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This article deals with distributed parameter systems described by first-order hyper- 
bolic partial differential equations (PDEs), for which the manipulated input, the con- 
trolled output, and the measured output are distributed in space. For these systems, a 
general output-feedback control methodology is developed employing a combination of 
theory of PDEs and concepts ffom geometric control. A concept of characteristic index 
is introduced and used for the synthesis of distributed state-feedback laws that guarantee 
output tracking in the closed-loop system. Analytical formulas of distributed output- 
feedback controllers are derived through combination of appropriate distributed state 
observers with the developed state-feedback controllers. Theoretical analogies between 
our approach and available results on stabilization of linear hyperbolic PDEs are also 
identified. The developed control methodology is implemented on a nonisothermal 
plug-flow reactor and its performance is evaluated through simulations. 

Introduction 
Chemical engineering processes are inherently nonlinear 

and very frequently involve state variables that change in both 
time and space. Representative examples of processes with 
significant spatial variations include plug-flow reactors (Ray, 
19811, countercurrent absorbers-reactors (Rhee et al., 1986), 
fixed- and fluidized-bed reactors (Stangeland and Foss, 1970; 
Ray, 1981; Georgakis et al., 1977). The mathematical models 
of these processes are typically derived from the dynamic 
conservation equations and consist of nonlinear partial dif- 
ferential equations (PDEs). 

The conventional approach for the control of PDE systems 
is based on the spatial discretization of the PDE model fol- 
lowed by the controller design on the basis of the resulting 
(linear or nonlinear) ordinary differential equation (ODE) 
model (Sorensen et al., 1980; Dochain et al., 1992; Patward- 
han et al., 1992). However, there are certain well-known dis- 
advantages associated with this approach. For example, fun- 
damental control-theoretic properties, like controllability and 
observability, which should depend only on the location of 
sensors and actuators, may also depend on the discretization 
method and the number and location of discretization points 
(Ray, 1981). Moreover, neglecting the infinite-dimensional 
nature of the original system may lead to erroneous conclu- 
sions concerning the stability properties of the open-loop 
and/or the closed-loop system. Furthermore, in processes 
where the spatially distributed nature is very strong, due to 
the underlying convection and diffusion phenomena, such an 
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approach limits the controller performance, and may Iead to 
unacceptable control quality. 

Motivated by the preceding considerations, significant re- 
search efforts have focused on the development of control 
methods for PDE systems that directly account for their spa- 
tially distributed nature. Excellent surveys of theoretical as 
well as application articles on this topic can be found in Balas 
(19821, Keulen (19931, and Ray (1978). Initially, systems of 
linear PDEs were considered, for which key system- and con- 
trol-theoretic properties (e.g., existence and uniqueness of so- 
lutions, stability, controllability, and observability) were well- 
understood (Curtain and Pritchard, 1978). The well-known 
classification of PDE systems to hyperbolic, parabolic, and 
elliptic (Smoller, 19831, according to the properties of the 
spatial differential operator, essentially determined the ap- 
proach followed for the solution of the control problem. Thus, 
for parabolic PDE systems (e.g., diffusion-reaction processes), 
the fact that the system dynamics is practically determined by 
a finite number of modes, motivated the use of modal de- 
composition techniques to derive ODE models that capture 
the dominant dynamics of the system (Curtain, 1982; Geor- 
gakis et al., 1977; Hanczyc and Palazoglu, 1992; Gay and Ray, 
1995); the controller design problem was then addressed us- 
ing methods for linear ODE systems. On the other hand, for 
hyperbolic PDE systems (e.g., convection-reaction processes), 
for which a modal decomposition is not possible, alternative 
approaches were followed, using mainly optimal control 
methods (Wang, 1966; Lo, 1973; Balas, 1986) on the basis of 
the original infinite-dimensional system, or ODE control 
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methods on the basis of equivalent ODE realizations ob- 
tained by the method of characteristics (Ray, 1981). 

Recently, considerable attention has focused on the under- 
standing of system-theoretic properties and the dynamical 
behavior of nonlinear PDEs, by treating them as evolution 
equations in appropriate infinite dimensional spaces (Temam, 
1988; Brown et al., 1991). Yet, available results on the con- 
trol of systems of nonlinear PDEs are rather sparse, with the 
exception of optimal control approaches [(Balas, 1991; Burns 
and Kang, 1991; Kang and Ito, 1992) and the review paper 
(Lasiecka, 1995) for an overview of recent results in systems 
literature]. Due to their practical relevance and importance, 
quasi-linear PDE systems have attracted particular research 
interest. For quasi-linear parabolic PDE systems, an ap- 
proach that utilizes a combination of eigenfunction expan- 
sion techniques and nonlinear control schemes was proposed 
in Chen and Chang (1992). For processes modeled by a single 
first-order quasi-linear hyperbolic PDE, an approach based 
on a combination of the method of characteristics and sliding 
mode techniques was proposed in Sira-Ramirez (1989). This 
method was further developed in Hanczyc and Palazoglu 
(1995) to account for possible discontinuous behavior of the 
control action and was applied to a heat exchanger. A Lya- 
punov-based approach, inspired from concepts of thermody- 
namics, to derive conditions that guarantee stability under 
linear control has also been proposed in Alonso and Ydstie 
(1995). 

In this article, we address the feedback control problem 
for systems described by quasi-linear first-order hyperbolic 
PDEs, for which the manipulated input, the controlled out- 
put, and the measured output are distributed in space. Sys- 
tems of this form arise naturally in chemical engineering as 
models of transport-reaction processes, whenever convective 
mechanisms dominate diffusive and dispersive ones [see the 
book by Rhee et al. (1986) for representative examples]. For 
such systems, our objective is to synthesize nonlinear dis- 
tributed output-feedback controllers that enforce output 
tracking and guarantee stability in the closed-loop system. 

The article is structured as follows: after reviewing the nec- 
essary preliminaries, a concept of characteristic index be- 
tween the controlled output and the manipulated input (which 
can be thought of as the analogue of relative order) is intro- 
duced and used for the synthesis of distributed state-feed- 
back controllers that induce output tracking in the closed-loop 
system. A notion of zero-output constraint dynamics for 
first-order hyperbolic PDEs is introduced and used to derive 
precise conditions that guarantee the stability of the closed- 
loop system. Then, output-feedback controllers are synthe- 
sized through a combination of appropriate distributed state 
observers with the developed state-feedback controllers. The- 
oretical analogies between the proposed approach and avail- 
able feedback control methods for the stabilization of linear 
hyperbolic PDEs are pointed out. Controller implementation 
issues are also discussed. Finally, the application of the de- 
veloped control method is illustrated through a nonisother- 
ma1 plug-flow reactor example modeled by a system of three 
quasi-linear hyperbolic PDEs. 

First-Order Hyperbolic PDE Systems 
Preliminaries 

We consider systems of quasi-linear first-order PDEs in one 

spatial dimension with the following state-space representa- 
tion: 

d X  dX 

d t  d Z  
- = A ( x ) -  + f ( x )  + g ( x ) u  

subject to the boundary condition: 

C , x ( a , t ) + C , x ( b , t ) = R ( t )  (2) 

and the initial condition: 

where x ( z ,  t )  = [ x , ( z ,  t )  ... x , ( z ,  t)lT denotes the vector of 
state variables, x ( z ,  t )  E X"[(a,  b), Rn] ,  with X" being the 
infinite-dimensional Hilbert space of n-dimensional vector 
functions defined on the interval [ a ,  b ]  whose spatial deriva- 
tives up to nth order are square integrable, z E [ a ,  b ]  c R and 
t E [O,m), denote position and time, respectively, u(z, t )  de- 
notes the manipulated variable, y ( z ,  t )  denotes the controlled 
variable, and q ( z , t )  denotes the measured variable. A(x)  is a 
sufficiently smooth matrix, f ( x )  and g ( x )  are sufficiently 
smooth vector functions, h(x) ,  p ( x )  are sufficiently smooth 
scalar functions, R( t )  is a column vector that is assumed to 
be a sufficiently smooth function of time, x , ( z )  E X[(a ,  b), 
Rn] ,  with [ (a ,b) ,  R n ]  being the Hilbert space of n-dimen- 
sional vector functions defined on the interval [ a ,  b ]  which 
are square integrable, and C,, C, are constant matrices of 
dimension n x n. 

