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Abstract

This paper proposes a methodology for the synthesis of nonlinear robust output feedback controllers for systems of
quasi-linear parabolic partial differential equations with time-varying uncertain variables. The method is successfully applied
to a typical diffusion—reaction process with uncertainty. (©) 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Quasi-linear parabolic partial differential equation
(PDE) systems arise very frequently in the model-
ing of diffusion—convection—reaction processes (e.g.,
fluidized-bed and packed-bed reactors), and typically
involve spatial differential operators whose eigenspec-
trum can be partitioned into a finite-dimensional slow
one and an infinite-dimensional stable fast comple-
ment. Therefore, the standard approach to the control
of quasi-linear parabolic PDE systems involves the
application of Galerkin’s method to the PDE system
to derive ODE systems that accurately describe the
dynamics of the dominant (slow) modes of the PDE
system, which are subsequently used as the basis
for controller synthesis (e.g., [1, 12, 2]). The main
disadvantage of this approach is that the number of
modes that should be retained to derive an ODE sys-
tem that yields the desired degree of approximation
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may be very large, leading to complex controller
design and high dimensionality of the resulting con-
trollers. A natural approach for the derivation of
accurate low-dimensional ODE approximations and
the design of low-dimensional controllers for quasi-
linear parabolic PDE systems is based on the concept
of inertial manifold (see, for example, [17, 10]).

The majority of quasi-linear parabolic PDE sys-
tems which model diffusion—convection—reaction
processes are uncertain due to the presence of un-
known or partially known process parameters and
disturbances. Uncertain variables, if they are not ap-
propriately accounted for in the controller design,
can significantly deteriorate the nominal closed-loop
performance, and even lead to closed-loop instability.
Motivated by this, the problem of synthesizing con-
trollers that compensate for the effect of uncertainty
(called robust controllers) in parabolic PDE systems
has received considerable attention in the past. Ini-
tially, H°° control algorithms were developed for
linear parabolic PDE systems in the frequency do-
main (e.g., [15, 18]). In [20], precise relations were
derived between state-space and frequency-domain
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control theoretic concepts for a large class of lin-
ear infinite-dimensional systems, which allowed the
development of the state-space counterparts of the
frequency-domain H°° results (e.g., [25]). In a previ-
ous work [8], we proposed a Lyapunov-based robust
controller design method for quasi-linear parabolic
PDEs, under the assumption that measurements of the
state variables are available. Other results on control
of PDE systems with time-varying uncertainty include
disturbance decoupling for linear parabolic PDEs
[13, 14], Lyapunov-based control of hyperbolic PDE
systems [11], Lyapunov-based [21] and H*° (e.g.,
[4, 22]) control of Navier—Stokes equations, as well
as methods for the optimal selection of measurement
sensors [3]. An alternative approach for the design of
controllers for linear PDE systems with time-invariant
(or slowly varying) uncertain variables involves the
use of adaptive control methods (e.g., [5, 26, 16]).

In this paper, we extend the method presented
in [8] to quasi-linear parabolic PDE systems with
time-varying uncertain variables, for which only a
finite number of measurements of the output vari-
able is available for feedback. Initially, Galerkin’s
method is used to derive an approximate ODE model,
which is used to synthesize a robust state feedback
controller via Lyapunov’s direct method. Then, un-
der the assumption that the number of measurements
is equal to the number of slow modes, we propose
a procedure for obtaining estimates for the states of
the approximate ODE model from the measurements.
We show that the use of these estimates in the robust
state feedback controller leads to a robust output
feedback controller, which guarantees boundedness
of the state and output tracking with arbitrary degree
of asymptotic attenuation of the effect of the uncertain
variables on the controlled output of the infinite-
dimensional closed-loop system, provided that the
separation between the slow and fast eigenvalues is
sufficiently large. The theoretical results are success-
fully applied to a typical diffusion—reaction process
with uncertainty.

