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Abstract—This article proposes a methodology for the synthesis of nonlinear robust feedback
controllers for diffusion—convection—reaction processes with time-varying uncertain variables
described by systems of quasi-linear parabolic partial differential equations (PDEs), for which
the eigenspectrum of the spatial differential operator can be partitioned into a finite-dimen-
sional (possibly unstable) slow one and an infinite-dimensional stable fast complement. Combi-
nation of Galerkin’s method with approximate inertial manifolds is used to derive ordinary
differential equation (ODE) systems of dimension equal to the number of slow modes that
accurately describe the dominant dynamics of the PDE system. These ODE systems are used
for the synthesis of robust controllers that guarantee boundedness of the state and output
tracking with arbitrary degree of asymptotic attenuation of the effect of the uncertain variables
on the output of the closed-loop system. The robust controllers are synthesized via Lyapunov’s
direct method and utilize bounding functions on the magnitude of the uncertain terms. The
developed methodology is successfully applied to a catalytic packed-bed reactor with unknown
heat of reaction. ( 1998 Elsevier Science Ltd. All rights reserved.

Keywords: Galerkin’s method, approximate inertial manifolds, robust nonlinear control,
diffusion—convection—reaction processes.

1. INTRODUCTION

Many chemical engineering processes are inherently
nonlinear and are characterized by the presence of
strong spatial variations due to the coupling of dif-
fusive and convective mechanisms. Representative
examples of industrially important diffusion—convec-
tion—reaction processes include fluidized-bed and
packed-bed reactors (Ray, 1981, Georgakis et al.,
1977, Christofides and Daoutidis, 1996b) and chem-
ical vapor deposition reactors (Economou et al., 1989;
Badgwell et al., 1995). The mathematical models
which describe the spatiotemporal behavior of these
processes are typically obtained from the dynamic
conservation equations and consist of systems of
quasi-linear parabolic partial differential equations
(PDEs).

The main feature of parabolic PDE systems is that
the eigenspectrum of the spatial differential operator
can be partitioned into a finite-dimensional slow one
and an infinite-dimensional stable fast complement.
This implies that the dynamic behavior of such sys-
tems can be approximately described by ordinary
differential equation (ODE) systems. Therefore, the
standard approach to the control of linear/quasi-lin-
ear parabolic PDE systems (see, for example, Geor-
gakis et al., 1977; Balas, 1979; Ray, 1981; Chen and
Chang, 1992) involves the application of Galerkin’s
method to the PDE system to derive ODE systems
that accurately describe the dynamics of the dominant
(slow) modes of the PDE system, which are sub-

sequently used as the basis for controller synthesis.
The main advantage of this approach is that the
exponential stability of the fast eigenmodes ensures
that a controller which exponentially stabilizes the
closed-loop ODE system, stabilizes also the closed-
loop parabolic PDE system. On the other hand, the
main disadvantage of this approach is that the num-
ber of modes that should be retained to derive an
ODE system that yields the desired degree of approxi-
mation may be very large (Chakravarti et al., 1995;
Bangia et al., 1997; Aling et al., 1997), leading to
complex controller design and high dimensionality of
the resulting controllers.

Motivated by this, recent research efforts on con-
trol of parabolic PDE systems have focused on the
problem of synthesizing low-dimensional output feed-
back controllers (Gay and Ray, 1995; Christofides and
Daoutidis, 1997a; Sano and Kunimatsu, 1995). In Gay
and Ray (1995), a method was proposed to address
this problem for linear parabolic PDEs, that uses the
singular functions of the differential operator instead
of the eigenfunctions in the series expansion of the
solution. For nonlinear parabolic PDE systems,
a natural approach to address this problem is based
on the concept of inertial manifold (IM) (see Temam,
1988 and the references therein). An IM is a positively
invariant, finite-dimensional Lipschitz manifold,
which attracts every trajectory exponentially. If an IM
exists, the dynamics of the parabolic PDE system
restricted on the inertial manifold is described by a set
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of ODEs called the inertial form. However, the ex-
plicit derivation of the inertial form requires the com-
putation of the closed-form expression of the IM,
which is a very difficult task in most practical applica-
tions. In order to overcome this problem, a novel
procedure, based on singular perturbations, was pro-
posed in Christofides and Daoutidis (1997a) for the
construction of approximations of the inertial mani-
fold [called approximate inertial manifolds (AIMs)].
The aims were to derive ODE systems of dimension
equal to the number of slow modes, that yield solu-
tions which are close, up to a desired accuracy, to the
ones of the PDE system (see also Foias et al., 1989a,b
for alternative approaches for the construction of
AIMs). These ODE systems were used as the basis
for the synthesis of nonlinear output feedback
controllers that guarantee stability and enforce the
output of the closed-loop system to follow, up to
a desired accuracy, a prespecified response. The con-
cept of IM was also used in Sano and Kunimatsu
(1995) to address the problem of stabilization of
a parabolic PDE with boundary finite-dimensional
feedback control.

A practically important controller design problem
for diffusion—convection—reaction processes is the
one of synthesizing nonlinear robust controllers that
compensate for the effect of time-varying unknown
process parameters and external disturbances on the
process output. Despite its practical importance, the
problem of synthesizing robust controllers for para-
bolic PDE systems has been only studied for linear
systems. Specifically, the problem of robust stabiliz-
ation was initially studied in Curtain and Glover
(1986) and Gauthier and Xu (1989) for linear para-
bolic PDE systems in the frequency domain and
H= control methods were developed. In Jacobson and
Nett (1988), precise relations were derived between
state-space and frequency-domain control theoretic
concepts for a large class of linear infinite-dimensional
systems, which led to the development of the state-
space counterparts of the frequency-domain H= re-
sults (e.g., Keulen, 1993). In the area of robust control
of quasi-linear PDE systems, Lyapunov-based con-
troller design methods were recently developed for
hyperbolic PDE systems (i.e. convection—reaction
processes) in Alonso and Ydstie (1995) and Christof-
ides and Daoutidis (1998). Despite the recent progress,
there are no available methods for the synthesis of
robust controllers for quasi-linear parabolic PDE sys-
tems that compensate for the effect of uncertain vari-
ables on the process output.

In this paper, we study the robust control problem
for diffusion—convection—reaction processes with
time-varying uncertain variables described by systems
of quasi-linear parabolic PDEs, for which the eigen-
spectrum of the spatial differential operator can be
partitioned into a finite-dimensional (possibly un-
stable) slow one and an infinite-dimensional stable
fast complement. The objective is to develop a general
and practical methodology for the synthesis of nonlinear
robust feedback controllers that guarantee bounded-

ness of the state and output tracking with arbitrary
degree of asymptotic attenuation of the effect of the
uncertain variables on the output of the closed-loop
system.

Specifically, the paper is structured as follows. Ini-
tially, Galerkin’s method is used to derive an ODE
system of dimension equal to the number of slow
modes, which is subsequently used to synthesize ro-
bust controllers via Lyapunov’s direct method. Singu-
lar perturbation methods are employed to establish
that the degree of asymptotic attenuation of the effect
of uncertain variables on the output, enforced by these
controllers, is proportional to the degree of separation
of the fast and slow modes of the spatial differential
operator. Then, for processes for which such a degree
of uncertainty attenuation is not sufficient, a sequen-
tial procedure, based on the concept of approximate
inertial manifold, is developed for the synthesis of
robust controllers which achieve arbitrary degree of
asymptotic uncertainty attenuation in the closed-loop
parabolic PDE system. The developed methodology
is successfully applied to a catalytic packed-bed reac-
tor with unknown heat of reaction and is shown to
significantly outperform a nonlinear controller design
which does not account for the presence of the uncer-
tain variable.

2. PRELIMINARIES

2.1. Description of parabolic PDEs with uncertain vari-
ables

In this work, we consider quasi-linear parabolic
PDE systems with uncertain variables, with a state-
space description of the form

LxN
Lt

"A
LxN
Lz

#B
L2xN
Lz2

#wb(z)u#f (xN )#¼ (xN , r(z)h(t))

(1)

yi"P
b

a
ci(z) kxN dz, i"1, 2, l

subject to the boundary conditions:

C
1
xN (a, t)#D

1

LxN
Lz

(a, t)"R
1

(2)

C
2
xN (b, t)#D

2

LxN
Lz

(b, t)"R
2

and the initial condition:

xN (z, 0)"xN
0
(z) (3)

where xN (z, t)"[xN
1
(z, t)2 xN

n
(z, t)]T denotes the vector

of state variables, [a, b]LR is the domain of defini-
tion of the process, z3[a, b) is the spatial coordinate,
t3[0, R) is the time, u"[u1 u22 ul]T3R l denotes
the vector of manipulated inputs, h(t)"[h

1
(t)

h
2
(t)2h

q
(t)]3Rq denotes the vector of uncertain vari-

ables, which may include uncertain process para-
meters or exogenous disturbances, and yi3R denotes
the controlled output. LxN /Lz, L2xN /Lz2 denote the first-
and second-order spatial derivatives of xN , f (xN ),
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Fig. 1. Specification of the control problem in a prototype example.