The model of Eq. 1 describes the majority of convection- 
reaction processes arising in chemical engineering (Rhee et 
al., 1986) and constitutes a natural generalization of linear 
PDE models (see Eq. 9 below), considered in Pel1 and Aris 
(1970) and Ray (1981) in the context of linear distributed state 
estimation and control. The distributed and affine appear- 
ance of the manipulated variable u is typical in most practi- 
cal applications (Pel1 and Ark, 1970; Gay and Ray, 1995; Ray, 
19811, where the jacket temperature is usually selected as the 
manipulated variable (see below for a detailed discussion on 
how the jacket temperature is manipulated in practice). Fur- 
thermore, the possibility that the system of Eq. l may admit 
boundary conditions at two separate points (e.g., countercur- 
rent processes) is captured by the boundary condition of Eq. 
2. 

Depending on the eigenvalues of the matrix A(x) ,  the sys- 
tem of Eq. 1 can be hyperbolic, parabolic, or elliptic (Smoller, 
1983). Assumption 1, which follows, ensures that the system 
of Eq. 1 has a well-defined solution and specifies the class of 
systems considered in this manuscript. 

Assumption 1. The matrix A ( x )  is real symmetric and its 
eigenvalues satisfy: 

for all x E X"[(a,  b), Rn]. 
Typical examples where Assumption 1 is satisfied include 

heat exchangers, plug-flow reactors, and countercurrent ab- 
sorbers-reactors where the matrix A ( x )  is constant and diag- 
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onal and its elements are the fluid velocities, as well as chro- 
matography of two interacting solutes where A ( x )  is a full 
matrix (Rhee et al., 1986). Systems of the form of Eq. 1 for 
which the eigenvalues of the matrix A ( x )  are real and dis- 
tinct are said to be hyperbolic, while systems for which some 
of the eigenvalues of the matrix A ( x )  are identically equal 
are said to be weakly hyperbolic (Smoller, 1983). 

Specification of the control problem 
Consider the system of quasi-linear PDEs of the form of 

Eq. 1, for which the manipulated variable u(z, t ) ,  the mea- 
sured variable q(z, t ) ,  and the controlled variable y ( z ,  t )  are 
distributed in space. Let's assume that for the control of the 
variable y ,  there exists a finite number of control actuators, 1, 
and the same number of measurement sensors; clearly, it is 
not possible to control the variable y ( z , t )  at all positions. 
Therefore, it is meaningful to formulate the control problem 
as the one of controlling y ( z ,  t )  at a finite number of spatial 
intervals. In particular, referring to the single spatial interval 
[ z;, zi+ we suppose that the manipulated input is iZ'(t), with 
ii' E R, and the measured output is tj'(t), with q i  E R, while 
the controlled output is ?'( t ) ,  with 7' E R, such that the fol- 
lowing relations hold: 

where b'(z) is a known smooth function of z, and ei, Q are 
bounded linear operators, mapping X" into R. Figure 1 
shows a pictorial representation of this formulation in the 
case of a prototype example. From a practical point of view, 
the function b'(z) describes how the control action ii'(t) is 
distributed in the spatial interval [zi, zi+ while the opera- 
tor &' determines the structure of the sensor in the same 
spatial interval. Whenever the control action enters the sys- 
tem at a single point zo (e.g., lateral flow injections), with 
zo E [ zi, zi+ (i.e., point actuation), the function b'(z) is taken 
to be nonzero in a finite spacial interval of the form [ zo  - 
6, zo + €1, where E is a small positive real number, and zero 
elsewhere in [ zi, zi+ ,I. Similarly, in the case of a point sensor 
acting at zo, the operator (2' is assumed to act in [ z,, - E ,  zo 
+ €1, and considered to be zero elsewhere. The operator e' 

I I I I 
I I I I 
I I 

I I 0- I 
Figure 1. Control problem specification in the case of a 

prototype example. 
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depends on the desired performance specifications and in the 
majority of practical applications [see, e.g., Ray (1981), 
Hanczyc and Palazoglu (1992)], is of the following form: 

where c'(z) is a known smooth function of z .  For simplicity, 
the functions b'(z), c'(z), i = 1, . .., 1 will be assumed to be 
normalized in the interval [a ,  b],  that is, 

Using the relations of Eqs. 5 and 6, the system of Eq. 1 takes 
the form 

where 

with H( - >  being the standard Heaviside function. 
Referring to the system of Eq. 7, we note that by setting 

A(x)  = A ,  f ( x )  = Bx, g ( x )  = w, h ( x )  = la;, p ( x )  = px, where 
A and B are matrices, and w, k ,  p are vectors of appropriate 
dimensions, it reduces to the following system of linear first- 
order hyperbolic PDEs: 

dx d x  - = A -  + BX + w~(z)E 
at az 

subject to the boundary condition of Eq. 2, and the initial 
condition of Eq. 3. 

The following example will be used throughout the article 
to illustrate the various aspects of our methodology. 

Example. Consider a steam-jacketed tubular heat ex- 
changer (Ray, 1981). The dynamic model of the process is of 
the form: 
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dT dT 
_ = -  ul- - aT + a? 
dt dZ 

where T ( z , t )  denotes the temperature of the reactor, z E 
[0,1], q ( z ,  t )  denotes the jacket temperature, ul denotes the 
fluid velocity in the exchanger, and a is a positive constant. 
Considering T,. as the manipulated variable, and T as the 
controlled and measured variable, the preceding model can 
be put in the form of Eq. 1: 

Consider the case where these exists one actuator with distri- 
bution function b(z )  = 1, the controlled output is assumed to 
be j ( t )  = 10' x(z , t )dz ,  and there is a point sensor located at 
z = 0.5. Utilizing these relations, the system of Eq. 11 takes 
the form 

d X  dX 

dt dZ 
-- - - uI- - ax + aii(t) 

Review of system-theoretic properties 
The objective of this subsection is to review basic system- 

theoretic properties of systems of first-order hyperbolic PDEs 
that will be used in the subsequent sections. For more details 
on these subjects, the reader may refer to Curtain and 
Pritchard (1978) and Russell (1978). We will start with the 
definitions of the inner product and the norm, with respect 
to which the notion of exponential stability for the systems 
under consideration will be defined. 

Let w l ,  w z  be two elements of X([a,b];R"). Then the 
inner product and the norm, in X([a ,  b]; R"), are defined as 
follows: 

where the notation ( - , * I w n  denotes the standard inner prod- 
uct in the Euclidean space R". 

Referring to the linear system of Eq. 9, for which Assump- 
tion 1 holds, it is well-established (Russell, 1978) that the op- 
erator 

dX 

d t  
d: x = A - + Bx, (14) 
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defined on the domain in X[(a ,  b); R"] consisting of func- 
tions x E Xl[(d,b);R"] that satisfy the boundary condition 
of Eq. 2, generates a strongly continuous semigroup U ( t )  of 
bounded linear operators on X[(a, b); R"]. This fact implies 
the existence, uniqueness, and continuity of solutions for the 
system of Eq. 9. In particular, the generalized solution of this 
system is given by 

where C ( t )  is a bounded linear operator for each t mapping 
X[(O, t ) ;  R"] into X [ ( a ,  b); R"]. The notion of semigroup can 
be thought of as an analog of the notion of the state transi- 
tion matrix used for linear finite-dimensional systems. As can 
be easily seen from Eq. 15, U(t )  evolves the initial condition 
xo forward in time. From general semigroup theory (Fried- 
man, 19761, it is known that U ( t )  satisfies the following growth 
property: 

where K 2 1, a is the largest real part of the eigenvalues of 
the operator C ,  and an estimate of K ,  a can be obtained 
utilizing the Hiller-Yoshida theorem (Friedman, 1976). 
Whenever the parameter a is strictly negative, we will say 
that the operator of Eq. 14 generates an exponentially stable 
semigroup U(t).  We note that although there exist many sta- 
bility concepts for PDEs [e.g., weak (asymptotic) stability 
(Friedman, 1976; Smoller, 198311, we will focus throughout 
the article on exponential stability, because of its robustness 
to bounded perturbations, which is required in most practical 
applications, where there is always some uncertainty associ- 
ated with the process model. The aforementioned concepts 
allow stating precisely a standard (Pel1 and Ark, 1970; Balas, 
1986) detectability requirement for the system of Eq. 9, which 
will be exploited in the sixth section for the design of dis- 
tributed state observers. 