2. Preliminaries

We consider quasi-linear parabolic PDE systems
with uncertain variables of the form
0x 0x %
—=A— +B— b (x
o A T B T (D)

+ W(x,r(z)0(t)),

, B
yé:/ d(2kxdz, i=1,...,1,

B
y,’;:/ s“(2)wxdz, x=1,...,p, (1)
o
subject to the boundary conditions:

Cix(o,1) +D1?(O€J) =Ry,
zZ
o (2)
_ X
sz(ﬁ,t) +D2§(ﬁat) :R2

and the initial condition:

X(2,0) = Xo(2), 3)

where X(z,1)=[%1(z, 1) - - - £,(z, 1)]" denotes the vector
of state variables, [o, f] C R is the domain of defini-
tion of the process, z € [a, ff] is the spatial coordinate,
t € [0,00) is the time, u = [u'u? - - - u']" € R! denotes
the vector of manipulated inputs, 0 = [0;---0,] €
R? denotes the vector of uncertain variables, which
may include uncertain process parameters or exoge-
nous disturbances, y. € R denotes a controlled out-
put, ¥ € R denotes a measured output, 0%/0z, 02/0z*
denote the first- and second-order spatial derivatives
of X, f(X), W(x,r(z)0(t)) are nonlinear vector func-
tions, w, k, w are vectors, 4, B, Cy, D, C», D, are matri-
ces, Ry, R, are column vectors, and xy(z) is the initial
condition.

The properties and role of the functions b(z), 7(z),
s'(z) are as follows: b(z) is a known smooth vector
function of z of the form b(z)=[b'(z) b*(z) --- b'(2)],
where bi(z) describes how the control action #/(¢) is
distributed in the interval [o, ] (e.g., point/distributed
actuation), r(z) = [ri(z) --- ry(z)], where r(z) is
a known smooth function of z which specifies the
position of action of the uncertain variable 0; on
[a, B], ¢’(z) is a known smooth function of z which is
determined by the specification of the ith controlled
output in the interval [o, 8], and s°(z) is a known
smooth function of z which is determined by the
location and type of the measurement sensors (e.g.,
point/distributed sensing). A discussion on the prac-
tical implementation of point actuation (sensing) is
given in Remark 8 below.

Throughout the paper, O(¢) denotes the order
of magnitude notation (i.e., d(¢) = O(¢) if there
exist positive real numbers k; and k; such that:
[0(e)| <kile],V|e] < k), | - | denotes the standard Eu-
clidean norm, and ||0|| denotes ess.sup.|0(¢)|,# >0 for
any measurable function 0:R-, — RI. Moreover,
we will use the Lie derivative notation: L¢/ denotes
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the Lie derivative of a scalar field /# with respect to the
vector field f, L%h denotes the kth-order Lie derivative
and L,Lt~'h denotes the mixed Lie derivative.

Defining the state x in the infinite-dimensional
Hilbert space #([a, f], R") (with # being the space
of n-dimensional vector functions defined on [o, ff]
that satisfy the boundary condition of Eq. (2), with
inner product and norm:

B
(w1, m) = / (01(2), w2(2))re dz,

llonll2 = (01,01,

where wq, w, are two elements of J# and the notation
(+,-)re denotes the standard inner product in R"), as

x(t) =x(z,1), >0, z€/afl, 4)
and the following operators

0x 0*x
Ax = AE + B@,

xeD()= {xé%; Cli(oc,t)—i—Dl%(fx,t):Rl,

Cox (B, 1) +ng—§(ﬁ,t) =Rz}- )

Bu =wbu, CEx=(c,kx), Lx=/(s,wx),

where ¢ =[c' ¢ --- ¢/]and s = [s's? ---sP], the
system of Egs. (1)—(3) take the form

X=9Ix+ Bu+ f(x)+ W (x,0), x(0) = xo, (

yC = (gx>
where f(x(1))=f(x(z,1)), W (x(¢),0)=W(x,r0)and
Xo = )E()(Z).

For .oZ, the eigenvalue problem is defined as

%(bj:ij(bjs j:1,...,OO, (7)
where /; denotes an eigenvalue and ¢; denotes an
eigenfunction; the eigenspectrum of .7, a(.<7), is de-
fined as the set of all eigenvalues of .«7, i.e., (/) =
{A1,42,..., }. We will assume that o(.«/) satisfies the
following properties.

J/m:yX,

Assumption 1 (Christofides and Daoutidis [10]).

1. Re{41} > Re{/a}>--- =Re{A;} > ---, where
Re{4;} denotes the real part of 1;.

2. a(.e7) can be partitioned as o(/) = a1() +
a2(L), where a1(.o7) consists of the first m (with m
finite) eigenvalues, i.e., a1()={1,..., An}, and

[Re{/1}/[Re{m}| = O(1).

