
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Chemical Engineering Science 63 (2008) 1156–1172
www.elsevier.com/locate/ces

Model-based control of particulate processes

Panagiotis D. Christofidesa,b,∗, Nael El-Farrac, Mingheng Lid, Prashant Mhaskare

aDepartment of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
bDepartment of Electrical Engineering, University of California, Los Angeles, CA 90095, USA

cDepartment of Chemical Engineering and Materials Science, University of California, Davis, CA 95616, USA
dDepartment of Chemical and Materials Engineering, California State Polytechnic University, Pomona, CA 91768, USA

eDepartment of Chemical Engineering, McMaster University, Ont., Canada L8S 4L7

Available online 20 July 2007

Abstract

In this work, we present an overview of recently developed methods for model-based control of particulate processes. We primarily discuss
methods developed in the context of our previous research work and use examples of crystallization, aerosol and thermal spray processes to
motivate the development of these methods and illustrate their application. Specifically, we initially discuss control methods for particulate
processes which utilize suitable approximations of population balance models to design nonlinear, robust and predictive control systems
and demonstrate their application to crystallization and aerosol processes. Finally, we discuss the issues of control problem formulation and
controller design for high-velocity oxygen-fuel (HVOF) thermal spray processes and close with few thoughts on unresolved research challenges
on control of particulate processes.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Particulate processes (also known as dispersed-phase
processes) are characterized by the co-presence of and strong
interaction between a continuous (gas or liquid) phase and a
particulate (dispersed) phase and are essential in making many
high-value industrial products. Particulate processes play a
prominent role in a number of process industries since about
60% of the products in the chemical industry are manufactured
as particulates with an additional 20% using powders as ingre-
dients. Representative examples of industrial particulate pro-
cesses include the crystallization of proteins for pharmaceutical
applications, the emulsion polymerization for the production
of latex, the fluidized bed production of solar-grade silicon par-
ticles through thermal decomposition of silane gas, the aerosol
synthesis of titania powder used in the production of white
pigments, and the thermal spray processing of nanostructured
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thermal barrier and wear resistant coatings. The industrial
importance of particulate processes and the realization that
the physicochemical and mechanical properties of materials
made with particulates depend heavily on the characteristics of
the underlying particle-size distribution (PSD) have motivated
significant research attention over the last 10 years on model-
based control of particulate processes. These efforts have also
been complemented by recent and on-going developments in
measurement technology which allow the accurate and fast on-
line measurement of key process variables including important
characteristics of PSDs (e.g., Larsen et al., 2006; Rawlings
et al., 1992, 1993). The recent efforts on model-based control
of particulate processes have also been motivated by significant
advances in the modeling of particulate processes. Specifically,
population balances have provided a natural framework for the
mathematical modeling of PSDs in broad classes of particu-
late processes (see, for example, the tutorial article (Hulburt
and Katz, 1964) and the review article (Ramkrishna, 1985)),
and have been successfully used to describe PSDs in emulsion
polymerization reactors (e.g., Dimitratos et al., 1994; Doyle et
al., 2002), crystallizers (e.g., Braatz and Hasebe, 2002;
Rawlings et al., 1993), aerosol reactors (e.g., Friendlander,
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2000) and cell cultures (e.g., Daoutidis and Henson, 2001). To
illustrate the structure of the mathematical models that arise in
the population balance modeling of particulate processes, we
focus on three representative examples: a continuous crystal-
lizer, a batch crystallizer and an aerosol reactor.

1.1. Continuous crystallization

Crystallization is a particulate process which is widely used
in industry for the production of many products including
fertilizers, proteins and pesticides. Specifically, we consider a
typical continuous crystallization process (Jerauld et al., 1983;
Lei et al., 1971). Under the assumptions of isothermal opera-
tion, constant volume, mixed suspension, nucleation of crystals
of infinitesimal size and mixed product removal, a dynamic
model for the crystallizer can be derived from a population
balance for the particle phase and a mass balance for the solute
concentration and has the following mathematical form (Jerauld
et al., 1983; Lei et al., 1971):

�n(r, t)

�t
= −�(R(t)n(r, t))

�r
− n(r, t)

�
+ �(r − 0)Q(t),

dc(t)

dt
= (c0 − �)

�(t)�
+ (� − c(t))

�
+ (� − c(t))

�(t)

d�(t)

dt
, (1.1)

where n(r, t) is the number of crystals of radius r ∈ [0, ∞) at
time t per unit volume of suspension, � is the residence time, �
is the density of the liquid phase, c(t) is the solute concentration
in the crystallizer, c0 is the solute concentration in the feed and

�(t) = 1 −
∫ ∞

0
n(r, t)

4

3
�r3 dr

is the volume of liquid per unit volume of suspension. R(t) is
the crystal growth rate, �(r − 0) is the standard Dirac function
and Q(t) is the crystal nucleation rate. The term �(r − 0)Q(t)

accounts for the production of crystals of infinitesimal (zero)
size via nucleation. An example of expressions of R(t) and
Q(t) is the following:

R(t) = k1(c(t) − cs), Q(t) = �(t)k2 e−k3/((c(t)/cs )−1)2
, (1.2)

where k1, k2 and k3 are constants and cs is the concentration of
solute at saturation. For a variety of operating conditions (see
Chiu and Christofides, 1999 for model parameters and detailed
studies), the continuous crystallizer model of Eq. (1.1) exhibits
highly oscillatory behavior (the main reason for this behavior is
that the nucleation rate is much more sensitive to supersatura-
tion relative to the growth rate—i.e., compare the dependence
of R(t) and Q(t) on the values of c(t) and cs) which suggests
the use of feedback control to ensure stable operation and at-
tain a crystal size distribution with desired characteristics. To
achieve this control objective the inlet solute concentration can
be used as the manipulated input and the crystal concentration
as the controlled and measured output.

1.2. Batch protein crystallization

Batch crystallization plays an important role in pharmaceu-
tical industry. We consider a batch crystallizer which is used
to produce tetragonal HEW (hen–egg–white) lysozyme crys-
tals from a supersaturated solution (Shi et al., 2005). Apply-
ing population, mass and energy balances to the process, the
following mathematical model is obtained:

�n(r, t)

�t
+ G(t)

�n(r, t)

�r
= 0, n(0, t) = B(t)

G(t)
,

dC(t)

dt
= −24�kvG(t)�2(t),

dT (t)

dt
= − UA

MCp

(T (t) − Tj (t)), (1.3)

where n(r, t) is the crystal size distribution, B(t) is the nu-
cleation rate, G(t) is the growth rate, C(t) is the solute
concentration, T (t) is the crystallizer temperature, Tj (t) is
the jacket temperature, � is the density of crystals, kv is the
volumetric shape factor, U is the overall heat-transfer coeffi-
cient, A is the total heat-transfer surface area, M is the mass
of solvent in the crystallizer, Cp is the heat capacity of the
solution and �2(t) = ∫∞

