(t)D4bf(df, t)#c6 U(DDUDD), (20)

where bf is a class KL function, c6 U(DUD)"
minM//s, 2/o6 (DUD)N, o6 is a class K

=
function and df is the

maximum value of the vector [h(x) ¸
F
h(x) 2 ¸r~1

F
h(x)]

for DxD4d
x

(see Christo"des et al., 1996 on how to com-
pute explicitly the above bound). Based on the above
bound and following the results of Khalil and Esfandiari
(1993), and Teel and Praly (1995), we disregard estimates
of y8 , obtained from the high-gain observer, with norm
Dy8 D'bf(df, 0)#d, where d'c6 U(//s). Hence, we set
sat( ) )"minM1,f

.!9
/D ) DN( ) ) where f

.!9
is the maximum

value of the vector [f
1

f
2
2 f

r
] for DfD4bf(df, 0)#d.

Step 2: In order to apply the result of Lemma A.1 in the
appendix, we need to de"ne a set of positive real numbers
(d

e8 r
, dg6 , dz

, dh, dhQ , dv6 , dI g6 , dI e8 r, de8 r
, dg6 ),where d

z
, dh, dhQ , dv6 were

speci"ed in the statement of the theorem, dg6 is an arbit-
rary positive real number

d
e8 r
5

max

DxD4d
x
,Dv6 D4d

v6
GK

r
+
k/1

b
k

b
r

(v(k~1)!¸k~1
FI /0.

h(x))KH,
dI
e8 r
'd

e8 r
#2/,

dg6 5
max

DxD4d
x
,Dv6 D4d

v6

G
r~1
+
k/1

D(v(k~1)!¸k~1
FI /0.

h(x))D#
n~r
+
l/1

Dsl(x)DH
dI g6 'Dg6#c6

e8 r
(dI

e8 r
), with Dg6 :"bg6 (dg6 ,0)#dg6 , and

d
e8 r
"/(d (without loss of generality).
First, consider the singularly perturbed system com-

prised of the states (f, z) of the closed-loop system. This
system is in standard form, possesses a uniformly glo-
bally exponentially stable fast subsystem, and its corre-
sponding reduced system is ISS with respect to U. These
properties allow a direct application of the result of
Lemma A.1 with d"maxMdf, dz, dh, dv6 , dI g6 , dI e8 rN and d"/,
to obtain the existence of a positive real number ef(/)
such that if e63(0, ef(/)], and Df(0)D4df, Dz(0)D4d

z
,

DDhDD4dh, DDv6 DD4d
v6
, DDgDD4du, then

Df(t)D4bf(df, t)#c6 U(DDUDD)#/

4bf(df, 0)#c6 UA
/

sB#/. (21)

Let /M be such that c6 U(/M /s)#/M 4d. Consider now the
singularly perturbed system comprised of the states (e8

r
,z)

of the system of Eq. (16). This system is in standard form,
possesses a uniformly globally exponentially stable fast
subsystem, and its corresponding reduced system is ISS
with respect to U. These properties allow a direct
application of the result of Lemma A.1 with
d"maxMd

e8 r
,d

z
,dh,dv6 ,dI g6 ,dI e8 rN and d"/, to obtain the exist-

ence of a positive real number ee8 r(/) such that if
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e63(0,ee8 r(/)], and De8
r
(0)D4d

e8 r
, Dz(0)D4d

z
, DDhDD4dh,

DDv6 DD4d
v6
, DDg6 DD4dI g6 , DDe8

r
DD4dI

e8 r
, then

De8
r
(t)D4e~0.5tDe8

r
(0)D#c8 U(DDUDD)#/. (22)