3. Re i1 < 0 and |Re{Ay}|/|Re{mi1}| = O(e)
where &:=|Re 11|/|Re Aps1| < 1 is a small positive
number.

The assumptions of finite number of unstable eigen-
values and discrete eigenspectrum are always satisfied
for parabolic PDE systems defined in finite spatial do-
mains, while the assumption of existence of only a
few dominant modes that describe the dynamics of the
parabolic PDE system is usually satisfied by the ma-
jority of diffusion—convection—reaction processes (sce
the catalytic rod example of Section 5).

3. Galerkin’s method

We derive an m-dimensional approximation of
the system of Eq. (6) using Galerkin’s method.
Letting #,, #; be two subspaces of #, de-
fined as #; = span{¢,¢2,...,d,} and H; =
span{¢u+1, mi2,--.,}, and defining the orthog-
onal projection operators P, and F such that
xs = Px, xy = Px, the state x of the system of
Eq. (6) can be decomposed as

x =Xxs + xf = Pox + Prx. (8)
Applying P, and P to the system of Eq. (6) and using

the above decomposition for x, the system of Eq. (6)
can be equivalently written in the following form:

dx

d_l‘s = x5 + Bsu + fS(xS)xf) + Ws(xmxfa 0);

d

T = it Bt fi(rxn) + Wi, 0),

Ve = Gxs + Cxy, Vm = Lx5 + Lxy, ®)

x5(0) = Fx(0) = Foxo,
x7(0) = Prx(0) = Prxo,

where oy = Poof, Bs = PAB, fs = Bf, Ws =
PW, sty = Bod, By = BB, fr = Bf, W =
P#". In the above system, .o/ is a diagonal
matrix of dimension m x m of the form .7 =
diag{4;}, fs(xs,x¢), fr(xs,x¢) are Lipschitz vector
functions, ¥ (xs,x¢,0), #¢(xs,x¢,0) are Lipschitz
matrix functions, and .o/ is a stable unbounded dif-
ferential operator. Neglecting the infinite-dimensional
xg-subsystem in the system of Eq. (9), the following
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m-dimensional slow system is obtained:
dxg
dr

= lxs + fs(xs>o) + HBou + "/%s(xs, 0, 0)

1
= Fo(xs) + > Boup + Wo(x:,0,0), (10)
i=1

Ve = C'xs=: hio(Xs),  Ym =S X,

where the subscript 0 in (Fo, 25, ub, %, hio) denotes
that they are elements of the O(¢) approximation of
the x,-subsystem of Eq. (9) (see proof of Theorem 1
below for a precise characterization of the accuracy
of the system of Eq. (10)). We note that higher-order
m-dimensional approximations of the system of Eq.
(6) can be derived through combination of Galerkin’s
method with approximate inertial manifolds (see, for
example, [10, 8]).

Remark 1. We note that the above model reduction
procedure which led to the approximate ODE system
of Eq. (10) can also be used, when empirical eigen-
functions of the system of Eq. (6) computed through
Karhunen—Loéve expansion (known also as proper or-
thogonal decomposition) are used as basis functions
in A and A%, instead of the eigenfunctions of .o7.

4. Robust output feedback controller synthesis

We consider the synthesis of robust output feedback
control laws of the form

uo = po(Ym) + Qo(ym)0 + ro(¥m,1), (11)

where  po(ym), ro(ym,t) are vector functions,
Oo(ym) 1s a matrix, and o is a vector of the form
o="7"(v;, vgl), s vﬁr")) where ¥"(v;, vl(»]), ey v,(.ri)) isa
smooth vector function, vl(k) is the kth time derivative
of the external reference input v; (which is assumed
to be a smooth function of time) and r; is a positive
integer.

We now state three assumptions on the system of
Eq. (10) which are needed to synthesize a robust con-
troller of the form of Eq. (11) under the assumption
that measurements of the states x; are available (mo-
tivation for and explanations on the nature of these
assumptions as well as details on controller design via
Lyapunov’s direct method can be found in [8]).