¼(xN , r(z) h (t)) are vector functions, w, k, R
1
, R

2
are

constant vectors, A, B, C
1
, D

1
, C

2
, D

2
are constant

matrices, and xN
0
(z) is the initial condition.

b (z) is a known smooth vector function of z of the
form b (z)"[b1(z) b2(z)2bl(z)], where bi(z) describes
how the control action ui(t) is distributed in the inter-
val [z

i
, z

i`1
]L[a, b], r (z)"[r

1
(z)2r

q
(z)], where

r
k
(z) is a known smooth function of z which specifies

the position of action of the uncertain variable h
k
on

[a, b], and ci(z) is a known smooth function of z which
is determined by the specification of the ith controlled
output in the interval [a, b]. Whenever the control
action enters the system at a single point z

0
, with

z
0
3[z

i
, z

i`1
] (i.e. point actuation), the function bi(z) is

taken to be nonzero in a finite spatial interval of the
form [z

0
!e, z

0
#e], where e is a small positive real

number, and zero elsewhere in [z
i
, z

i`1
]. Figure

1 shows the location of the manipulated inputs and
controlled outputs in the case of a prototype example.
Throughout the paper, we will use the order of magni-
tude notation O(e). In particular, d(e)"O (e) if there
exist positive real numbers k

1
and k

2
such that: Dd (e)

D)k
1
De D ,∀ De D(k

2
.

Systems of the form of eq. (1) describe the majority
of diffusion—convection—reaction processes for which
the diffusion coefficient and the thermal conductivity
are independent of temperature and concentrations,
and thus, the corresponding spatial differential oper-
ators are linear. They are characterized by linear
appearances of the manipulated inputs and the con-
trolled outputs. These features are common in most
practical applications where the wall temperature is
usually chosen to be the manipulated input [the
reader may refer to (Christofides and Daoutidis,
1996a) for a complete discussion on how the wall
temperature can be indirectly manipulated in practice
through manipulation of the jacket inlet flow rate],
while the controlled outputs are usually some of the
state variables of the process (e.g. temperature, con-
centrations). Moreover, the nonlinearities appear in
an additive fashion, which is also typical in many
chemical process applications (e.g. complex reaction
rates, Arrhenius dependence of reaction rates on tem-
perature). Finally, the nonlinear appearance of the
vector of uncertain variables in eq. (1) allows ac-
counting for all possible unknown variables, e.g. heat

of reactions, pre-exponential constants, activation en-
ergies, temperature and concentration of lateral inlet
streams, etc.

The following example illustrates modeling of a dif-
fusion—reaction process in the form of eq. (1).

Illustrative example (Ray, 1981): Consider a long,
thin rod, being heated in a furnace. The furnace is
filled with species A and a catalytic reaction of the
form APB takes place on the rod. Under the as-
sumptions of uniform reaction rate on the rod, con-
stant density and heat capacity of the rod and excess
of species A on the furnace, the mathematical model
which describes the spatiotemporal evolution of the
rod temperature consists of the following quasi-linear
parabolic PDE:

o
r
c
pr

L¹
r

LtN
"k

t

L2¹
r

LzN 2
#(!*H

r
) k

0
e~E@RTr#q

h
(tN )

subject to the non-flux boundary conditions:

z"0,
L¹

r
LzN

"0; z"l,
L¹

r
LzN

"0

and the initial condition:

¹
r
(z, 0)"¹

0
.

In the above model, ¹
r
denotes the temperature of the

reactor, *H
r

denotes the enthalpy of the reaction,
o
r
, c

pr
, k

t
denote the density, heat capacity and ther-

mal conductivity of the rod, k
0

E, denote the pre-
exponential constant, and the activation energy of the
reaction, l is the length of the rod and q

h
(tN ) denotes the

heating rate which is assumed to be spatially uniform.
The control objective is the regulation of the temper-
ature profile in the rod through manipulation of the
heating rate q

h
, in the presence of time-varying uncer-

tainty in the enthalpy of the reaction *H
r
. For the

control of the process, we assume that there is avail-
able one control actuator, with distribution function
b(z)"1.

Defining the dimensionless variables:

t"
tN k

t
o
r
c
pr
l2

, z"
zN
l
, xN (z, t)"

¹
r

¹
0

, c"
E

R¹
0

,

b
T0

"

(!*H
r0

) k
0
l2e~c

¹
0

, h(t)"b
T
!b

T0
(4)
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and the manipulated input and controlled output as

u (t)"
q
h
l2

k¹
0

, y (t)"P
1

0

c (z)xN (z, t) dz (5)

the original set of equations can be put in the form of
eqs. (1)—(3):

LxN
Lt

"

L2xN
Lz2

#b
T0

ecx6 @(1`x)#u (t)#ecx6 @(1`x)h(t)

y (t)"P
1

0

c(z)xN (z, t) dz (6)

z"0,
LxN
Lz

"0; z"1,
LxN
Lz

"0

xN (z, 0)"1

2.2. Formulation of the parabolic PDE system as an
infinite-dimensional system — eigenvalue problem

In this subsection, we precisely characterize the
class of parabolic PDE systems of the form of eq. (1)
which we consider in the manuscript. To this end, we
formulate the parabolic PDE system of eq. (1) as an
infinite-dimensional system in the Hilbert space
H([a, b], Rn) [this will also simplify significantly the
notation of the paper, since the boundary conditions
of eq. (2) will be directly included in the formulation;
see eq. (10) below], with H being the space of n-
dimensional vector functions defined on [a, b] that
satisfy the boundary condition of eq. (2), with inner
product and norm:

(u
1
, u

2
)"P

b

a
(u

1
(z), u

2
(z))Rn dz

(7)
Eu

1
E
2
"(u

1
, u

1
)1@2

where u
1
, u

2
are two elements of H([a, b]; Rn) and

the notation () , ))Rn denotes the standard inner product
in Rn. Defining the state function x onH([a, b], Rn) as

x(t)"xN (z, t), t'0, z3[a, b], (8)

and the operators as

Ax"A
LxN
Lz

#B
L2xN
Lz2

, Bu"wbu,

W(x, h)"¼(xN , rh), Cx"(c, kx)
(9)

x3D (A)"Gx3H([a, b]; Rn); C
1
x (a)#D

1

Lx

Lz
(a)

"R
1
, C

2
x(b)#D

2

Lx

Lz
(b)"R

2H
where c"[c1 c22cl], the system of eqs. (1)—(3) takes
the form

xR "Ax#Bu#f (x)#W(x, h), x(0)"x
0 (10)

y"Cx

where f (x(t))"f (xN (z, t)) and x
0
"xN

0
(z). We assume

that the nonlinear terms f (x), W(x, h) are locally Lip-
schitz with respect to their arguments and satisfy
f (0)"0, W(0, 0)"0.

For A, the eigenvalue problem is defined as:

A/
j
"j

j
/
j
, j"1, 2 , R (11)

where j
j

denotes an eigenvalue and /
j

denotes an
eigenfunction; the eigenspectrum of A, p (A), is de-
fined as the set of all eigenvalues of A, i.e.
p(A)"Mj

1
, j

2
, 2 , N. Assumption 1 that follows

states that the eigenspectrum of A can be partitioned
into a finite-dimensional part consisting of m slow
eigenvalues and a stable infinite-dimensional comp-
lement containing the remaining fast eigenvalues, and
that the separation between slow and fast eigenvalues
of A is large.

Assumption 1 (Christofides and Daoutidis, 1997a):
1. Re Mj

1
N*Re Mj

2
N*2*Re Mj

+
N*2, where

Re Mj
+
N denotes the real part of j

+
.

2. p (A) can be partitioned as p (A)"p
1
(A)

#p
2
(A), where p

1
(A) consists of the first m (with m

finite) eigenvalues, i.e. p
1
(A)"Mj

1
, 2, j

.
N, and

DRe Mj
1
ND/DRe Mj

.
ND"O(1).

3. Re j
.`1

(0 and DRe Mj
.
ND/DRe Mj

.`1
ND"O(e)

where e :"DRe j
1
D/DRe j

.`1
D(1 is a small positive

number.

The assumption of finite number of unstable eigen-
values is always satisfied for parabolic PDE systems
(Friedman, 1976), while the assumption of discrete
eigenspectrum and the assumption of existence of
only a few dominant modes that describe the dynam-
ics of the parabolic PDE system are usually satisfied
by the majority of diffusion-convection-reaction pro-
cesses (see the heating rod example below and the
catalytic packed-bed reactor example at section 4).

Whenever assumption 1 holds A generates a
strongly continuous semigroup of bounded linear op-
erators º(t) (this is the analogue of the concept of
state transition matrix used for ODE systems in the
case of infinite-dimensional systems) which implies
that the generalized solution of the system of eq. (10) is
given by (Friedman, 1976):

x(t)"º(t)x
0
#P

t

0

º(t!s) (Bu(s)#f (x(s))

#W(x(s), h (s))) ds (12)

º(t) satisfies the following growth property:

Eº (t)E
2
)K

1
ea1t, ∀ t*0 (13)

where K
1
, a

1
are positive real numbers, with K

1
*1

and a
1
*Re j

1
. If a

1
is strictly negative, we will say

that A generates an exponentially stable semigroup
º(t).

