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This paper focuses on dynamic output feedback control of a broad class of nonlinear two-time-
scale processes modeled within the mathematical framework of singular perturbations. A
sequential procedure is employed to synthesize a nonlinear well-conditioned two-time-scale output
feedback controller, which guarantees stability and enforces output tracking in the closed-loop
system, provided that the separation of the slow and fast dynamics of the two-time-scale process
is sufficiently large. The proposed controller is successfully applied to two-time-scale chemical
processes, a series of two chemical reactors and a fluidized catalytic cracker, and is shown to
outperform output feedback controller design methods that do not account for the presence of
time-scale multiplicity.

1. Introduction

The majority of industrial processes are inherently
nonlinear and involve unmeasured state variables. The
presence of unmeasured state variables restricts sig-
nificantly the implementation of nonlinear model-based
control algorithms on industrial processes, and thus,
may limit the achievable control quality. This has
motivated extensive research activity on the design of
nonlinear-state observers (i.e., dynamical systems that
utilize on-line measurements of process outputs to
produce estimates of all state variables (e.g., Kantor,
1989; Ciccarella et al., 1993; Kazantzis and Kravaris,
1995; Soroush, 1997)). The combination of the nonlinear-
state observers and nonlinear-state feedback controllers,
in order to derive nonlinear output feedback controllers,
has also been studied extensively (see, for example,
Limqueco and Kantor, 1990; Kravaris and Arkun, 1991;
Bequette, 1991; Quintero-Marmol et al., 1991; Kravaris
et al., 1994; Daoutidis and Christofides, 1995; Soroush,
1995; Kurtz and Henson, 1997 and the references
therein).

In addition to nonlinearities and unmeasured state
variables, many industrial processes involve physico-
chemical phenomena occurring in separate time scales.
Examples of two-time-scale processes include fluidized
catalytic crackers (the residence time in the reactor is
significantly smaller than the one in the regenerator
(Denn, 1986)), catalytic reactors (the thermal capaci-
tance of the catalytic phase is much larger than the one
of the gas phase (Denn, 1986)), and chemical vapor
deposition reactors (coupling of fast and slow reactions),
to name a few. It is well-established that a direct
application of standard control methods (including the
aforementioned ones) to two-time-scale processes, with-
out accounting for the presence of time-scale multiplic-
ity, may lead to controller ill-conditioning (i.e., the
controller generates very large control actions in the

presence of small modeling/measurement errors) and
stiffness (i.e., the accurate numerical solution of the
state observer equations requires a very small step of
integration) and closed-loop instability due to slightly
nonminimum phase behavior of the process (i.e., the
zero dynamics of the process is a two-time-scale system
with unstable fast dynamics) (Kokotovic et al., 1986;
Christofides and Daoutidis, 1996).

In order to circumvent the above problems, the control
of two-time-scale processes is usually addressed within
the singular perturbation framework (Kokotovic et al.,
1986). Within this framework, a two-time-scale process
is initially modeled in the standard singularly perturbed
form, where the fast and slow variables are explicitly
separated due to the presence of a small parameter ε

(called singular perturbation parameter) that multiplies
the time derivative of the fast-state vector. Then, the
singularly perturbed system is decomposed into sepa-
rate well-conditioned reduced-order systems that de-
scribe the fast and slow dynamics of the original system.
These reduced-order systems are used to synthesize
well-conditioned nonlinear controllers, and singular
perturbation techniques are employed to infer the
asymptotic (i.e., for ε sufficiently small) properties of the
two-time-scale closed-loop system from the knowledge
of the behavior of the reduced-order closed-loop systems.
Following this approach, two-time-scale output feedback
controllers have been designed for linear singularly
perturbed systems (e.g., O’Reilly, 1980; Kokotovic et al.,
1986; Khalil, 1987; Calise et al., 1990; Wang et al.,
1993), while optimal- (Kokotovic et al., 1986), geometric-
(Christofides and Daoutidis, 1996), and Lyapunov-based
(Christofides et al., 1996) state feedback controllers have
been designed for nonlinear singularly perturbed sys-
tems. On the problem of state estimation of nonlinear
two-time-scale systems, a method was recently proposed
in Shouse and Taylor (1995) for the design of nonlinear
two-time-scale discrete-time state observers.

In this paper, we study the output feedback control
of a broad class of nonlinear two-time-scale processes,
modeled within the mathematical framework of singular
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perturbations. We initially employ a sequential proce-
dure to derive a nonlinear two-time-scale output feed-
back controller. The controller, which does not suffer
from ill-conditioning and stiffness, globally asymptoti-
cally stabilizes the fast subsystem and enforces global
asymptotic stability with asymptotic output tracking in
the closed-loop slow subsystem. It is established, using
a general stability theorem proved in Christofides and
Teel (1996), that the controller enforces boundedness
of the states and approximate asymptotic (i.e., for large
times) output tracking in the closed-loop two-time-scale
system for arbitrarily large initial conditions, provided
that the separation of the slow and fast dynamical
phenomena of the process is sufficiently large. Then,
an explicit easy-to-use realization of the controller is
derived that enforces local exponential stability and
approximate output tracking, for all times, in the closed-
loop two-time-scale system. Fundamental differences,
on output feedback control of linear and nonlinear two-
time-scale processes, are identified and discussed. Fi-
nally, the proposed controller is successfully applied to
two-time-scale chemical processes, a series of two
chemical reactors and a fluidized catalytic cracker, and
is shown to outperform output feedback controller
design methods that do not account for the presence of
time-scale multiplicity.

2. Preliminaries

We will focus on two-time-scale nonlinear processes,
modeled in singularly perturbed form, with the following
state-space description:

where x ∈ IRn denotes the vector of slow-state variables
and z ∈ IRp denotes vector of fast-state variables, u ∈
IR denotes the manipulated input, y1 ∈ IR denotes the
controlled output which is also assumed to be measur-
able, y2 ∈ IR denotes the fast measured output, and ε is
a small positive parameter which quantifies the speed
ratio of the slow versus the fast dynamical phenomena
of the process. f1(x), f2(x), p(x), g1(x), and g2(x) are
sufficiently smooth vector functions, Q1(x) and Q2(x) are
sufficiently smooth matrices of appropriate dimensions,
and h1(x) is a sufficiently smooth scalar function.
Throughout the paper, the standard order of magnitude
notation, O(ε), will be used (i.e., δ(ε) ) O(ε) if there exist
positive constants k1 and k2 such that |δ(ε)| e k1|ε|, ∀
|ε| < k2).

Referring to the system of eq 1, several remarks are
in order: (a) the separation of slow and fast variables
is explicit, owing to the presence of the small parameter
ε that multiplies z3 , (b) the fast state variables z appear
linearly (this is consistent with the fact that the main
nonlinearities in chemical processes are usually associ-
ated with the slow dynamics), (c) the parameter ε

appears only in the left-hand side (multiplying z3 ) (this
assumption is made in order to simplify the notation of
the paper (the results of the paper can be directly

applied to a more general class of singularly perturbed
systems which includes ε in the right-hand side; see
remark 10), and (d) there exists an additional measured
output, y2, which depends on the fast variable z (this is
necessary in order to design a dynamic output feedback
controller to stabilize the fast dynamics of the process
(see subsection 3.2)).

The derivation of a singularly perturbed representa-
tion of a nonlinear two-time-scale process is, in general,
a highly nontrivial task. The natural approach to
address this problem involves defining the singular
perturbation parameter ε, taking into account the
physicochemical characteristics of the process, so that
in the resulting singularly perturbed representation the
separation of the fast and slow variables is consistent
with the process dynamic behavior. This approach
works for the majority of two-time-scale processes (see,
for example, the applications considered in Kokotovic
et al. (1986), Christofides and Daoutidis (1996), and the
chemical process examples of section 4). Whenever this
approach does not work, alternative approaches that
utilize explicit coordinate changes (e.g., Marino and
Kokotovic, 1988; Dochain and Bouaziz, 1993; Breusegem
and Bastin, 1991; Kumar et al., 1998) or computational
techniques (e.g., Lam and Goussis, 1994; Duchene and
Rouchon, 1996) may be employed to derive a singularly
perturbed representation of a two-time-scale process.
We finally note that singular perturbation modeling of
linear two-time-scale processes can be performed by
using modal decomposition techniques (e.g., Kokotovic
et al., 1986; Denn, 1986; Monge and Georgakis, 1987).