Similarly, it can be shown that Lemma A.1, with
d"maxMdg6 , dz, dh, dhQ , dv6 , dI e8 rN and d"dg6 , can be applied to
the system comprised of the states (e6 ,g, z) of the system of
Eq. (16), with the same converse function which exists for
the (e6 , g)-subsystem of the system of Eq. (16) with e

z
"0,

and its resulting (bg6 , c6 g6 ). Thus, we have that there exist
positive real numbers eg6 (/) such that if e63(0, eg6 (/)] and
Dg6 (0)D4dg6 , Dz(0)D4d

z
, DDhDD4dh, DDhQ DD4dhQ , DDv6 DD4d

v6
,

DDe8
r
DD4dI

e8 r
, then

Dg6 (t)D4bg6 (Dg6 (0)D, t)#c6 g6 (DDe8 rDD)#dg6 . (23)

Part 3: Finally, the inequalities of Eqs. (18)}(23) can be
manipulated using a small-gain theorem type argument
similar to the one used in the proof of Theorem 1 in
Christo"des et al. (1996) to prove that states of the
closed-loop system are bounded and its output satis"es
the relation of Eq. (12). For brevity, this argument will
not be repeated here. h
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Appendix

De5nition A.1 (Sontag, 1989). Let ch be a function of
class K. The system of Eq. (3) with u(t)"0 is said to be
ISS with Lyapunov gain (ch) if there exist a smooth
function < :R nPR

z0
, three functions a

1
, a

2
, a

3
of class

K
=

, and a function c8 h of class K such that for all x3R n,
all h3R q and all s50,

a
1
(DxD)4<(x)4a

2
(DxD),

DxD5c8 h(DhD)N<Q (x)"
L<
Lx

F(x, h)4!a
3
(DxD),

ch(s)"a~1
1

(a
2
(c8 h(s))). (A.1)

Lemma A.1. Consider the following singularly perturbed
system:

x5 "fM (x, z
1
, sat(z

2
), h),

ez5
1
"g6

1
(x, z

1
, sat(z

2
), h),

ez5
2
"Az

2
#eg6

2
(x, z

1
, sat(z

2
), h), (A.2)

where x3R n, z
1
3R p1, z

2
3R p2, h3R q, fM , g6

1
, g6

2
are locally

Lipschitz on R n]R p1]R p2]R q, and A is a constant
matrix. Suppose that the algebraic equation g6 (x, z

1
, 0, h)"0

possesses a unique root z
1
"h

1
(x, h) and that the system

x5 "fM (x, h
1
(x, h), 0, h) (A.3)

is ISS with Lyapunov gain c. Also, dexne y
1
"z

1
!h

1
(x, h)

and suppose that the fast subsystem

dy
1

dq
"g6

1
(x, h

1
(x, h)#y

1
, 0, h) (A.4)

is globally asymptotically stable, uniformly in x3R n,
h3R q. Finally, suppose that A is Hurwitz and that h(t) is
absolutely continuous, and dexne z

2
(0)"m(0)/e p2, where

m3Rp2. Whenever the above assumptions are satisxed, there
exist functions b

x
, b

y1
of class KL and strictly positive

constants K
1
, a

1
, and for each pair of positive real numbers

(d, d), there exists a positive real number eH such that if
maxMDx(0)D,Dy

1
(0)D,Dm(0)D,DDhDD,DDhQ DDN4d, e3(0, eH] then, for all

t50,

Dx(t)D4b
x
(Dx(0)D, t)#c(DDhDD)#d, (A.5)

Dy
1
(t)D4b

y1ADy1(0)D,
t

eB#d, (A.6)

Dz
2
(t)D4K

1
Dz
2
(0)De~a1(t@e)#d. (A.7)

Proof of Lemma A.1. To prove the lemma, we will ini-
tially assume that the states of the system of Eq. (A.2) are
bounded and derive bounds that capture the evolution of
the states for all times. Then, we will work with trunc-
ations and exploit causality to show that if these bounds
hold for t3[0,¹], where ¹ is "nite, then they will also
hold for all t3[0,R), provided that e is su$ciently small.
We initially consider the system which describes the
evolution of y

1
and z

2
in the fast time scale q"t/e

dy
1

dq
"g6

1
(x, h

1
(x, h)#y

1
, sat(z

2
), h)

! eC
Lh

1
Lx

fM (x, h
1
(x, h)#y

1
, sat(z

2
), h)!