The pair [ Qkp C 1, is detectable, that is, 
there exists a bounded linear operator 6, mapping R' into 
X", such that the linear operator C, = 6: - 6 Q k ,  gener- 
ates an exponentially stable semigroup. 

This detectability assumption does not impose any restric- 
tions on the form of the operator Q and thus, on the struc- 
ture of the sensors (e.g., distributed, point sensors). 

In closing this subsection, motivated by the lack of general 
stability results for systems of quasi-linear PDEs, we review a 
result that allows characterizing the local stability properties 
of the quasi-linear system of Eq. 7 on the basis of its corre- 
sponding linearized system. To this end, let's consider the lin- 
earization of the quasi-linear system of Eq. 7: 

Assumption 2. 

where 
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af(x> will also present the development for the case of systems of 
linear PDEs of the form of Eq. 9. The development for the 
case of quasi-linear systems will be performed by essentially 
generalizing the results developed for the linear case in a 
nonlinear context. 

A ( x )  = A ( x , ( z ) ) ,  B ( 2 )  = ( T) , 
x = XJZ) 

Characteristic Index 
In this section, we will introduce the concept of character- 

istic index between the output and the input ii for systems 
of the form of Eq. 9, which will allow us to formulate and and x,(z)  denote some steady-state profile. 

Proposition (Smoller, 1983, p' 12'). The system Of Eq' solve the state-feedback control problem. To reveal the ori- 
gin and illustrate the role of this concept, we consider the 
operation of differentiation of the output yi of the system of 

(with Z = o ) ,  for which Assumption 
boundary condition of Eq. 2, is locally exponentially 

subject to the 
if 

Eq. 9 with respect to time, which yields the operator of the linearized system of Eq. 17: 

(18) 

generates an exponentially stable semigroup. 
The following remark provides conditions, which can be 

easily verified in practice, that guarantee the open-loop sta- 
bility of hyperbolic PDE systems of the form of Eq. 9 (Eq. 7). 

Consider the system of linear (quasi-linear) 
first-order PDEs of the form of Eq. 9 (Eq. 7) with i i  = 0, and 
assume that the following conditions hold: 

Remark I .  

A , ( X )  5 A2(x) 5 ... 5 A,(X)  < 0 

for all x E X " [ ( a , b ) ,  RE]. 

c2=0. 
In this case, it can be shown (Russell, 1978) that the eigenval- 
ues of the operator of Eq. 18 (Eq. 14) are of the following 
form: 

(19) 

Thus, first-order PDE systems that satisfy the preceding con- 
ditions (physical examples include plug-flow reactors and 
cocurrent heat exchangers) possess eigenvalues that lie on a 
vertical line crossing the real axis at s = -a, which, accord- 
ing to Eq. 16, implies that they are exponentially stable. 

a, = -m+ p ~ i ,  p = -00, ... , W. 

Methodological framework 
Motivated by the fact that control methods for quasi-linear 

distributed parameter systems should explicitly account for 
their nonlinear and spatially varying nature, our methodology 
entails the following two steps: 

1. Synthesize distributed nonlinear state-feedback con- 
trollers that enforce output tracking and derive conditions 
that guarantee the exponential stability of the closed-loop 
system. 

2. Synthesize distributed nonlinear output-feedback con- 
trollers through a combination of the developed state-feed- 
back controllers with appropriate distributed state observers. 

Motivated by the mathematical properties of these sys- 
tems, the state-feedback control problem is solved on the ba- 
sis of the original PDE model, by following an approach con- 
ceptually similar to the one used for the synthesis of inver- 
sion-based controllers for ODE systems. In order to motivate 
the approach followed for the quasi-linear case and identify 
theoretical analogies between our approach and available re- 
sults on feedback stabilization of linear hyperbolic PDEs, we 

= e'k A -  + B x + e'kwb'(z)ii'. (20) 
( d :  1 

Now, if the scalar e'kwb'(z) is nonzero, we will say that the 
characteristic index of 7' with respect to ti', denoted by a', is 
equal to one. If e'kwb'(z) = 0, the characteristic index is 
greater than one, and from Eq. 20 we have 

dy' d 
dt e'k A - + B  x .  
-= ( d z  ) (21) 

Performing one more time-differentiation, we obtain: 

dt 
(22) 

In analogy with the preceding, if the scalar e'k[A(d/dz)+ 
B]wb'(z) is nonzero, the characteristic index is equal to two, 
while if e 'k[  A(d /dz)  + B]wb'(z) = 0, the characteristic index 
is greater than two. 

Generalizing the preceding development, one can give the 
definition of characteristic index for systems of the form of 
Eq. 9. 

Referring to the system of linear first-order 
PDEs of the form of Eq. 9, we define the characteristic index 
of the output J'  with respect to the input as the smallest 
integer u i  for which 

Definition 1. 

e'k A -  + B wb'(z)  # 0 ,  ( d: )u8-' 
(23) 

or u i  = ~0 if such an integer does not exist. 
According to Definition 1, the characteristic 

index is the smallest order time-derivative of the output yi  
that explicitly depends on the .manipulated input 5'. In this 
sense, it can be thought of as a natural generalization of the 
concept of relative order for the systems under consideration. 

Remark 2. 
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For the case of linear ODE systems, the relative order can be 
interpreted as the difference in the degree of the denomina- 
tor polynomial and numerator polynomial. Such an interpre- 
tation cannot be given for the concept of characteristic index 
because the frequency-domain representation of the system 
of Eq. 9 typically gives rise to transfer functions that involve 
complicated transcendental forms. 

In analogy with the linear case, the following concept of 
characteristic index is introduced for the quasi-linear PDE 
system of Eq. 7. 

Definition 2. Referring to the system of quasi-linear first- 
order PDEs of the form of Eq. 7, we define the characteristic 
index of the output f '  with respect to the input U' as the 
smallest integer ui for which 

where a, denotes the jth column vector of the matrix A(x), 
and Lo] ,  Lf denote the standard Lie derivative notation, or 
U '  = M  if such an integer does not exist. 

Throughout the article, it will be assumed that Eq. 24 holds 
for all x E X", z E [ a ,  bl. 

From Definitions 1 and 2, one can immediately see that 
the characteristic index u' depends on the structural proper- 
ties of the process (the matrices A ,  B and the vectors w, k 
for the linear case, or the matrix A(x) and the functions f(x), 
g(x), h(x) for the quasi-linear case), as well as on the selec- 
tion of the control system and objectives (the functions b'(z) 
and the output operators (3'). Note that in the control prob- 
lem specification of subsection titled "Specification of the 
Control Problem," we have implicitly assumed that C' and 
b'(z) are chosen to act in the same spatial interval (col- 
located); in the case where C'  and b'(z)  are chosen to act in 
different spatial intervals (noncollocated), it follows directly 
from Eqs. 23 and 24 that the characteristic index u' =m, 
which implies that this selection leads to loss of controllabil- 
ity of the output J' from the input ii'. 

In most practical applications, the selection of (b'(z) ,  el) is 
typically consistent for all pairs (f', U'), in a sense that is made 
precise in the following assumption. 

Assumption 3. Referring to the system of first-order PDEs 

Given this assumption, u can be also thought of as the 
characteristic index between the output vector j j  and the in- 
put vector li. 

of the form of Eq. 9 (Eq. 7), u 1  = g 2  = ... = ui = u. 

