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Abstract

This paper proposes a methodology for the synthesis of nonlinear robust output feedback controllers for systems of
quasi-linear parabolic partial di�erential equations with time-varying uncertain variables. The method is successfully applied
to a typical di�usion–reaction process with uncertainty. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Quasi-linear parabolic partial di�erential equation
(PDE) systems arise very frequently in the model-
ing of di�usion–convection–reaction processes (e.g.,
uidized-bed and packed-bed reactors), and typically
involve spatial di�erential operators whose eigenspec-
trum can be partitioned into a �nite-dimensional slow
one and an in�nite-dimensional stable fast comple-
ment. Therefore, the standard approach to the control
of quasi-linear parabolic PDE systems involves the
application of Galerkin’s method to the PDE system
to derive ODE systems that accurately describe the
dynamics of the dominant (slow) modes of the PDE
system, which are subsequently used as the basis
for controller synthesis (e.g., [1, 12, 2]). The main
disadvantage of this approach is that the number of
modes that should be retained to derive an ODE sys-
tem that yields the desired degree of approximation

∗ Corresponding author. Tel.: 001 310 794 1015; fax: 001 310
206 4107; e-mail: pdc@seas.ucla.edu.
1 Financial support from an NSF CAREER award,

CTS-9733509, is gratefully acknowledged.

may be very large, leading to complex controller
design and high dimensionality of the resulting con-
trollers. A natural approach for the derivation of
accurate low-dimensional ODE approximations and
the design of low-dimensional controllers for quasi-
linear parabolic PDE systems is based on the concept
of inertial manifold (see, for example, [17, 10]).
The majority of quasi-linear parabolic PDE sys-

tems which model di�usion–convection–reaction
processes are uncertain due to the presence of un-
known or partially known process parameters and
disturbances. Uncertain variables, if they are not ap-
propriately accounted for in the controller design,
can signi�cantly deteriorate the nominal closed-loop
performance, and even lead to closed-loop instability.
Motivated by this, the problem of synthesizing con-
trollers that compensate for the e�ect of uncertainty
(called robust controllers) in parabolic PDE systems
has received considerable attention in the past. Ini-
tially, H∞ control algorithms were developed for
linear parabolic PDE systems in the frequency do-
main (e.g., [15, 18]). In [20], precise relations were
derived between state-space and frequency-domain
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control theoretic concepts for a large class of lin-
ear in�nite-dimensional systems, which allowed the
development of the state-space counterparts of the
frequency-domain H∞ results (e.g., [25]). In a previ-
ous work [8], we proposed a Lyapunov-based robust
controller design method for quasi-linear parabolic
PDEs, under the assumption that measurements of the
state variables are available. Other results on control
of PDE systems with time-varying uncertainty include
disturbance decoupling for linear parabolic PDEs
[13, 14], Lyapunov-based control of hyperbolic PDE
systems [11], Lyapunov-based [21] and H∞ (e.g.,
[4, 22]) control of Navier–Stokes equations, as well
as methods for the optimal selection of measurement
sensors [3]. An alternative approach for the design of
controllers for linear PDE systems with time-invariant
(or slowly varying) uncertain variables involves the
use of adaptive control methods (e.g., [5, 26, 16]).
In this paper, we extend the method presented

in [8] to quasi-linear parabolic PDE systems with
time-varying uncertain variables, for which only a
�nite number of measurements of the output vari-
able is available for feedback. Initially, Galerkin’s
method is used to derive an approximate ODE model,
which is used to synthesize a robust state feedback
controller via Lyapunov’s direct method. Then, un-
der the assumption that the number of measurements
is equal to the number of slow modes, we propose
a procedure for obtaining estimates for the states of
the approximate ODE model from the measurements.
We show that the use of these estimates in the robust
state feedback controller leads to a robust output
feedback controller, which guarantees boundedness
of the state and output tracking with arbitrary degree
of asymptotic attenuation of the e�ect of the uncertain
variables on the controlled output of the in�nite-
dimensional closed-loop system, provided that the
separation between the slow and fast eigenvalues is
su�ciently large. The theoretical results are success-
fully applied to a typical di�usion–reaction process
with uncertainty.