Illustrative example (cont’d): For the heating rod
example, the Hilbert space is H([0, 1], R), the state
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function on H([0, 1], R) is defined as x(t)"xN (z, t),
and the operator A takes the form

Ax"
L2xN
Lz2

(14)

x3D (A)"Gx3H([0, 1]; R); z"0,
Lx

Lz
"0;

z"1,
Lx

Lz
"0H .

Furthermore, the manipulated input, uncertain vari-
able and controlled output and measured output
operators as

Bu"u, W(x, h)"ecx@(1`x)h(t), Cx"(c, x) (15)

and the nonlinear term f (x) as

f (x)"ecx6 @(1`x6 )b
T0

(16)

The eigenvalue problem for A can be solved analyti-
cally and the solution is of the form

j
j
"!j2n2, j"0,2,R

(17)

/
0
"1, /

j
"J2 cos ( j n z), j"1,2,R

From the values of j
j
, it is clear that the first eigen-

value (j
0
"0) is the dominant one, which implies that

assumption 1 is satisfied for this example.

3. ROBUST CONTROL OF PARABOLIC PDE SYSTEMS

3.1. Problem formulation
The objective of this section is to synthesize non-

linear robust controllers for the infinite-dimensional
system of eq. (19) on the basis of appropriate finite-
dimensional systems, which enforce the following
properties in the closed-loop system: (a) boundedness
of the state, (b) output tracking for changes in the
reference input, and (c) asymptotic attenuation of the
effect of uncertain variables on the output.

To develop a solution to the above problem, we will
initially transform the system of eq. (10) into an equiv-
alent set of infinite ordinary differential equations.
Letting H

4
, H

f
be two subspaces of H, defined as

H
s
"spanM/

1
, /

2
, 2 , /

m
N and H

f
"spanM/

m`1
,

/
m`2

, 2 , N, and defining the orthogonal projec-
tion operators P

s
and P

f
such that x

s
"P

s
x, x

f
"P

f
x,

the state x of the system of eq. (10) can be decom-
posed as

x"x
s
#x

f
"P

s
x#P

f
x"

m
+
j/1

a
j
(t)/

j
#

=
+

j/m`1

a
j
(t)/

j

(18)

where a
j
(t) is the amplitude of the jth mode. Applying

P
s
and P

f
to the system of eq. (10) and using the above

decomposition for x, the system of eq. (10) can be

equivalently written in the following form:

dx
s

dt
"A

s
x
s
#B

s
u#f

s
(x

s
, x

f
)#W

s
(x

s
, x

f
, h)

Lx
f

Lt
"A

f
x
f
#B

f
u#f

f
(x

s
, x

f
)#W

f
(x

s
, x

f
, h) (19)

y"Cx
s
#Cx

f

x
s
(0)"P

s
x(0)"P

s
x
0
, x

f
(0)"P

f
x (0)"P

f
x
0

where A
s
"P

s
AP

s
, B

s
"P

s
B, f

s
"P

s
f, W

s
"P

s
W,

A
f
"P

f
AP

f
, B

f
"P

f
B, f

f
"P

f
f, W

f
"P

f
W, and

the notation Lx
f
/Lt is used to denote that the

state x
f

belongs in an infinite-dimensional space.
In the above system, A

s
is a diagonal matrix of di-

mension m]m of the form A
s
"diagMj

j
N, f

s
(x

s
, x

f
),

f
f
(x

s
, x

f
) W

s
(x

s
, x

f
, h), W

f
(x

s
, x

f
, h) are Lipschitz vec-

tor functions, and A
f

is an unbounded differential
operator which generates a strongly continuous expo-
nentially stable semigroup (following from part 3 of
assumption 1 and the selection of H

s
and H

f
). In the

remainder of the paper, we will assume, in order to
simplify the presentation of our results, that the per-
formance specification functions ci(z) are chosen such
that Cx

f
,0.

In order to derive precise conditions that guarantee
that the proposed controllers enforce the desired
properties in the infinite-dimensional closed-loop sys-
tem and precisely characterize the degree of asymp-
totic attenuation of the uncertain variables on the
output, we will formulate the system of eq. (19) within
the framework of singular perturbations. Such a for-
mulation is motivated by the fact that the system of
eq. (19) exhibits two-time-scale behavior (which is
a consequence of part 3 of assumption 1). Using that
e"DRe j

1
D/DRe j

m`1
D, the system of eq. (19) can be

written in the following form:

dx
s

dt
"A

s
x
s
#B

s
u#f

s
(x

s
, x

f
)#W

s
(x

s
, x

f
, h)

e
Lx

f
Lt

"A
fexf

#eB
f
u#ef

f
(x

s
, x

f
)#eW

f
(x

s
, x

f
, h)

(20)
y"Cx

s

where A
fe is an unbounded differential operator de-

fined as A
fe"eA

f
. Since e;1 (following from as-

sumption 1, part 3) and the operators A
s
, A

fe gener-
ate semigroups with growth rates which are of the
same order of magnitude, the system of eq. (20) is in
the standard singularly perturbed form [see
Kokotovic et al., (1986) for a precise definition of
standard form], with x

s
being the slow states and

x
f

being the fast states.
Introducing the fast time-scale q"t/e and setting

e"0, we obtain the following infinite-dimensional
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fast subsystem from the system of Eq. (20):

Lx
f

Lq
"A

fexf. (21)

From the fact that Re j
m`1

(0 and the definition of
e, we have that the above system is globally exponenti-
ally stable. Setting e"0 in the system of eq. (20), we
have that x

f
"0 and thus, the finite-dimensional slow

system takes the form

dx
s

dt
"A

s
x
s
#f

s
(x

s
, 0)#B

s
u#W

s
(x

s
, 0, h)

": F
0
(x

s
)#

l
+
i/1

Bi
0
ui
0
#W

0
(x

s
, 0, h)

(22)
y
si
"Cix

s
": h

i0
(x

s
)

where the subscript s in y
si

denotes that this output is
associated with an ODE system and the subscript 0 in
(F

0
, Bi

0
, ui

0
, W

0
, h

i0
) denotes that they are elements of

the O(e) approximation of the x
s
-subsystem. In the

above system, a new notation was introduced to facil-
itate the presentation of the robust controller syn-
thesis results in the next subsections. We finally note
that the above system is identical to the one obtained
by applying the standard Galerkin’s method (e.g. Ray,
1981) to the system of eq. (10), keeping the first
m ODEs and completely neglecting the x

f
-subsystem.

3.2. Robust controller synthesis
In this subsection, we synthesize robust controllers

for the system of eq. (1), on the basis of the finite-
dimensional system of eq. (22), using Lyapunov’s di-
rect method and precisely characterize the ultimate
uncertainty attenuation level. Motivated by the re-
quirement of output tracking with attenuation of the
effect of the uncertainty on the output and the fact
that the system of eq. (22) includes only uncertain
variables that appear in an additive fashion, we con-
sider the synthesis of robust control laws of the form:

u
0
"p

0
(x

s
)#Q

0
(x

s
)vN#r

0
(x

s
, t) (23)

where p
0
(x

s
), r

0
(x

s
, t) are vector functions, Q

0
(x

s
) is

a matrix, and vN is a vector of the form
vN"[v v(1)2 v(r)]T, where v(k) denotes the kth time
derivative of the external reference input v, which is
assumed to be a sufficiently smooth function of time.
The control law of eq. (23) comprises of the compon-
ent p

0
(x

s
)#Q

0
(x

s
)vN , which is responsible for the out-

put tracking and stabilization of the closed-loop slow
system, and the component r

0
(x

s
, t) which is respon-

sible for the asymptotic attenuation of the effect of the
uncertain variables on the outputs of the closed-loop
slow system.

In order to derive an explicit formula of the control
law of eq. (23), we will impose the following three
assumptions on the system of eq. (22). We initially
assume that there exists a coordinate transformation
that renders the system of eq. (22) partially linear and
that the time-derivatives of the output y

i
up to order

r
i
!1 are independent of the vector of uncertain vari-

ables h. Assumption 2 that follows states precisely this
requirement:

Assumption 2: Referring to the system of eq. (20), there
exist a set of integers (r

1
, r

2
, 2, r

l
) and a coordinate

transformation (f, g)"¹(x
s
, h) such that the representa-

tion of the system, in the coordinates (f, g), takes the form

fR (1)
1
"f(1)

2

F

fR (1)
r1~1

"f(1)
r1

fR (1)
r1
"¸r1

F0
h
10

(¹~1(f, g, h))

#

l
+
i/1

¸
Bi

0
¸r1~1
F0

h
10

(¹~1(f, g, h))ui
0

#¸
W0

¸r1~1
F0

h
10

(¹~1(f, g, h))

F

fR (l)
1
"f(l)

2

F

fR (l)
rl~1

"f(l)
rl

(24)

fR (l)
rl
"¸rl

F0
h
l0
(¹~1(f, g, h))

#

l
+
i/1

¸
Bi

0
¸rl~1
F0

h
l0
(¹~1(g, f, h)) ui

0

#¸
W0

¸rl~1
F0

h
l0

(¹~1(g, f, h))

gR
1
"(

1
(f, g, h, hQ )

F

gR
m~+

i ri
"(

m~+
i ri

(f, g, h, hQ )

y
si
"f(i)

1
, i"1, 2 , l

where

x
s
"¹~1(f, g, h), f"[f(1)2f(l)]T, g"[g

1
2g

n~+
i ri

]T.