State-Feedback Control 
Linear systems 

In this subsection, we focus on systems of linear first-order 
PDEs of the form of Eq. 9 and address the problem of syn- 
thesizing a distributed state-feedback controller that forces 
the output of the closed-loop system to track a reference in- 
put in a prespecified manner. More specifically, we consider 
distributed state-feedback laws of the form: 

u =  S x f s u ,  (25) 

where S is a linear operator mapping X" into R', s is an 
invertible diagonal matrix of functionals, and u E R' is the 
vector of reference inputs. The structure of the control law of 
Eq. 25 is motivated by available results on stabilization of 
linear PDEs systems via distributed state feedback (e.g., 
Wang, 1966; Balas, 1986) and the requirement of output 
tracking. Substituting the distributed state-feedback law of 
Eq. 25 into the system of Eq. 9, the following closed-loop 
system is obtained: 

J = Cloc. (26) 

It is clear that feedback laws of the form of Eq. 25 preserve 
the linearity with respect to the reference input vector u. We 
also note that the evolution of the linear PDE system of Eq. 
26 is governed by a strongly continuous semigroup of bounded 
linear operators, because d: generates a strongly continuous 
semigroup and b(z )  S x ,  b(z)sv are bounded, finite-dimen- 
sional perturbations (Friedman, 1976), ensuring that the 
closed-loop system has a well-defined solution (see the sub- 
section titled "Review of System-Theoretic Properties"). 
Proposition 2 that follows allows specifying the order of the 
input/output response in the closed-loop system (the proof is 
given in the Appendix). 

Consider the system of linear first-order 
PDEs of Eq. 9 subject to the boundary condition of Eq. 2, for 
which Assumptions 1 and 3 hold. Then, a distributed state- 
feedback control law of the form of Eq. 25 preserves the 
characteristic index u, in the sense that the characteristic 
index of J with respect to u in the closed-loop system of Eq. 
26 is equal to u. 

The fact that the characteristic index between the output J 
and the reference input u is equal to u suggests requesting 
the following input/output response for the closed-loop sys- 
tem: 

Proposition 2. 

d'J 
y,dt" + ... + y1 - + j j  = 0 ,  

dt (27) 

where y l ,  y2, ..., yv are adjustable parameters. These pa- 
rameters can be chosen to guarantee input/output stability 
and enforce desired performance specifications in the 
closed-loop system. Referring to Eq. 27, note that, motivated 
by physical arguments, we request, for each pair (j j i ,ui) ,  i = 1, 
. . . , I, an input/output response of order u with the same 
transient characteristics [i.e., the parameters yk are chosen 
to be the same for each pair ( y i , u i ) ] .  This requirement can 
be readily relaxed if necessary to impose responses with dif- 
ferent transient characteristics for the various pairs ( J ' ,  u').  

We are now in a position to state the main result of this 
subsection in the form of a theorem (the proof can be found 
in the Appendix). 

Consider the system of linear first-order PDEs 
of Eq. 9 subject to the boundary condition of Eq. 2, for which 
Assumptions 1 and 3 hold. Then, the distributed state-feed- 
back law: 

Theorem 1. 
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enforces the input/output response of Eq. 27 in the closed- 
loop system. 

Remark 3. Referring to the controller of Eq. 28, it is clear 
that the calculation of the control action requires algebraic 
manipulations as well as differentiations and integrations in 
space, which is expected because of the distributed nature of 
the controller. 

Remark 4. The distributed state-feedback controller of 
Eq. 28 was derived following an approach conceptually simi- 
lar to the one employed for the synthesis of inversion-based 
controllers for ODE systems. We note that this is possible, 
because, for the system of Eq. 9, (a) the solution is well- 
defined (i.e., the evolution of the state is locally governed by 
a strongly continuous semigroup of bounded linear opera- 
tors); (b) the input/output spaces are finite dimensional; and 
(c) the manipulated input and the controlled output are dis- 
tributed in space. These three requirements are standard in 
most control theories for PDE systems (e.g., Balas, 1986, 1991) 
and only the third one poses some practical limitations ex- 
cluding processes where the manipulated input appears in the 
boundary. 

The class of distributed state-feedback laws of 
Eq. 25 is a generalization of control laws of the form 

Remark 5. 

(29) - 
u =  sx, 

where 5 is a bounded linear operator mapping X" into R', 
which are used for the stabilization of linear PDEs. The usual 
approach followed for the design of the gain operator 5 uti- 
lizes optimal control methods (e.g., Lo, 1973; Ray, 1981). 

In the case of the heat exchanger 
example introduced earlier, it can be easily verified that the 
characteristic index of the system of Eq. 12 is equal to one. 
Therefore, a first-order input/output response is requested 
in the closed-loop system: 

Example (Continued). 

(30) 

Using the result of Theorem 1, the appropriate control law 
that enforces this response is 

Quasi-linear systems 
In this subsection, we consider systems of quasi-linear 

first-order PDEs of the form of Eq. 7 and control laws of the 
form: 
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where g(x) is a nonlinear operator mapping X" into R', 
S ( x )  is an invertible diagonal matrix of functionals, and u E R' 
is the vector of reference inputs. The class of control laws of 
Eq. 32 is a natural generalization of the class of control laws 
considered for the case of linear systems (Eq. 25). Under the 
control law of Eq. 32, the closed-loop system takes the form: 

It is straightforward to show that the preceding system has 
locally a well-defined solution, and the counterpart of Propo- 
sition 2 also holds, that is, the characteristic index of the out- 
put J with respect to u in the closed-loop system of Eq. 33 is 
equal to u, which suggests seeking a linear input/output re- 
sponse of the form of Eq. 27 in the closed-loop system. Theo- 
rem 2 that follows states the controller synthesis result for 
this case. 

Consider the system of quasi-linear first-order 
PDEs of Eq. 7 subject to the boundary condition of Eq. 2, for 
which Assumptions 1 and 3 hold. Then, the distributed 
state-feedback law: 

Theorem 2. 

enforces the input/output response of Eq. 27 in the closed- 
loop system. 

Remark 6. Theorem 2 provides an analytical formula of a 
distributed nonlinear state-feedback controller that enforces 
a linear input/output response in the closed-loop system. In 
this sense, the controller of Eq. 34 can be viewed as a coun- 
terpart of input/output linearizing control laws for nonlinear 
ODE systems (see Kravaris and Arkun, 1991, and the refer- 
ences therein), in the case of infinite-dimensional systems of 
the form of Eq. 7. 

Closed-Loop Stability 
The goal of this section is to define a concept of zero 

dynamics and the associated notion of minimum phaseness 
for systems of first-order hyperbolic PDEs of the form of Eq. 
9 (Eq. 7), subject to the boundary conditions of Eq. 2; this 
will allow us to state conditions that guarantee exponential 
stability of the closed-loop system. We will initially define the 
concept of zero dynamics for the case of linear systems (the 
definition for the case of quasi-linear systems is completely 
similar and will be omitted for brevity). Our definition is 
analogous with the one given in Byrnes et al. (1994) [see also 
Pohjolainen (198l)l for the case of linear parabolic PDE sys- 
tems with boundary feedback control. 
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Definition 3. The zero dynamics associated with the sys- 
tem of linear first-order PDEs of Eq. 9 is the system obtained 
by constraining the output to zero, that is, the system: 

d 
- A -  + BX - w b ( . ~ )  

ax ax 

dt az 
_ -  

X C?k A - + B  x (35) { id: 1 " )  

From Definition 3, it is clear that the dynamical system that 
describes the zero dynamics is an infinite-dimensional one. 
The concept of zero dynamics allows us to define a notion of 
minimum-phaseness for systems of the form of Eq. 9. More 
specifically, if the zero dynamics is exponentially stable, the 
system of Eq. 9 is said to be minimum phase, while if the 
zero dynamics is unstable, the system of Eq. 9 is said to be 
nonminimum phase. 

We have now introduced the necessary elements that will 
allow us to address the issue of closed-loop stability. Proposi- 
tion 3 that follows provides conditions that guarantee the ex- 
ponential stability of the closed-loop system (the proof can be 
found in the Appendix). 