2. Preliminaries

We consider quasi-linear parabolic PDE systems
with uncertain variables of the form
@ �x
@t
= A

@ �x
@z
+ B

@2 �x
@z2

+ wb(z)u+ f( �x)

+W ( �x; r(z)�(t));

yic =
∫ �

�
ci(z)k �x dz; i = 1; : : : ; l;

y�m =
∫ �

�
s�(z)! �x dz; � = 1; : : : ; p; (1)

subject to the boundary conditions:

C1 �x(�; t) + D1
@ �x
@z
(�; t) = R1;

C2 �x(�; t) + D2
@ �x
@z
(�; t) = R2

(2)

and the initial condition:

�x(z; 0) = �x0(z); (3)

where �x(z; t)=[ �x1(z; t) · · · �xn(z; t)]T denotes the vector
of state variables, [�; �]⊂R is the domain of de�ni-
tion of the process, z ∈ [�; �] is the spatial coordinate,
t ∈ [0;∞) is the time, u=[u1u2 · · · ul]T ∈ Rl denotes
the vector of manipulated inputs, � = [�1 · · · �q] ∈
Rq denotes the vector of uncertain variables, which
may include uncertain process parameters or exoge-
nous disturbances, yic ∈ R denotes a controlled out-
put, y�m ∈ R denotes a measured output, @ �x=@z; @2 �x=@z2
denote the �rst- and second-order spatial derivatives
of �x, f( �x); W ( �x; r(z)�(t)) are nonlinear vector func-
tions, w; k; ! are vectors, A; B; C1; D1; C2; D2 are matri-
ces, R1; R2 are column vectors, and �x0(z) is the initial
condition.
The properties and role of the functions b(z); r(z);

si(z) are as follows: b(z) is a known smooth vector
function of z of the form b(z)=[b1(z) b2(z) · · · bl(z)],
where bi(z) describes how the control action ui(t) is
distributed in the interval [�; �] (e.g., point=distributed
actuation), r(z) = [r1(z) · · · rq(z)], where rk(z) is
a known smooth function of z which speci�es the
position of action of the uncertain variable �k on
[�; �], ci(z) is a known smooth function of z which is
determined by the speci�cation of the ith controlled
output in the interval [�; �], and si(z) is a known
smooth function of z which is determined by the
location and type of the measurement sensors (e.g.,
point=distributed sensing). A discussion on the prac-
tical implementation of point actuation (sensing) is
given in Remark 8 below.
Throughout the paper, O(�) denotes the order

of magnitude notation (i.e., �(�) = O(�) if there
exist positive real numbers k1 and k2 such that:
|�(�)|6k1|�|;∀|�|¡k2), | · | denotes the standard Eu-
clidean norm, and ||�|| denotes ess.sup.|�(t)|; t¿0 for
any measurable function � :R¿0 → Rq. Moreover,
we will use the Lie derivative notation: Lfh denotes
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the Lie derivative of a scalar �eld h with respect to the
vector �eldf, Lkf h denotes the kth-order Lie derivative
and LgLk−1f h denotes the mixed Lie derivative.
De�ning the state x in the in�nite-dimensional

Hilbert spaceH([�; �];Rn) (withH being the space
of n-dimensional vector functions de�ned on [�; �]
that satisfy the boundary condition of Eq. (2), with
inner product and norm:

(!1; !2) =
∫ �

�
(!1(z); !2(z))Rn dz;

||!1||2 = (!1; !1)1=2;
where !1; !2 are two elements ofH and the notation
(·; ·)Rn denotes the standard inner product in Rn), as
x(t) = �x(z; t); t ¿ 0; z ∈ [�; �]; (4)

and the following operators

Ax = A
@ �x
@z
+ B

@2 �x
@z2
;

x∈D(A) =
{
x∈H;C1 �x(�; t) + D1

@ �x
@z
(�; t) = R1;

C2 �x(�; t) + D2
@ �x
@z
(�; t) = R2

}
: (5)