Assumption 2. Referring to the system of Eq. (10),
there exist a set of integers (r1,r2,...,¥;) and a co-
ordinate transformation ({,n) = T(xs,0) such that
the representation of the system, in the coordinates

(& n), takes the form

(D) (1)
Cl — 52

Ut
Crl—l = gg-l)a
!
. 1 _ .
&0 = L hoCe) + 37 Lo L™ o i

i=1
+ L'l/ff(,Lfvloflhlo(xs),

)
1

= ¢,
: (12)
o(1
&)y =, ]
W o i
&Y = L hioCx) + 3 Lo Lt ol
i=1
+ Ly L hio(x),
;/il = lIll(Canaezé)’
s = Yoy 5 (6,0,0),
Ve, = (O =1,
where x; = T7'((n,0), { = [(© ... (DT €

Rri+r2s-+r n=[m - n E ]T € Rm—(ritr2+r1)
> m—) i ’

The above assumption is always satisfied for sys-
tems for which »;, = 1, for all i = 1,...,[. In most
practical applications, this requirement can be easily
achieved by selecting the form of the actuator distri-
bution functions b;(z) to be different than the eigen-
functions ¢; for j =2,...,00 (i.e., pick b;(z) so that
bi(z) # ¢, fori=1,...,1, j=2,...,00). Referring
to the system of Eq. (12), we will assume, in order
to simplify the presentation of our results, that the
matrix:

Co(xs)
Lop L io(xs) -+ Lt L™ hao(xs )
= : . : (13)
Lop Lt hao(xs) -+ Log L hio(xs)
is nonsingular uniformly in xs € J# (see Remark 3).
Assumption 3. The dynamical system:
11.1 == Yll(() 03 O’ 0)9
: (14)
ﬁm—z_ T = le—Z_ r,(é” O’ 0’ 0)

is locally exponentially stable.
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Assumption 4. There exists a known function
co(xs, 1) such that the following condition holds:

\ILwiy L, Yio(xs) - - Ly, Ly, "o ()]
<colxet) for all x, € #, 0 €RY, 130, (15)

The following assumption is needed in order to ob-
tain estimates of the states x; of the system of Eq. (10)
from the measurements y),, k=1,..., p.

Assumption 5. p =m (i.e., the number of measure-
ments is equal to the number of slow modes), and the
inverse of the operator S exists so that X5 =S~ 'y,
where X is an estimate of xs.

Theorem 1 that follows provides an explicit formula
for the robust output feedback controller, conditions
that ensure boundedness of the state, and a precise
characterization of the ultimate uncertainty attenuation
level. To simplify the statement of the theorem, we set
0 =[v; v; oW and 5=[57 &) --- 5.7, while
we will use the notation |x;|, to denote that x; belongs
in a finite dimensional Hilbert space.

Theorem 1. Consider the parabolic PDE system
of Eq. (6) for which assumption 1 holds, and the
finite-dimensional system of Eq. (10), for which as-
sumptions 2,3,4 and 5 hold, under the robust output
feedback controller:
ug = ao(xs, x¢, 0, 1)
! i ‘B
=[G Y zT (0" — Lf, hio(%,))
i=1 k=1 """
! i ﬁ
" Z Z ik e (k—1)
i=1 k=1 Bir,
— L hig(5)) — rlco(Rs,1)]

But . k—1
Zz Dy 1//;I Lk lh,o(xs)—u§ ))
—1
Iy L () = o T+ ¢
(16)
where
T
1 /
A~ _ ik : :
=5y g_f: [ﬁ_lk _lk]
i ir; ir

are column vectors of parameters chosen so that
the roots of the equation det(B(s)) = 0, where B(s)
is an [ x [ matrix, whose (i, j)th element is of the

form 370 (B /Bl )s ", lie in the open left-half of

the complex plane, and y, ¢ are adjustable parame-
ters with y > 1 and ¢ > 0. Then, there exist posi-
tive real numbers (0, ¢*) such that for each ¢ <p*,
there exists & (), such that if p<P*, e<e™(P)
and max{[x,(0) 1 [ Fee(0)] 2, 611, 11011 1171} <o,

(a) the state of the infinite-dimensional closed-loop
system is bounded, and

(b) the outputs of the infinite-dimensional
closed-loop system satisfy:

limsup |y; — vi|<doy, i=1,...,1, (17)
—0o0
where dy = O(¢ + ¢) is a positive real number.

Proof of Theorem 1. Substituting the controller of
Eq. (16) into the parabolic PDE system of Eq. (6), we
obtain:

X =ofx + Bay(xs,x¢,0,t)
+ /(x) + 7 (x,0),
Ve =6x, Vm = Lx.
One can easily verify that assumption 1 holds
for the above system, and thus, a direct appli-

cation of Galerkin’s method yields the following
infinite-dimensional system:

x(0) = xo, (18)

dx -
d—l‘s = x5 + Bsao(xs, Xp, 0,1) + fs(xs,X5)
+ %(xsaxf’ 6)7
de —
Fi Apxp + Brao(xs, xp, 0,0) + fr(¥,x6) - (19)

+ W}‘(XS,Xf, 9)’
Ye = €xs + Cx, Ym = Lxs + Lxg,
x5(0) = Bx(0) = Fyxo, x¢(0) = Prx(0) = Prxo.