Consider the system of linear first-order 
PDEs of Eq. 9 for which Assumptions 1 and 3 hold, under 
the controller of Eq. 28. Then, the closed-loop system is ex- 
ponentially stable (i.e., the differential operator of the 
closed-loop system generates an exponentially stable semi- 
group) if the following conditions are satisfied: 

Proposition 3. 

1. The roots of the equation 

1 + y*s + ... + yrsU = 0 (36) 

lie in the open left-half of the complex plane. 
2. The system of Eq. 35 is exponentially stable. 
Remark 7. Referring to the preceding proposition, we note 

that the first condition addresses the input/output stability of 
the closed-loop system and the second condition addresses its 
internal stability. Note also that the first condition is associ- 
ated with the stability of a finite number of poles, while the 
second condition concerns the stability of an infinite number 
of poles. This is expected since the input/output spaces are 
finite dimensional, while the state of the system evolves in 
infinite dimensions. 

From the result of Proposition 3, it follows that 
the controller of Theorem 1 places a finite number of poles 
of the open-loop infinite-dimensional system of Eq. 9 at pre- 
specified (depending on the choice of parameters yk) loca- 
tions, by essentially canceling an infinite number of poles, 
those included in the zero dynamics. Furthermore, the 
closed-loop system is exponentially stable if the zero dynam- 
ics of the original system is exponentially stable (Condition 2 
of Proposition 3). This result is analogous to available results 
of stabilization of systems of linear PDEs of the form of Eq. 
9 with feedback law of the form of Eq. 29. Specifically, it is 
well known (Russell, 1978; Balas, 1986) that control laws of 
the form of Eq. 29 allow placing a finite number of open-loop 

Remark 8. 
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poles at prespecified locations, while also guaranteeing the 
exponentially stability of the closed-loop system, if the pair 
[& wb( z)] is stabilizable (i.e., the remaining infinite uncon- 
trolled poles are in the open left-half of the complex plane). 

From the result of Proposition 3 and the dis- 
cussion of Remark 8, it is clear that the derivation of expo- 
nential-stability results for the closed-loop system under the 
control law of Eq. 25 (or the control law of Eq. 29) requires 
that the open-loop system be minimum phase (or stabiliz- 
able). The a priori verification of these properties can in 
principle be performed by utilizing spectral theory for opera- 
tors in infinite-dimensions (Friedman, 1976; Pohjolainen, 
1981). However, these calculations are difficult to perform in 
the majority of practical applications. In practice, the stabiliz- 
ability and minimum-phase properties can be checked 
through simulations. 

In closing this section, we address the issue of closed-loop 
stability for systems of quasi-linear PDEs. Proposition 4 that 
follows provides the counterpart of the result of Proposition 
3 for the case of quasi-linear systems. 

Consider the system of quasi-linear first- 
order PDFs of Eq. 7 for which Assumptions 1 and 3 hold, 
under the controller of Eq. 34. Then, the closed-loop system 
is locally exponentially stable (i.e., the differential operator 
of the linearized closed-loop system generates an exponen- 
tially stable semigroup) if the following conditions are satis- 
fied: 

Remark 9. 

Proposition 4. 

1. The roots of the equation 

lie in the open left-half of the complex plane. 
2. The zero dynamics of the system of Eq. 7 is locally ex- 

ponentially stable. 
Remark 10. The exponential stability of the closed-loop 

system guarantees, in both the linear and the quasi-linear 
case, that in the presence of small modeling errors, the states 
of the closed-loop system will be bounded. Furthermore, since 
the input/output spaces of the closed-loop system are finite 
dimensional, and the controller of Eq. 34 enforces a linear 
input/output dynamics between 7 and u ,  it is possible to im- 
plement a linear error feedback controller with integral ac- 
tion around the (7 - u )  loop to ensure asymptotic offsetless 
output tracking in the closed-loop system, in the presence of 
constant unknown model parameters and disturbances. 

Output-Feedback Control 
In this section, we will consider the synthesis of distributed 

output-feedback controllers for systems of the form of Eq. 9 
(Eq. 7). The requisite controllers will be synthesized employ- 
ing a combination of the developed distributed state-feed- 
back controllers with distributed state observers. Analysis of 
the resulting closed-loop system allows us to derive precise 
conditions that guarantee that the requirements of exponen- 
tial stability and output tracking are enforced in the closed- 
loop system. 

The conventional approach followed for the design of state 
estimators for linear PDE systems is to discretize the system 
equations and then apply results from estimation theory for 
ODE systems [e.g., Sorensen et al. (1980)l. It has been shown, 
however, that methods for state estimation that treat the full 
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distributed parameter system lead to state observers that yield 
significantly superior performance (Ray, 1981; Cooper et al., 
1986). In this direction, available results on state estimation 
for systems of first-order hyperbolic PDEs concern mainly the 
use of Kalman filtering theory for the design of distributed 
state observers (Pell and Aris, 1970; Yu et al., 1974). 

Linear systems 

state-space description (Pell and Aris, 1970): 
We consider state observers with the following general 

where 6 is a bounded linear operator, mapping R' into X", 
that has to be designed so that the operator go = d: - 6 Q k  
generates an exponentially stable semigroup (note that this is 
possible by Assumption 2). The system of Eq. 38 consists of a 
replica of the process system and the term 6 ( q  - Q p g )  used 
to enforce a fast decay of the discrepancy between the esti- 
mated and the actual values of the states of the system. In 
practice, the design of the operator 6 can be performed by 
(a) simple pole placement in the case where the output mea- 
surements are not corrupted by noise, or (b) Kalman filtering 
theory, in the case where the output measurements are noisy. 

Theorem 3 that follows provides a state-space realization 
of the output-feedback controller resulting from the combi- 
nation of the state observer of Eq. 38 with the state feedback 
controller of Eq. 28 (the proof can be found in the Appendix). 

Consider the system of linear first-order PDEs 
of Eq. 9 subject to the boundary condition of Eq. 2, for which 
Assumptions 1, 2,3, and the conditions of Proposition 3 hold. 
Consider also the linear bounded operator 6 designed such 
that the operator So = d: - S Q p  generates an exponen- 
tially stable semigroup. Then, the distributed output-feed- 
back controller 

Theorem 3. 

(a) Guarantees exponential stability of the closed-loop sys- 
tem 
(b) Enforces the input/output response of Eq. 27 in the 
closed-loop system if x(z, 0) = g(z,  0). 

In the case of open-loop stable systems, a 
more convenient way to reconstruct the state of the system is 
to consider the observer of Eq. 38 with the operator 6 set 
identically equal to zero. This is motivated by the fact that 
the open-loop stability of the system guarantees the conver- 

Remark 11. 
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gence of the estimated values to the actual ones with tran- 
sient behavior depending on the location of the spectrum of 
the operator of Eq. 14. 

Available results on stabilization of systems 
of linear hyperbolic PDEs via distributed output feedback 
[e.g., Ray (1981), Balas (198611 concern the design of con- 
trollers with the following general state-space description: 

Remark 12. 

ii = sg, 

where (R is a bounded linear operator, mapping R' into X". 
We note that the main similarity between a controller of the 
form of Eq. 40 and the controller of Eq. 39 is that both are 
infinite dimensional (because of the state observers utilized), 
while their main difference lies in the fact that the controller 
of Eq. 39 guarantees exponential stability of the closed-loop 
system, if the open-loop system is minimum-phase and de- 
tectable, while a controller of the form of Eq. 40 will expo- 
nentially stabilize the closed-loop system, if the open-loop 
system is jointly stabilizable/detectable (Balas, 1986). 