Bu= wbu; Cx = (c; kx); Sx = (s; !x);

where c = [c1 c2 · · · cl] and s = [s1 s2 · · · sp], the
system of Eqs. (1)–(3) take the form

ẋ =Ax +Bu+ f(x) +W(x; �); x(0) = x0;

yc = Cx; ym =Sx;
(6)

where f(x(t))=f( �x(z; t)); W(x(t); �)=W ( �x; r�) and
x0 = �x0(z).
ForA, the eigenvalue problem is de�ned as

A�j = �j�j; j = 1; : : : ;∞; (7)

where �j denotes an eigenvalue and �j denotes an
eigenfunction; the eigenspectrum of A, �(A), is de-
�ned as the set of all eigenvalues ofA, i.e., �(A) =
{�1; �2; : : : ; }. We will assume that �(A) satis�es the
following properties.

Assumption 1 (Christo�des and Daoutidis [10]).
1. Re{�1}¿ Re{�2}¿ · · ·¿Re{�j}¿ · · ·, where

Re{�j} denotes the real part of �j.
2. �(A) can be partitioned as �(A) = �1(A) +

�2(A), where �1(A) consists of the �rst m (with m
�nite) eigenvalues, i.e., �1(A) = {�1; : : : ; �m}, and
|Re{�1}|=|Re{�m}|=O(1):

3. Re �m+1¡ 0 and |Re{�m}|=|Re{�m+1}| = O(�)
where � := |Re �1|=|Re �m+1|¡ 1 is a small positive
number.

The assumptions of �nite number of unstable eigen-
values and discrete eigenspectrum are always satis�ed
for parabolic PDE systems de�ned in �nite spatial do-
mains, while the assumption of existence of only a
few dominant modes that describe the dynamics of the
parabolic PDE system is usually satis�ed by the ma-
jority of di�usion–convection–reaction processes (see
the catalytic rod example of Section 5).

3. Galerkin’s method

We derive an m-dimensional approximation of
the system of Eq. (6) using Galerkin’s method.
Letting Hs; Hf be two subspaces of H, de-
�ned as Hs = span{�1; �2; : : : ; �m} and Hf =
span{�m+1; �m+2; : : : ; }, and de�ning the orthog-
onal projection operators Ps and Pf such that
xs = Psx; xf = Pf x, the state x of the system of
Eq. (6) can be decomposed as

x = xs + xf = Psx + Pf x: (8)

Applying Ps and Pf to the system of Eq. (6) and using
the above decomposition for x, the system of Eq. (6)
can be equivalently written in the following form:

dxs
dt
=Asxs +Bsu+ fs(xs; xf ) +Ws(xs; xf ; �);

dxf
dt
=Af xf +Bfu+ ff (xs; xf ) +Wf (xs; xf ; �);

yc = Cxs + Cxf ; ym =Sxs +Sxf ;

xs(0) = Psx(0) = Psx0;

xf (0) = Pf x(0) = Pf x0;

(9)

where As = PsA; Bs = PsB; fs = Psf; Ws =
PsW; Af = PfA; Bf = PfB; ff = Pff;Wf =
PfW. In the above system, As is a diagonal
matrix of dimension m × m of the form As =
diag{�j}; fs(xs; xf ), ff (xs; xf ) are Lipschitz vector
functions, Ws(xs; xf ; �); Wf (xs; xf ; �) are Lipschitz
matrix functions, and Af is a stable unbounded dif-
ferential operator. Neglecting the in�nite-dimensional
xf -subsystem in the system of Eq. (9), the following
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m-dimensional slow system is obtained:

dxs
dt

= Asxs + fs(xs; 0) +Bsu+Ws(xs; 0; �)

= : F0(xs) +
l∑
i=1

Bi
0u
i
0 +W0(xs; 0; �); (10)

yci = Cixs= : hi0(xs); ym =Sxs;

where the subscript 0 in (F0;Bi
0; u

i
0;W0; hi0) denotes

that they are elements of the O(�) approximation of
the xs-subsystem of Eq. (9) (see proof of Theorem 1
below for a precise characterization of the accuracy
of the system of Eq. (10)). We note that higher-order
m-dimensional approximations of the system of Eq.
(6) can be derived through combination of Galerkin’s
method with approximate inertial manifolds (see, for
example, [10, 8]).