Using that ¢ = |ReAy|/|ReAyi1], the system of
Eq. (19) can be written in the following form:

dx

dts = sxs“"*jao(xmxfav t)+fs(x57xf)

dx + WS(XS,Xf, 9)3 (20)
et = clroxt + 6Bra0(Xe,xt, T, 1) + &£ 1 (Xer Xt

dt
+ 8Wf(xs,Xf, H)a

where o/, is an unbounded differential operator
defined as .o/, = e.of. Since ¢k1 (following from
assumption 1, part 3) and the operators .o, 2%, gen-
erate semigroups with growth rates which are of the
same order of magnitude, the system of Eq. (20) is in
the standard singularly perturbed form (see [23] for a
precise definition of standard form), with x; being the
slow states and x; being the fast states. Introducing
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the fast time-scale T = t/¢ and setting ¢ = 0, we ob-
tain the following infinite-dimensional fast subsystem
from the system of Eq. (20):

(%Cf
ot
From the fact that Re 4,,,1 < 0 and the definition of
¢, we have that the above system is globally exponen-
tially stable. Setting ¢ = 0 in the system of Eq. (20),
we have that x; = 0 and thus, the finite-dimensional
slow system takes the form

= :Q/f,g)Cf. (21 )

I
=P+ a0
+ Wo(xs,0,0), (22)
Ve, = €'xs= 1 hio(xs).
For the above system we have shown in [8] that
there exists a ¢ € (0, ¢*] such that if max{|xs(0)|2,
1101],1101, 15]|} <9, then its state is bounded and its
outputs satisfy lim sup,_, |y;i—v;| <O(¢),i=1,...,1.
Finally, since the infinite-dimensional fast subsys-
tem of Eq. (21) is exponentially stable, we can use
standard singular perturbation arguments to obtain
that there exists an ¢*(¢), such that if ¢ € (0,&"(¢)],
max{[xs(0)[2, | [xr(0)|[2, [[0[]. [0]]. |[2]|} <0, then the
state of the closed-loop parabolic PDE system of
Eq. (18) is bounded and that its outputs satisfy the
relation of Eq. (17). [

Remark 2. We note that the controller of Eq. (16)
uses static feedback of the measured outputs yy,, x =
l,..., p, and thus, it feeds back both x; and x; (this
is in contrast to the robust state feedback controller
designed in [8] which only uses feedback of the slow
state x; ). However, even though the use of x¢ feedback
could lead to destabilization of the stable fast subsys-
tem, the large separation of the slow and fast modes of
the spatial differential operator (i.e., assumption that
¢ is sufficiently small) and the fact that the controller
does not include terms of the form O(1/¢) do not al-
low such a destabilization to occur.

Remark 3. The assumption that the characteristic ma-
trix Co(xs) is nonsingular is made to simplify the pre-
sentation of the controller synthesis results and can be
relaxed if instead of static output feedback we use dy-
namic output feedback (the reader may refer to [19]
for details). Moreover, the assumption that the zero
dynamics of the finite-dimensional slow subsystem is
exponentially stable is a standard one in geometric
nonlinear control (see also [19]).

Remark 4. Even though static output feedback is
more sensitive to measurement noise than dynamic
output feedback, we prefer to use static feedback of
v in the controller of Eq. (16) because the presence
of the unknown variables does not allow the design of
a robust state observer to obtain estimates of the slow
state variables without imposing very restrictive con-
ditions on the way 0(¢) enters the finite-dimensional
system of Eq. (10).

Remark 5. The approach followed here for the syn-
thesis of robust output feedback controllers is not ap-
plicable to hyperbolic PDE systems (i.e., convection—
reaction processes) where the eigenvalues cluster
along vertical or nearly vertical asymptotes in the
complex plane and thus, the controller synthesis prob-
lem has to be addressed directly on the basis of the
hyperbolic PDE system (see [9, 11]).