Referring to the linear PDE system 
of Eq. 12, we note that A = - uI < 0, while C, = 0, and thus 
the system is open-loop stable according to the result of Re- 
mark 1. The open-loop stability of the system allows using a 
feedback controller, which consists of the distributed state- 
feedback controller coupled with an open-loop observer. The 
appropriate controller takes the form: 

Example (Continued). 

all 1 
_ -  u/- - ag + a- 

drl 

at  drZ Y1 

_ -  

Quasi-linear systems 
In this subsection, we consider the synthesis of distributed 

output-feedback controllers for systems of the form of Eq. 7. 
Given the lack of available general results on state estimation 
of such systems, we will proceed with the design of a nonlin- 
ear state observer that guarantees local exponential conver- 
gence of the state estimates of the actual state values. In par- 
ticular, the following state observer will be used to estimate 
the state vector of the system in space and time: 

where g denotes the observer state vector and s is a linear 
operator, mapping R' into X", designed on the basis of the 
linearization of the system of Eq. 42 so that the eigenvalues 
of the operator E, = E - $Qp(z )  lie in the left-half plane. 
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The state observer of Eq. 42 can be coupled with the 
state-feedback controller of Eq. 34 to derive an output-feed- 
back controller that guarantees output tracking and closed- 
loop stability. The resulting controller is given in Theorem 4 
that follows (the proof is given in the Appendix). 

Consider the system of quasi-linear first-order 
PDEs of Eq. 7 subject to the boundary condition of Eq. 2, for 
which Assumptions 1, 2, 3, and the conditions of Proposition 
4 hold. Consider also the bounded operator @ designed such 
that the operator Eo = - g Q p ( z )  generates an exponen- 
tially stable semigroup. Then, the distributed output feed- 
back controller 

Theorem 4. 

(a) Guarantees local exponential stability of the closed-loop 
system 
(b) Enforces the input/output response of Eq. 27 in the 
closed-loop system if x(z,  0) = q(z,O). 

In analogy with the linear case, for open-loop stable sys- 
tems, the operator P can be taken to be identically equal to 
zero, since the local exponential stability of the open-loop 
system guarantees the local convergence to the estimated val- 
ues to the actual values. 

Note that in the case of imperfect initializa- 
tion of the observer states (i.e., ,(z,O) # x(z,O)), although a 
slight deterioration of the performance may occur (i.e., the 
input/output response of Eq. 27 will not be exactly imposed 
in the closed-loop system), the output-feedback controllers of 
Theorems 3 and 4 guarantee exponential stability and asymp- 
totic output tracking in the closed-loop system. 

The nonlinear distributed output feedback 
controller of Eq. 43 is an infinite-dimensional one, due to the 
infinite-dimensional nature of the observer of Eq. 42. There- 
fore, a finite-dimensional approximation of the controller has 
to be derived for on-line implementation. This task can be 
performed utilizing standard discretization techniques such 
as finite differences and orthogonal collocation. It is ex- 
pected that some performance deterioration will occur in this 
case, depending on the discretization method used and the 
number and location of discretization points (see the chemi- 
cal reactor application presented in the next section). Finally, 
we note that it is well established (e.g., Balas, 1986) that as 

Remark 13. 

Remark 14. 
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Figure 2. Nonisothermal plug-flow reactor. 

the number of discretization points increases, the closed-loop 
system resulting from the PDE model plus an approximate 
finite-dimensional controller converges to the closed-loop 
system resulting from the PDE model plus the infinite- 
dimensional controller, guaranteeing the well-posedness of 
the approximate finite-dimensional controller. 

Application to a Nonisothermal Plug-Flow Reactor 
Process description 

Consider the nonisothermal plug-flow reactor shown in 
Figure 2 where two first-order reactions in series take place: 

where A is the reactant species, B is the desired product, 
and C is an undesired product. The inlet stream consists of 
pure A of concentration C,, and temperature TAo. The reac- 
tions are endothermic, and a jacket is used to heat the reac- 
tor. The reaction rate expressions are assumed to be of the 
following form: 

r2 = - k 2 0 e - E f l T t B ,  

where k,,, kzo, E l ,  E ,  denote the pre-exponential constants 
and the activation energies of the reactions. Under the fol- 
lowing assumptions: 

Perfect radial mixing in the reactor 
Constant volume of the liquor in the reactor 
Constant density and heat capacity of the reacting liquid 
Negligible diffusive and dispersive phenomena 

the material and energy balances that describe the dynamical 
behavior of the process take the following form: 

Mole balance for the species A 

Mole balance for the species B 

Reactor energy balance 
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Figure 3. Steady-state profiles of reactor state vari- 
ables. 

subject to the following boundary conditions: 

where C, and C,  denote the concentrations of the species A 
and B in the reactor; T, denotes the temperature of the reac- 
tor CAs, C,,, Trs denote the steady-state profiles for the state 
variables; AH,,, AH,, denote the enthalpies of the two reac- 
tions; pm, cpm denote the density and heat capacity of the 
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Table 1. Process Parameters 

u, = 1.0 
L = 1.0 m 
v, = 10.0 It 
E, = 2.0 x 104 
E,  = 5.0 x 104 
k , ,  = 5.0 x 10” 
k,, = 5.0 X lo6 

m min- ’ 
kcal kmol- 
kcal kmol- 
min-’ 
min- 
kcal * kmol- ‘ .K-  

kcale kmol - 

R = 1.987 
AH, = 548,000.1 kcale kmol-’ 
AH, = 986,000.1 

cpm = 0.231 kcal . kg- K- ’ 
p, = 0.09 kg-lt- ’ 
cpj  = 2.5 kcal. kg- K -  ’ 

pj = 1.44 kg-lt-’ 

CAo = 4.0 mol -It-I 
c,, = 0.0 mol .It- 
TAo = 320.0 K 
qo, = 350.0 K 
”;’ = 1.0 It 
yjc = 0.001 min 
Fjf = 28.87 1t.min-l 
Fj: = 43.66 It min- 
42 = 59.63 It - min- 
$f = 72.34 It * rnin- 
I;;: = 77.23 It * min- 

v, = 2,000.0 kcale min- K- 

fluid in the reactor; V ,  denotes the volume of the reactor; U, 
denotes the heat-transfer coefficient; I; denotes the spatially 
uniform temperature in the jacket; and C,, and TAo denote 
the concentration and temperature of the inlet stream in the 
reactor. The values used for process parameters are given in 
Table 1, while the corresponding steady-state profiles are 
shown in Figure 3. The control objective is the regulation of 
the concentration of the species B throughout the reactor by 
manipulating the jacket temperature T .  We note that, in 
practice, T is usually manipulated indirectly through manip- 
ulation of the jacket inlet flow rate (this implementation is- 
sue is addressed in the subsection titled “Practical Imple- 
mentation Issues’?. 

Setting: 

the original set of equations can be put in the form of Eq. 1 
with: 

1 - k 1 0 e - E @ x 3 ~ 1  
k ,oe-Ef lx3x ,  - k 20 e - E f l x 3 ~ 2  

Vol. 42, No. 11 3073 



(45) 

u' (t) u2 (t) Ti3 (t) u4 (t) 2 ( t )  I 

It is clear that the matrix A ( x )  is a real symmetric and its 
eigenvalues satisfy Eq. 4. Moreover, the three eigenvalues of 
A ( x )  are identical, which implies that the preceding system of 
quasi-linear PDEs is weakly hyperbolic. 

Figure 4. Specification of the control problem for the 
plug-flow reactor. 

Control problem formulation - Controller synthesis 
In this subsection, we proceed with the formulation and 

solution of the control problem. More specifically, it will be 
assumed that there are five control actuators that are charac- 
terized by a unity distribution function, that is, bi(z)Hi = H i  
for all i = 1, . . ., 5. The control actuators are taken to act 
over equispaced intervals, that is: 

E l ( t ) ,  [0.0,0.21 
i i 2 ( t ) ,  [0.2,0.41 

i i4 ( t ) ,  [0.6,0.81 
c5(t  1, [0.8,1 .Ol. 