Remark 1. We note that the above model reduction
procedure which led to the approximate ODE system
of Eq. (10) can also be used, when empirical eigen-
functions of the system of Eq. (6) computed through
Karhunen–Lo�eve expansion (known also as proper or-
thogonal decomposition) are used as basis functions
inHs andHf , instead of the eigenfunctions of A.

4. Robust output feedback controller synthesis

We consider the synthesis of robust output feedback
control laws of the form

u0 = p0(ym) + Q0(ym) �v+ r0(ym; t); (11)

where p0(ym); r0(ym; t) are vector functions,
Q0(ym) is a matrix, and �v is a vector of the form
�v=V(vi; v

(1)
i ; : : : ; v

(ri)
i ) whereV(vi; v

(1)
i ; : : : ; v

(ri)
i ) is a

smooth vector function, v(k)i is the kth time derivative
of the external reference input vi (which is assumed
to be a smooth function of time) and ri is a positive
integer.
We now state three assumptions on the system of

Eq. (10) which are needed to synthesize a robust con-
troller of the form of Eq. (11) under the assumption
that measurements of the states xs are available (mo-
tivation for and explanations on the nature of these
assumptions as well as details on controller design via
Lyapunov’s direct method can be found in [8]).

Assumption 2. Referring to the system of Eq. (10),
there exist a set of integers (r1; r2; : : : ; rl) and a co-
ordinate transformation (�; �) = T (xs; �) such that
the representation of the system, in the coordinates

(�; �), takes the form

�̇
(1)
1 = �(1)2 ;

...
�̇
(1)
r1−1 = �(1)r1 ;

�̇
(1)
r1 = Lr1F0h10(xs) +

l∑
i=1

LBi
0
Lr1−1F0 h10(xs)ui0

+LW0L
r1−1
F0 h10(xs);

...
�̇
(1)
1 = �(l)2 ;

...
�̇
(1)
rl−1 = �(l)rl ;

�̇
(1)
rl = LrlF0hl0(xs) +

l∑
i=1

LBi
0
Lrl−1F0 hl0(xs)ui0

+LW0L
rl−1
F0 hl0(xs);

�̇1 = 	1(�; �; �; �̇);
...

�̇m−
∑

i
ri
= 	m−

∑
i
ri
(�; �; �; �̇);

yci = �(i)1 ; i = 1; : : : ; l;

(12)

where xs = T−1(�; �; �); � = [�(1) · · · �(l)]T ∈
Rr1+r2···+rl , �=[�1 · · · �m−∑

i
ri
]T ∈ Rm−(r1+r2···+rl).

The above assumption is always satis�ed for sys-
tems for which ri = 1, for all i = 1; : : : ; l. In most
practical applications, this requirement can be easily
achieved by selecting the form of the actuator distri-
bution functions bi(z) to be di�erent than the eigen-
functions �j for j = 2; : : : ;∞ (i.e., pick bi(z) so that
bi(z) 6= �j, for i = 1; : : : ; l; j = 2; : : : ;∞). Referring
to the system of Eq. (12), we will assume, in order
to simplify the presentation of our results, that the
matrix:

C0(xs)

=



LB1

0
Lr1−1F0 h10(xs) · · · LBl

0
Lr1−1F0 h10(xs)

... · · · ...
LB1

0
Lrl−1F0 hl0(xs) · · · LBl

0
Lrl−1F0 hl0(xs)


 (13)

is nonsingular uniformly in xs ∈ Hs (see Remark 3).

Assumption 3. The dynamical system:

�̇1 = 	1(�; 0; 0; 0);
...

�̇m−
∑

i
ri
= 	m−

∑
i
ri
(�; 0; 0; 0)

(14)

is locally exponentially stable.
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Assumption 4. There exists a known function
c0(xs; t) such that the following condition holds:

|[LW0L
r1−1
F0 h10(xs) · · ·LW0L

rl−1
F0 hl0(xs)]T|

6c0(xs; t) for all xs ∈ Hs; � ∈ Rq; t¿0: (15)

The following assumption is needed in order to ob-
tain estimates of the states xs of the system of Eq. (10)
from the measurements y�m; � = 1; : : : ; p.