0 r2n(r, t) dr is the second moment of
the crystal size distribution. The nucleation rate, B(t), and the
growth rate, G(t), are given by (Shi et al., 2005):

B(t) = kaC(t) exp

(
− kb

�2(t)

)
, G(t) = kg�

g(t), (1.4)

where �(t), the supersaturation, is a dimensionless variable
and defined as �(t) = ln(C(t)/Cs(T (t))), C(t) is the so-
lute concentration, g is the exponent relating growth rate to
the supersaturation and Cs(T ) is the saturation concentration
of the solute which is a nonlinear function of the temperature
of the form

Cs(T ) = 1.0036 × 10−3T 3 + 1.4059 × 10−2T 2

− 0.12835T + 3.4613. (1.5)

The existing experimental results (Vekilov and Rosenberger,
1996) show that the growth condition of tetragonal HEW
lysozyme crystal is significantly affected by the supersatu-
ration. Low supersaturation will lead to the cessation of the
crystal growth. On the other hand, rather than forming tetrag-
onal crystals, large amount of needle like crystals will form
when the supersaturation is too high. Therefore, a proper range
of supersaturation is necessary to guarantee the product’s qual-
ity. The jacket temperature, Tj , is manipulated to achieve the
desired crystal shape and size distribution.

1.3. Aerosol flow reactor

Aerosol processes are increasingly being used for the large-
scale production of nano- and micron-sized particles. We
consider a typical aerosol flow reactor with simultaneous
chemical reaction, nucleation, condensation, coagulation and
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convective transport. A general mathematical model which de-
scribes the spatio-temporal evolution of the PSD in such aerosol
processes can be obtained from a population balance and con-
sists of the following nonlinear partial integro-differential equa-
tion (Kalani and Christofides, 1999, 2000):

�n(v, z, t)

�t
+ vz

�n(v, z, t)

�z
+ �(G(x̄, v, z)n(v, z, t))

�v

− I (v∗)�(v − v∗)

= 1

2

∫ v

0
	(v − v̄, v̄, x̄)n(v − v̄, t)n(v̄, z, t) dv̄

− n(v, z, t)

∫ ∞

0
	(v, v̄, x̄)n(v̄, z, t) dv̄, (1.6)

where n(v, z, t) denotes the PSD function, v is the particle vol-
ume, t is the time, z ∈ [0, L] is the spatial coordinate, L is the
length scale of the process, v∗ is the size of the nucleated aerosol
particles, vz is the velocity of the fluid, x̄ is the vector of the
state variables of the continuous phase, G(·, ·, ·), I (·), 	(·, ·, ·)
are nonlinear scalar functions which represent the growth, nu-
cleation and coagulation rates and �(·) is the standard Dirac
function. The model of Eq. (1.6) is coupled with a mathemati-
cal model which describes the spatio-temporal evolution of the
concentrations of species and temperature of the gas phase (x̄)
that can be obtained from mass and energy balances. The con-
trol problem is to regulate process variables like inlet flow rates
and wall temperature to produce aerosol products with desired
size distribution characteristics.

The mathematical models of Eqs. (1.1), (1.3), (1.6) demon-
strate that particulate process models are nonlinear and dis-
tributed parameters in nature. These properties have motivated
extensive research on the development of efficient numeri-
cal methods for the accurate computation of their solution
(see, for example, Daoutidis and Henson, 2001; Friendlander,
2000; Gelbard and Seinfeld, 1978; Lee and Matsoukas, 2000;
Lin et al., 2002; Ramkrishna, 1985; Smith and Matsoukas,
1998). However, in spite of the rich literature on population
balance modeling, numerical solution and dynamical analysis
of particulate processes, up to about 10 years ago, research
on model-based control of particulate processes had been very
limited. Specifically, early research efforts had mainly focused
on the understanding of fundamental control-theoretic prop-
erties (controllability and observability) of population balance
models (Semino and Ray, 1995a) and the application of con-
ventional control schemes (such as proportional-integral and
proportional-integral-derivative control, self-tuning control) to
crystallizers and emulsion polymerization processes (see, for
example, Dimitratos et al., 1994; Rohani and Bourne, 1990;
Semino and Ray, 1995b and the references therein). The main
difficulty in synthesizing nonlinear model-based feedback
controllers for particulate processes is the distributed param-
eter nature of the population balance models which does not
allow their direct use for the synthesis of low-order (and
therefore, practically implementable) model-based feedback
controllers. Furthermore, a direct application of the aforemen-
tioned solution methods to particulate process models lead to

finite dimensional approximations of the population balance
models (i.e., nonlinear ordinary differential equation (ODE)
systems in time) which are of very high order, and thus inap-
propriate for the synthesis of model-based feedback controllers
that can be implemented in real-time. This limitation had been
the bottleneck for model-based synthesis and real-time imple-
mentation of feedback controllers on particulate processes.

2. Model-based control of particulate processes

2.1. Overview

Motivated by the lack of population balance-based control
methods for particulate processes and the need to achieve tight
size distribution control in many particulate processes, we
developed, over the last 10 years, a general framework for the
synthesis of nonlinear, robust and predictive controllers for par-
ticulate processes based on population balance models (Chiu
and Christofides, 1999, 2000; Christofides, 2002; Christofides
and Chiu, 1997; El-Farra et al., 2001; Kalani and Christofides,
1999, 2002; Shi et al., 2005, 2006). Specifically, within the
developed framework, nonlinear low-order approximations of
the particulate process models are initially derived using order
reduction techniques and are used for controller synthesis.
Subsequently, the infinite-dimensional closed-loop system sta-
bility, performance and robustness properties were precisely
characterized in terms of the accuracy of the approximation
of the low-order models. Furthermore, controller designs were
proposed that deal directly with the key practical issues of
uncertainty in model parameters, unmodeled actuator/sensor
dynamics and constraints in the capacity of control actuators
and the magnitude of the process state variables. It is also
important to note that owing to the low-dimensional struc-
ture of the controllers, the computation of the control action
involves the solution of a small set of ODEs, and thus the
developed controllers can be readily implemented in real-
time with reasonable computing power, thereby resolving the
main issue on model-based control of particulate processes.
In addition to theoretical developments, we also successfully
demonstrated the application of the proposed methods to
size distribution control in continuous and batch crystalliza-
tion, aerosol and thermal spray processes, and documented
their effectiveness and advantages with respect to conven-
tional control methods. Fig. 1 summarizes these efforts. The
reader may refer to Braatz and Hasebe (2002), Daoutidis
and Henson (2001), Doyle et al. (2002) for recent reviews of
results on simulation and control of particulate processes.