The explicit separation of the slow and fast variables
in the system of eq 1 allows us to decompose it into
separate reduced-order systems evolving in separate
time scales. Specifically, setting ε ) 0 in the system of
eq 1 and assuming that Q2(x) is invertible uniformly in
x ∈ IRn (this assumption will be removed later), the
following slow subsystem is obtained:

where the superscript s in y1
s denotes that the output is

associated with the slow subsystem and

The system of eq 2 describes the slow dynamics of the
two-time-scale system of eq 1.

Defining the fast time scale τ ) t/ε, deriving the
representation of the system of eq 1 in the τ time scale,
and setting ε ) 0, the following fast subsystem is
obtained:

where x can be considered equal to its initial value x(0).
The system of eq 2 captures the fast dynamics of the
two-time-scale system of eq 1.

x3 ) f1(x) + Q1(x)z + g1(x)u

εz3 ) f2(x) + Q2(x)z + g2(x)u (1)

y1 ) h1(x), y2 ) p(x)z x3 ) F(x) + G(x)u

y1
s ) h1(x) (2)

F(x) ) f1(x) - Q1(x)[Q2(x)]-1f2(x)

G(x) ) g1(x) - Q1(x)[Q2(x)]-1g2(x) (3)

dz
dτ

) f2(x) + Q2(x)z + g2(x)u

y2 ) p(x)z (4)
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In this work, we consider systems of the form of eq 1,
for which the corresponding fast subsystem of the form
of eq 4 is observable and stabilizables uniformly in x ∈
IRn. This assumption will be exploited later (see section
3) in the design of a dynamic output feedback controller
which operates in the fast time scale to stabilize the fast
subsystem and is precisely formulated below.

Assumption 1. The pairs (Q2(x), g2(x)) and (p(x),
Q2(x)) are stabilizable and observable uniformly in x ∈
IRn, respectively, in the sense that there exist suf-
ficiently smooth vectors kT(x) and l(x) such that the
matrices Q2(x) + g2(x)kT(x) and Q2(x) - l(x)p(x) are
Hurwitz uniformly in x ∈ IRn.

Remark 1. In practice, the design of the gains kT(x)
and l(x) can be performed by utilizing standard optimal
control methods (Kokotovic et al., 1986) to ensure that
the matrices Q2(x) + g2(x)kT(x) and Q2(x) - l(x)p(x)
are Hurwitz uniformly in x ∈ IRn.

Finally, in order to point out differences on output
feedback control of linear and nonlinear two-time-scale
systems, we set f1(x) ) A1x, f2(x) ) A2x, Q1(x) ) Q1,
Q2(x) ) Q2, g1(x) ) g1, g2(x) ) g2, h1(x) ) cx, and p(x)
) p, where A1, A2, Q1, and Q2 are matrices and g1, g2,
p, and c are vectors of appropriate dimensions, to the
system of eq 1, and we derive the following linear two-
time-scale system:

which will be used to synthesize a linear two-time-scale
output feedback controller (see subsection 3.4).

3. Output Feedback Control

3.1. Output Feedback Control Problem Formu-
lation. Referring to the system of eq 1, the output
feedback control problem is the one of synthesizing well-
conditioned two-time-scale dynamic output feedback
controllers of the following form:

where ω ∈ IRn and η ∈ IRp are the controller states,
G (ω,η,y1,v) and F (ω,η,y1,y2,v) are nonlinear vector
functions, P 1(η,v) is a nonlinear scalar function, P2(η)
is a nonlinear vector function, and v is the setpoint, that
enforce stability and output tracking in the closed-loop
system, provided that ε is sufficiently small.

To address the above problem, we will initially
characterize the properties enforced in the two-time-
scale closed-loop system by a nonlinear two-time-scale
output feedback controller that globally asymptotically
stabilizes the fast subsystem and enforces global
asymptotic stability (see Appendix for the definition of
asymptotic stability of an equilibrium point) with

asymptotic output tracking in the slow subsystem. To
address this problem, we use a new stability theorem
for nonlinear two-time-scale systems proved in Christo-
fides and Teel (1996) and reviewed, for completeness,
in the Appendix of the present paper. Then, an explicit
easy-to-use realization of the controller will be derived
that enforces local exponential stability (see Appendix
for the definition of exponential stability of an equilib-
rium point) and approximate output tracking, for all
times, in the closed-loop two-time-scale system. Finally,
the counterpart of our result in the case of linear two-
time-scale systems of the form of eq 5 will be derived,
and differences in the nature of the solution of the
output feedback control problem between linear and
nonlinear two-time-scale systems will be pointed out.

3.2. A General Result. We initially assume that x
is known (this assumption will be removed below) and
consider dynamic output feedback laws of the following
form:

where ũ is an auxiliary input, to stabilize the fast
dynamics. The linear dependence of the controller of
eq 7 in ω is motivated from the linear appearance of
the fast variable, z, in the system of eq 1. Under a
control law of the form of eq 7, the system of eq 1 takes
the following form:

The fast dynamics of the above system are described
by the following modified fast subsystem:

Defining the error vector ez ) ω - z, the above system
can be written as

From the cascaded structure of the above system and
assumption 1, we have that the modified fast subsystem
of eq 9 can be made globally asymptotically stable
uniformly in x ∈ IRn through appropriate selection of
the controller and observer gains l(x) and kT(x), respec-
tively.

Setting ε ) 0 in the system of eq 8, the following
modified slow subsystem is obtained:

dω
dτ

) f2(x) + Q2(x)ω + g2(x)u + l(x)(y2 - p(x)ω)

u ) ũ + kT(x)ω (7)

εω3 ) f2(x) + Q2(x)ω + g2(x)u + l(x)(y2 - p(x)ω)

x3 ) f1(x) + Q1(x)z + g1(x)kT(x)ω + g1(x)ũ (8)

εz3 ) f2(x) + Q2(x)z + g2(x)kT(x)ω + g2(x)ũ

dω
dτ

) f2(x) + Q2(x)ω + g2(x)kT(x)ω + g2(x)ũ +

l(x)(y2 - p(x)ω)

dz
dτ

) f2(x) + Q2(x)z + g2(x)kT(x)ω + g2(x)ũ (9)

dez

dτ
) [Q2(x) - l(x)p(x)]ez

dz
dτ

) f2(x) + [Q2(x) + g2(x)kT(x)]z + g2(x)kT(x)ez +

g2(x)ũ (10)

x3 ) A1x + Q1z + g1u

εz3 ) A2x + Q2z + g2u (5)

y1 ) cx, y2 ) pz

εω3 ) F (ω,η,y1,y2,v)

η3 ) G (ω,η,y1,v) (6)

u ) P 1(η,v) + P2(η)ω
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where

Referring to the system of eq 11, assumption 2 below
states that there exists a dynamic output feedback
controller that globally asymptotically stabilizes the
closed-loop slow subsystem. Even though the design of
such a dynamic output feedback controller is an unre-
solved, in general, task, this assumption will allow us
to provide a general solution (see theorem 1) to the
output feedback control problem for nonlinear two-time-
scale processes and point out fundamental differences
on the nature of the solution of the problem between
linear and nonlinear systems (see remark 12). We note
that the problem of synthesizing an easy-to-implement
nonlinear two-time-scale output feedback controller that
enforces local exponential stability and approximate
output tracking in the closed-loop system is addressed
in subsection 3.3.

Assumption 2. There exists a dynamic output
feedback controller of the following form:

where s(η) is a sufficiently smooth vector function
(observer gain) pj(η) and q(η) are sufficiently smooth
scalar functions, and v is the setpoint, such that the
closed-loop slow system

is globally asymptotically stable and limtf∞(y1
s - v) )

0.
Combining the fast output feedback controller of eq

7 with the slow output feedback controller of eq 14, the
following two-time-scale output feedback controller is
obtained:

which does not suffer from ill-conditioning and stiffness
problems because the static component, u ) pj(η) +
q(η)v + kT(η)ω, and the observer gains, l(η) and s(η),
are independent of ε. Theorem 1 below establishes

stability and output tracking results for the closed-loop
system under the controller of eq 15, for arbitrarily large
initial conditions.

Theorem 1. Consider the nonlinear two-time-scale
system of eq 1, for which assumptions 1 and 2 hold,
under the dynamic output feedback controller of eq 15.
Then, for each pair of positive real numbers, δ and d,
there exists an ε* > 0 such that if η(0) ) x(0) + O(ε),
max{|x(0)|, |z(0)|, |ω(0)|, |η(0)|,v} e δ, and ε ∈ (0,ε*), the
states of the closed-loop system are bounded and the
output satisfies

Remark 2. Theorem 1 establishes that the two-time-
scale output feedback controller of eq 15 guarantees
boundedness of the states and enforces asymptotic
output tracking, up to an arbitrarily small offset, in the
closed-loop system for arbitrarily large initial conditions,
provided that ε is sufficiently small. We note that
theorem 1 provides no local exponential stability result
of the origin. In order to derive such a result, we need
to assume (in addition to assumptions 1 and 2) that the
closed-loop fast subsystem of eq 9 and the closed-loop
slow subsystem of eq 14 are locally exponentially stable
(see Theorem 2 below for such a result).