Assumption 5. p = m (i.e., the number of measure-
ments is equal to the number of slow modes), and the
inverse of the operator S exists so that x̂s = S−1ym,
where x̂s is an estimate of xs.

Theorem 1 that follows provides an explicit formula
for the robust output feedback controller, conditions
that ensure boundedness of the state, and a precise
characterization of the ultimate uncertainty attenuation
level. To simplify the statement of the theorem, we set
�vi=[vi v

(1)
i · · · v(ri)i ]T and ṽ=[ �vT1 �v

T
2 · · · �vTm]T, while

we will use the notation |xs|2 to denote that xs belongs
in a �nite dimensional Hilbert space.

Theorem 1. Consider the parabolic PDE system
of Eq. (6) for which assumption 1 holds; and the
�nite-dimensional system of Eq. (10); for which as-
sumptions 2; 3; 4 and 5 hold; under the robust output
feedback controller:

u0 = a0(xs; xf ; �v; t)

:=[C0(x̂s)]−1




l∑
i=1

ri∑
k=1

�ik
�iri
(v(k)i − LkF0hi0(x̂s))

+
l∑
i=1

ri∑
k=1

�ik
�iri
(v(k−1)i

−Lk−1F0 hi0(x̂s))− �[c0(x̂s; t)]

×
∑l

i=1

∑ri
k=1

�ik
�iri
(Lk−1F0 hi0(x̂s)− v

(k−1)
i )

|∑l
i=1

∑ri
k=1

�ik
�iri
(Lk−1F0 hi0(x̂s)− v

(k−1)
i )|+ �


 ;
(16)

where

x̂s = S−1ym;
�ik
�iri

=

[
�1ik
�1iri

· · · �
l
ik

�liri

]T

are column vectors of parameters chosen so that
the roots of the equation det(B(s)) = 0; where B(s)
is an l × l matrix; whose (i; j)th element is of the
form

∑ri
k=1(�

i
jk =�

i
jri)s

k−1; lie in the open left-half of

the complex plane; and �; � are adjustable parame-
ters with �¿ 1 and �¿ 0. Then; there exist posi-
tive real numbers (�; �∗) such that for each �6�∗;
there exists �∗(�); such that if �6�∗; �6�∗(�)
and max{|xs(0)|2; ||xf (0)||2; ||�||; ||�̇||; ||ṽ||}6�;
(a) the state of the in�nite-dimensional closed-loop

system is bounded; and
(b) the outputs of the in�nite-dimensional

closed-loop system satisfy:

lim sup
t→∞

|yi − vi|6d0; i = 1; : : : ; l; (17)

where d0 = O(�+ �) is a positive real number.

Proof of Theorem 1. Substituting the controller of
Eq. (16) into the parabolic PDE system of Eq. (6), we
obtain:

ẋ =Ax +Ba0(xs; xf ; �v; t)

+f(x) +W(x; �); x(0) = x0;

yc =Cx; ym =Sx:

(18)

One can easily verify that assumption 1 holds
for the above system, and thus, a direct appli-
cation of Galerkin’s method yields the following
in�nite-dimensional system:

dxs
dt
=Asxs +Bsa0(xs; xf ; �v; t) + fs(xs; xf )

+Ws(xs; xf ; �);
dxf
dt
=Af xf +Bfa0(xs; xf ; �v; t) + ff (xs; xf )

+Wf (xs; xf ; �);

yc = Cxs + Cxf ; ym =Sxs +Sxf ;

xs(0) = Psx(0) = Psx0; xf (0) = Pf x(0) = Pf x0:

(19)

Using that � = |Re �1|=|Re �m+1|, the system of
Eq. (19) can be written in the following form:

dxs
dt
=Asxs +Bsa0(xs; xf ; �v; t) + fs(xs; xf )

+Ws(xs; xf ; �);