(46) 

The desired performance requirement is to control the aver- 
aging outputs: 

0.2 
m = /  5.0X2(2,t)dZ [ 0.0 

0.4 
y 2 ( t )  = / 5.0x2(z,  t )  dz 

(47) 
0.6 

j j ( t ) =  j j 3 ( t ) = /  5 .0x2( z , t )d z  { 0.4 

1 .0 
j j 5 ( t ) = /  5 .0x2( z , t )d z .  I 0.8 

Using these relations, the model that will be used for the 
synthesis of the output-feedback controller is given by 

where the matrix A ( x )  and the vector functions f ( x )  and 
g ( x )  are specified in Eq. 45. The reactor atong with the con- 
trol system is given in Figure 4. Referring to the system of 
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Eq. 48, its characteristic index can be calculated using Defini- 
tion 2. In particular, we have that: 

1 af2 
- g 3 d z # 0 ,  V i = l ,  ..., 5 .  (49) 

Thus, the characteristic index of the system of quasi-linear 
PDEs of Eq. 48 is equal to 2. This allows us to request the 
following second-order response in the closed-loop system 
between 7' and ui, for all i = 1, . . . , 5: 

(50) 

Moreover, the eigenvalues of the matrix A(x)  are negative 
and the boundary conditions are specified in a single point. 
Thus, the result of Remark 1 applies directly, yielding that 
the system is open-loop stable. Furthermore, it was also veri- 
fied through simulations that the process is minimum-phase. 
Therefore, the developed control method can be applied and 
the distributed output feedback controller of Theorem 4, with 
$= 0, was employed in the simulations (note that due to 
open-loop stability of the process the controller does not use 
measured process outputs). The explicit form of the con- 
troller is as follows: 
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Figure 5. Output profiles for a 30% change in reference inputs. 
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Figure 6. Manipulated input profiles for a 30% increase in reference inputs. 
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+ L f ) 2 h ( q ) ] ,  i = 1,  ..., 5, (51) 
j =  1 

where the analytical expressions of the terms included in the 
controller are as follows: 

i - l i  all1 dz d q 2  dz  d q 3  dz  
d f 2  d771 d f 2  d172 d f 2  3773 ( - u l )  --+--+-- dz - - 

(52) 

Figure 7. Profile of concentration evolution of species 
B throughout the reactor, for a 30% increase 
in the reference inputs. 

The controller was tuned to give an overdamped response 
between the output jj' and the reference input ui .  In particu- 
lar, the parameters y1 and y2  were chosen to be: 

y1 = 3.0min, y2  = 0.5min2 

to achieve the following time constant and damping factor: 

7 = 0.707min, 5 = 2.12 

Evaluation of controller performance 
Several simulation runs were performed to evaluate the 

performance of the distributed output feedback controller of 
Eq. 51. The method of finite differences was employed to 

0 5 10 
0.75L 

Time (min.) 
, 

Figure 8. Profile of concentration of species B in the 
outlet of the reactor, for a 30% increase in ref- 
erence inputs. 
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Figure 9. Output profiles for a 30% increase in the reference inputs-discretization-based controller. 
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derive a finite-dimensional approximation of the output- 
feedback controller of Eq. 51, with a choice of 200 discret- 
ization points. In all the simulation runs, the process was 
initially assumed to be at steady state. 

In the first simulation run, we addressed the reference 
input tracking capabilities of the controller. Initially, a 30% 
increase in the reference inputs ui, i = 1, . . . , 5 was imposed 
at time t = 0.0 min. Figure 5 shows the corresponding output 
profiles. It is clear that the controller enforces the requested 
input/output response in the closed-loop system and regu- 
lates the output at the new reference input values. The cor- 
responding input profiles for each control actuator are 
depicted in Figure 6. We observe that the control action, 
required by each actuator to drive the corresponding output 
to the new reference value, increases as we approach the out- 
let of the reactor. This is expected, because the amount of 
heat required to maintain the reaction rate that yields the 
necessary conversion increases along the length of the reac- 
tor. Figure 7 shows the evolution of the concentration of 
species B throughout the reactor, while Figure 8 shows the 
profile of the concentration of species B at the outlet of the 
reactor. We observe that by using a finite number of control 
actuators, we achieve satisfactory control of the output vari- 
able C, at all positions and times. 

For the sake of comparison, we also consider the control of 
the reactor using a controller that was designed on the basis 
of a model resulting from discretization of the original PDE 
system in space. In particular, the method of finite differ- 
ences was used to discretize the original PDE model of Eq. 
48 into a set of five (equai to the number of control actua- 
tors) ordinary differential equations in time. Subsequently, an 
input/output linearizing controller (Kravaris and Arkun, 
1991) was designed on the basis of the resulting ODE model. 
The corresponding output profiles are shown in Figure 9, 
while Figure 10 shows the profile of the concentration of 
species B in the outlet of the reactor. It is clear that this 
controller leads to poor performance, because it does not ex- 
plicitly take into account the spatially varying nature of the 
process. 

1 -  

- 0.95- 4 
v 2 
h - v 
c: 0.9- 

8 
0.85 

0.8' 

Practical implementation issues 
The distributed output feedback controller of Eq. 51 as- 

sumes that the jacket temperature can be manipulated di- 

- 

l ' 0 5 L  

0.75' 
0 10 20 30 40 50 

Time (min.) 

Figure 10. Profile of concentration of species 6 in the 
outlet of reactor, for a 30% increase in the 
reference inputs-discretization-based con- 
troller. 

(TO-7) 
~j UfL, i =  1, ...) 5, (53)  + 

I 

where qi is the steady-state jacket inlet flow rate; ";i is the 
jacket volume; pi, cpj, are the density and heat capacity of the 
fluid in the jacket; T,b is the temperature of the inlet stream 
to a jacket; and uil is the jacket inlet flow rate (chosen as the 
new manipulated input) in deviation variable form. Request- 
ing a first-order response of the form: 

dT.' . , 

y .  + T,' = E', 
dt (54) 

where yj, is the time constant, the necessary controller takes 
the form: 

rectly. In practice, the jacket temperature is usually manipu- 
lated indirectly through the jacket inlet flow rate. This can be 
achieved in a straightforward way by designing a controller to 
ensure that the jacket temperature obtains the values re- 
quested by the distributed controller of Eq. 51. 

Specifically, under the assumption of perfect mixing and 
constant volume, the dynamic model of the jacket takes the 
form 

The parameter yjc should be chosen such that the response 
of Eq. 54 is sufficiently fast compared to the response of Eq. 
50, while estimates of T$z, t )  can be obtained from the state 
observer of Eq. 51. 

The performance of the control scheme resulting from the 
combination of this controller with the distributed controller 
of Eq. 51 was evaluated through simulations on the plug-flow 
reactor. The values used for the parameters and the steady- 
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Figure 11. Output profiles for a 30% change in reference inputs-jacket inlet flow rates are used as the manipulated 
inputs. 
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Figure 12. Profiles of jacket inlet flow rates for a 30% increase in reference inputs. 
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state values of the jacket inlet flow rate Ti, i = 1, . . . , 5, are 
given in Table 1. Figure 11 shows the output profiles for the 
same 30% increase in the value of the reference inputs as 
previously (the profiles for the jacket inlet flow rate are dis- 
played in Figure 12). Clearly, the performance of the control 
scheme is excellent, enforcing closed-loop output responses 
that are very close to the ones obtained by neglecting the 
jacket dynamics (compare with Figure 5) .  