2.2. Particulate process model

To present the main elements of our approach to model-
based control of particulate processes, we focus on a gen-
eral class of spatially homogeneous particulate processes with
simultaneous particle growth, nucleation, agglomeration and
breakage. Examples of such processes have been introduced
in the previous section. Assuming that particle size is the only
internal particle coordinate and applying a dynamic material
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Fig. 1. Summary of our research on model-based control of particulate processes.

balance on the number of particles of size r to r + dr (popula-
tion balance), we obtain the following general nonlinear partial
integro-differential equation which describes the rate of change
of the PSD, n(r, t):

�n

�t
= −�(G(x, r)n)

�r
+ w(n, x, r), (2.7)

where n(r, t) is the particle number size distribution, r ∈
[0, rmax] is the particle size, rmax is the maximum particle size
(which may be infinity), t is the time and x ∈ Rn is the vector
of state variables which describe properties of the continuous
phase (for example solute concentration, temperature and pH
in a crystallizer); see Eq. (2.8) for the system that describes
the dynamics of x. G(x, r) and w(n, x, r) are nonlinear scalar
functions whose physical meaning can be explained as follows:
G(x, r) accounts for particle growth through condensation and
is usually referred to as growth rate. It usually depends on the
concentrations of the various species present in the continuous
phase, the temperature of the process and the particle size.
On the other hand, w(n, x, r) represents the net rate of intro-
duction of new particles into the system. It includes all the
means by which particles appear or disappear within the sys-
tem including particle agglomeration (merging of two particles
into one), breakage (division of one particle to two) as well
as nucleation of particles of size r �0 and particle feed and
removal. The rate of change of the continuous-phase variables
x can be derived by a direct application of mass and energy
balances to the continuous phase and is given by a nonlinear
integro-differential equation system of the general form:

ẋ = f (x) + g(x)u(t) + A

∫ rmax

0
a(n, r, x) dr , (2.8)

where f (x) and a(n, r, x) are nonlinear vector functions, g(x)

is a nonlinear matrix function, A is a constant matrix and u(t)=
[u1 u2 · · · um] ∈ Rm is the vector of manipulated inputs. The
term A

∫ rmax
0 a(n, r, x) dr accounts for mass and heat transfer

from the continuous phase to all the particles in the population.

2.3. Model reduction of particulate process models

While the population balance models are infinite-dimensional
systems, the dominant dynamic behavior of many particulate
process models has been shown to be low-dimensional. Mani-
festations of this fundamental property include the occurrence
of oscillatory behavior in continuous crystallizers (Jerauld
et al., 1983) and the ability to capture the long-term behavior
of aerosol systems with self-similar solutions (Friendlander,
2000). Motivated by this, we introduced (Chiu and Christofides,
1999) a general methodology for deriving low-order ODE
systems that accurately reproduce the dominant dynamics of
the nonlinear integro-differential equation system of Eqs. (2.7)
and (2.8). The proposed model reduction methodology exploits
the low-dimensional behavior of the dominant dynamics of
the system of Eqs. (2.7) and (2.8) and is based on a combina-
tion of the method of weighted residuals with the concept of
approximate inertial manifold.

Specifically, the proposed approach initially employs the
method of weighted residuals (see Ramkrishna, 1985 for a
comprehensive review of results on the use of this method for
solving population balance equations) to construct a nonlinear,
possibly high-order, ODE system that accurately reproduces
the solutions and dynamics of the distributed parameter sys-
tem of Eqs. (2.7) and (2.8). Specifically, we first consider an
orthogonal set of basis functions 
k(r), where r ∈ [0, rmax),
k = 1, . . . , ∞, and expand the PSD function n(r, t) in an infi-
nite series in terms of 
k(r) as follows:

n(r, t) =
∞∑

k=1

ak(t)
k(r), (2.9)

where ak(t) are time-varying coefficients that characterize the
system, i.e., the system state. In order to characterize the sys-
tem with a finite set of ODEs, we obtain a set of N equations
substituting Eq. (2.9) into Eqs. (2.7) and (2.8), multiplying the
population balance with N different weighting functions ��(r)
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(that is, � = 1, . . . , N), and integrating over the entire particle
size spectrum. In order to obtain a finite-dimensional model,
the series of expansion of n(r, t) is truncated up to order N.
The infinite-dimensional system of Eq. (2.7) reduces to the
following finite set of ODEs:

∫ rmax

0
��(r)

N∑
k=1


k(r)
�akN(t)

�t
dr

= −
N∑

k=1

akN(t)

∫ rmax

0
��(r)

�(G(xN, r)
k(r))

�r
dr

+
∫ rmax

0
��(r)w

(
N∑

k=1

akN(t)
k(r), xN , r

)
dr ,

� = 1, . . . , N ,

ẋN = f (xN) + g(xN)u(t)

+ A

∫ rmax

0
a

(
N∑

k=1

akN(t)
k(r), r, xN

)
dr , (2.10)

where xN and akN are the approximations of x and ak obtained
by an Nth order truncation. From Eq. (2.10), it is clear that the
form of the ODEs that describe the rate of change of akN(t)

depends on the choice of the basis and weighting functions,
as well as on N. The system of Eq. (2.10) was obtained from
a direct application of the method of weighted residuals (with
arbitrary basis functions) to the system of Eqs. (2.7) and (2.8),
and thus may be of very high order in order to provide an ac-
curate description of the dominant dynamics of the particulate
process model. High-dimensionality of the system of Eq. (2.10)
leads to complex controller design and high-order controllers,
which cannot be readily implemented in practice. To circum-
vent these problems, we exploited in Chiu and Christofides
(1999) the low-dimensional behavior of the dominant dynam-
ics of particulate processes and proposed an approach based
on the concept of inertial manifold to derive low-order ODE
systems that accurately describe the dominant dynamics of the
system of Eq. (2.10). This order reduction technique initially
employs singular perturbation techniques to construct nonlin-
ear approximations of the modes neglected in the derivation of
the finite-dimensional model of Eq. (2.10) (i.e., modes of order
N + 1 and higher) in terms of the first N modes. Subsequently,
these expressions for the modes of order N + 1 and higher
(truncated up to appropriate order) are used in the model of
Eq. (2.10) (instead of setting them to zero) and allow signifi-
cantly improving the accuracy of the model of Eq. (2.10) with-
out increasing its dimension; details on this procedure can be
found in Chiu and Christofides (1999).

Referring to the method of weighted residuals, it is important
to note that the basis and weighting functions determine the
type of weighted residual method being used. In particular,
the method of weighted residuals reduces to the method of
moments when the basis functions are chosen to be Laguerre
polynomials and the weighting functions are chosen as ��=r�.

The moments of the PSD are defined as

�� =
∫ ∞

0
r�n(r, t) dr, � = 0, . . . , ∞, (2.11)

and the moment equations can be directly generated from the
population balance model by multiplying it by r�, �=0, . . . , ∞
and integrating from 0 to ∞. The procedure of forming mo-
ments of the population balance equation very often leads to
terms that may not reduce to moments, terms that include frac-
tional moments, or to an unclosed set of moment equations.
To overcome this problem, the PSD is expanded in terms of
Laguerre polynomials defined in L2[0, ∞) and the series
solution using a finite number of terms is used to close the set
of moment equations (this procedure can be used for models
of crystallizers with fines trap; see, for example, Chiu and
Christofides, 2000).