Remark 3. Notice that if the matrix Q2(x) and the
vectors f2(x), g2(x), and p(x) in the system of eq 1 are
independent of x, then the initialization requirement
on the states of the slow observer, η(0) ) x(0) + O(ε), is
not required, since kT(η) and l(η) can be chosen to be
independent of η.

Remark 4. The main advantages of the use of
dynamic output feedback, over the use of static output
feedback (Pan and Basar, 1994), to stabilize the fast
dynamics, are (a) there is no need to assume the
restrictive requirement that the triple (Q2(x), g2(x),
p(x)) is uniformly stabilizable/detectable and (b) dy-
namic output feedback control is more robust to output
measurement noise than static output feedback control.

3.3. Controller Synthesis. The design of a non-
linear dynamic output feedback controller of the form
of eq 14 to globally asymptotically stabilize the closed-
loop slow subsystem is an unresolved, in general, task.
For example, at this stage, there exists no general
procedure for the design of the observer gain, s(η), that
yields a slow state observer with globally asymptotically
stable error (between the actual and the estimated
state) dynamics. Furthermore, even if it is possible to
design such an s(η) and also synthesize the component
pj(η) + q(η)v to globally asymptotically stabilize the
closed-loop slow subsystem with state feedback, there
is no guarantee that the resulting output feedback
controller will globally asymptotically stabilize the
closed-loop slow subsystem. Motivated by this, theorem
2 that follows provides an explicit formula of a dynamic
output feedback controller of the form of eq 15 that
enforces local exponential stability and approximate
output tracking up to O(ε), for all times, in the closed-
loop two-time-scale system.

Theorem 2. Consider the nonlinear two-time-scale
system of eq 1 for which assumption 1 holds, under a
dynamic output feedback controller of the following
form:

x3 ) F̃(x) + G̃(x)ũ

y1
s ) h1(x) (11)

F̃(x) ) f1(x) - [Q1(x) + g1(x)kT(x)][Q2(x) +

g2(x)kT(x)]-1f2(x)

G̃(x) ) g1(x) - [Q1(x) + g1(x)kT(x)][Q2(x) +

g2(x)kT(x)]-1g2(x) (12)

η3 ) F̃(η) + G̃(η)ũ + s(η)(y1 - h1(η))

ũ ) pj(η) + q(η)v (13)

η3 ) F̃(η) + G̃(η)[pj(η) + q(η)v] + s(η)(y1 - h1(η))

x3 ) F̃(x) + G̃(x)[pj(η) + q(η)v] (14)

y1
s ) h1(x)

dω
dτ

) f2(η)ω + l(η)(y2 - p(η)ω) + g2(η)(pj(η) +

q(η)v + kT(η)ω)

η3 ) F̃(η) + G̃(η)(pj(η) + q(η)v) + s(η)(y1 - h1(η))
(15)

u ) pj(η) + q(η)v + kT(η)ω

lim
tf∞

|y1(t) - v| e d (16)
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where S is a column vector chosen so that the matrix
∂F̃/∂η(ηs) - S ∂h1/∂η(ηs) is Hurwitz and ηs is the
operating steady state, r̃ is the relative order of the
system of eq 11 (see definition 1 in the Appendix), and
âk are parameters chosen so that the roots of the
polynomial â0 + â1s + ‚‚‚ + âr̃sr̃ ) 0 have negative real
part. Suppose also that the zero dynamics of the system
of eq 11 is locally exponentially stable. Then, there exist
positive real numbers, δh and εj, such that if η(0) ) x(0)
+ O(ε), max{|x(0)|, |z(0)|, |ω(0)|, |η(0)|,v} e δh, and ε ∈
(0,εj], the closed-loop system is exponentially stable and
its output satisfies

where y1
s is the solution of

Remark 5. Regarding the practical application of the
result of theorem 2 to a two-time-scale process, one has
to initially obtain a representation of the original
process model in the standard singularly perturbed form
and then use this representation to verify that assump-
tion 1 holds and that the modified slow subsystem is
minimum phase. If these assumptions are satisfied,
then the synthesis formula of eq 17 can be directly used
to derive the explicit form of the controller (see section
4 for applications of this procedure to two chemical
process examples).

Remark 6. Regarding the controller of eq 17, we note
that (a) it does not suffer from ill-conditioning and
stiffness problems because the static component and the
observer gains are independent of ε, (b) the static
component of the slow controller,

which enforces exponential stability and output tracking
in the closed-loop slow subsystem, was synthesized by
using geometric control methods, and (c) the use of a
constant gain, S, in the slow observer (η-subsystem) is
not necessary; one could also use nonlinear gains
(designed, for example, by using the procedure proposed
in Kazantzis and Kravaris (1995)) and prove the same
properties for the closed-loop system; such a choice,

however, would probably lead to a more complex con-
troller design.

Remark 7. When the open-loop fast subsystem of
eq 1 is exponentially stable uniformly in x ∈ IRn, there
is no need to use fast dynamic output feedback to
stabilize the fast dynamics (this is motivated by the fact
that the fast dynamics of the process die out after a
short time interval), and the controller of eq 21 can be
simplified to

where r is the relative order of the system of eq 2. The
above controller can be directly synthesized by utilizing
information about the open-loop slow subsystem of eq
2. In this case, the result of theorem 2 establishes a
robustness property of the controller of eq 19, with
respect to uniformly exponentially stable unmodeled
dynamics (e.g., sensor and actuator dynamics which are
neglected in the controller synthesis), provided that they
are sufficiently fast.

Remark 8. For open-loop stable two-time-scale
processes, the gain of the slow observer, S, of the
controller of eq 19 can also be set equal to zero; this is
motivated by the fact that the open-loop stability of the
slow subsystem guarantees the convergence of the
estimated values of the slow states, η, to the actual ones,
x, with transient behavior depending on the location of
the spectrum of the matrix

and the controller of eq 19 (and thus, the controller of
eq 17) can be simplified to

In this case, the result of theorem 2 establishes a
robustness property of the controller of eq 20, with
respect to uniformly exponentially stable and fast
unmodeled dynamics.

Remark 9. The exponential stability of the closed-
loop system guarantees that in the presence of small
errors in process parameters, the states of the closed-
loop system will be bounded. Furthermore, since the
controller of eq 17 enforces an approximately linear
input/output dynamics between y1 and v, it is possible
to implement a linear error feedback controller around
the (y1 - v) loop to ensure asymptotic offsetless output
tracking in the closed-loop system, in the presence of
constant unknown process parameters and unmeasured

dω

dτ
) f2(η) + [Q2(η) + g2(η)kT(η)]ω + l(η)(y2 -

p(η)ω) + g2(η)([âr̃LG̃LF̃
r̃-1h1(η)]-1{v - ∑

k)0

r̃

âkLF̃
kh1(η)})

η3 ) F̃(η) + G̃(η)([âr̃LG̃LF̃
r̃-1h1(η)]-1{v -

∑
k)0

r̃

âkLF̃
kh1(η)}) + S(y1 - h1(η))

u ) [âr̃LG̃LF̃
r̃-1h1(η)]-1{v - ∑

k)0

r̃

âkLF̃
kh1(η)} + kT(η)ω

(17)

y1(t) ) y1
s(t) + O(ε), t g 0 (18)

∑
k)0

r̃

âk

dky1
s

dtk
) v

[âr̃LG̃LF̃
r̃-1h1(η)]-1{v - ∑

k)0

r̃

âkLF̃
kh1(η)}

η3 ) F(η) + G(η)([ârLGLF
r-1h1(η)]-1{v -

∑
k)0

r

âkLF
kh1(η)}) + S(y1 - h1(η))

u ) [ârLGLF
r-1h1(η)]-1{v - ∑

k)0

r

âkLF
kh1(η)} (19)

Ch L ) ∂F̃
∂ηs

(ηs)

η3 ) F(η) + G(η)([ârLGLF
r-1h1(η)]-1{v -

∑
k)0

r

âkLF
kh1(η)})

u ) [ârLGLF
r-1h1(η)]-1{v - ∑

k)0

r

âkLF
kh1(η)} (20)
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disturbance inputs. In this case, one can use calcula-
tions similar to the ones in Kravaris et al. (1994) and
Daoutidis and Christofides (1995) to derive the following
two-time-scale mixed-error and output feedback control-
ler, which possesses integral action, of the following
form:

that enforces exponential stability and asymptotic off-
setless output tracking in the closed-loop system in the
presence of constant modeling errors and disturbances.
We finally note that for open-loop stable two-time-scale
systems, the controller of eq 21 reduces to

which is a model-state feedback controller synthesized
on the basis of the open-loop slow subsystem (Kravaris
et al., 1994) (see also Coulibaly et al. (1995) for the
synthesis of model-state feedback controllers for linear
systems). For the controller of eq 22, similar arguments
as in theorem 2 can be used to establish a robustness
property with respect to uniformly exponentially stable
and fast unmodeled dynamics.