Conclusions 
In this work, we develop an output-feedback control 

methodology for systems described by quasi-linear first-order 
hyperbolic PDEs, for which the manipulated input, the con- 
trolled output, and the measurable output are distributed in 
space. The central idea of our approach is the combination 
of the theory of PDEs and concepts from geometric control. 
Initially, a concept of characteristic index was introduced and 
used for the synthesis of distributed state-feedback con- 
trollers that guarantee output tracking in the closed-loop sys- 
tem. Conditions that ensure exponential stability of the 
closed-loop system were derived. Analytical formulas of out- 
put-feedback controllers were also derived through a combi- 
nation of suitable state observers with the developed dis- 
tributed state-feedback controllers. The proposed control 
methodology was implemented, through simulations, on a 
nonisothermal plug-flow reactor, modeled by three quasi- 
linear hyperbolic PDEs. Comparisons with a control method 
that involves discretization in space of the original PDE model 
and application of standard nonlinear control methods for 
ODE systems established that the new control method yields 
superior performance. 
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Notation 
A ( z ) =  matrices 
c’(z) = performance specification function for the ith output 

F= outlet flow rate 
F ,  = inlet flow rate 
T, = temperature of the wall 
ii = manipulated input vector 

El = ith manipulated input 
u‘= reference input for the ith actuator 
x = vector of state variables 

u= characteristic index of j j  with respect to E 
y,., yj, = adjustable parameters 

Math symbols 
L f h  = Lie derivative of a scalar field h with respect to the vec- 

Lkfh = kth order Lie derivative 
tor field f 

L, L!- Ih = mixed Lie derivative 
R = real line 
E = belongs to 
T= transpose 

11 - 112 = 2-norm in X 
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Appendix 
The proofs of Theorem 2 and Proposition 4, concerning 

the case of systems of quasi-linear PDEs, are conceptually 
similar to the ones given for the linear counterparts of these 
results, and will therefore be omitted for brevity. 

dt 

LT - 1  - = e k ( A z + B ) L T x + e k ( A z + B )  d”f d d w b ( z ) S x  
dt 

This completes the proof of the proposition. 

Proof of Theorem 1 

the form: 
Under the controller of Eq. 28, the closed-loop system takes 

u 
Proof of Proposition 2 X u-ekx- C y v e k  i v = l  

Consider the closed-loop system of Eq. 26. Differentiating 
the output of this system with respect to time, we obtain the f = ekx. (A31 
following set of equations: 

d2f  d 

dt2 d Z  
-= e k  ( A - + B + + b ( z ) S  

d 
A-+B++b(z)S  

dt * 3.2 

It is sufficient to show that Cr = (T. Note that e k [  A( + B 
w b ( ~ ) S ] =  e k [ A ( d / d z ) +  B ] +  ekwb(z)S  = e k [ A ( d / d z )  
+ B],  because ekwb(z) = 0. Similarly, it can be shown, by 
induction, that ek[A(d/dz)+ B + wb(z)S l i  = Ck[A(d/dz) 
+ B]’, for i = 1, . . ., (T - 1. Using this simplification in the 
expressions for the time derivatives (Eq. Al) it follows di- 
rectly that 

y=ekx 

dt 

From the result of Proposition 2, it follows that a differentia- 
tion of the output of the system of Eq. A3 yields the follow- 
ing equations: 

d ” C ? k A - + B x  
-=  dt ( dz ) 

- = ~ k ( A ~ + B ) u x + C ! k ( A ~ + B ) L T - l w b ( z )  d”f d d 

dt 

d 

Substituting these relations to Eq. 27, one can easily show 
that the result of the theorem holds. 

Proof of Proposition 3 

A2 the closed-loop system of Eq. A3 takes the form: 
Utilizing the expressions for .the output derivatives of Eq. 
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Defining the state vectors 5, = (d i - ' j ) /d t i - ' ,  i = 1, . . . , o, 
the system of Eq. A5 can be equivalently written in the form 
of the following interconnection: 

i l  = 52 

5,- 1 = 5, 

d 
A - + B x + w b ( z )  

dx dx 
-= 
at dz 

where 

Condition 1 of the proposition guarantees that the 5-subsys- 
tem of the preceding interconnection is exponentially stable, 
and thus the following condition holds: 

where 1 . 1  denotes the standard Eucledian norm; K,, a ,  are 
positive real numbers, with K ,  >_ 1; and lo is the value of the 
variable at time t = 0 {i.e., zo = (l/y,)[u(O) - 5(1,0] - 
Z~::(yv/yu)~( ,+lp}.  From Condition 2, we have that the dif- 
ferential operator of the system of Eq. 35 generates an expo- 
nentially stable semigroup 0, that is, 11u112 < K2e-'2', where 
K,, a2 are positive real numbers, with K ,  2 1. Utilizing Eq. 
15, the following estimate can be written for the state x of 
the system of Eq. A5: 

where 
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Substituting Eq. A7 into Eq. A8,  we have that: 

Let 6 = a, - a,. If S = 0, II x 112 I K2 II xo  112 e-02' + K 2 K ,  
II W(z> 112 I io I eP2 ' t  I K ,  II xo 112 e-a2' + K2Kl  II W ( z )  112 
( 1  2, I/a2 - a3)e-'3', where 0 < a3 < u2.  Clearly, in this case, 
the closed-loop system is exponentially stable. Furthermore, 
if 6 > 0, II x II 2 I K ,  II xo  I1 Ze-",' + K,Kl II W(z)112(1 zo 
1/6)e-"1'(1- e-(a2-ai)t), while if S < 0, II x 112 I K2 I1 x o  112 
e-"2'+ K,K, ( 1  W(z) 1 1 2  (I to 1/1 s I)e-a2'(1- e(az-al)f). In 
either case ( 8  > 0, 6 < O), and we have that: 

where ii = min{u,, a2}.  From Eqs. A7-Al l  the exponential 
stability of the closed-loop system of Eq. A5 follows directly. 

Proof of Theorem 3 

39 in the system of Eq. 9, we have: 
Part I: Stability Anabsis. Substituting the controller of Eq. 

Introducing the error coordinate Z = x - 7, the preceding 
closed-loop system can be written as 

d 
-A-  + BX + w b ( z )  [ y,ek ( A -  dz + B ) ' - lwb(z ) ] - '  

dx dx 
dt  dz 
_ -  

cr 

X u-C?Eoc- C y ,ek  i u = l  

where 
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Because the operator 6 is designed such that the operator 
d: - 6 Q p  generates an exponentially stable semigroup, the 
following estimate can be written for the evolution of the state 
Z of the preceding system: 

where Z,, denotes the vector of initial conditions and K,, ii 
are positive real numbers, with K ,  2 1. Furthermore, utiliz- 
ing Eq. 15 and the fact that the conditions of Proposition 3 
hold, the following inequality can be written for the state x 
of the system of Eq. A13: 

where K,, B are positive real numbers, with K ,  2 1. Substi- 
tuting the inequality of Eq. A15 into Eq. A16, and perform- 
ing similar calculations as in the proof of Proposition 3, it can 
be shown that the closed-loop system is exponentially stable. 

Under consistent initial- 
ization of the states x and 7, that is, x(z,O) = v(z,O), it fol- 
lows that Z(z,O) = 0. From the dynamical system for Z, it is 
clear that if Z(z,O) = 0, then Z(z, t )  = 0 for all t 2 0. Thus, 
the system of Eq. A13 reduces to 

Part 2: Input/Output Response. 

A direct application of Theorem 1 completes the proof of the 
theorem. 

Proof of Theorem 4 

43 in the system of Eq. 7, we have: 
Part 1: Stability Analysis. Substituting the controller of Eq. 

In order to perform a local analysis of the stability properties 
of the preceding system, we consider its linearization: 

Introducing the error coordinate Z = x - 7, the preceding 
closed-loop system can be written as 

- 1  

where 
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From the conditions of the theorem, we have that the x- 
subsystem (with Z = 0)  of the preceding interconnection is ex- 
ponentially stable and the &subsystem is also exponentially 
stable, because the operator $ is designed such that the op- 
erator - g Q p ( z )  generates an exponentially stable semi- 
group. Following an approach analogous to the one used in 
the proof of Proposition 3, one can show that the system of 
Eq. A20 is exponentially stable. Utilizing the result of Propo- 
sition 1, we have that the closed-loop system of Eq. A18 is 
locally exponentially stable, because the linearized system of 
Eq. A20 is exponentially stable. 

Under consistent initial- 
ization of the states x and 7, that is, x(z,O) = v(z,O), it fol- 
lows that Z(z, 0) = 0. From the dynamical system for Z, it is 
clear that if Z(z, 0)  = 0, then Z(z, t )  = 0 for all t 2 0. Thus, 
the system of Eq. A20 reduces to 

Part 2: Input/Output Response. 

Since the characteristic index between f and u is u, a differ- 
entiation of the output of the system of Eq. A22 yields the 

following expressions: 

f = e h ( x )  

Substituting the preceding relation into Eq. 27, one can easily 
show that the result of the theorem holds. 
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