2.4. Model-based control using low-order models

2.4.1. Nonlinear control
We constructed low-order models using the technique

described in the previous section to synthesize nonlinear finite-
dimensional state and output feedback controllers that guar-
antee stability and enforce output tracking in the closed-loop
finite-dimensional system. We also established that the same
controller exponentially stabilizes the closed-loop particulate
process model. The output feedback controller is constructed
through a standard combination of the state feedback con-
troller with a state observer. The state feedback controller is
synthesized via geometric control methods and the state ob-
server is an extended Luenberger-type observer (see Chiu and
Christofides, 1999 for detailed controller synthesis formulas).
We performed several simulations in the context of the contin-
uous crystallizer process model presented before to evaluate
the performance and robustness properties of the nonlinear
controllers designed based on the reduced order models, and
compared them with the ones of a proportional-integral (PI)
controller. In all the simulation runs, the initial condition:

n(r, 0) = 0.0, c(0) = 990.0 kg/m3

was used for the process model of Eqs. (1.1) and (1.2) and the
finite-difference method with 1000 discretization points was
used for its simulation. The crystal concentration, x̃0 was con-
sidered to be the controlled output and the inlet solute con-
centration was chosen to be the manipulated input. Initially,
the set-point tracking capability of the nonlinear controller was
evaluated under nominal conditions for a 0.5 increase in the
value of the set-point.

Fig. 2 shows the closed-loop output (left plot) and manipu-
lated input (right plot) profiles obtained by using the nonlinear
controller (solid lines). For the sake of comparison, the corre-
sponding profiles under PI control are also included (dashed
lines); the PI controller was tuned so that the closed-loop out-
put response exhibits the same level of overshoot to one of
the closed-loop outputs under nonlinear control. Clearly, the
nonlinear controller drives the controlled output to its new set-
point value in a significantly shorter time than the one required
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Fig. 2. Closed-loop output (left) and manipulated input (right) profiles under nonlinear and PI control, for a 0.5 increase in the set-point (x̃0 is the controlled
output) (Chiu and Christofides, 1999).
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Fig. 3. Profile of evolution of CSD (left) and final steady-state CSD (right) under nonlinear control (x̃0 is the controlled output) (Chiu and Christofides, 1999).

by the PI controller, while both controlled outputs exhibit very
similar overshoot. For the same simulation run, the evolution
of the closed-loop profile and the final steady-state profile of
the CSD are shown in Fig. 3. An exponentially decaying CSD
is obtained at the steady-state. The reader may refer to Chiu
and Christofides (1999) for extensive simulation results.

2.4.2. Hybrid predictive control
In addition to handling nonlinear behavior, an important con-

trol problem is to stabilize the crystallizer at an unstable steady-
state (which corresponds to a desired PSD) using constrained
control action. Currently, the achievement of high performance,
under control and state constraints, relies to a large extent on
the use of model predictive control (MPC) policies. In this ap-
proach, a model of the process is used to make predictions of the
future process evolution and compute control actions, through
repeated solution of constrained optimization problems, which
ensure that the process state variables satisfy the imposed
limitations. However, the ability of the available model predic-
tive controllers to guarantee closed-loop stability and enforce

constraint satisfaction is dependent on the assumption of feasi-
bility (i.e., existence of a solution) of the constrained optimiza-
tion problem. This limitation strongly impacts the practical
implementation of the MPC policies and limits the a priori (i.e.,
before controller implementation) characterization of the set of
initial conditions, starting from where the constrained optimiza-
tion problem is feasible and closed-loop stability is guaranteed.
This problem typically results in the need for extensive closed-
loop simulations and software verification (before on-line
implementation) to search over the whole set of possible
initial operating conditions that guarantee stability. This in
turn can lead to prolonged periods for plant commission-
ing. Alternatively, the lack of a priori knowledge of the
stabilizing initial conditions may necessitate limiting pro-
cess operation within a small conservative neighborhood of
the desired set-point in order to avoid extensive testing and
simulations. Given the tight product quality specifications,
however, both of these two remedies can impact negatively
on the efficiency and profitability of the process by lim-
iting its operational flexibility. Lyapunov-based analytical
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control designs allow for an explicit characterization of
the constrained stability region (El-Farra and Christofides,
2001, 2003; Lin and Sontag, 1991), however, their closed-loop
performance properties, cannot be transparently characterized.

To overcome these difficulties, we recently developed
(El-Farra et al., 2004) a hybrid predictive control structure that
provides a safety net for the implementation of predictive con-
trol algorithms. The central idea is to embed the implementation
of MPC within the stability region of a bounded controller and
devise a set of switching rules that orchestrate the transition
from MPC to the bounded controller in the event that MPC is
unable to achieve closed-loop stability (e.g., due to inappropri-
ate choice of the horizon length, infeasibility or computational
difficulties). Switching between the two controllers allows rec-
onciling the tasks of optimal stabilization of the constrained
closed-loop system (through MPC) with that of computing a
priori the set of initial conditions, for which closed-loop sta-
bility is guaranteed (through Lyapunov-based (El-Farra and
Christofides, 2001, 2003) nonlinear bounded control).

We demonstrated the application of the hybrid predictive
control strategy to the continuous crystallizer of Eqs. (1.1) and
(1.2). The control objective was to suppress the oscillatory
behavior of the crystallizer and stabilize it at an unstable steady-
state that corresponds to a desired PSD by manipulating the
inlet solute concentration. To achieve this objective, measure-
ments or estimates of the first four moments and of the so-
lute concentration are assumed to be available. Subsequently,
the proposed methodology is employed for the design of the
controllers using a low-order model constructed by using the
method of moments. We compared the hybrid predictive con-
trol scheme, with an MPC controller designed with a set of sta-
bilizing constraints and a Lyapunov-based nonlinear controller.

In the first set of simulation runs, we tested the abil-
ity of the MPC controller with the stability constraints
to stabilize the crystallizer starting from the initial condi-
tion, x(0) = [0.066 0.041 0.025 0.015 0.560]′. The result
is shown by the solid lines in Fig. 4(a)–(e) where it is
seen that the predictive controller, with a horizon length of
T = 0.25, is able to stabilize the closed-loop system at the
desired equilibrium point. Starting from the initial condition
x(0)=[0.033 0.020 0.013 0.0075 0.570]′, however, the MPC
controller with the stability constraints yields no feasible solu-
tion. If the stability constraints are relaxed to make the MPC
feasible, we see from the dashed lines in Fig. 4(a)–(e) that the
resulting control action cannot stabilize the closed-loop system,
and leads to a stable limit cycle. On the other hand, the bounded
controller is able to stabilize the system from both initial con-
ditions (this was guaranteed because both initial conditions lied
inside the stability region of the controller). The state trajectory
starting from x(0) = [0.033 0.020 0.013 0.0075 0.570]′ is
shown in Fig. 4(a)–(e) with the dotted profile. This trajectory,
although stable, presents slow convergence to the equilibrium
as well as a damped oscillatory behavior that the MPC does
not show when it is able to stabilize the system.