Remark 10. The fundamental result of theorem 1
and the control algorithm of theorem 2 can be directly
applied to two-time-scale processes with ε-dependent
right-hand side, with the following state-space descrip-
tion:

where R(x, z) is a diagonal matrix of dimension p × p,
which is positive definite for all x ∈ IRn and z ∈ IRp.
This is possible because the stabilizability and observ-
ability requirements of assumption 1 suffice to ensure
that the fast subsystem of the system of eq 23 can be
made exponentially stable via fast dynamic output
feedback of the form of eq 7, and the modified slow
subsystem obtained after the stabilization of the fast
subsystem is the same as the one of eq 11, which means

that there is no need to modify assumption 2 in order
to derive the result of theorem 1, and the control
algorithm of theorem 2 (eq 17) remains the same.

Remark 11. The two-time-scale output feedback
controller synthesis result of theorem 2 can be readily
generalized to multi-input multi-output nonlinear two-
time-scale systems with a state-space description of the
following form:

where u ) [u1‚‚‚um]T ∈ IRm denotes the manipulated
input vector, y1i is the ith controlled output, yj2 denotes
the vector of fast measured outputs, G1(x), G2(x), and
P(x) are matrices of appropriate dimensions, and h1i-
(x) are scalar functions. Even though the detailed
theoretical development and solution of the output
feedback controller synthesis problem for systems of eq
24 will not be presented here for brevity, in subsection
4.2, we design and implement a multivariable nonlinear
output feedback controller on a fluidized catalytic crack-
ing process which exhibits two-time-scale behavior.

3.4. Output Feedback Control of Linear Two-
Time-Scale Processes. Corollary 1 that follows pro-
vides the counterpart of the result of theorem 2 for
linear two-time-scale systems of the form of eq 5. The
proof of the corollary is similar to the proof of theorem
2, and thus will be omitted for brevity.

Corollary 1. Consider the linear two-time-scale
system of eq 5 and assume that the pairs (Q2, g2) and
(g2, p) are stabilizable and detectable, respectively,
under a dynamic output feedback controller of the
following form:

where Ã ) A1 - [Q1 + g1kT][Q2 + g2kT]-1A2, G̃ ) g1 -
[Q1 + g1kT][Q2 + g2kT]-1g2, (S, kT, l) are vectors chosen
so that the matrices Ã - Sc, Q2 + g2kT, and Q2 - lp
are Hurwitz, respectively, r̃ is the relative order of the
appropriate modified slow subsystem, and âk are pa-
rameters chosen so that the roots of the polynomial â0
+ â1s + ... + âr̃sr̃ ) 0 have negative real part. Suppose
also that the zero dynamics of the modified slow
subsystem is exponentially stable. Then, there exists
a positive real number εj, such that if ε ∈ (0, εj), the
closed-loop system is exponentially stable and the
output satisfies

dω

dτ
) f2(η) + [Q2(η) + g2(η)kT(η)]ω + l(η)(y2 -

p(η)ω) + g2(η)([âr̃LG̃LF̃
r̃-1h1(η)]-1{e - ∑

k)1

r̃

âkLF̃
kh1(η)})

η3 ) F̃(η) + G̃(η)([âr̃LG̃LF̃
r̃-1h1(η)]-1{e -

∑
k)1

r̃

âkLF
kh1(η)}) + S(y1 - h1(η))

u ) [âr̃LG̃LF̃
r̃-1h1(η)]-1{e - ∑

k)1

r̃

âkLF̃
kh1(η)} + kT(η)ω

(21)

η3 ) F(η) + G(η)([ârLGLF
r-1h1(η)]-1{e -

∑
k)1

r

âkLF
kh1(η)})

u ) [ârLGLF
r-1h1(η)]-1{e - ∑

k)1

r

âkL
k
Fh1(η)} (22)

x3 ) f1(x, εz, ε) + Q1(x, εz, ε)z + g1(x, εz, ε)u

εz3 ) R(x, z)[f2(x, εz, ε) + Q2(x, εz, ε)z +
g2(x, εz, ε)u] (23)

y1 ) h1(x, ε), y2 ) p(x, ε)z

x3 ) f1(x) + Q1(x)z + G1(x)u

εz3 ) f2(x) + Q2(x)z + G2(x)u (24)

y1i ) h1i(x), i ) 1, ..., m, yj2 ) P(x)z

dω

dτ
) A2η + [Q2 + g2k

T]ω + l(y2 - pω) +

g2([âr̃cÃr̃-1G̃]-1{v - ∑
k)0

r̃

âkcÃk-1η})

η3 ) Ãη + G̃([âr̃cÃr̃-1G̃]-1{v - ∑
k)0

r̃

âkcÃk-1η}) +

S(y1 - cη) (25)

u ) ([âr̃cÃr̃-1G̃]-1{v - ∑
k)0

r̃

âkcÃk-1η}) + kTω

y1(t) ) y1
s(t) + O(ε), t g 0 (26)
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where y1
s is the solution of

Remark 12. A direct comparison between the results
of theorem 1 and corollary 1 reveals several fundamen-
tal differences in the nature of the solution of the output
feedback control problem between linear and nonlinear
two-time-scale processes. These differences are (a) the
initialization requirement on the states of the slow
observer, η(0) ) x(0) + O(ε), required for the case of
nonlinear systems, is not needed for linear systems, (b)
global asymptotic stability, as expected, is shown for the
closed-loop system in the case of linear systems, while
semi-global (arbitrarily large initial conditions) bounded
stability is shown for the closed-loop system in the case
of nonlinear systems, and (c) for linear systems, the
upper bound on the singular perturbation parameter is
independent of the initial conditions of the two-time-
scale system, while for nonlinear systems, this bound
decreases as the bound on the initial conditions in-
creases (cf. theorem 1).

4. Simulation Studies

4.1. Application to Two Chemical Reactors in
Series. We consider two continuous stirred tank reac-
tors in series (Figure 1), where a reaction scheme of the

form: A + B f
k1

2B, B f
k2

C f
k3

D, takes place. A is a
reactant, B is the desired product (autocatalytic species),
and C and D are the undesired products. Assuming that
the species A is in excess in the two reactors, the inlet
streams consist of pure species B, the autocatalytic
reaction is first-order, and the side reactions are zero
order, a dynamic model of the process can be derived
from material and energy balances and is of the follow-
ing form:

where V1 and V2 are the liquid holdups of the first and
second reactor, respectively, T1, CB1, and CC1 and T2,
CB2, and CC2 denote temperature and concentrations of
species B and C in the first and second reactor,
respectively, CB0 and TB0 denote the inlet temperature
and concentration of the species B, Qh 1 and Qh 2 denote
the heat inputs to the reactors, k10, k20, k30, E1, E2, E3,
∆H1, ∆H2, and ∆H3 denote the pre-exponential con-
stants, the activation energies, and the enthalpies of the
two reactions.

The control objective is the regulation of CB2 by
manipulating the inlet concentration CB0. The process
exhibits two-time-scale behavior because the liquid
holdup of the first reactor is smaller than the liquid
holdup of the second reactor. Defining the parameter
ε ) V1/V2 ) 0.2 and setting u ) CB0 - CB0s, x1 ) T1, x2
) CB2, x3 ) T2, x4 ) CC2, z1 ) CB1, z2 ) CC1, y1 ) x2, and
y2 ) z1, the original set of equations can be put in the
form of eq 1 with

Figure 1. Two continuous-stirred tank reactors in series.