Lh
1

Lh
hQ D,

dz
2

dq
"Az

2
#eg6

2
(x, h

1
(x, h)#y

1
, sat(z

2
), h). (A.8)

From the assumption that the matrix A is Hurwitz, we
have that the z

2
-subsystem of the above system, with

e"0, is globally exponentially stable. This implies that
there exist positive real numbers c

1
, c

2
, c

3
, c

4
and
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a smooth function=M :R p2PR
z0

, such that the following
conditions hold:

c
1
Dz
2
D24=M (z

2
)4c

2
Dz
2
D2,

L=M
Lz

2

Az
2
4!c

3
Dz
2
D2,

K
L=M
Lz

2
K4c

4
Dz
2
D.

(A.9)

Computing the time derivative of=M (z
2
) along the trajec-

tories of the z
2
-subsystem of Eq. (A.8), we obtain

d=M
dt

"

L=M
Lz

2

dz
2

dt
4!

c
3
e
Dz
2
D2#c

4
Dz
2
Dg6

2
(x, h

1
(x, h)

#y
1
, sat(z

2
), h). (A.10)

Using that the sat function is globally bounded and
assuming that x, y

1
and h are essentially bounded, we

have that there exists a positive real number c
5

such that
Dg6

2
(x, h

1
(x, h)#y

1
, sat(z

2
), h)D4c

5
. So from Eq. (A.10), we

have that

d=M
dt

4!

c
3
e
Dz
2
D2#c

4
Dz
2
Dc
5
,

4!

c
6
e
=M , for =M 5e2c

7
(A.11)

where c
6
"c

3
/2c

1
and c

7
"4c2

4
c2
5
c
1
/c2

3
. The last inequal-

ity implies that there exist strictly positive constants
K

1
,a

1
and a function cez2 of class K, such that for each

m
0
3Rp2 satisfying Dm(0)D"Dm

0
D4d, each essentially

bounded inputs x,y
1
,h, and each e satisfying e3(0,e

1
]

where e
1
:"(K

1
dc

3
/2c

4
c
5
)1@(p2`1), the solution of the z

2
-

subsystem of Eq. (A.8) with z
2
(0)"m(0)/ep2 exists for each

t50, and satis"es

Dz
2
(t)D4K

1
Dz
2
(0)De~a1(t@e)#cez2(e). (A.12)

We now study the system that describes the evolution
of y

1

dy
1

dq
"g6

1
(x, h

1
(x, h)#y

1
, sat(z

2
), h)

!eC
Lh

1
Lx

fM (x, h
1
(x, h)#y

1
, sat(z

2
), h)!

Lh
1

Lh
hQ D.

(A.13)

From the assumption that the equilibrium y
1
"0 of the

above system with e"0 and z
2
(t),0 is globally asymp-

totically stable uniformly in x3R n, h3R q, we have from
Lemma 1 in Christo"des and Teel (1996) that there exists
a p

1
]p

1
matrix BI

1
(y

1
) of smooth functions, invertible for

all y
1
3R p1, and a function c

z8 2
of class K such that the

system

dy
1

dq
"g6

1
(x, h

1
(x, h)#y

1
, BI

1
(y

1
)z8

2
, h) (A.14)

is ISS with respect to z8
2

with Lyapunov gain c
z8 2
. Now,

using Lemma 2 in Christo"des and Teel (1996), we have
that there exists a function b

y1
of class K¸, a continuous

nonincreasing function p6
y1
:R

z0
PR

z0
of the form

p6
y1
(s)"(1

2
(l#'(s)))~2, where l51 and '(s) is a function

of class K
=
, and a function c6 ey1 of class K, such that for

each y
10
3R p, each triple of essentially bounded inputs

x, h, hQ , and each e satisfying e4p6
y1
(maxMDy

1
(0)D, DDz8

2
DD,

DDhDD, DDhQ DD, DDxDDN), the solution of the system:

dy
1

dq
"g6

1
(x, h

1
(x, h)#y

1
, BI

1
(y

1
)z8

2
, h)

!eC
Lh

1
Lx

fM (x, h
1
(x, h)#y

1
, BI

1
(y

1
)z8

2
, h)!