When the hybrid predictive controller is implemented from
the initial condition x(0)=[0.033 0.020 0.013 0.0075 0.570]′,
the supervisor detects initial infeasibility of MPC and

implements the bounded controller in the closed-loop. As the
closed-loop states evolve under the bounded controller and
get closer to the desired steady-state, the supervisor finds (at
t =5.8 h) that the MPC becomes feasible and, therefore, imple-
ments it for all future times. Note that despite the “jump” in the
control action profile as we switch from the bounded controller
to MPC at t = 5.8 h (see the difference between dotted and
dash-dotted profiles in Fig. 4(f)), the moments of the PSD in
the crystallizer continue to evolve smoothly (dash-dotted lines
in Fig. 4(a)–(e)). The supervisor finds that MPC continues to
be feasible and is implemented in closed-loop to stabilize the
closed-loop system at the desired steady-state. Compared with
the simulation results under the bounded controller, the hybrid
predictive controller (dash-dotted lines) stabilizes the system
much faster, and achieves a better performance, reflected in a
lower value of the performance index (0.1282 vs 0.1308). The
manipulated input profiles for the three scenarios are shown in
Fig. 4(f).

2.4.3. Predictive control of size distribution in a batch protein
crystallizer

In batch crystallization, the main objective is to achieve a
desired PSD at the end of the batch and satisfying state and
control constraints during the whole batch run. Significant pre-
vious work has focused on CSD control in batch crystallizers,
e.g., Rawlings et al. (1993) and Xie et al. (2001). In Miller
and Rawlings (1994), a method was developed for assessing
parameter uncertainty and studied its effects on the open-loop
optimal control strategy, which maximized the weight mean
size of the product. To improve the product quality expressed
in terms of the mean size and the width of the distribution,
an on-line optimal control methodology was developed for a
seeded batch cooling crystallizer (Zhang and Rohani, 2003). In
these previous works, most efforts were focused on the open-
loop optimal control of the batch crystallizer, i.e., the optimal
operating condition was calculated off-line and based on math-
ematical models. The successful application of such a control
strategy relies, to a large extent, on the accuracy of the mod-
els. Furthermore, an open-loop control strategy may not be able
to manipulate the system to follow the optimal trajectory be-
cause of the ubiquitous existence of modeling error. Motivated
by this, we developed (Shi et al., 2006) a predictive control
system to maximize the volume-averaged tetragonal lysozyme
crystal size (i.e., �4/�3 where �3, �4 are the third and fourth
moments of the crystal size distribution; see Eq. (2.11)) by ma-
nipulating the jacket temperature, Tj . The principle moments
are calculated from the on-line measured CSD, n, which can be
obtained by measurement techniques such as the laser light scat-
tering method. The concentration and crystallizer temperature
are also assumed to be measured in real time. In the closed-loop
control structure, a reduced-order moments model was used
within the predictive controller for the purpose of prediction.
The main idea is to use this model to obtain a prediction of the
state of the process at the end of the batch operation, tf , from
the current measurement at time t. Using this prediction, a cost
function that depends on this value is minimized subject to a set
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of operating constraints. Manipulated input limitations, speci-
fications of supersaturation and crystallizer temperature are in-
corporated as input and state constraints on the optimization
problem. The optimization profile computes the profile of the
manipulated input Tj from the current time until the end of
the batch operation interval, then the current value of the com-
puted input is implemented on the process, and the optimiza-
tion problem is resolved and the input is updated each time a
new measurement is available (receding horizon control strat-
egy). The optimization problem that is solved at each sampling
instant takes the following form:

min
Tj

− �4(tf )

�3(tf )
,

s.t.
d�0

dt
= kaC exp

(
− kb

�2

)
,

d�i

dt
= ikg�

g�i−1(t), i = 1, . . . , 4,

dC

dt
= −24�kvkg�

g�2(t),

dT

dt
= − UA

MCp

(T − Tj ),

Tmin �T �Tmax,

Tj min �Tj �Tj max,

�min ����max,∥∥∥∥dCs

dt

∥∥∥∥ �k1, (2.12)

n(0, t)�nfine, ∀t � tf /2, (2.13)

where Tmin and Tmax are the constraints on the crystallizer tem-
perature, T, and are specified as 4 and 22 ◦C, respectively. Tj min
and Tj max are the constraints on the manipulated variable, Tj ,
and are specified as 3 and 22 ◦C, respectively. The constraints
on the supersaturation � are �min = 1.73 and �max = 2.89. The
constant, k1 (chosen to be 0.065 mg/ml min) specifies the max-
imum rate of change of the saturation concentration Cs . nfine is
the largest allowable number of nuclei at any time instant dur-
ing the second half of the batch run, and is set to 5/�m ml. In
the simulation, the sampling time is 5 min, while the batch pro-
cess time tf is 24 h. The optimization problem is solved using
sequential quadratic programming (SQP). A second-order ac-
curate finite-difference scheme with 3000 discretization points
is used to obtain the solution of the population balance model
of Eq. (1.3). Referring to the predictive control formulation of
Eq. (2.13), it is important to note the following: Previous
work has shown that the objective of maximizing the volume-
averaged crystal size can result in a large number of fines in the
final product (Ma et al., 2002). To enhance the ability of the pro-
posed predictive control strategy to maximize the performance
objective while avoiding the formation of a large number of
fines in the final product, the predictive controller of Eq. (2.13)

includes a constraint on the number of fines present in the final
product. Specifically, the constraint of Eq. (2.13), by restrict-
ing the number of nuclei formed at any time instant during the
second half of the batch run limits the fines in the final prod-
uct. Note that predictive control without constraint on fines can
result in a product with a large number of fines (see Fig. 5(a))
which is undesirable. The implementation of the predictive con-
troller with the constraint of Eq. (2.13), designed to reduce the
fines in the product, results in a product with much less fines
while still maximizing the volume-averaged crystal size (see
Fig. 5(b)). The reader may refer to Shi et al. (2005, 2006) for
further results on the performance of the predictive controller
and comparisons with the performance of two other open-
loop control strategies, constant temperature control (CTC) and
constant supersaturation control (CSC).

2.4.4. Fault-tolerant control of particulate processes
Compared with the significant and growing body of research

work on control of particulate processes, the problem of de-
signing fault-tolerant control systems for particulate processes
has not received much attention. This is an important problem
given the vulnerability of automatic control systems to faults
(e.g., malfunctions in the control actuators, measurement sen-
sors or process equipment), and the detrimental effects that such
faults can have on the process operating efficiency and product
quality. Given that particulate processes play a key role in a
wide range of industries (e.g., chemical, food and pharmaceu-
tical) where the ability to consistently meet stringent product
specifications is critical to the product utility, it is imperative
that systematic methods for the timely diagnosis and handling
of faults be developed to minimize production losses that could
result from operational failures.