Remark 6. We note that the result of Theorem 1 can
be generalized to the case where the ODE systems
used for controller design are obtained from combi-
nation of Galerkin’s method with approximate inertial
manifolds (see [8] for details on the design of robust
state feedback controllers on the basis of such ODE
systems and [7, 6, 24] for other applications of iner-
tial manifold theory to control of nonlinear parabolic
PDEs).

Remark 7. The robust controller of Eq. (16) pos-
sesses a robustness property with respect to fast and
asymptotically stable unmodeled dynamics (i.e., the
controller enforces boundedness, output tracking and
uncertainty attenuation in the closed-loop system, de-
spite the presence of additional dynamics in the pro-
cess model, as long as they are stable and sufficiently
fast). This robustness property of the controller can
be rigorously established by analyzing the closed-loop
system with the unmodeled dynamics using singular
perturbations, and is important for many practical ap-
plications where unmodeled dynamics occur due to
actuator and sensor dynamics, fast process dynam-
ics, etc.

5. Application to a diffusion-reaction process

We consider a long, thin rod in a furnace and as-
sume that a zeroth-order exothermic catalytic reaction
of the form A — B takes place on the rod. Because the
reaction is exothermic a cooling medium which is in
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contact with the rod is used for cooling. Under stan-
dard modeling assumptions, the spatiotemporal evolu-
tion of the dimensionless rod temperature is described
by the following parabolic PDE:

ox  0°x -
Z_Z7 —7/(1+%)
o~ a2 Thre

+ Bu(b(z)u(t) — X) — e’ (23)
subject to the Dirichlet boundary conditions:
x(0,¢)=0, x(mt)=0 (24)

and the initial condition:
)E(Z,O) :)E()(Z), (25)

where x denotes the dimensionless temperature of the
rod, fr denotes a dimensionless heat of reaction
(which is assumed to be unknown and time-varying;
uncertain variable), fi,, denotes a nominal dimen-
sionless heat of reaction, y denotes a dimensionless
activation energy, iy denotes a dimensionless heat
transfer coefficient, and u denotes the manipulated
input (temperature of the cooling medium). The
following typical values were given to the process
parameters:

Br.n =50.0, fu =2.0,

Introducing the Hilbert space ## of square integrable
functions that satisfy the boundary conditions of
Eq. (24) and defining x € J# as

x(t) =x(z,t), Vze [0, (27)

the system of Eqs. (23)—(25) can be written in the
form of Eq. (6), where the spatial differential operator
takes the form:

y = 4.0. (26)

%
oAx = @,
x € D(A) (28)

={x € #([0,n]; R); %(0,¢) =0, 5(m,t) =0}

The eigenvalue problem for .o/ can be solved analyt-
ically and its solution is of the form

dj=—j% qu(z):\/%sin(jz), j=1...,00.
(29)

Even though the eigenvalues of .o/ are all stable, the
spatially uniform operating steady-state x(z,¢) = 0
of the system of Eq. (23) is unstable (i.e., the lin-
earization of the system of Eq. (23) around x(z,¢)=0
possesses one unstable eigenvalue owing to the
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Fig. 1. Open-loop profile of x with 6(¢) = 0.
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Fig. 2. Open-loop profile of X with 0(¢) = fi7,, sin(0.524 ¢).

exothermicity of the reaction). Fig. 1 shows the
spatiotemporal evolution of the state x(z,¢) of the
system of Eq. (23) when no uncertainty is present;
the system moves to a spatially non-uniform steady
state. We note that in all the simulation runs, a 20th
order ODE approximation of the system of Eq. (23)
derived from Galerkin’s method is used; higher-order
approximations led to identical numerical results.
Due to the instability of the spatially uniform oper-
ating steady-state x(z,¢) =0, we formulate the control
problem as the one of stabilizing the rod temperature
profile at x(z,7)=0 in the presence of time-varying un-
certainty in the dimensionless heat of the reaction fi7,
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Fig. 3. Closed-loop profile of ¥ under nonlinear robust output
feedback control-distributed control action.

Fig. 4. Manipulated input profile for nonlinear robust output feed-
back controller-distributed control action.

(i.e., pr = Pr.n+ 0(t) where 0(t) = 1., sin(0.524 t)).
We note that this selection for 0(¢) satisfies the re-
quirements of Theorem 1 that 0(¢), 0(¢) should be suf-
ficiently small (see closed-loop simulations below),
while it leads to a very poor open-loop behavior for
X(z,t) (see Fig. 2). Since the maximum open-loop
temperature occurs in the middle of the rod, the con-
trolled output was defined as

yo(t) = /O " \/% sin(z)i(z, ) dz (30)

03 T T

Ye (t)
o

04 . )
0 5 10 15
t
Fig. 5. Closed-loop output profile under nonlinear robust output
feedback control-distributed control action.