We note that the above assumption is always satis-
fied for systems for which r

i
"1, for all i"1, 2 , l. In

most practical applications, this requirement can be
easily achieved by selecting the form of the actuator
distribution functions b

i
(z) to be different than the

form of the eigenfunctions /
j

for j"2, 2 , R (i.e.
pick b

i
(z) so that b

i
(z)O/

j
, for i"1, 2 , l,

j"2, 2, R). Finally, we note that we do not require
h(t) to enter the system of eq. (20) in the same differen-
tial equations as u which is a standard assumption in
many robust controller design methods (e.g. Corless
and Leitmann, 1981).

Referring to the system of eq. (24), we will assume,
for simplicity, that the matrix:

C
0
(x

s
)"C

¸
B1

0
¸r1~1
F0

h
10

(x
s
) 2 ¸

B1
0
¸r1~1
F0

h
10

(x
s
)

F 2 F

¸
B1

0
¸rl~1
F0

h
l0
(x

s
) 2 ¸

B1
0
¸rl~1
F0

h
l0
(x

s
) D

(25)

is nonsingular uniformly in x
s
3Hn.

2954 P. D. Christofides



Assumption 3 that follows states that the system
which describes the unforced (i.e. g (t)"h (t)
"hQ (t),0) inverse dynamics of the system of eq. (24)
is locally exponentially stable (in other words the
system of eq. (24) is assumed to be minimum phase).
This assumption is standard in most nonlinear con-
trol methods for ODE systems (e.g. Kravaris and
Arkun, 1991) and is satisfied by many practical ap-
plications. This assumption is needed to establish that
the state of the closed-loop slow system is locally
bounded.

Assumption 3: ¹he dynamical system:

gR
1
"(

1
(f, 0, 0, 0)

F (26)

gR
m~+

i ri
"(

m~+
i ri

(f, 0, 0, 0)

is locally exponentially stable.

Assumption 4 that follows requires the existence of
a nonlinear time-varying bounding function that cap-
tures the size of the uncertain terms in the system of
eq. (22). Such a bounding function is typically ob-
tained from physical considerations, preliminary
simulations or experimental data. The requirement of
existence of a bounding function is standard in all
Lyapunov-based robust control methods (see e.g.
Corless and Leitmann, 1981; Christofides et al., 1996;
Christofides and Daoutidis, 1997b).

Assumption 4: ¹here exists a known function c
0
(x

s
, t)

such that the following condition holds:

D[¸W
0
¸r1~1
F0

h
10

(¹~1(f, g))2

¸W
0
¸rl~1
F0

h
l0

(¹~1(g, f))]TD)c
0
(x

s
, t) (27)

for all x
s
3Hm, h3Rq, t*0.

Whenever assumptions 2—4 are satisfied, it is possible
to synthesize a robust controller on the basis of the
system of eq. (22) using Lyapunov’s direct method
[the reader may refer to (Christofides and Daoutidis,
1997b) for details on robust controller design for non-
linear multi-input multi-output ODE systems]. The-
orem 1 that follows provides an explicit formula of the
robust controller, conditions that ensure boundedness
of the state, and a precise characterization of the
ultimate uncertainty attenuation level. The proof of
the theorem is given in the appendix. To simplify the
statement of the theorem, we set vN

i
"[v

i
v(1)
i
2v(ri)

i
]T

and vN"[vN T
1

vN T
2
2vN T

m
]T.

Theorem 1: Consider the parabolic PDE system of eq.
(10) for which assumption 1 holds, and the finite-dimen-
sional system of eq. (22), for which assumptions 2—4
hold, under the robust controller:
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b
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b
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(¸k~1
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h
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)D#/H

(28)
where

b
ik

b
iri

"C
b1
ik

b1
iri

2

bl
ik

bl
iri
D
T

are column vectors of parameters chosen so that the
roots of the equation det[B(s)]"0, where B(s) is an
l]l matrix, whose (i, j)th element is of the form

ri
+
k/1

bi
jk

bi
jri

sk~1,

lie in the open left-half of the complex plane, and / is
an adjustable parameter. ¹hen, there exist positive
real numbers (d, /*) such that for each /)/*, there
exists e*(/), such that if /)/*, e)e*(/) and
maxMDx

4
(0) D, Dx

&
(0)D, EhE, EhQ E, Ev6 EN)d,

(a) the state of the infinite-dimensional closed-loop
system is bounded, and

(b) the outputs of the infinite-dimensional closed-
loop system satisfy:

lim
t?=

Dy
i
!v

i
D)d

0
, i"1, 2 , l (29)

where d
0
"O(/)#O(e) is a positive real number.

Remark 1: Theorem 1 establishes that the ultimate
uncertainty attenuation level in the case of synthesiz-
ing a robust controller on the basis of the system of eq.
(22) is d

0
"O(/)#O(e). This result is intuitively ex-

pected because the controller of eq. (28) ensures that
the outputs of the O(e) approximation of the closed-
loop parabolic PDE system satisfy lim

t?=
Dy

si
!v

i
D

)d
(
"O(/), i"1, 2, l [the fact that d

(
"O (/) is

rigorously established in the proof of the theorem; see
eqs. (62)—(70)].

Remark 2: Regarding the practical application of the-
orem 1, one has to initially verify assumption 1 (separ-
ation of eigenvalues of A into slow and fast ones), and
then verify assumptions 2—4 on the basis of the system
of eq. (22). Then, the synthesis formula of eq. (28) can
be directly used to derive the explicit form of the
controller (see section 4 for an application of this
procedure to a catalytic reactor example).

Remark 3: We note that the validity of the approach
which we followed here to synthesize the nonlinear
robust controller of eq. (28) relies on the large separ-
ation of slow and fast modes of the spatial differential
operator of the parabolic PDE system. This approach
is not applicable to hyperbolic PDE systems (i.e.
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convection—reaction processes) where the eigenmodes
cluster along vertical or nearly vertical asymptotes in
the complex plane and thus, the controller synthesis
problem has to be addressed directly on the basis of
the hyperbolic PDE system [see (Christofides and
Daoutidis, 1998) for a comprehensive solution to the
robust controller synthesis problem for hyperbolic
PDE systems].

3.3. Improving uncertainty attenuation using approx-
imate inertial manifolds

The controller of eq. (28), synthesized on the basis
of the slow system of eq. (22), enforces an ultimate
uncertainty attenuation level d

0
"O(/)#O(e). Even

though, this degree of attenuation may be sufficient
for several practical applications where the degree of
separation of slow and fast modes is large (i.e. e is very
small), it may not be sufficient for diffusion—convec-
tion—reaction processes for which e is close to one.
The objective of this section is to propose a procedure
for the synthesis of robust controllers that achieve
arbitrary degree of asymptotic attenuation of the ef-
fect of the uncertain variables on the outputs. The
proposed procedure is based on the construction of
higher-order (higher than O(e)) m-dimensional ap-
proximations of the x

s
-subsystem of eq. (19) (which

will be used for controller design) by utilizing a geo-
metric framework based on the concept of inertial
manifold for systems of the form of eq. (10). The
inertial manifold is an appropriate tool for improving
uncertainty attenuation because if the trajectories of
the infinite dimensional system of eq. (10) are on the
manifold, then this system is exactly described by an
m-dimensional slow system. We note that the concept
of inertial manifold used in this work is a direct
generalization, of the one introduced by Temam for
quasi-linear parabolic PDE systems without time-
varying inputs (see for example Temam, 1988), to
systems with time-varying inputs. A concept of iner-
tial manifold for Navier—Stokes equations with time-
dependent inputs, similar to the one used here, has
been introduced in (Jones and Titi, 1994).

An inertial manifold M for the system of eq. (10) is
defined as a subset of H, which satisfies the following
properties: (i) M is a finite-dimensional Lipschitz
manifold, (ii) M is a graph of a Lipschitz function
&(x

s
, u, h, e) mapping H

s
]Rl]Rq](0, e*] into

H
f

and for every solution x
s
(t), x

f
(t) of eq. (20) with

x
f
(0)"&(x

s
(0), u (t), h (t), e) , then

x
f
(t)"&(x

s
(t), u (t), h(t), e), ∀ t*0 (30)

and (iii) M attracts every trajectory exponentially.
Owing to the second and third properties of the IM,
the dynamics of the system of eq. (10) restricted to
M are exactly described by the following m-dimen-
sional system (called inertial form):

dx
s

dt
"A

s
x
s
#B

s
u#f

s
(x

s
, &(x

s
, u, h, e))

#W
s
(x

s
, &(x

s
, u, h, e), h)

(31)
y"Cx

s

where &(x
s
, u, h, e) is the solution of the following

partial differential equation [which was obtained by
differentiating eq. (30) and utilizing eq. (20)]:

e
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s
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s
u#f
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s
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, &(x
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fexf

#eB
f
u#e f

f
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s
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f
)#eW

f
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s
, x

f
, h)).