Motivated by these considerations, recent research efforts
have started to tackle this problem by bringing together tools
from model-based control, infinite-dimensional systems, fault
diagnosis and hybrid systems theory. For particulate processes
modeled by population balance equations with control con-
straints, actuator faults and a limited number of process mea-
surements, a fault-tolerant control architecture that integrates
model-based fault detection, feedback and supervisory control
has recently been developed in El-Farra and Giridhar (2007).
The architecture, which is based on reduced-order models
that capture the dominant dynamics of the particulate process,
consists of a family of control configurations, together with a
fault detection filter and a supervisor. For each configuration, a
stabilizing output feedback controller with well-characterized
stability properties is designed through combination of a state
feedback controller and a state observer that uses the avail-
able measurements of the principal moments of the PSD and
the continuous-phase variables to provide appropriate state
estimates. A fault detection filter that simulates the behavior
of the fault-free, reduced-order model is then designed, and
its discrepancy from the behavior of the actual process state
estimates is used as a residual for fault detection. Finally, a
switching law based on the stability regions of the constituent
control configurations is derived to reconfigure the control
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Fig. 5. Evolution of PSD under (left) predictive control without constraint on fines, and (right) predictive control with constraint on fines (Shi et al., 2005).

system in a way that preserves closed-loop stability in the
event of fault detection. Appropriate fault detection thresholds
and control reconfiguration criteria that account for model
reduction and state estimation errors were derived for the
implementation of the control architecture on the particulate
process. The methodology was successfully applied to a con-
tinuous crystallizer example where the control objective was
to stabilize an unstable steady-state and achieve a desired CSD
in the presence of constraints and actuator faults.

In addition to the synthesis of actuator fault-tolerant con-
trol systems for particulate processes, recent research efforts
have also investigated the problem of preserving closed-loop
stability and performance of particulate processes in the pres-
ence of sensor data losses (Gani et al., 2007). Typical sources
of sensor data losses include measurement sampling losses, in-
termittent failures associated with measurement techniques, as
well as data packet losses over transmission lines. In this work,
two representative particulate process examples—a continuous
crystallizer and a batch protein crystallizer—were considered.
In both examples, feedback control systems were first designed
on the basis of low-order models and applied to the popula-
tion balance models to enforce closed-loop stability and con-
straint satisfaction. Subsequently, the robustness of the control
systems in the presence of sensor data losses was investigated
using a stochastic formulation developed in Mhaskar et al.
(2007) that models sensor failures as a random Poisson process.
In the case of the continuous crystallizer, a Lyapunov-based
nonlinear output feedback controller was designed and shown
to stabilize an open-loop unstable steady-state of the population
balance model in the presence of input constraints. Analysis
of the closed-loop system under sensor malfunctions showed
that the controller is robust with respect to significant sensor
data losses, but cannot maintain closed-loop stability when the
rate of data losses exceeds a certain threshold. In the case of
the batch crystallizer, a predictive controller was designed to
obtain a desired CSD at the end of the batch while satisfy-
ing state and input constraints. Simulation results showed how
constraint modification in the predictive controller formulation

can assist in achieving constraint satisfaction under sensor data
losses.

2.4.5. Nonlinear control of aerosol reactors
The crystallization process examples discussed in the previ-

ous section share the common characteristic of having two inde-
pendent variables (time and particle size). In such a case, order
reduction, for example with the method of moments, leads to a
set of ODEs in time as a reduced-order model. This is not the
case, however, when three or more independent variables (time,
particle size and space) are used in the process model. An exam-
ple of such a process is the aerosol flow reactor presented in the
Introduction. The complexity of the partial integro-differential
equation model of Eq. (1.6) does not allow its direct use for
the synthesis of a practically implementable nonlinear model-
based feedback controller for spatially inhomogeneous aerosol
processes. Therefore, we developed (Kalani and Christofides,
1999, 2000, 2002) a model-based controller design method for
spatially inhomogeneous aerosol processes, which is based on
the experimental observation that many aerosol size distribu-
tions can be adequately approximated by lognormal functions.
The proposed control method can be summarized as follows:

(1) Initially, the aerosol size distribution is assumed to be
described by a lognormal function and the method of mo-
ments is applied to the aerosol population balance model
of Eq. (1.6) to compute a hyperbolic partial differential
equation (PDE) system (where the independent variables
are time and space) that describes the spatio-temporal
behavior of the three leading moments needed to ex-
actly describe the evolution of the lognormal aerosol size
distribution.

(2) Then, nonlinear geometric control methods for hyperbolic
PDEs (Christofides and Daoutidis, 1996) are applied to the
resulting system to synthesize nonlinear distributed out-
put feedback controllers that use process measurements at
different locations along the length of the process to ad-
just the manipulated input (typically, wall temperature), in
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Fig. 6. Closed-loop profiles of scaled mean particle volume in the outlet of the reactor under proportional integral and nonlinear controllers (left). Manipulated
input profiles for proportional integral and nonlinear controllers (right) (Kalani and Christofides, 1999).

order to achieve an aerosol size distribution with desired
characteristics (e.g., geometric average particle volume).

We carried an application of this nonlinear control method
to an aerosol flow reactor, including nucleation, condensation
and coagulation, used to produce NH4Cl particles (Kalani and
Christofides, 1999) and a titania aerosol reactor (Kalani and
Christofides, 2000). To provide a flavor of our results in the
context of the aerosol process used to produce NH4Cl parti-
cles, Fig. 6 (left plot—solid line) shows the profile of the con-
trolled output which is the mean particle volume at the out-
let of the reactor vg(1, t), while Fig. 6 (right plot—solid line)
displays the corresponding profile of the manipulated input
which is the wall temperature. The proposed nonlinear con-
troller regulates successfully, vg(1, t) to its new set-point value.
For the sake of comparison, we also implemented on the pro-
cess a proportional integral controller; this controller was tuned
so that the time which the closed-loop outputs need to reach the
final steady-state is the same to one of the closed-loop outputs
under nonlinear control. The profiles of the controlled output
and manipulated input are shown in Fig. 6 (dashed lines show
the profiles for the proportional integral controller). It is clear
that the proposed nonlinear controller outperforms the propor-
tional integral controller.

3. Multiscale modeling and control of thermal spray
coating processes

While most of the researches on model-based control of
particulate processes has focused on processes described by
population balance models, there are many processes that in-
volve coupling of a continuous phase and a particulate phase
which are not naturally described by population balances. An
example is the high-velocity oxygen-fuel (HVOF) thermal
spray process which is a particulate deposition process in which
the particles are first heated and propelled in a reacting gas
stream and are then deposited and deformed on the substrate,

resulting in a layer of lamellar coating. HVOF thermal spray
is a versatile technology widely used in aerospace, automobile
and chemical industries to deposit coatings on a substrate in
order to extend product life, increase performance and reduce
production and maintenance costs. Examples of thermal spray
coatings are WC/Co-based wear resistant coatings for drilling
tools, YSZ-based thermal barrier coatings for blades in internal
engines and Ni-based corrosion resistant coatings in chemical
reactors. YSZ coatings prepared by plasma spray are also used
as electrolytes in solid oxide fuel cells.