V1

dCC1

dt
) -F1CC1 + k20e

-E2/RT1V1 - k30e
-E3/RT1V1

dT1

dt
)

F1

V1
(TB0 - T1) +

(-∆Hr1
)

Fmcpm
k10e

-E1/RT1CB1 +

Qh 1

FmcpmV1
+

(-∆Hr2
)

Fmcpm
k20e

-E2/RT1 +
(-∆Hr3

)

Fmcpm
k30e

-E3/RT1

V2

dCB2

dt
) F1CB1 + F2CB0 - (F1 + F2)CB2 +

k10e
-E1/RT2CB2V2 - k20e

-E2/RT2V2

V2

dCC2

dt
) F1CC1 - (F1 + F2)CC2 + k20e

-E2/RT2V1 -

k30e
-E3/RT2V1

dT2

dt
)

F2

V2
TB0 +

F1

V2
T1 -

F1 + F2

V2
T2 +

(-∆Hr1
)

Fmcpm
k10e

-E1/RT2CB2 +
Qh 2

FmcpmV2
+

(-∆Hr2
)

Fmcpm
k20e

-E2/RT2 +
(-∆Hr3

)

Fmcpm
k30e

-E3/RT2 (27)

∑
k)0

r̃

âk

dky1
s

dtk
) v

V1

dCB1

dt
) F1(CB0 - CB1) + k10e

-E1/RT1CB1V1 -

k20e
-E2/RT1V1
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The values of the process parameters and the corre-
sponding steady-state values of the process variables
are given in Table 1. One can easily see that for these
operating conditions the process exhibits slightly non-
minimum phase behavior (i.e., possesses two-time-scale
zero dynamics with unstable fast dynamics; see also
Christofides and Daoutidis (1996) for a general treat-
ment of this issue). Furthermore, the fast dynamics of
the process are unstable and assumption 1 is satisfied.
This suggested the use of a fast-dynamic output feed-
back controller of the following form:

with l(η) ) [7.5 (-F1+k10e-E1/Rη1V1) 0]T and kT(η) )
-3.0/F1[-F1+k10e-E1/Rη1V1 0] to stabilize the fast dy-
namics. The nonlinear gains l(η) and kT(η) were chosen
so that assumption 1 is satisfied for the process in
question.

Setting ε ) 0, the representation of the modified
closed-loop slow subsystem was obtained (the explicit
form of this system is omitted here for brevity). For this
system, it was verified that it is exponentially unstable
and minimum-phase (i.e., its corresponding zero dy-
namics are locally exponentially stable), while its rela-
tive order is r̃ ) 1. Therefore, the assumptions of

theorem 2 hold and the controller of eq 21, that is,

with l(η) ) [7.5 (-F1+k10e-E1Rη1V1) 0]T, kT(η) ) - 3.0/
F1[-F1+k10e-E1Rη1V1 0], S ) [10 10 10 10]T, â0 ) 1.0,
and â1 ) 15.0, was employed in the simulations. The
linear gain, S, was chosen so that the nonlinear observer
used to produce estimates of the slow states of the
process (i.e., η-subsystem of the system of eq 29) is a
stable system in the region of operation considered in
the subsequent simulations, thereby ensuring stability
of the closed-loop slow subsystem.

Several simulation runs were performed to test the
controller and compare its performance with controller
designs that do not account for the presence of time-
scale multiplicity. The process was initially assumed
to be at steady state. In the first simulation run, the
output tracking capability of the controller was tested
for a 0.3 mol/L decrease on the value of the setpoint (v

f1(x) ) [
F1

V1
(TB0 - x1) +

Qh 1

FmcpmV1
+

(-∆Hr2
)

Fmcpm
k20e

-E2/Rx1 +
(-∆Hr3

)

Fmcpm
k30e

-E3/Rx1

F2

V2
CB0s -

F1 + F2

V2
x2 + k10e

-E1/Rx3x2 - k20e
-E0/Rx3

F2

V2
TB0 +

F1

V2
x1 -

F1 + F2

V2
x3 +

Qh 2

FmcpmV2
+

(-∆Hr1
)

Fmcpm
k10e

-E1/Rx3x2 +
(-∆Hr2

)

Fmcpm
k20e

-E2/Rx3 +
(-∆Hr3

)

Fmcpm
k30e

-E3/Rx3

-
F1 + F2

V2
x4 + k20e

-E2/Rx3 - k30e
-E3/Rx3 ]

Table 1. Process Parameters and Steady-State Values
(Two Chemical Reactors in Series)

V1 ) 0.2 m3

V2 ) 1.0 m3

R ) 1.987 kcal kmol-1 K-1

CB0s ) 2.0 kmol m-3

TB0 ) 305.0 K
cpm ) 0.231 kcal kg-1 K-1

Fm ) 900.0 kg m-3

Qh 1 ) 1.1 × 105 kcal min-1

Qh 2 ) 2.2 × 104 kcal min-1

∆Hr1 ) 5.4 × 103 kcal kg mol-1

∆Hr2 ) 10.67 × 103 kcal kg mol-1

∆Hr3 ) 10.0 × 103 kcal kg mol-1

k10 ) 2.012 × 106 kmol m-3 min-1

k20 ) 2.25 × 107 min-1

k30 ) 3.60 × 106 min-1

E1 ) 9.0 × 103 kcal kmol-1

E2 ) 8.0 × 103 kcal kmol-1

E3 ) 9.0 × 103 kcal kmol-1

F1 ) 0.2 m3 min-1

F2 ) 2.0 m3 min-1

CB1s ) 2.5 kmol m-3

CC1s ) 6.0 kmol m-3

T1s ) 300.0 K
CB2s ) 3.125 kmol m-3

CC2s ) 3.273 kmol m-3

T2s ) 300.0 K

Q1(x) ) [(-∆Hr1
)

Fmcpm
k10e

-E1/Rx1 0

F1

V2
0

0 0

0 F1V2
], g1(x) ) [0F2

V2

0
0

]
f2(x) ) [F1

V2
CB0s -

k10e
-E1/Rx1V1

V2

k20e
-E2/Rx1V1

V2
-

k30e
-E3/Rx1V1

V2
],

Q2(x) ) [-
F1

V2
+

k10e
-E1/Rx1V1

V2
0

0 -
F1

V2
]

g2(x) ) [F1

V2

0 ], h1(x) ) [x2], p(x) ) [1 0]

dω
dτ

) f2(η) + [Q2(η) + g2(η)kT(η)]ω + l(η)(y2 -

p(η)ω) + g2(η)ũ

u ) ũ + kT(η)ω (28)

dω
dτ

) f2(η) + [Q2(η) + g2(η)kT(η)]ω + l(η)(y2 -

p(η)ω) + g2(η)([â1LG̃h1(η)]-1{v - â0h1(η) -
â1LF̃h1(η)})

η3 ) F̃(η) + G̃(η)([â1LG̃h1(η)]-1{v - â0h1(η) -
â1LF̃h1(η)}) + S(y1 - h1(η))

u ) [â1LG̃h(η)]-1{v - â0h1(η) - â1LF̃h1(η)} + kT(η)ω
(29)
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) 2.825). Figure 2 shows the profile of the controlled
output of the process, while the manipulated input is
shown in Figure 3. One can immediately observe that
the controller drives the output of the system close to
the new value of the setpoint (i.e., the requirement
limtf∞|y - v| ) O(0.2) is satisfied), while stabilizing the
fast dynamics of the process.

For the sake of comparison, we implemented on the
process the same controller without the fast observer
and with kT(η) ) 0 (this is equivalent to synthesizing a
dynamic output feedback controller on the basis of the
slow subsystem of eq 2). A 0.3 mol/L decrease on the
value of the setpoint (v ) 2.825) was considered. The
profile of the fast state, z1, is given in Figure 4. It is
clear that this controller leads to closed-loop instability,
because it does not stabilize the unstable fast dynamics
of the process. We also implemented on the process an
input/output linearizing dynamic output feedback con-
troller (Daoutidis and Christofides, 1995) synthesized
on the basis of the two-time-scale process model, without

accounting for the presence of time-scale multiplicity.
This controller, as expected, leads to an unstable closed-
loop system (see the profile of the fast state, z1, in Figure
5), because the process with y ) CB1 and u ) CB0
exhibits slightly nonminimum phase behavior (i.e.,
possesses two-time-scale zero dynamics with unstable
fast dynamics). Finally, we implemented a proportional
integral (PI) controller with Kc ) 1.0 and τ1 ) 2.0. The
closed-loop output profile is shown in Figure 6. The PI
controller cannot stabilize the closed-loop system (the
process output stabilizes at a different value than the
new setpoint, v ) 2.825). The reason is that the PI
controller only uses feedback of the controlled output,
CB2, which is a slow variable, and thus, it cannot
stabilize the unstable fast dynamics of the open-loop
process, leading to closed-loop instability.

We also evaluated the output tracking capability of
the controller in the presence of initialization errors in
the states of the observer and noise in the measure-

Figure 2. Closed-loop profile for set-point tracking in the case of
using a two-time-scale output feedback controller (two chemical
reactors in series).