�
dxf
dt
=Af �xf + �Bfa0(xs; xf ; �v; t) + �ff (xs; xf )

+ �Wf (xs; xf ; �);

(20)

where Af � is an unbounded di�erential operator
de�ned as Af � = �Af . Since ��1 (following from
assumption 1, part 3) and the operators As;Af � gen-
erate semigroups with growth rates which are of the
same order of magnitude, the system of Eq. (20) is in
the standard singularly perturbed form (see [23] for a
precise de�nition of standard form), with xs being the
slow states and xf being the fast states. Introducing
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the fast time-scale � = t=� and setting � = 0, we ob-
tain the following in�nite-dimensional fast subsystem
from the system of Eq. (20):
@xf
@�
=Af �xf : (21)

From the fact that Re �m+1¡ 0 and the de�nition of
�, we have that the above system is globally exponen-
tially stable. Setting � = 0 in the system of Eq. (20),
we have that xf = 0 and thus, the �nite-dimensional
slow system takes the form

dxs
dt
= F0(xs) +

l∑
i=1

Bi
0a
i
0(xs; 0; �v; t)

+W0(xs; 0; �);

yci = Cixs= : hi0(xs):

(22)

For the above system we have shown in [8] that
there exists a � ∈ (0; �∗] such that if max{|xs(0)|2;
||�||; ||�̇||; ||ṽ||}6�, then its state is bounded and its
outputs satisfy lim supt→∞|yi−vi|6O(�), i=1; : : : ; l.
Finally, since the in�nite-dimensional fast subsys-
tem of Eq. (21) is exponentially stable, we can use
standard singular perturbation arguments to obtain
that there exists an �∗(�), such that if � ∈ (0; �∗(�)],
max{|xs(0)|2; ||xf (0)||2; ||�||; ||�̇||; ||ṽ||}6�, then the
state of the closed-loop parabolic PDE system of
Eq. (18) is bounded and that its outputs satisfy the
relation of Eq. (17).

Remark 2. We note that the controller of Eq. (16)
uses static feedback of the measured outputs y�m; �=
1; : : : ; p, and thus, it feeds back both xs and xf (this
is in contrast to the robust state feedback controller
designed in [8] which only uses feedback of the slow
state xs). However, even though the use of xf feedback
could lead to destabilization of the stable fast subsys-
tem, the large separation of the slow and fast modes of
the spatial di�erential operator (i.e., assumption that
� is su�ciently small) and the fact that the controller
does not include terms of the form O(1=�) do not al-
low such a destabilization to occur.

Remark 3. The assumption that the characteristic ma-
trix C0(xs) is nonsingular is made to simplify the pre-
sentation of the controller synthesis results and can be
relaxed if instead of static output feedback we use dy-
namic output feedback (the reader may refer to [19]
for details). Moreover, the assumption that the zero
dynamics of the �nite-dimensional slow subsystem is
exponentially stable is a standard one in geometric
nonlinear control (see also [19]).

Remark 4. Even though static output feedback is
more sensitive to measurement noise than dynamic
output feedback, we prefer to use static feedback of
ym in the controller of Eq. (16) because the presence
of the unknown variables does not allow the design of
a robust state observer to obtain estimates of the slow
state variables without imposing very restrictive con-
ditions on the way �(t) enters the �nite-dimensional
system of Eq. (10).

Remark 5. The approach followed here for the syn-
thesis of robust output feedback controllers is not ap-
plicable to hyperbolic PDE systems (i.e., convection–
reaction processes) where the eigenvalues cluster
along vertical or nearly vertical asymptotes in the
complex plane and thus, the controller synthesis prob-
lem has to be addressed directly on the basis of the
hyperbolic PDE system (see [9, 11]).

Remark 6. We note that the result of Theorem 1 can
be generalized to the case where the ODE systems
used for controller design are obtained from combi-
nation of Galerkin’s method with approximate inertial
manifolds (see [8] for details on the design of robust
state feedback controllers on the basis of such ODE
systems and [7, 6, 24] for other applications of iner-
tial manifold theory to control of nonlinear parabolic
PDEs).