While the operation of the HVOF thermal spray process
has been largely dependent on design of experiments (e.g., de
Villiers Lovelock et al., 1998; Gil and Staia, 2002; Gourlaouen
et al., 2000; Hanson et al., 2002; Hearley et al., 2000; Lih et
al., 2000; Lugscheider et al., 1998), model-based process opti-
mization and control provides a more efficient tool in the de-
velopment of this process because the developed fundamental
understanding of the underlying physicochemical behavior of
the process, embedded in a process model, can be utilized. The
major challenge on this problem was the development of mul-
tiscale models linking the macroscopic scale process behav-
ior (i.e., gas dynamics and particle inflight behavior) and the
microscopic scale process characteristics (evolution of coating
microstructure), and the integration of models, measurements
and control theory to develop measurement/model-based con-
trol strategies. The multiscale feature of the HVOF thermal
spray process is shown in Fig. 7. The microstructure of sprayed
coatings results from the deformation, solidification and sin-
tering of the deposited particles, which are dependent on the
substrate properties (e.g., substrate temperature) as well as the
physical and chemical states (e.g., temperature, velocity, melt-
ing ratio, and oxidant content, etc.) of the particles at the point
of impact on the substrate. On the other hand, the particle in-
flight behavior, however, is coupled with the gas dynamics,
which can be manipulated by adjusting operating conditions
such as the gas flow rate of fuel, oxygen and cooling air. While
the macroscopic thermal/flow field can be readily described
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by continuum type differential equations governing the com-
pressible two-phase flow, the process of particle deposition is
stochastic and discrete in nature, and thus it can be best de-
scribed by stochastic simulation methods (Knotek and Elsing,
1987). By manipulating macro-scale operating conditions such
as gas feed flow rates and spray distance, one can control the
coating microstructure which determines the coating mechani-
cal and physical properties.

In the past several years, we developed a computational
framework for the HVOF thermal spray processing of nanos-
tructured coatings (Li and Christofides, 2003, 2004, 2005, 2006;
Li et al., 2004a,b, 2005; Shi et al., 2004). The multiscale
process model encompasses gas dynamics of the supersonic
reacting flow, evolution of particle velocity, temperature and
molten state during flight, and stochastic growth of coating
microstructure, as shown in Fig. 8. Parametric analysis based

on the multiscale model pointed out the coating microstruc-
ture is highly dependent on particle velocity, temperature and
molten state at impact on substrate, which can be almost inde-
pendently adjusted by pressure in the combustion chamber and
fuel/oxygen ratio. A model-based control scheme was devel-
oped based on the gas-phase measurement and the estimation of
particle properties through the dynamic particle inflight model
and was designed to control the particle velocity and melting
ratio at impact by adjusting the flow rate of cooling air, oxygen
and fuel, through which the pressure and fuel/oxygen can be in-
dependently adjusted. The multivariable feedback control sys-
tem was applied to a detailed mathematical model of the process
and the closed-loop simulations showed that the proposed con-
troller was effective in set-point tracking and also robust with
respect to disturbances in the processing environment, such as
spray distance and particle injection velocity, and variations in
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powder size distribution. In the remainder of this section, we
will provide an overview of the progress in this area.

The gas dynamics in the HVOF thermal spray process depend
on the combustion process and involve subsonic–supersonic–
subsonic transitions. We developed both a computational fluid
dynamic (CFD) model (Li and Christofides, 2005, 2006) and a
simplified quasi-one-dimensional model derived from the con-
servation of mass, momentum and energy (Li and Christofides,
2003; Li et al., 2004a). The numerical study demonstrated that
the chemical energy is converted to thermal energy of the gas
through combustion, which is then partially converted to kinetic
energy through the convergent-divergent nozzle flow. The evo-
lution of Mach number in the entire flow field is shown in
Fig. 9. We see clearly a constant increase in the Mach number
in the internal flow field, which suggests a conversion of ther-
mal energy into kinetic energy. In the convergent section of the
nozzle, the flow is subsonic. At the throat of the nozzle, where
the flow is choked, the Mach number is close to 1. The gas is
accelerated to supersonic velocity in the divergent section of
the nozzle and reaches a Mach number around 2 at the exit of
the nozzle. Outside of the thermal spray gun, the jet adjusts
to the ambient pressure through a series of compression and
expansion waves and subsequently both gas velocity and tem-
perature decay due to the entrainment of the surrounding air.

The particle trajectories and temperature histories in the gas
field are computed by the following multiphase momentum and
heat transfer equations (Li et al., 2004a):

mp

dvp

dt
= 1

2
CD�gAp(vg − vp)|vg − vp|,

dxp

dt
= vp,

mpcpp

dTp

dt
=
{

hA′
p(Tg − Tp) + Sh (Tp �= Tm),

0 (Tp = Tm),

�Hmmp

dfp

dt
=
{

hA′
p(Tg − Tp) + Sh (Tp = Tm),

0 (Tp �= Tm),
(3.14)

where mp is the mass of the particle, t the time, vp the axial
velocity of the particle, Ap the projected area of the particle on
the plane perpendicular to the flow direction, �g the density of
the gas, CD the drag coefficient, xp the position of the particle,
Tp the temperature of the particle, A′

p the surface area of the
particle, Tm the melting point of the particle, �Hm the enthalpy
of melting, fp the mass fraction of melted part in the particle
(0�fp �1) and Sh the source term including heat transfer due
to radiation (ε�A′

p(T 4
g − T 4

p )) and oxidation. The above equa-
tions describing particle velocity, position, temperature and de-
gree of particle melting are solved by fourth order Runge–Kutta
method. In all the mathematical formulas, the thermodynamic
and transport properties of each species and product mixture
are calculated using formulas provided in Gordon and McBride
(1994). A more comprehensive particle model that accounts for
the multi-dimensional particle tracking, random fluctuation in
the gas field and injection distribution in the particle delivery
tube is developed in Li and Christofides (2006).

It is shown that particles are involved in complicated phys-
ical processes. The particle velocity and temperature typically
increase first and decrease in the flow field, which is consistent
with experimental observations (Legoux et al., 2002; Swank
et al., 1994). In particular, small particles might be melted
during flight and be solidified later (Li et al., 2004a). Due to
the interplay between the difference in the momentum/thermal
inertia of particles of different sizes and the decay of the gas ve-
locity and temperature outside of the thermal spray gun, there
is usually a peak in the profile of impact temperature or ve-
locity as a function of particle size, which occurs at particle
diameter around 10–20 �m. However, because particles might
take different trajectories due to different injection locations in
the carrier nitrogen at the entrance of the thermal spray gun
as well as the turbulent fluctuation in the gas flow and thermal
fields, particles of the same size might still achieve different
velocities and temperatures at impact on the substrate (Li and
Christofides, 2006), which partially explains the experimental
observations (e.g., Zhao et al., 2004)). While the simulation in-
dicates that there is a spatial distribution of particle velocity and
temperature on the substrate, this effect is generally minimal
as compared to particle size (Li and Christofides, 2006).