Figure 3. Manipulated input profile for set-point tracking in the
case of using a two-time-scale output feedback controller (two
chemical reactors in series).

Figure 4. Closed-loop profile of fast state, z1, in the case of using
an output feedback controller synthesized on the basis of the slow
subsystem (two chemical reactors in series).

Figure 5. Closed-loop profile of fast state, z1, in the case of using
an output feedback controller synthesized on the basis of the two-
time-scale system (two chemical reactors in series).

Ind. Eng. Chem. Res., Vol. 37, No. 5, 1998 1901



ments of CB1 and CB2, for a 0.3 mol/L decrease on the
value of the setpoint (v ) 2.825). Initially, a 10%
initialization error in the states ω1 and η1 was consid-
ered. Figure 7 shows the profile of the controlled output
of the process. Clearly, the controller possesses a
robustness property with respect to significant initial-
ization errors, driving the output of the process close to
the new setpoint value (i.e., the requirement limtf∞|y
- v| ) O(0.2) is satisfied), while stabilizing the unstable
fast dynamics of the process. Finally, a 0.1 mol/L
amplitude white noise was considered in the measure-
ments of CB1 and CB2. Figure 8 shows the profile of the
controlled output of the process. It is clear that the
controller is robust with respect to significant measure-
ment noise, driving the output of the process close to
the new setpoint value.

4.2. Application to a Fluidized Catalytic Cracker.
In this section, we implement the developed control
method on a fluidized catalytic cracker (FCC) unit.
Previous works on control of the FCC process include

the application of linear (e.g., Monge and Georgakis,
1987; Huq et al., 1995) and nonlinear (e.g., Christofides
and Daoutidis, 1997) control methods. However, in
these works, feedback control has been implemented
under the assumption that measurements of the process-
state variables are available. In the present study, this
assumption is eliminated. The FCC unit considered
here is shown in Figure 9 and consists of a cracking
reactor where the cracking reactions take place and a
regenerator where the carbon removal reactions take
place (the reader may refer to Denn (1986) and McFar-

Figure 6. Closed-loop output profile for set-point tracking under
proportional integral control (two chemical reactors in series).

Figure 7. Closed-loop output profile for set-point tracking in the
case of using a two-time-scale output feedback controllerseffect
of initialization errors (two chemical reactors in series).

Figure 8. Closed-loop output profile for set-point tracking in the
case of using a two-time-scale output feedback controllerseffect
of measurement noise (two chemical reactors in series).

Figure 9. A fluidized catalytic cracker.

1902 Ind. Eng. Chem. Res., Vol. 37, No. 5, 1998



lane et al. (1993) for details on process description).
Under standard modeling assumptions (see Denn (1986)
for details), a dynamic model for the process can be
developed and is of the form (Denn, 1986; Christofides
and Daoutidis, 1997):

where Ccat, Csc, and Crc denote the concentrations of
catalytic carbon on spent catalyst, the total carbon on
spent catalyst, and carbon on regenerated catalyst, Tra
and Trg denote the temperatures in the reactor and the
regenerator, Dtf is the density of the total feed, Vra and
Vrg denote the holdup of the reactor and the regenerator,
∆Hrg and ∆Hcr are heat of reactions, ∆Hfv is the heat of
feed vaporization, Frc denotes the flow rate of the
catalyst from reactor to regenerator, Sa, Sc, and Sf
denote specific heats, Tfp and Tai denote the inlet
temperatures of the feed in the reactor and the air in
the regenerator, and Rcf, Roc, and Rcb denote reaction
rates. The analytic expressions for the reaction rates
Rcf, Roc, and Rcb can be found in Denn (1986) and

Christofides and Daoutidis (1997) and are omitted here
for brevity. The values of the process parameters and
the corresponding steady-state values are given in Table
2. The FCC unit exhibits a two-time-scale behavior
because the residence time in the reactor is smaller than
the one in the regenerator. This implies that the
regenerator is the process that essentially determines
the dynamic response of the entire FCC unit, and
therefore, the control problem must focus on the regen-
erator. To this end, the control objective is the regula-
tion of the temperature in the regenerator, Trg, and the
concentration of the carbon on the regenerated catalyst,
Crc, by manipulating the inlet temperatures, Tfp and Tai.
Defining the singular perturbation parameter ε )
Vra/Vrg and setting x ) [x1 x2]T ) [Crc Trg]T, z )
[z1 z2 z3]T ) [Ccat Csc Tra]T, u ) [u1 u2]T )
[Tfp Tai]T, y ) [y11 y12]T ) [Crc Trg]T, the system of
eq 30 can be put into the standard singularly perturbed
form:

where f11, Q11, f12, Q12, g12, Q21, f22, Q22, f23, Q23, and g23
are functions whose specific form is omitted for brevity.
It was verified that the system of eq 31 possesses an
exponentially stable equilibrium manifold for the fast
dynamics, which implies that it is not needed to utilize
a preliminary feedback law to stabilize the fast dynam-
ics. Setting ε ) 0, the equilibrium manifold of the fast
dynamics can be calculated analytically and is of the
form zs ) g(x1, x2, u1), where g is a smooth vector
function (note that the input u1 enters this algebraic
equation in a nonlinear fashion, due to the nonlinear
appearance of the fast state z in the system of eq 31).
The reduced system can then be found to be of the
following form:

with F1, G11, F2, G21, and G22 appropriately defined
(their exact expressions are omitted for brevity). For
the system of eq 32 the condition r1 + r2 ) 1 + 1 ) 2
(where ri is the relative order of the ouput y1i with
respect to the manipulated input vector u) holds, which
implies that this system does not possess zero dynamics.
It was verified that the system of eq 32 is a stable one,
and thus, the necessary controller consists of a multi-
variable input-output linearizing controller designed
on the basis of the system of eq 32 coupled with an open-

Table 2. Process Parameters and Steady-State Values
(Fluidized Catalytic Cracker)

Ecc ) 18 000.0 Btu lb-1 mol-1

Ecr ) 27 000.0 Btu lb-1 mol-1

Eoc ) 63 000.0 But lb-1 mol-1

kcc ) 8.59 Mlb h-1 psia-1 t-1 (wt %)-1.06

kcr ) 11 600 Mbbl day-1 psia-1 t-1 (wt %)-1.15

kor ) 3.5 × 1010 Mlb h-1 psia-1 t-1

Vrg ) 200.0 t
Vra ) 60.0 t
Tfps ) 744.0 °F
Tai ) 175.0 °F
Prg ) 25.0 psia
Pra ) 40.0 psia
∆Hfv ) 60.0 Btu lb-1

∆Hcr ) 77.3 Btu lb-1

∆Hrg ) 10 561.0 Btu lb-1

Sa ) 0.3 Btu lb-1 °F-1

Sc ) 0.3 Btu lb-1 °F-1

Sp ) 0.7 Btu lb-1 °F-1

Frc ) 40.0 t min-1

Rtf ) 100.0 Mbbl/day
Dtf ) 7.0 lb gal-1

Rai ) 400.0 Mlb min-1

Ccat ) 0.8723 wt %
Csc ) 1.5698 wt %
Crc ) 0.6975 wt %
Tra ) 930.6255 °F
Trg ) 1155.9605 °F

Vra

dCcat

dt
) -60FrcCcat + 50Rcf

Vra

dCsc

dt
) +60Frc(Crc - Csc) + 50Rcf

Vra

dTra

dt
) 60Frc(Trg - Tra) + 0.875

Sf

Sc
DtfRtf(Tfp -

Tra) + 0.875
-∆Hfv

Sc
DtfRtf + 0.5

(-∆Hcr)
Sc

Roc (30)

Vrg

dCrc

dt
) 60Frc(Csc - Crc) - 50Rcb

Vrg

dTrg

dt
) 60Frc(Tra - Trg) + 0.5

Sa

Sc
Rai(Tai - Trg) -

0.5(-
∆Hrg

Sc
)Rcb

dx1

dt
) f11(x1, x2) + Q11z2

dx2

dt
) f12(x1, x2) + Q12z3 + g12u2

ε
dz1

dt
) Q21(z1, z2, z3, x1)

ε
dz2

dt
) f22(x1) + Q22(z1, z2, z3, x1)

ε
dz3

dt
) f23(x2) + Q23(z1, z2, z3, x1) + g23u1

y11 ) x1, y12 ) x2 (31)

dx1

dt
) F1(x1, x2) + G11(x1, x2, u1)

dx2

dt
) F2(x1, x2) + G21(x1, x2, u1) + G22u2 (32)
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loop observer and is of the following form:

In the above controller, the formula for u1 was computed
by considering the algebraic equation G11(η1, η2, u1) )

R and deriving its solution in terms of u1 (i.e., u1 )
Gh 11(η1, η2, R) (this was done due to the nonlinear
appearance of the input u1 in the system of eq 32)).
Furthermore, referring to the controller of eq 33, we note
that (a) it is ε-independent, (b) it does not use measure-
ments of the states of the process since it employs an
open-loop observer, and (c) its order is significantly
lower than the one of the process model (which is
expected, because it was synthesized on the basis of the
two-dimensional slow system instead of the five-
dimensional process model).