(32)

Since the inertial form of eq. (31) exactly describes
the long-term dynamics of the system of eq. (10), it
follows that a robust feedback controller synthesized
on the basis of the inertial form, using the methodo-
logy described in the previous subsection, will ensure
that the outputs of the closed-loop parabolic PDE
system satisfy lim

t?=
Dy

i
!v

i
D)d"O(/) (i.e. the ulti-

mate uncertainty attenuation level in the closed-loop
system is independent of e), provided that e is suffi-
ciently small. However, because of the complexity
present in computing the exact form of &(x

s
, u, h, e)

from eq. (32), it is impossible to directly utilize the
inertial form of eq. (31) for controller synthesis. In
order to overcome the problems associated with the
computation of &(x

s
, u, h, e), we will use a procedure

which involves expansion of &(x
s
, u, h, e) and u in

a power series in e, to compute approximations of
&(x

s
, u, h, e) (approximate inertial manifolds) and ap-

proximations of the inertial form, of desired accuracy
[see also (Christofides and Daoutidis, 1997a) for
a similar procedure for the construction of AIMs for
systems of parabolic PDEs without uncertain vari-
ables].

Specifically, we consider an expansion of
&(x

s
, u, h, e) and u in a power series in e:

u"u
0
#eu

1
#e2u

2
#2#eku

k
#O(ek`1)

(33)
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k
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s
, u, h) #O(ek`1)

where u
k
, &

k
are smooth functions. Substituting the

expressions of eq. (33) into eq. (32), and equating terms
of the same power in e, one can obtain approxima-
tions of &(x

s
, u, h, e) up to a desired order. Substituting

the expansion for &(x
s
, u, h, e) and u up to order k into

eq. (31), the following approximation of the inertial
form is obtained:
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y"Cx
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The above approximation procedure is motivated and
validated from the fact that the inertial form of eq. (31)
reduces to the system of eq. (22) as eP0, which
ensures that the inertial form is well-posed with re-
spect to e. The expansion of u in a power series in e in
eq. (33) is motivated by our intention to appropriately
modify the synthesis of the controller such that the
outputs of the O (ek`1) approximation of the closed-
loop inertial form satisfy lim

t?=
Dy

si
!v

i
D)d, where

d"d
(
. The construction of the robust control law of

eq. 33 to achieve this objective can be performed
following a sequential procedure. Specifically, the
component u

0
"p

0
(x

s
)#Q

0
(x

s
) v#r

0
(x

s
, t) can

be initially synthesized on the basis of the O(e) ap-
proximation of the inertial form [eq. (22)]; then, the
component u

1
"p

1
(x

s
)#Q

1
(x

s
) v#r

1
(x

s
, t) can be

synthesized on the basis of the O (e2) approximation of
the inertial form. In general, at the kth step, the
component u

k
"p

k
(x

s
)#Q

k
(x

s
) v#r

k
(x

s
, t) can be

synthesized on the basis of the O(ek) approximation of
the inertial form [eq. (34)]. The synthesis of
[pl(xs

), Ql(xs
), rl(xs

, t)], l"0, 2, k, can be per-
formed, at each step, utilizing the methodology pre-
sented in the previous section for the synthesis of the
component u

0
"p

0
(x

s
)#Q

0
(x

s
) v#r

0
(x

s
, t) .

Theorem 2 that follows provides conditions that
ensure boundedness of the state, and a precise charac-
terization of the ultimate uncertainty attenuation
level in the case of using robust control laws of the
form of eq. (33) which are synthesized by following the
above procedure (the proof of the theorem is similar
to the one of theorem 1 and thus, will be omitted for
brevity).

Theorem 2: Consider the parabolic PDE system of eq.
(10) for which assumption 1 holds, under the robust
control law:
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, t)#e(p
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(35)

where [pl(x4
), Ql(x4), rl (x

4
, t)], l"0, 2 , k are syn-

thesized, under the assumptions 2—4, following the
aforementioned procedure. ¹hen, there exist positive
real numbers (d, /*) such that for each /)/*, there
exists e*(/), such that if /)/*, e)e*(/) and
maxMDx

s
(0) D, Ex

f
(0)E, EhE, EhQ E, EvN EN)d,

(a) the state of the infinite-dimensional closed-loop
system is bounded, and

(b) the outputs of the infinite-dimensional closed-
loop system satisfy:

lim
t?=

Dy
i
!v

i
D)d

k
, i"1, 2 , l (36)

where d
,
"O(/)#O(ek`1) is a positive real number.

Remark 4: The procedure employed above for the
construction of AIMs led to the construction of time-

dependent deterministic AIMs which explicitly de-
pend on u (t) and h (t) [see eq. (33)]. For these AIMs,
theorem 2 establishes that, if the the initial conditions,
the magnitude of the uncertain variables and the rate
of change of the uncertain variables are sufficiently
small, then the solution of the parabolic PDE system
of eq. (10) converges exponentially fast to a neighbor-
hood of the AIM, independently of k [order of AIM
used in the approximate inertial form of eq. (34)]. The
restriction on the rate of variation of h (t) is expected
since the presence of a fast varying time-dependent
variable may induce additional fast dynamics in the
parabolic PDE system of eq. (10), thereby rendering
the proposed procedure for the construction of AIMs
inappropriate.

Remark 5: Since e(1 and thus, e2;e, an uncertain-
ty attenuation level d

1
"O (/)#O (e2) should be sat-

isfactory for most practical applications. In such
a case, an application of the proposed approximation
procedure yields that the O(e2) approximation of
&(x

s
, u, h, e) is of the form
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and the corresponding O (e2) approximation of the
inertial form is given by
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The necessary robust controller which ensures that
lim
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i
D)d

1
"O (/)#O (e2), i"1, 2 , l

takes then the form:

u
0
"[C

0
(x

s
)]~1G l

+
i/1

ri
+
k/1

b
ik

b
iri

(v(k)
i
!¸k

F0
h
i0
(x

s
))

#

l
+
i/1

ri
+
k/1

b
ik

b
iri

(v(k~1)
i

!¸k~1
F0

h
i0
(x

s
))

!2[c
0
(x

s
, t)]

]

l
+
i/1

ri~1
+
k/1

b
ik

b
iri

(¸k~1
F0

h
i0
(x

s
)!v(k~1)

i
)

K
l
+
i/1

ri~1
+
k/1

b
ik

b
iri

(¸k~1
F0

h
i0
(x

s
)!v(k~1)

i
)K#/H

Robust control of parabolic PDE systems 2957



#e G[C1
(x

s
)]~1G l

+
i/1

ri
+
k/1

b
ik

b
iri

(v(k)
i
!¸k

F1
h
i1
(x

s
))

#

l
+
i/1

ri
+
k/1

b
ik

b
iri

(v(k~1)
i

!¸k~1
F1

h
i1
(x

s
))

!2[c
1
(x

s
, t)]

]

l
+
i/1

ri~1
+
k/1

b
ik

b
iri

(¸k~1
F1

h
i1
(x

s
)!v(k~1)

i
)

K
l
+
i/1

ri~1
+
k/1

b
ik

b
iri

(¸k~1
F1

h
i1
(x

s
)!v(k~1)

i
) K#/HH

where the explicit form of C
1
(x

s
), c

1
(x

s
, t) is omitted for

brevity.

Remark 6: Following the proposed approximation
procedure, it can be shown that the O(e) approxima-
tion of &(x

s
, 0, e) is &

0
(x

s
, u, h)"0 and the corres-

ponding approximate inertial form is identical to the
system of eq. (22) (obtained via Galerkin’s method)
with u (t),0. This system does not utilize any in-
formation about the structure of the fast subsystem,
thus yielding an ultimate degree of attenuation for the
closed-loop parabolic PDE system d

0
"O (/)#O (e)

(theorem 1). On the other hand, the O(e2) approxima-
tion of &(x

s
, u, e, h) is of the form of eq. (37) and the

corresponding open-loop approximate inertial form
does utilize information about the structure of the fast
subsystem, and thus allows to obtain an ultimate
degree of attenuation for the closed-loop parabolic
PDE system d

1
"O(/)#O(e2) (theorem 2).

Remark 7: The on-line implementation of the con-
trollers of eqs. (28)—(35) requires that the values of the
state variables x

s
. The values of the variables

x
s1
, x

s2
, 2 , x

sm
can be readily obtained from the

equations x
sj
":b

a
x (z, t)/

j
(z) dz, j"1, 2 , m. Of

course, the state x (z, t) cannot be exactly known at all
positions and times, but it will be known only at
a finite number of positions. This implies that there
will be small error on the computation of x

sj
(t), which

decreases as the number of measurements of x(z, t)
along the length of the process increases.