Remark 7. The robust controller of Eq. (16) pos-
sesses a robustness property with respect to fast and
asymptotically stable unmodeled dynamics (i.e., the
controller enforces boundedness, output tracking and
uncertainty attenuation in the closed-loop system, de-
spite the presence of additional dynamics in the pro-
cess model, as long as they are stable and su�ciently
fast). This robustness property of the controller can
be rigorously established by analyzing the closed-loop
system with the unmodeled dynamics using singular
perturbations, and is important for many practical ap-
plications where unmodeled dynamics occur due to
actuator and sensor dynamics, fast process dynam-
ics, etc.

5. Application to a di�usion–reaction process

We consider a long, thin rod in a furnace and as-
sume that a zeroth-order exothermic catalytic reaction
of the form A→ B takes place on the rod. Because the
reaction is exothermic a cooling medium which is in
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contact with the rod is used for cooling. Under stan-
dard modeling assumptions, the spatiotemporal evolu-
tion of the dimensionless rod temperature is described
by the following parabolic PDE:

@ �x
@t
=
@2 �x
@z2

+ �T e−=(1+ �x)

+�U (b(z)u(t)− �x)− �T;ne− (23)

subject to the Dirichlet boundary conditions:

�x(0; t) = 0; �x(�; t) = 0 (24)

and the initial condition:

�x(z; 0) = �x0(z); (25)

where �x denotes the dimensionless temperature of the
rod, �T denotes a dimensionless heat of reaction
(which is assumed to be unknown and time-varying;
uncertain variable), �T;n denotes a nominal dimen-
sionless heat of reaction,  denotes a dimensionless
activation energy, �U denotes a dimensionless heat
transfer coe�cient, and u denotes the manipulated
input (temperature of the cooling medium). The
following typical values were given to the process
parameters:

�T;n = 50:0; �U = 2:0; = 4:0: (26)

Introducing the Hilbert spaceH of square integrable
functions that satisfy the boundary conditions of
Eq. (24) and de�ning x ∈ H as

x(t) = �x(z; t); ∀z ∈ [0; �]; (27)

the system of Eqs. (23)–(25) can be written in the
form of Eq. (6), where the spatial di�erential operator
takes the form:

Ax =
@2 �x
@z2
;

x ∈ D(A)
={x ∈ H([0; �];R); �x(0; t) = 0; �x(�; t) = 0}:

(28)

The eigenvalue problem for A can be solved analyt-
ically and its solution is of the form

�j =−j2; �j(z) =

√
2
� sin(jz); j = 1; : : : ;∞:

(29)

Even though the eigenvalues of A are all stable, the
spatially uniform operating steady-state �x(z; t) = 0
of the system of Eq. (23) is unstable (i.e., the lin-
earization of the system of Eq. (23) around �x(z; t)=0
possesses one unstable eigenvalue owing to the

Fig. 1. Open-loop pro�le of �x with �(t) = 0.

Fig. 2. Open-loop pro�le of �x with �(t) = �T;n sin(0:524 t).

exothermicity of the reaction). Fig. 1 shows the
spatiotemporal evolution of the state �x(z; t) of the
system of Eq. (23) when no uncertainty is present;
the system moves to a spatially non-uniform steady
state. We note that in all the simulation runs, a 20th
order ODE approximation of the system of Eq. (23)
derived from Galerkin’s method is used; higher-order
approximations led to identical numerical results.
Due to the instability of the spatially uniform oper-

ating steady-state �x(z; t)=0, we formulate the control
problem as the one of stabilizing the rod temperature
pro�le at �x(z; t)=0 in the presence of time-varying un-
certainty in the dimensionless heat of the reaction �T ,
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Fig. 3. Closed-loop pro�le of �x under nonlinear robust output
feedback control-distributed control action.

Fig. 4. Manipulated input pro�le for nonlinear robust output feed-
back controller-distributed control action.