Fig. 6. Closed-loop profile of X under nonlinear output feedback
control (no uncertainty compensation)-distributed control action.

and the actuator distribution function was taken to be
b(z)=+/(2/m)sin(z), in order to apply maximum cool-
ing towards the middle of the rod. One measurement
of x at z = /4 was assumed to be available.

For the system of Eq. (23), we considered the first
eigenvalue as the dominant one (¢ = 0.25) and used
Galerkin’s method to derive a scalar ODE that was
used for the synthesis of a nonlinear robust output
feedback controller through an application of the for-
mula of Eq. (16). This controller was employed in the
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Fig. 7. Closed-loop profile of ¥ under nonlinear robust output
feedback control-point control action.
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Fig. 8. Manipulated input profile for nonlinear robust output feed-
back controller-point control action.

simulations with y = 1.2,

'
co()es,t):ﬂm/ h1(z)e 1+ 4z
0

and ¢=0.01 to achieve an uncertainty attenuation level
d =0.1 (note that 0.1 =O(e + ¢) = 0(0.25 + 0.01)).
Fig. 3 shows the evolution of the closed-loop rod
temperature profile under the nonlinear robust output
feedback controller, while Fig. 4 shows the corre-
sponding manipulated input profile. Clearly, the pro-
posed controller regulates the temperature profile at

03 T T

0.2 b

t

Fig. 9. Closed-loop output profile under nonlinear robust output
feedback control-point control action.

X(z,t) = 0, attenuating the effect of the uncertain
variable (note that the requirement lim sup, _, __|y|<0.1
is enforced in the closed-loop system; Fig. 5). For
the sake of comparison, we also implemented on the
process the same controller as before without the term
which compensates for the effect of the uncertainty
(i.e., co(Xs,t) = 0). Fig. 6 shows the evolution of the
closed-loop rod temperature profile. It is clear that
this controller cannot regulate the temperature profile
at the desired steady state, x(z,¢) = 0, because it does
not compensate for the effect of the uncertainty.

Finally, in order to show that the proposed control
method can be readily applied to the case of point con-
trol actuation, we consider the same control problem
as above but with b(z) = d(z — ©/2) (i.e., a point con-
trol actuator influencing the rod at z = /2 is used to
stabilize the system at x(z,¢) =0 in the presence of the
uncertain variable). A nonlinear robust output feed-
back controller was synthesized on the basis of a scalar
ODE model obtained from application of Galerkin’s
method to the system of Eq. (23) and implemented
with y = 1.2,

T
colant) = Pro / $1(2)e ) 4
0

and ¢=0.01 to achieve an uncertainty attenuation level
d =0.4 (note that 0.4 =0(0.2540.01)). Fig. 7 shows
the evolution of the closed-loop rod temperature pro-
file and Fig. 8 shows the corresponding manipulated
input profile, for this case. The stabilization of the sys-
tem at x(z, ¢) =0 with uncertainty attenuation has been
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achieved (the requirement lim sup,_, .|| <0.4 is sat-
isfied; Fig. 9). Note that as expected, in the case of
point control actuation u(¢) influences the states of the
closed-loop system which are not used in the controller
design model (spill-over effect), and thus, x(z,¢) ex-
hibits more oscillatory behavior (compare Fig. 7 with
Fig. 3).

Remark 8. As a numerical note, we point out that in
the case of point actuation (sensing) which influences
(measures) the system at zg, the function é(z — zp) is
assumed to have the finite value 1/2p in the interval
[z0—u, zo+p] (where i is a small positive real number)
and be zero elsewhere in [0, 7t].

References

[1] M.J. Balas, Feedback control of linear diffusion processes,
Int. J. Control 29 (1979) 523-533.

[2] M.J. Balas, Stability of distributed parameter systems with
finite-dimensional controller-compensators using singular
perturbations, J. Math. Anal. Appl. 99 (1984) 80-108.

[3] J.A. Burns, B.B. King, Optimal sensor location for robust
control of distributed parameter systems, Proc. 33rd IEEE
Conf. Decision and Control, Orlando, FL, 1994, pp. 3965
-3970.