Remark 8: The implementation of the controller of
eq. (35) requires to explicitly compute the vector
function &

k
(x

s
, u, h). However, &

k
(x

s
, u, h) has an infi-

nite-dimensional range and therefore cannot be im-
plemented in practice. Instead a finite-dimensional
approximation of &

k
(x

s
, u, h), say &

k
(x

s
, u, h), can be

derived by keeping the first mN elements of &
k
(x

s
, u, h)

and neglecting the remaining infinite ones. Clearly, as
mN PR, &

k
(x

s
, u, h) approaches &

k
(x

s
, u, h). This im-

plies that by picking mN to be sufficiently large, the
controller of eq. (39) with &

k
(x

s
, u, h) instead of

&
k
(x

s
, u, h) guarantees stability and enforces the re-

quirement of eq. (36) in the closed-loop infinite-
dimensional system.

Remark 9: The robust controllers of eqs. (28)—(35)
possess a robustness property with respect to fast and
asymptotically stable unmodeled dynamics (i.e. the
controllers enforce boundedness, output tracking and
uncertainty attenuation in the closed-loop system,
despite the presence of additional dynamics in the
process model, as long as they are stable and suffi-
ciently fast). This property of the controllers can be
rigorously established by analyzing the closed-loop
system with the unmodeled dynamics using singular
perturbations [see (Christofides and Daoutidis, 1998)
for a similar analysis in the case of robust control of
hyperbolic PDE systems]. This robustness property
of the controllers is of particular importance for many
practical applications where unmodeled dynamics of-
ten occur due to actuator and sensor dynamics, fast
process dynamics, etc. (see, for example, the applica-
tion in the next section).

4. APPLICATION TO A PACKED-BED REACTOR

Consider the non-isothermal catalytic packed-bed
reactor shown in Fig. 2, where a reaction of the form
APB takes place on the catalyst (Ray, 1981). The
reaction is endothermic and a jacket is used to heat
the reactor. Under the assumptions of negligible dif-
fusive phenomena for the gas phase, constant density
and heat capacity of the catalyst and the gas, and
excess of species A in the reactor, the dynamic model
of the process consists of the following set of energy
balances:

f Energy balance for the gas phase.

o
f
c
pf

L¹
g

LtN
"!o

f
c
pf

v
l

L¹
g

LzN
#h

c
S
c
(¹!¹

g
)

!h
g
S
g
(¹

g
!¹

j
). (40)

Boundary condition:

zN"0, ¹
g
"¹

f
. (41)

f Energy balance for the catalyst.

o
s
c
ps

L¹
c

LtN
"k

e

L2¹
c

LzN 2
#(!*H) k

0
e~E@RT

!h
c
S
c
(¹!¹

g
)!h

p
S
h
(¹

c
!¹

j
). (42)

Boundary conditions:

zN"0
L¹

c
LzN

"0, zN"l
L¹

c
LzN

"0. (43)

In the above model, o
f
, c

pf
and o

s
c
ps

denote densities
and heat capacities of the gas and the catalyst, respec-
tively, v

l
denotes the velocity of the gas, l denotes the

length of the reactor, ¹
g
, ¹

c
, ¹

j
denote the temper-

atures of the gas, the catalyst and the jacket, respec-
tively, h

c
, h

g
, h

p
denote heat transfer coefficients, S

c
, S

g
denote the pellet surface area and the wall heat trans-
port area per unit volume, and *H, k

0
, E denote the

enthalpy, pre-exponential factor, and the activation
energy of the reaction.
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Fig. 2. A catalytic packed-bed reactor.

The main feature of the process is that the heat
capacitance of the catalytic phase is much larger than
the heat capacitance of the gas phase i.e. o

s
c
ps
<o

f
c
pf

.
Therefore, the system of eqs. (40)—(42) possesses an
inherent two-time-scale property, i.e., the dynamics of
the gas temperature, ¹

g
, are much faster than the

dynamics of the catalyst temperature, ¹
c
. The control

problem considered is the one of controlling the tem-
perature of the catalyst throughout the reactor (i.e.
enforce a constant temperature on the catalyst) in
order to maintain a desired degree of reaction rate, by
manipulating the jacket temperature. The selection of
¹

c
as the control variable is also motivated by the fact

that ¹
c

essentially determines the dynamics of the
process. Notice that ¹

j
is chosen to be the manipu-

lated input with the understanding that in practice its
manipulation is achieved indirectly through manip-
ulation of the jacket inlet flow rate. The enthalpy of
the reaction is considered to be the main uncertain
variable.

In order to explicitly account in the controller de-
sign the presence of time-scale multiplicity in the
process, we define a small positive parameter e

p
as the

ratio of the heat capacitance of the gas phase vs the
heat capacitance of the catalytic phase, i.e.

e
p
"

o
f
c
pf

k
e

o
s
c
ps
l2

(44)

and the dimensionless variables:

x
g
"

¹
g
!¹

f
¹

f

, xN "
¹

c
!¹

f
¹

f

, u"
¹

j
¹

f

,

h(t)"B!B
0
, t"

tN k
e

o
s
c
ps

l2
, z"

zN
l
, c"

E

R¹
f (45)

b
c
"

h
c
S
c
l2

k
e

, b
p
"

h
p
S
c
l2

k
e

, B"

(!*H) l2k
0
exp~c

k
e
¹

f

,

a
c
"

h
c
S
c
l

v
l
o
f
c
pf

, a
g
"

h
g
S
h
l

v
l
o
f
c
pf

.

Using the above definitions, the process model of eqs.
(40)—(43) can be written as

e
p

Lx
g

Lt
"!

Lx
g

Lz
#a

c
(xN !x

g
)!a

g
(xN

g
!u)

LxN
Lt

"

L2xN
Lz2

#B
0
expcx6 @(1`x6 )#h(t) expcx6 @(1`x6 )

!b
c
(xN !x

g
)!b

p
(xN !b (z)u) (46)

y"P
1

0

xN (z, t) dz

subject to the boundary conditions:

z"0, x
g
"0,

LxN
Lz

"0, z"1,
LxN
Lz

"0. (47)

The values of the process parameters are given below:

e
p
"0.01, c"21.14, b

c
"1.0, b

p
"15.62,

B
0
"!0.003, a

c
"0.5, a

g
"0.5, b (z)"1. (48)

For the above parameters, it was verified via simula-
tions that the spatially uniforms steady state,
x
g
(z, t)"0, xN (z, t)"0, is a stable one.
In order to proceed with the controller design task,

we initially exploit the fact that e
p

is small and set
e
p
"0 in the system of eq. (46), which yields the

following system consisting of a first-order ODE in
space and a parabolic PDE:

dx
g

dz
"a

c
(xN !x

g
)!a

g
(xN

g
!u) (49)

LxN
Lt

"

L2xN
Lz2

#B
0

expcx6 @(1`x6 )#h (t) expcx6 @(1`x6 )

!b
c
(xN !x

g
)!b

p
(xN !u)

(50)

y"P
1

0

xN (z, t) dz.

Since the control objective is the regulation of the
catalyst temperature, the parabolic PDE system of eq.
(50) will be used for controller design. The state vari-
able x

g
which is present in the system of eq. (50) will be

computed by integrating the ODE of eq. (49). For the
system of eq. (50), the operator A takes the form

Ax"
L2xN
Lz2
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Fig. 3. (Solid line) Closed-loop output profile for reference input tracking. (Dashed line) Closed-loop
output profile for reference input tracking (no uncertainty compensation).

u (t)"
v!y

s
!P

1

0

(B
0
expcxs@(1`xs)!b

c
(x

s
!x

g
)!b

p
x
s
) dz!h

m

y
s
!v

Dy
s
!vD#/ P

1

0

expcxs@(1`xs)dz

B
s

(57)

x3D (A)"Gx3H([0, 1]; R); z"0,
Lx

Lz
"0;

z"1,
Lx

Lz
"0H . (51)

Furthermore, the manipulated input, uncertain vari-
able and controlled output operators as

Bu"b
p
u, W(x, h)"ec x6 @(1`x6 )h(t), Cx"(c, x) (52)

and the nonlinear term f (x) as

f (x)"B
0
expcx6 @(1`x6 )!b

c
(xN !x

g
)!b

p
xN . (53)

The solution to the eigenvalue problem for A is

j
j
"!j2n2, j"0, 2,R,

/
0
"1, /

j
"J2 cos( j n z), j"1, 2 ,R. (54)

The values of j
j

indicate that the eigenspectrum of
A can be partitioned into a finite-dimensional slow
one (j

0
) and an infinite-dimensional fast one

(j
1
, j

2
, j

3
, 2 , ). Furthermore, since j

0
"0 and thus,

e"j
0
/j

1
"0, it is reasonable to define H

s
"

spanM/
0
N. Applying Galerkin’s method to the system

of eq. (46), a one- dimensional ODE system is derived
of the form

dx
s

dt
"P

1

0

(B
0

expcxs@(1`xs)!b
c
(x

s
!x

g
)!b

p
x
s
) dz

#B
s
u#h (t)P

1

0

expcxs@(1`xs)dz

(55)

y
s
"Cx

s
.