Two representative simulation runs of the closed-loop
system under the controller of eq 33 with â11 ) 0.1 and
â21 ) 0.02 are reported. In both runs, the process was
initially (t ) 0.0 h) assumed to be at steady state. In
the first simulation run, we tested the set-point tracking
capabilities of the controller. A 20.0 °F increase in the
value of the output y12 was imposed at time t ) 0.0 h.
The output profiles are depicted in Figure 10 and the
profiles of the corresponding manipulated inputs are
given in Figure 11. It is clear that the controller drives

Figure 10. Closed-loop output profiles for set-point tracking
(fluidized catalytic cracker).

dη1

dt
) F1(η1, η2) + G11(η1, η2, u1)

dη2

dt
) F2(η1, η2) + G21(η1, η2, u1) + G22u2

u1 ) Gh 11(η1, η2,
1

â11
(v1 - η1) - F1(η1, η2))

u2 ) 1
G22

{ 1
â21

(v2 - η2) - [F2(η1, η2) +

G21(η1, η2, Gh 11(η1, η2,
1

â11
(v1 - η1) - F1(η1, η2)))]}

(33)

Figure 11. Manipulated input profiles for set-point tracking
(fluidized catalytic cracker).
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the output y12 to its new reference input value. It can
also be observed that the output y11 stays at its set-point
value. In the second simulation run, we tested the set-
point tracking capabilities of the controller in the
presence of initialization error in the observer states.
A 5% error in the state η1 and a 15 °F error in the state
η2 was considered. Figure 12 shows the closed-loop
output profiles. Clearly, the controller regulates, y12,
at its new set-point value.

5. Conclusions

In this work, we studied the output feedback control
problem for a broad class of nonlinear two-time-scale
processes modeled within the singular perturbation
framework. A sequential procedure was initially used
to derive a nonlinear two-time-scale output feedback
controller. The controller, which does not suffer from
ill-conditioning and stiffness, globally asymptotically
stabilizes the fast subsystem and enforces global
asymptotic stability with asymptotic output tracking in

the closed-loop slow subsystem. It was established that
the controller enforces boundedness of the states and
approximate asymptotic output tracking in the closed-
loop two-time-scale system for arbitrarily large initial
conditions, provided that the separation of the slow- and
fast-dynamical phenomena of the process is sufficiently
large. An explicit easy-to-implement realization of the
controller that enforces local exponential stability and
approximate output tracking, for all times, in the closed-
loop two-time-scale system, was also derived. Differ-
ences in the nature of the solution of the output feedback
control problem between linear and nonlinear two-time-
scale systems were pointed out. Finally, the proposed
controller was successfully applied to a series of two
chemical reactors and a fluidized catalytic cracking unit.
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Notation

Roman Letters

CB0 ) inlet concentration of the autocatalytic species
CB1 ) concentration of the autocatalytic species in the first

reactor
CC1 ) concentration of the side produce in the first reactor
CB2 ) concentration of the autocatalytic species in the

second reactor
CC2 ) concentration of the side product in the second

reactor
Ccat ) concentration of catalytic carbon on spent catalyst
Csc ) concentration of total carbon on spent catalyst
Crc ) concentration of carbon on regenerated catalyst
cpm ) heat capacity of the reacting mixture
Dtf ) density of total feed
E1, E2, E3 ) activation energies
Ecc, Ecr, Eor ) activation energies
F, F̃, f1, f2 ) vector fields
F1, F2 ) flow rates
G, G̃, g1, g2 ) vector fields associated with the input
h1(x) ) output scalar field
kT(x) ) nonlinear vector field
k10, k20, k30 ) pre-exponential constants
p(x) ) nonlinear vector field
Q1(x) ) matrix of dimension n × p associated with the slow-

state vector x
Q2(x) ) matrix of dimension p × p associated with the fast-

state vector z
Q1, Qh 2 ) heat inputs to the reactors
Rai ) air rate
Rcb, Rcf, Roc ) reaction rates
Rtf ) total feed rate
r, r̃ ) relative orders in the slow subsystems
Sa, Sc, Sf ) specific heats
TB0 ) inlet temperature of the autocatalytic species
TB1 ) temperature in the first reactor
TB2 ) temperature in the second reactor
Tfp, Tai ) temperatures of the feed in the reactor and the

air in the regenerator
Tra, Trg ) temperatures in reactor and regenerator
t ) time
u ) input
uj ) auxiliary input
V1, V2 ) volumes of the liquid holdup in the reactors
v ) external input

Figure 12. Closed-loop output profiles for set-point trackingseffect
of initialization errors (fluidized catalytic cracker).
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x ) vector of the slow-state variables
y1 ) controlled output
y2 ) measured output
z ) vector of the fast-state variables

Greek Letters

âk ) adjustable parameters
âik ) adjustable parameters
∆Hr1, ∆Hr2, ∆Hr3 ) enthalpy of the reactions
∆Hrg, ∆Hcr ) heat of the reactions
∆Hfv ) heat of feed vaporization
ε ) singular perturbation parameter
η ) vector of the state observer
Fm ) density of the reacting mixture
ω ) vector of the state observer

Math Symbols

Lfh ) Lie derivative of a scalar field h with respect to the
vector field f

Lf
kh ) kth order Lie derivative

LgLf
k-1h ) mixed Lie derivative

IR ) real line
IRi ) i-dimensional Euclidean space
∈ ) belongs to
T ) transpose
|‚| ) standard Euclidean norm

Appendix

NotationsDefinitions. (1) A function γ: IRg0 f
IRg0 is said to be of class K if it is continuous and
increasing and is zero at zero. It is of class K∞, if in
addition it is proper.

(2) A function â: IRg0 × IRg0 f IRg0 is said to be of
class KL if, for each fixed t, the function â(‚,t) is of class
K and, for each fixed s, the function â(s, ‚) is non-
increasing and tends to zero at infinity.

(3) A matrix A(x) of dimension n × n is said to be
Hurwitz uniformly in x ∈ IRn if there exists a positive
real number c such that Re[λi(A(x))] e -c, i ) 1, ..., n
for all x ∈ IRn, where λi denotes the ith eigenvalue of
the matrix.

Definition 1. Referring to the nonlinear system of
eq 2, the relative order of y1

s with respect to u is defined
as the smallest integer r for which

or r ) ∞ if such an integer does not exist.
Definition 2 (Khalil, 1992). The equilibrium x ) 0

of the system

where x ∈ IRn is asymptotically stable if for each x0 ∈
IRn, its solution with x(0) ) x0 exists for each t g 0 and
satisfies

The equilibrium x ) 0 is globally exponentially stable
if the bound of eq 36 holds with â(|x(0)|,t) ) K|x(0)|e-at

where K g 1 and a > 0.
Proofs of Theorems 1 and 2. In what follows, we

provide the proofs of theorems 1 and 2. To this end,
we initially recall a theorem proved in Christofides and

Teel (1996) which will be used in the proof of theorem
1.

Consider the singularly perturbed system:

where x ∈ IRn and z ∈ IRp. The functions f and g are
locally Lipschitz on IRn × IRp × IRq and the algebraic
equation g(x, zs) ) 0 possesses a unique root, zs ) h(x),
with the properties that h(x) and ∂h/∂x are locally
Lipschitz and h(0) ) 0.

Consider also the corresponding slow and fast sub-
systems:

where y ) z - h(x). The assumptions that follow state
our stability requirements on the slow and fast sub-
systems.

Assumption A1. The reduced system in eq 38 is
asymptotically stable with the class KL function âx.

Assumption A2. The equilibrium y ) 0 of the
boundary layer system in eq 39 is globally asymptoti-
cally stable, uniformly in x ∈ IRn.

The main result is as follows.
Theorem A1. Consider the singularly perturbed

system in eq 37 and let assumptions A1 and A2 hold.
Then, there exists a function ây of class KL such that,
for each set of positive real numbers (δ, d), there is an
ε* > 0 such that if ε ∈ (0, ε*) and max{|x(0)|, |y(0)|} e
δ, then

where âx is the function defined in assumption A1.
We note that theorem A1 has been generalized to two-

time-scale systems with uncertain variables and ε-de-
pendence in the right-hand side (see Christofides and
Teel (1996) for details).