The particle velocity, temperature and molten state of parti-
cles following a specific size distribution function are inputs to
a model describing the evolution of coating microstructure (Shi
et al., 2004). In this stochastic model, the coating growth pro-
cess is described as a sequence of independent discrete events
of each individual particle landing on or bouncing off the
previously formed coating layer, and a slice of the coating
that is perpendicular to the substrate is simulated based on a
two-dimensional lattice with rectangular grid elements. Any
lattice that is empty represents a pore (or a part of a pore) and
otherwise it is a part of the coating. The model includes sev-
eral scenarios that may exist in the coating growth process and
several different rules are set to guide the simulator whether
the particle flattens, breaks, attaches or bounces off on the
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Fig. 10. Pore distribution in the thermal spray coating (Shi et al., 2004).

substrate surface and how each event affects the coating growth.
A typical simulated pore distribution is shown in Fig. 10. Para-
metric analysis based on the stochastic coating growth model
indicates that a moderately high particle temperature and melt-
ing degree reduce the coating porosity and increase the depo-
sition efficiency because less particles are bounced off the sub-
strate. Moreover, a high particle velocity improves both coating
porosity and deposition efficiency because a large flatten ratio
can be achieved. These conclusions are consistent with exper-
imental observations (e.g., Hanson and Settles, 2003; Legoux
et al., 2002).

In order to find a way to control the particle velocity and tem-
perature, parametric analysis on the gas phase is made which
shows that the particle velocity and temperature can be almost
independently adjusted by pressure in the combustion cham-
ber and fuel/oxygen ratio (i.e., equivalence ratio). As shown in
Fig. 11, the drag force for particle motion, which is approxi-
mately proportional to the gas momentum flux (�v2

g), is a linear
function of the chamber pressure. However, the temperature in-
creases slightly as the pressure increases. On the other hand,
the gas temperature varies with the fuel/oxygen ratio with an
optimal value slightly larger than the stoichiometric value (or
fuel rich conditions) and a change in the fuel/oxygen ratio with
a fixed chamber pressure has little effect on the gas momentum
flux.

Based on the above control relevant analysis, the control
problem was formulated as one of the regulating volume-
based averages of the temperature and velocity of the particles
at the point of impact on the substrate by manipulating the
oxygen/fuel ratio and the combustion chamber pressure with
available particle velocity and temperature measurements.
Two PI controllers were used to control the process (Li and
Christofides, 2004). A modified control system that aims to
adjust the particle velocity, temperature and melting degree
through direct manipulation of the mass flow rate of fuel and
oxygen was also proposed (Li et al., 2004a, 2005) because
the gas flow rate is easier to manipulate than the pressure in
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Fig. 11. Influence of pressure and fuel/oxygen ratio on gas momentum flux
and gas temperature (Li et al., 2004a).

practice. Due to the fact that the particle melting degree is hard
to measure, a model-based control scheme that incorporates
the estimation of particle properties through the gas-phase
measurement and particle dynamics was also developed (Li
et al., 2004b). A representative closed-loop simulation is shown
in Fig. 12 which indicates that the controller is effective in
achieving set-point tracking. It was also demonstrated in Li
et al. (2004b) that the robustness of closed-loop system in
the presence of disturbances such as variations in spray dis-
tance and powder size distribution is excellent, which strongly
motivates the implementation of real-time control systems on
industrial HVOF thermal spray processes.

4. Future research challenges

While significant work has been done on control of par-
ticulate processes over the last 10 years, there is a number
of emerging applications within the areas of nanotechnology,
advanced materials processing and energy where control of
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Fig. 12. Profiles of controlled outputs (average particle velocity and average
particle melting ratio) and manipulated inputs (gas flow rates of propylene
and oxygen) under the request of set-point change in the average particle
velocity and average particle melting ratio (Li et al., 2004b).

PSD could provide the enabling technology for optimizing the
performance and robustness of key processes. For example,
significant interest has been generated recently in the field
of nanoparticle synthesis and processing which has potential
applications in the manufacture of catalysts, coatings, sen-
sors, membranes and ceramics. The nanostructured materials
fabricated by the processing of nanoparticles (characterized
by a grain size less than 100 nm) exhibit superior qualities
to conventional counterparts due to larger surface area to
volume ratio and larger grain boundaries/interfaces. Repre-
sentative examples include nanostructured titania coatings
prepared by aerosol-assisted chemical vapor deposition, nanos-
tructured tin oxide sensors prepared by flame spray pyrolysis,
and nanostructured solid oxide fuel cells prepared by laser

reactive deposition, etc. In these aerosol-based nanoparticle
synthesis and deposition processes, the PSD plays an impor-
tant role in the property of the final product and should be
precisely controlled. To describe the evolution of the PSD
in these processes, a general aerosol dynamic equation in-
cluding condensation, nucleation, coagulation might be nec-
essary and approaches such as the ones proposed in Kalani
and Christofides (1999, 2000) might be followed for the PSD
control in these processes.

In the area of hydrogen generation, it has been reported
that the water splitting thermochemical cycle achieved through
the metal/metal oxide redox reactions using solar energy is a
promising route for high efficiency and safe hydrogen gen-
eration because the separation of H2/O2 is circumvented
(Steinfeld, 2005). Recent efforts have reported a novel hydro-
gen generation process in which the formation of Zn nanopar-
ticles and the in situ hydrolysis of hydrogen are integrated
in a single tubular aerosol flow reactor (Weiss et al., 2005;
Wegner et al., 2006). The high specific surface area provided
by the Zn nanoparticles significantly enhances the heat/mass
transfer and reaction rate, and thus the hydrogen yield (up to
70%). While it is obvious that a small particle size is beneficial
for hydrogen yield, the development of a size control sys-
tem for zinc hydrolysis remains an intellectually challenging
problem.

In the semiconductor manufacturing industry, the parti-
cle removal becomes extremely critical as the chips become
smaller and smaller. According to the International Tech-
nology Roadmap for Semiconductors, the “killer” particle
size, defined as one-half of the gate length, was 40 nm in
2005 and is projected to reduce to 23 nm by the year 2010
(Semiconductor Industry Association, 2005). These particles
are typically generated by gas-phase nucleation. The same
problem occurs in the glass coating industry where particles
generated from gas-phase nucleation can deposit and adhere
to the transport channels, thereby restricting flow and reducing
run length due to the necessity to clean the coating apparatus.
The main challenge in this area is to develop computational
models to predict formation, kinetics and transport of particles
as a function of the process flow and thermal conditions and
to identify the dominant chemical clustering pathways and
limiting growth mechanisms. A high-fidelity model will not
only provide guidelines for process and equipment design but
also facilitate the development of model-based online diag-
nosis and control system for particle contamination control.
The reader may refer to Christofides et al. (2007) for a de-
tailed discussion on future problems on control of particulate
processes.
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