One the basis of the above system, one can easily
verify that assumptions 2 and 3 are trivially satisfied,
while assumption 4 is satisfied with:

c
0
(x, t)"h

mP
1

0

expcxs@(1`xs)dz (56)

where h
m

is a positive real number that satis-
fies h

m
*Dh (t) D. Therefore, the synthesis formula

of eq. (28) was used to design a nonlinear robust
controller on the basis of the system of eq. (55) of the
form

where v is the reference input.
Simulation runs were performed to evaluate the

performance and robustness properties of the control-
ler, in the presence of the time-varying uncertain vari-
able B(t)"10.0B

0
sint. The controller was imple-

mented with b
1
"0.2, b

0
"1.0, /"0.05 and

h
m
"10.0B

0
. A detailed finite-difference discretization

(100 discretization points) of the process model of
eqs. (40)—(43) was used in the simulations. Initially,
the process is assumed to be at the steady state
x
g
(z, 0)"0, xN (z, 0)"0, and a 0.05 increase in the
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Fig. 4. (Solid line) Closed-loop manipulated input profile for reference input tracking. (Dashed line)
Closed-loop manipulated input profile for reference input tracking (no uncertainty compensation).

Fig. 5. Profile of evolution of catalyst temperature for reference input tracking.

value of the reference input is imposed at t"0. The
profile of the controlled output is shown in Fig. 3
(solid line), while the corresponding manipulated in-
put profile is shown in Fig. 4. It is clear that the
controller regulates the output at the new reference
input value, attenuating the effect of the uncertain
variable. The manipulated input changes smoothly
with time in order to compensate for the effect of the

uncertain variable. For the same simulation run,
Fig. 5 displays the evolution of the catalyst temper-
ature at all positions and times. The controller
achieves excellent performance, regulating the cata-
lyst temperature at each point in the reactor to the
new reference input value. For the sake of compari-
son, we also implemented on the process the same
controller without the term which compensates for
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Fig. 6. Profile of evolution of catalyst temperature for reference input tracking (no uncertainty compensa-
tion).

the effect of the uncertain variable. The profile of the
controlled output for this simulation run is given in
Fig. 3 (dashed line), while the profile of the corres-
ponding manipulated input and the spatiotemporal
evolution of the catalyst temperature are given in Fig.
4 (dashed line) and Fig. 6, respectively. It is obvious
that this controller cannot compensate for the effect of
the uncertain variable, leading to poor performance.
From the results of the simulation study, it is evident
that the proposed methodology is a powerful tool for
the synthesis of robust controllers which attenuate the
effect of uncertain variables on the output for quasi-
linear parabolic PDE systems.

Remark 10: We finally note that the one-dimensional
model of eq. (55), which was used for the design of the
controller of eq. (57), was obtained from standard
Galerkin’s method, and no improvement of its accu-
racy was pursued by using the concept of approxim-
ate inertial manifold. The reason is that the closed-
loop performance and robustness properties of the
controller of eq. (57) are clearly excellent (see the
closed-loop output and state profiles in Fig. 3 and 5,
respectively), thereby leaving no room for further im-
provement of the uncertainty attenuation properties
of the controller by using approximate inertial mani-
folds. The fact that one mode suffices to design a non-
linear controller which yields an excellent closed-loop
performance is expected since the control objective is
to stabilize the process at a spatially uniform steady
state, the control action is uniformly distributed along
the length of the process and the first mode is spatially
uniform (i.e. /

0
"1).

5. CONCLUSIONS

In this paper we studied the control problem for
diffusion—convection—reaction processes with time-
varying uncertain variables described by systems of
quasi-linear parabolic PDEs, for which the eigen-
spectrum of the spatial differential operator can be
partitioned into a finite-dimensional (possibly un-
stable) slow one and an infinite-dimensional stable
fast complement. For such processes, we developed
a methodology for the synthesis of nonlinear robust
feedback controllers that guarantee boundedness of
the state and output tracking with arbitrary degree of
asymptotic attenuation of the effect of the uncertain
variables on the output of the closed-loop system.
Initially, Galerkin’s method was used to derive an
ODE system of dimension equal to the number of
slow modes, which was subsequently used to synthe-
size robust controllers via Lyapunov’s direct method.
Singular perturbation methods were employed to es-
tablish that the degree of asymptotic uncertainty
attenuation enforced by these controllers is propor-
tional to the degree of separation of the fast and slow
modes of the spatial differential operator. Then, for
processes for which such a degree of uncertainty at-
tenuation is not sufficient, a sequential procedure
based on the concept of approximate inertial manifold
was developed for the synthesis of robust controllers
which enforce an arbitrarily small ultimate uncer-
tainty attenuation level in the closed-loop parabolic
PDE system. Finally, the developed methodology was
successfully applied to a catalytic packed-bed reactor
with unknown heat of reaction and was shown to
significantly outperform a nonlinear controller design
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which does not account for the presence of the uncer-
tain variable.

The solution to the robust control problem for
parabolic PDE systems presented in this paper comp-
lements the solution to the robust control problem
for hyperbolic PDE systems (Christofides and
Daoutidis, 1998), leading to a general and practical
framework for robust controller synthesis for diffu-
sion—convection—reaction and convection—reaction
processes.
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APPENDIX

Definitions
f For any measurable (with respect to the Lebesgue

measure) function h: R
*0

PRm, DDhDD denotes ess.sup.
Dh(t)D, t*0.

f A function c :R
*0

PR
*0

is said to be of class K if it is
continuous, increasing and is zero at zero. It is of class
K

=
, if in addition, c (s) tends to #R as s tends to #R.

f A function b :R
*0

]R
*0

PR
*0

is said to be of class
K¸ if, for each fixed t, the function b (), t) is of class
K and, for each fixed s, the function b(s, )) is nonincreas-
ing and tends to zero at infinity.

Definition (Khalil, 1992): ¹he system in eq. (22) (with u,0) is
said to be locally input-to-state stable (ISS) with respect to h if
there exist a function b of class K¸, a function c of class K and
a positive real number such that for each x

s0
3Rn and for each

measurable, essentially bounded input h()) on [0, R) that sat-
isfy maxMx

40
, DDhDDN)dK , the solution of eq. (22) with x

4
(0)"x

40
exists for each t*0 and satisfies

Dx
s
(t)D)b ( Dx

s
(0) D, t)#c (DDhDD), ∀ t*0. (A.1)

Proof of Theorem 1: Under the control law of eq. (28) the
closed-loop system takes the form

dx
s

dt
"A

s
x
s
#B

s
a
0
(x

s
, vN , t)#f

s
(x

s
, 0)#W
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e
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fexf
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s
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(A3)

On the basis of the system of eq. (A.2), it is clear that since the
operator A

fe generates an exponentially stable semigroup,
the infinite-dimensional closed-loop fast subsystem is expo-
nentially stable.

Observing the similarity in the structure of the system of
eq. (A.2) and the x

s
-subsystem of eq. (22), using assumption 2,

and introducing the variables

e(i)
k
"f(i)

k
!v(k~1)

i
, i"1,2, l, k"1, 2, r

i
,

eJ (i)
ri
"

l
+
i/1

e(i)
ri
#

l
+
i/1

ri~1
+
k/1

b
ik
/b

iri
e(i)
k

and the notation eN (i)"[e(i)
1

e(i)
2
2e(i)

ri~1
]T, eN"[e(1)T

e(2)T2e(l)T]T, g6 "[eN T gT], eJ
r
"[eJ (1)

ri
eJ (2)
ri

2eJ (l)
ri

]T, v
i
"[v(0)

i
v(1)
i
2v(ri~1)

i
]T, vJ"[vT

1
vT
2
2vT

l
]T, the representation of the

closed-loop system of eq. (A.2):

eR (1)
1
"e(1)

2
#(M (1)

1
(eN , eJ

r
, vJ , g, h, x

f
)

F

eR (1)
r1~1

"!

l
+
i/1

ri~1
+
k/1

b1
ik

b1
iri

e(i)
k
#

l
+
i/1

eJ (1)
r1

#(M (1)
r1

(eN , eJ
r
, vJ , g, h, x

f
)

eJR (1)
r1

"(M (1)
r1

(eN , eJ
r
, vJ , g, h, x

f
)#¸W

0
¸r1~1

F0
h
10

(¹~1(eN , eJ
r
, vJ , g))

#

l
+
i/1

¸
Bi

0
¸r1~1

F0
h
10

(¹~1(eN , eJ
r
, vJ , g) ai(eN , eJ

r
, vJ , vN , g, t)

F

eR (l)
1
"e(l)

2
#(M (l)

1
(eN , eJ

r
, vJ , g, h)

F (A.4)

eR (l)
rl~1

"e(l)
rl
#(M (l)

rl~1
(eN , eJ

r
, vJ , g, h, x

f
)

eR (m)
rl

"(M (l)
rl
(eN , eJ

r
, vJ , g, h, x

f
)#¸

W0
¸rl~1
F0

h
l0
(¹~1(eN , eJ

r
, vJ , g))

#

l
+
i/1

¸
Bi

0
¸rl~1

F0
h
l0
(¹~1(eN , eJ

r
, vJ , f)) ai(eN , eJ

r
, vJ , g, vN , t)

gR
1
"(

1
(eN , eJ

r
, vJ , g, h, hQ )#(M +

i ri`1
(eN , eJ

r
, vJ , g, h, x

f
)

F
gR
m~+

i ri
"(

m~+
i ri

(eN , eJ
r
, vJ , g, h, hQ )#(M

m
(eN , eJ

r
, vJ , g, h, x

f
)

e
Lx

f
Lt

"A
fexf

#eB
f
a
0
(eN , eJ

r
, vJ , g, vN , t)#ef

f
(x

s
, 0)

#eW
f
(eN , eJ

r
, vJ , g, 0, h) #eR

f
(eN , eJ

r
, vJ , g, x

f
, h)

y
i
"f(i)

1

where (M (i)
k
, i"1, 2, l, k"1, 2 , r

i
, and (M

m~+
i ri
, 2 , (M

m
,

are Lipschitz functions of their arguments. In what follows,
we derive bounds that capture the evolution of the states
eN , eJ

r
, gN of the above system. We initially obtain these bounds,

when e"0, and then we show that these bounds continue to
hold up to an arbitrarily small offset for e'0.