Proof of Theorem 1. Under the controller of eq 15,
the closed-loop system takes the following form:

Obtaining the representation of the above system in the
fast time scale, τ, and setting ε ) 0, the following fast

LGLF
r-1h1(x) (34)

x3 ) φ(x) (35)

|x(t)| e â(|x(0)|,t) (36)

x3 ) f(x, z)

εz3 ) g(x, z) (37)

x3 ) f(x, h(x)) (38)

dy
dτ

) g(x, h(x) + y) (39)

|x(t)| e âx(|x(0)|, t) + d (40)

|y(τ)| e ây(|y(0)|, τ) + d (41)

εω3 ) f2(η) + [Q2(η) + g2(η)kT(η)]ω + l(η)(p(x)z -
p(η)ω) + g2(η)(pj(η) + q(η)v)

η3 ) F̃(η) + G̃(η)(pj(η) + q(η)v) + s(η)(h1(x) - h1(η))

x3 ) f1(x) + Q1(x)z + g1(x)kT(η)ω + g1(x)(pj(η) +
q(η)v)

εz3 ) f2(x) + Q2(x)z + g2(x)kT(η)ω + g2(x)(pj(η) +
q(η)v) (42)
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subsystem is obtained:

From the assumption that η(0) ) x(0) + O(ε), it follows
that when ε ) 0, then η(τ) ) x(τ), τ g 0, in the fast time
scale, τ, and thus, the above system can be equivalently
written as

Defining the error vector ez ) ω - z, the above system
can be written as

From the cascaded structure of the above system and
assumption 1, we have that if the controller and
observer gains, kT(x) and l(x), are chosen as in assump-
tion 1, then the closed-loop fast subsystem of eq 44 is
globally asymptotically stable uniformly in x ∈ IRn.

Setting ε ) 0 in the system of eq 8, the following
closed-loop slow subsystem is obtained:

From assumption 2, it directly follows that the
above system is globally asymptotically stable and
limtf∞(y1

s - v) ) 0.
Since the fast and slow closed-loop subsystems are

asymptotically stable, a direct application of the result
of theorem A1 yields that for each pair of positive real
numbers δ and d, there exists are ε* > 0 such that if
η(0) ) x(0) + O(ε), max{|x(0)|, |z(0)|, |ω(0)|, |η(0)|, v} e
δ, and ε ∈ (0, ε*], the states of the two-time-scale closed-
loop system are bounded and its output satisfies

The proof of theorem 1 is complete.
Proof of Theorem 2. Under the controller of eq 15,

the closed-loop system takes the following form:

Performing a two-time-scale decomposition in the above
system, the fast subsystem takes the following form:

Since η(0) ) x(0) + O(ε), it follows that η(τ) ) x(τ), τ g
0, and thus, the above system can be equivalently
written as

In terms of the error vector ez ) ω - z, the above system
takes the following form:

which can be made globally asymptotically stable uni-

dω
dτ

) f2(η) + [Q2(η) + g2(η)kT(η)]ω + l(η)(p(x)z -

p(η)ω) + g2(η)(pj(η) + q(η)v)

dz
dt

) f2(x) + Q2(x)z + g2(x)kT(η)ω + g2(x)(pj(η) +

q(η)v) (43)

dω
dτ

) f2(x) + [Q2(x) + g2(x)kT(x)]w + l(x)(p(x)z -

p(x)ω) + g2(x)(pj(x) + q(x)v)

dz
dτ

) f2(x) + Q2(x)z + g2(x)kT(x)ω + g2(x)(pj(x) +

q(x)v) (44)

dez

dτ
) [Q2(x) - l(x)p(x)]ez

dz
dτ

) f2(x) + [Q2(x) + g2(x)kT(x)]z + g2(x)kT(x)ez +

g2(x)(pj(x) + q(x)v) (45)

η3 ) F̃(η) + G̃(η)[pj(η) + q(η)v] + s(η)(y1
s - h1(η))

x3 ) F̃(x) + G̃(x)[pj(η) + q(η)v] (46)

y1
s ) h1(x)

lim
tf∞

|y1(t) - v(t)| e d (47)

εω3 ) f2(η) + [Q2(η) + g2(η)kT(η)]ω + l(η)(p(x)z -

p(η)ω) + g2(η)[âr̃LG̃LF̃
r̃-1h1(η)]-1{v - ∑

k)0

r̃

âkLF̃
kh1(η)}

η3 ) F̃(η) + G̃(η)[âr̃LG̃LF̃
r̃-1h1(η)]-1{v -

∑
k)0

r̃

âkLF̃
kh1(η)} + S(h1(x) - h1(η))

x3 ) f1(x) + Q1(x)z + g1(x)kT(η)ω +

g1(x)[âr̃LG̃LF̃
r̃-1h1(η)]-1{v - ∑

k)0

r̃

âkLF̃
kh1(η)}

εz3 ) f2(x) + Q2(x)z + g2(x)kT(η)ω +

g2(x)[âr̃LG̃LF̃
r̃-1h1(η)]-1{v - ∑

k)0

r̃

âkLF̃
kh1(η)} (48)

dω

dτ
) f2(η) + [Q2(η) + g2(η)kT(η)]ω + l(η)(p(x)z -

p(η)ω) + g2(η)[âr̃LG̃LF̃
r̃-1h1(η)]-1{v - ∑

k)0

r̃

âkLF̃
kh1(η)}

dz

dτ
) f2(x) + Q2(x)z + g2(x)kT(η)ω +

g2(x)[âr̃LG̃LF̃
r̃-1h1(η)]-1{v - ∑

k)0

r̃

âkLF̃
kh1(η)} (49)

dω

dτ
) f2(x) + [Q2(x) + g2(x)kT(x)]ω + l(x)(p(x)z -

p(x)ω) + g2(x)[âr̃LG̃LF̃
r̃-1h1(x)]-1{v - ∑

k)0

r̃

âkLF̃
kh1(x)}

dz

dτ
) f2(x) + Q2(x)z + g2(x)kT(x)ω +

g2(x)[âr̃LG̃LF̃
r̃-1h1(x)]-1{v - ∑

k)0

r̃

âkLF̃
kh1(x)} (50)

dez

dτ
) [Q2(x) - l(x)p(x)]ez

dz

dτ
) f2(x) + [Q2(x) + g2(x)kT(x)]z + g2(x)kT(x)ez +

g2(x)[âr̃LG̃LF̃
r̃-1h1(x)]-1{v - ∑

k)0

r̃

âkLF̃
kh1(x)} (51)
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formly in x ∈ IRn through appropriate selection of the
controller and observer gains l(x) and kT(x), respec-
tively.

Setting ε ) 0 in the system of eq 48, the following
closed-loop slow subsystem is obtained:

Since for ε ) 0, η(0) ) x(0), the above system is
equivalent to:

On the basis of the above system, one can easily show
that y1

s is the solution of the linear differential equa-
tion

Furthermore, one can show, using the assumption of
minimum-phase behavior of the modified closed-loop
slow subsystem of eq 13 that the system of eq 53 is
locally exponentially stable, which in turn implies that
the system of eq 52 is locally exponentially stable.

Since the closed-loop fast and slow subsystems are
exponentially stable, a direct application of the result
of theorem 8.4 in Khalil (1992) yields that there exist
positive real numbers δh and εj, such that if η(0) ) x(0)
+ O(ε), max{|x(0)|, |z(0)|, |ω(0)|, |η(0)|, v} e δh and ε ∈
(0, εj], the closed-loop two-time-scale system of eq 48 is
exponentially stable and its output, y1, satisfies the
relation of eq 18. The proof of theorem 2 is complete.
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η3 ) F̃(η) + G̃(η)[âr̃LG̃LF̃
r̃-1h1(η)]-1{v -

∑
k)0

r̃

âkLF̃
kh1(η)} + S(y1 - h1(η))

x3 ) F̃(x) + G̃(x)[âr̃LG̃LF̃
r̃-1h1(η)]-1{v - ∑

k)0

r̃

âkLF̃
kh1(η)}

(52)

y1
s ) h1(x)

x3 ) F̃(x) + G̃(x)[âr̃LG̃LF̃
r̃-1h1(x)]-1{v - ∑

k)0

r̃

âkLF̃
kh1(x)}

y1
s ) h1(x) (53)

∑
k)0

r̃

âk

dky1
s

dtk
) v
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