(i.e., �T = �T;n+ �(t) where �(t)= �T;n sin(0:524 t)).
We note that this selection for �(t) satis�es the re-
quirements of Theorem 1 that �(t); �̇(t) should be suf-
�ciently small (see closed-loop simulations below),
while it leads to a very poor open-loop behavior for
�x(z; t) (see Fig. 2). Since the maximum open-loop
temperature occurs in the middle of the rod, the con-
trolled output was de�ned as

yc(t) =
∫ �

0

√
2
� sin(z) �x(z; t) dz (30)

Fig. 5. Closed-loop output pro�le under nonlinear robust output
feedback control-distributed control action.

Fig. 6. Closed-loop pro�le of �x under nonlinear output feedback
control (no uncertainty compensation)-distributed control action.

and the actuator distribution function was taken to be
b(z)=

√
(2=�) sin(z), in order to applymaximum cool-

ing towards the middle of the rod. One measurement
of x at z = �=4 was assumed to be available.
For the system of Eq. (23), we considered the �rst

eigenvalue as the dominant one (� = 0:25) and used
Galerkin’s method to derive a scalar ODE that was
used for the synthesis of a nonlinear robust output
feedback controller through an application of the for-
mula of Eq. (16). This controller was employed in the
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Fig. 7. Closed-loop pro�le of �x under nonlinear robust output
feedback control-point control action.

Fig. 8. Manipulated input pro�le for nonlinear robust output feed-
back controller-point control action.

simulations with � = 1:2,

c0(x̂s; t) = �T;n

∫ �

0
�1(z)e−=(1+x̂s) dz

and�=0:01 to achieve an uncertainty attenuation level
d=0:1 (note that 0:1=O(�+�) =O(0:25+ 0:01)).
Fig. 3 shows the evolution of the closed-loop rod

temperature pro�le under the nonlinear robust output
feedback controller, while Fig. 4 shows the corre-
sponding manipulated input pro�le. Clearly, the pro-
posed controller regulates the temperature pro�le at

Fig. 9. Closed-loop output pro�le under nonlinear robust output
feedback control-point control action.

�x(z; t) = 0, attenuating the e�ect of the uncertain
variable (note that the requirement lim supt→∞|y|60:1
is enforced in the closed-loop system; Fig. 5). For
the sake of comparison, we also implemented on the
process the same controller as before without the term
which compensates for the e�ect of the uncertainty
(i.e., c0(x̂s; t) ≡ 0). Fig. 6 shows the evolution of the
closed-loop rod temperature pro�le. It is clear that
this controller cannot regulate the temperature pro�le
at the desired steady state, �x(z; t) = 0, because it does
not compensate for the e�ect of the uncertainty.
Finally, in order to show that the proposed control

method can be readily applied to the case of point con-
trol actuation, we consider the same control problem
as above but with b(z)= �(z−�=2) (i.e., a point con-
trol actuator inuencing the rod at z = �=2 is used to
stabilize the system at �x(z; t)=0 in the presence of the
uncertain variable). A nonlinear robust output feed-
back controller was synthesized on the basis of a scalar
ODE model obtained from application of Galerkin’s
method to the system of Eq. (23) and implemented
with � = 1:2,

c0(x̂s; t) = �T;n

∫ �

0
�1(z)e−=(1+x̂s) dz

and�=0:01 to achieve an uncertainty attenuation level
d=0:4 (note that 0:4=O(0:25+0:01)). Fig. 7 shows
the evolution of the closed-loop rod temperature pro-
�le and Fig. 8 shows the corresponding manipulated
input pro�le, for this case. The stabilization of the sys-
tem at �x(z; t)=0 with uncertainty attenuation has been
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achieved (the requirement lim supt→∞|y|60:4 is sat-
is�ed; Fig. 9). Note that as expected, in the case of
point control actuation u(t) inuences the states of the
closed-loop systemwhich are not used in the controller
design model (spill-over e�ect), and thus, �x(z; t) ex-
hibits more oscillatory behavior (compare Fig. 7 with
Fig. 3).

Remark 8. As a numerical note, we point out that in
the case of point actuation (sensing) which inuences
(measures) the system at z0, the function �(z − z0) is
assumed to have the �nite value 1=2� in the interval
[z0−�; z0+�] (where � is a small positive real number)
and be zero elsewhere in [0; �].
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