First, note that the linear structure of eN subsystem of the
reduced system of eq. (A.4) and the fact that it is exponenti-
ally stable when eJ

r
,0 allows using a direct Lyapunov

function argument to show that there exist positive real
numbers, k

1
, a, c

er
such that the following ISS bound holds

for the state eN of the slow subsystem:

DeN (t)D)k
1
e~atDeN (0) D#c

er
EeJ

r
E (A.5)

We will now show that the controller of eq. (28) ensures that
the state vector eJ

r
"[eJ (1)

r1
eJ (2)
r2

2 eJ (m)
rm

]T of the system of eq.
(A.4) with e"0 possesses an ISS property with respect to
eN , vN , g, h, and moreover the gain function saturates at /. To
this end, we consider the e!independent system:

eJR
r
"¸W

0
¸rl~1
F0

h
0
(¹~1(g, f))#

l
+
i/1

ri
+
k/1

b
ik

b
iri

e(i)
k`1

#G!
l
+
i/1

ri
+
k/1

b
ik

b
iri

e(i)
k`1

!eJ
r

!2[c
0
((eN , eJ

r
, vJ , g, h), t)]w(¹~1(eN , eJ

r
, vJ , g, h)), /)H (A.6)

where (M
r
(eN , eJ

r
, vJ , g, h)"[(M (1)

r1
(eN , eJ

r
, vJ , g, h)2(M (l)

rl
(eN , eJ

r
, vJ ,

g, h)]T, v(r)"[v(r1)
1

2 v(rm)
m

]T,
¸d¸r~1

F
h (¹~1(eN , eJ

r
, vJ , g, h))"[¸d¸

r1~1
F

h
1
(¹~1(eN , eJ

r
, vJ , g, h))

2¸d¸
rl~1
F

h
l
(¹~1(eN , eJ

r1
, vJ , g, h))]T. To establish that the
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above system is ISS with respect to eN , eJ
r
, vN , g, h, we use the

following smooth function »: HmPR
*0

:

»"1
2

eJ 2
r
. (A.7)

Calculating the time-derivative of » along the trajectory of
the system of eq. (A6), we have

»Q "eJ T
rC¸W

0
¸rl~1
F0

h
0
(¹~1(g, f))#

l
+
i/1

ri
+
k/1

b
ik

b
iri

e(i)
k`1

#G!
l
+
i/1

ri
+
k/1

b
ik

b
iri

e(i)
k`1

!eJ
r

!2[c
0
((eN , eJ

r
, vJ , g, h), t)]w(¹~1(eN , eJ

r
, vJ , g, h)), /)HD . (A.8)

Furthermore, it is straightforward to show that the repres-
entation of the vector function w(x, /) in terms of the vector
eJ
r
is given by

w(eJ
r
, /)"

eJ
r

DeJ
r
D#/

(A.9)

Substituting eqs. (A.9), we have

»Q )eJ T
r G!eJ

r
#¸

W0
¸rl~1
F0

h0(¹~1(g, f))

!2[c
0
(¹~1(eN , eJ

r
, vJ , g, h), t)]

eJ
r

DeJ
r
D#/ H

)G!eJ 2
r
!2[c

0
(¹~1(eN , eJ

r
, vJ , g, h), t)]

eJ 2
r

DeJ
r
D#/

#DeJ
r
Dc
0
(¹~1(eN , eJ

r
, vJ , g, h), t)H

)G!eJ 2
r
!c

0
(¹~1(eN , eJ

r
, vJ , g, h), t)

eJ 2
r

DeJ
r
D#/

#/[c
0
(¹~1(eN , eJ

r
, vJ , g, h), t)]

eJ
r

DeJ
r
D#/ H. (A.10)

From the last inequality, it follows directly that if DeJ
r
D*/,

the time-derivative of the Lyapunov function satisfies
»Q )!eJ 2

r
. This fact implies that the ultimate bound on the

state eJ
r

of the system of eq. (A.6) depends only on the
parameter / and is independent of the states eN , g.

We will now analyze the time-derivative of » for DeJ
r
D(/.

For ease of notation, we set U"[eJ
r
6T hT vN T]T. Then, eq.

(A.10) can be written as:

V0 )M!eJ 2
r
#DeJ

r
D[c

0
(¹~1(eN , eJ

r
, vJ , g, h), t)]N

)!eJ 2
r
#DeJ

r
Do( DU D ) (A.11)

where o is a class K
=

function. Summarizing, we have that
»Q satisfies the following properties:

»Q )!

DeJ
r
D2

2
, DeJ

r
D*minM/, (2o( DU D))N": c8 U( DU D). (A.12)

Using the result of theorem 4.10 in Khalil (1992), we get that
the following ISS bound holds for the state eJ

r
of the system of

eq. (A.6):

DeJ
r
(t)D)e~0.5tDeJ

r
(0)D#cJ U(EUE)

)e~0.5tDe8
r
(0) D#/. (A.13)

Referring to the singularly perturbed system comprised
of the states (eN , g, x

f
) of the system of eq. (A.4), we have

that its fast dynamics are globally exponentially stable
and the slow system (g6 "[eN T gT]T) is locally ISS with re-
spect to eJ

r
, h, hQ (Khalil, 1992). This implies that there

exist a function bgN of class K¸ and functions c6
er
, c6 h, c6 hQ of

class K such that the following ISS inequality holds for the
state gN :

Dg6 (t) D)bgN (Dg6 (0)D, t)#c6
eJ r
(DDeJ

r
DD)#c6 h( DDhDD)#c6 hQ ( DDhQ DD ). (A.14)

We will now utilize the a result developed in Christofides and
Daoutidis, (1998) which establishes robustness of the ISS
property with respect to infinite-dimensional fast dynamics
provided that they are stable and sufficiently fast, to show
that the ISS inequalities of eqs. (A.13) and (A.14) continue to
hold up to an arbitrarily small offset, for the states eJ

r
, g6 of the

singularly perturbed system of eq. (A.4). Following Christof-
ides and Daoutidis, (1998), it can be shown that there exist
positive real numbers (d1 , dM

0
, ee6 r (/)) with dM

0
"O (e) such that if

e3(0, eeJ r(/)] and maxMDeJ
rJ
(0) D, Ex

f
(0)E, EhE, EvN E, Eg6 EN)dM

0
,

then

DeJ
r
(t)D)e~0.5tDeJ

r
(0) D#/#dM

0
. (A.15)

Furthermore, it can be also shown using the result from
Christofides and Daoutidis (1998) that the singularly pertur-
bed system comprised of eN , g, z, with the same converse
function which exists for the reduced system comprised of
the states eN , g and its resulting (bgN , c6 s). Thus, we have that
there exist positive real numbers (dI , dgN , eg

N (/)) such that if
e3(0, eg6 (/) and maxMDg6 (0) D, Ex

f
(0)E, EhE, EhQ E, EvN E, EeJ

r
EN)dI ,

then

Dg6 (t))bgN (Dg6 (0) D, t)#c6
er
(EeJ

r
E)#c6 h(EhE)#c6 hQ (EhQ E)#dgN .

(A.16)

The proof of the theorem can be completed by: (a) analyzing
the behavior of the dynamical system comprised of the states
eJ
r
, g6 of the system of eq. (A.4), for which the inequalities of

eqs. (A.15) and (A.16) hold, using small-gain theorem type
arguments [see also (Jiang et al., 1995, Christofides et al.,
1996) for similar results on finite-dimensional systems] to
establish boundedness of the state of the closed-loop system,
and (b) combining the inequalities of eqs. (A.5)—(A.15) and
using a claim proved in Christofides et al. (1996) to show that
the output of the closed-loop system of eq. (A.2) satisfies the
relation of eq. (29), for each /3 (0, /*], e*(/)3 (0, egN (/), and
maxMDx

s
(0) D, Ex

f
(0)E, EhE, EhQ E, EvN EN)d.
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