Lh
1

Lh
hQ D
(A.15)

with y
1
(0)"y

10
exists for each t50, and satis"es:

Dy
1
(t)D4b

y1ADy1(0)D,
t

eB#c
z8 2
(DDz8

2
DD)#c6 ey1(e). (A.16)

We now return to the system that describes the evolution
of the state x

x5 "f (x, h
1
(x, h)#y

1
, sat(z

2
), h). (A.17)

Using that the above system with y
1
(t),0 and z

2
(t),0

is ISS with Lyapunov gain c and Lemma 1 in Christo-
"des and Teel, 1996, we have that there exists a p

1
]p

1
matrix BI

2
(x, h) of smooth functions, invertible for all x3R n,

h3R q, and a function c
y8 1

of class K such that the system

x5 "f (x, h
1
(x, h)#BI

2
(x, h)y8

1
, 0, h) (A.18)

is ISS with respect to h, y8
1

with Lyapunov gain (c, c
y8 1
).

Applying Lemma 1 in Christo"des and Teel (1996) again,
we have that there exists a p

2
]p

2
matrix BI

3
(x, h, y8

1
) of

smooth functions, invertible for all x3R n, h3R q,
y8
1
3R p1, and a function c

z6 2
of class K such that the

solution of the system

x5 "f (x,h
1
(x,h)#BI

2
(x, h)y8

1
,BI

3
(x, h,y8

1
)z6

2
, h) (A.19)

with x(0)"x
0

exists for each t50, and satis"es

Dx(t)D4b
x
(Dx(0)D, t)#c(DDhDD)#c

y8 1
(DDy8

1
DD)#c

z6 2
(DDz6

2
DD). (A.20)

The proof of the theorem can now be completed working
with truncations of the bounds of Eqs. (A.12)}(A.20)
(since x,y

1
,z
2

are not a priori bounded) and using
a contradiction argument similar to the one used
in the proof of Theorem 1 in Christo"des and Teel
(1996). In particular, let (d,d) be as given in the
theorem, so that maxMDx(0)D,Dy

1
(0)D, Dm(0)D,DDhDD,DDhQ DDN4d, and

d
x
'b

x
(d, 0)#c(d)#d and d

y1
'b

y1
(d, 0)#d. Note that

since b
x
(s,0)5s, for all s3R, d

x
'd and, using continuity

with respect to the initial conditions, we can de"ne [0,¹)
with ¹'0 to be the maximal interval in which DDx

t
DD(d

x
and DDy

1t
DD(d

y1
for all t3[0,¹). To show by contradiction

that ¹"R, for e su$ciently small, suppose that¹ is "nite.
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Using the fact that p6
y1

is a continuous, nonincreasing
function, it follows from the de"nition of ¹ and causality
that if e4minMe

1
, e

2
N where e

2
:"p6

y1
(d

x
), then Eqs.

(A.12)}(A.16) hold for all t3[0,¹). Then, since z8
2
"

BI ~1
1

(y
1
)sat(z

2
), y8

1
"BI ~1

2
(x,h)y

1
, z

2
6 "BI ~1

3
(x,h,y8

1
)sat(z

2
),

BI
1
(y

1
)"b

1
(Dy

1
D)I

p1Cp1
, and BI

2
(x,h)"b

2
(DXD)I

p1Cp1
where

X(t)"[xT(t) hT(t)]T, and BI
3
(x,h,y8

1
)"b

3
(DXM D)I

p2Cp2
where

XM (t)"[xT(t) hT(t) y8 T
1
]T (see the proof of Lemma 1 in

Christo"des and Teel (1996)), we have for all t3[0,¹):