[4] J.A. Burns, Y. Ou, Feedback control of the driven cavity
problem using LQR designs, Proc. 33rd IEEE Conf. Decision
and Control, Orlando, FL, 1994, pp. 289-294.

[5] C.I. Byrnes, Adaptive stabilization of infinite dimensional
linear systems, Proc. 26th IEEE Conf. Decision and Control,
Los Angeles, CA, 1987, pp. 1435-1440.

[6] C.I. Byrnes, D.S. Gilliam, V.I. Shubov, Global lyapunov
stabilization of a nonlinear distributed parameter system, Proc.
33rd IEEE Conf. Decision and Control, Orlando, FL, 1994,
pp. 1769-1774.

[7] C.I. Byrnes, D.S. Gilliam, V.I. Shubov, On the dynamics of
boundary controlled nonlinear distributed parameter systems,
Proc. Symp. Nonlinear Control Systems Design’95, Tahoe
City, CA, 1995, pp. 913-918.

[8] P.D. Christofides, Robust control of parabolic PDE Systems,
Chem. Eng. Sci. 53 (1998) 2949-2965.

[9] P.D. Christofides, P. Daoutidis, Feedback control of
hyperbolic PDE systems, A.I.Ch.E. J. 42 (1996) 3063-3086.

[10] P.D. Christofides, P. Daoutidis, Finite-dimensional control of
parabolic PDE systems using approximate inertial manifolds,
J. Math. Anal. Appl. 216 (1997) 398-420.

[11] P.D. Christofides, P. Daoutidis, Robust control of hyperbolic
PDE Systems, Chem. Eng. Sci. 53 (1998) 85-105.

[12] R.F. Curtain, Finite-dimensional compensator design for
parabolic distributed systems with point sensors and boundary
input, IEEE Trans. Automat. Control 27 (1982) 98-104.

[13] R.F. Curtain, Disturbance decoupling for distributed systems
by boundary control, Proc. 2nd Internat. Conf. Control Theory
for Distributed Parameter Systems and Applications, Vorau,
Austria, 1984, pp. 109-123.

[14] R.F. Curtain, Invariance concepts in infinite dimensions,
SIAM J. Control Optim. 24 (1986) 1009-1030.

[15] R.F. Curtain, K. Glover, Robust stabilization of infinite
dimensional systems by finite dimensional controllers,
Systems Control Lett. 7 (1986) 41-47.

[16] M.A. Demetriou, Model reference adaptive control of slowly
time-varying parabolic systems, Proc. 33rd IEEE Conf.
Decision and Control, Orlando, FL, 1994, pp. 775-780.

[17] C. Foias, G.R. Sell, E.S. Titi, Exponential tracking and
approximation of inertial manifolds for dissipative equations,
J. Dynamics and Differential Equations 1 (1989) 199-244.

[18] J.P. Gauthier, C.Z. Xu, H°°-control of a distributed parameter
system with non-minimum phase, Int. J. Control 53 (1989)
45-79.

[19] A. Isidori, Nonlinear Control Systems: An Introduction, 2nd
ed., Springer, Berlin-Heidelberg, 1989.

[20] C.A. Jacobson, C.N. Nett, Linear state-space systems in
infinite-dimensional space: The role and characterization
of joint stabilizability/detectability, IEEE Trans. Automat.
Control 33 (1988) 541-551.

[21] S. Kang, K. Ito, A feedback control law for systems arising in
fluid dynamics, Proc. 30th IEEE Conf. Decision and Control,
Tampa, AZ, 1992, pp. 384-385.

[22] B.B. King, Y. Qu, Nonlinear dynamic compensator design
for flow control in a driven cavity, Proc. 34th IEEE Conf.
Decision and Control, New Orleans, LA, 1995, pp. 3741—
3746.

[23] P.V. Kokotovic, H.K. Khalil, J. O’Reilly, Singular
Perturbations in Control: Analysis and Design, Academic
Press, London, 1986.

[24] H. Sano, N. Kunimatsu, An application of inertial manifold
theory to boundary stabilization of semilinear diffusion
systems, J. Math. Anal. Appl. 196 (1995) 18-42.

[25] B. van Keulen, Hoo-Control for Distributed Parameter
Systems: A State-Space Approach, Birkhauser, Boston, 1993.

[26] J.T. Wen, M.J. Balas, Robust adaptive control in Hilbert
space, J. Math. Anal. Appl. 143 (1989) 1-26.