DDz8
2t
DD4

1

b
1
(DDy

1t
DD)

a
m
, DDz6

2t
DD4

1

b
3
(DDXM DD

t
DD)

a
m
, (A.21)

where a
m

is the magnitude of the saturation function.
De"ne d

z8 2
:"(1/b

1
(d

y1
))a

m
, d

z6 2
:"(1/b

3
(d

x
#d#d

y8 1
))a

m
,

d
y8 1

:"(1/b
2
(d

x
#d))[b

y1
(d, 0)#d] and note that since

DDsat(z
2t
)DD4a

m
and 0(b

i
(s)41 for all s3R (see the

proof of Lemma 1 in Christo"des and Teel (1996)), it
follows that d4d

z8 2
and DDz8

2t
DD4d

z8 2
and DDz6

2t
DD4d

z6 2
for all

t3[0,¹).
Now from the conditions under which Eq. (A.16) holds

and using that p6
1

is nonincreasing, it follows from
Lemma 3 in Christo"des and Teel (1996) that there
exists a positive real number o

1
(¹ such that, if

e4e
3
:"p6

1
(maxMd

z8 2
, d

x
N#d

2
)4p6

1
(maxMDy

1
(0)D, DDz8

2
DD,DDhDD,D

DhQ DD,DDxDDN), ∀t3[0,¹), then the solution of Eq. (A.16) with
y
1
(0)"y

10
exists for all t3[0,¹) and satis"es

Dy
1
(t)D4b

y1ADy1(0)D,
t

eB#c
z8 2
(DDz8 o1

2
DD)#c6 ey1(e)#

d

2
. (A.22)

Combining Eqs. (A.21) and (A.22), if e4minMe
1
, e

2
, e

3
N,

then for all t3[0,¹)

Dy
1
(t)D4b

y1ADy1(0)D,
t

eB#
d

2

# c
z8 2A

1

b
1
(d

y1
)
sat(K

1
Dz
2
(0)De~a1(o1@e)#cez2(e))B

# c6 ey1(e). (A.23)

Since the last two terms converge to zero as e goes
to zero, there exists an e

4
'0 such that if

e4minMe
1
, e

2
, e

3
, e

4
N then, for all t3[0,¹),

Dy
1
(t)D4b

y1
(Dy

1
(0)D, t/e)#d(d

y1
. Now from the condi-

tions under which Eq. (A.20) holds it follows from
Lemma 3 in Christo"des and Teel (1996) that for
dM "maxMd,d

z8 2
,d

y8 1
,d

z6 2
N there exists a positive real number

o
2
(¹ such that, if maxMDx(0)D,DDhDD,DDy8

1
DD,DDz6

2
DD4dM , then the

solution of the system of Eq. (A.19) with x(0)"x
0

exists
for each t50, and satis"es

Dx(t)D4b
x
(Dx(0)D, t)#c(DDhDD)#c

y8 1
(DDy8 o2

1
DD)#c

z6 2
(DDz6 o2

2
DD).

(A.24)

Developing the explicit expressions for DDy8 o2
1
DD and DDz6 o2

2
DD

and substituting them into Eq. (A.24), one can show that
there exists an e

4
'0 such that if e4minMe

1
, e

2
, e

3
, e

4
N

then, for all t3[0,¹), Dx(t)D4d
x
. From the de"nition of

d
x
,d

y1
, the assumption that ¹ is "nite and continuity of x,

there must exist some positive real number k such that
DDx

t
DD(d

x
and DDy

1t
DD(d

y1
, for all t3[0,¹#k). This con-

tradicts that ¹ is maximal. Hence, ¹"R and the
inequalities of Eqs. (A.5)}(A.6) hold for all t3[0,R).
Finally, letting e

5
be such that cez2(e)4d for all e3[0,e

5
] it

follows that the inequalities of Eqs. (A.5)}(A.7) hold for
e3(0, eH] where eH"minMe

1
, e

2
, e

3
, e

4
, e

5
N. h
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