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A feedforwardlfeedback control methodology is developed for nonlinear 
two-time-scale systems with disturbances, and is successfully applied to a 

catalytic continuous stirred tank reactor 
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Ahstraet-This paper deals with a class of two-time-scale 
nonlinear systems with time-varying disturbances, modeled 
within the framework of singular perturbations. Systems in 
both standard and nonstandard form are considered. For 
these systems, we synthesize well-conditioned control laws 
that utilize feedback of the full state vector and feedforward 
compensation of disturbances to exponentially stabilize the 
fast dynamics and enforce a pre-specified input/output 
behavior independently of the disturbances in the closed- 
loop slow subsystem. Singular perturbation methods are 
employed to establish that the discrepancy between the 
output of the closed-loop full-order system and the output of 
the closed-loop slow subsystem is proportional to the value 
of the singular perturbation parameter. The stability of the 
closed-loop system is analyzed using Lyapunov’s direct 
method and precise conditions that guarantee boundedness 
of the trajectories, for sufficiently small values of the singular 
perturbation parameter, are derived. The application of the 
developed methodology is illustrated through a catalytic 
continuous stirred tank reactor example, modeled as a 
singularly perturbed system in nonstandard form. Copyright 
0 1996 Elsevier Science Ltd. 
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inlet flow rate 
outlet flow rate 
vector fields associated with the 
manipulated input 
output scalar function 
mass transfer coefficient 
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adjustable parameters 
enthalpy of the reactions 
singular perturbation parameter 
state vector in normal-form 
coordinates 
fast state vector 
equilibrium steady-states for the 
fast dynamics in the closed-loop 
system 
relative orders with respect to 
the disturbance input vector in 
the reduced system 
density of the homogeneous 
phase 
density of the catalytic phase 
auxiliary functions 
matrices of smooth functions 
auxiliary functions 
Lyapunov function 
compact set 

Mathematical symbols 

Lfh Lie derivative of a scalar func- 
tion h with respect to the vector 
field f 

L,kh kth-order Lie derivative 
L,L;-‘h mixed Lie derivative 
R real line 
Iw’ i-dimensional Euclidean space 

T’ 
belongs to 
transpose 

I.1 standard Euclidean norm 
0 zero covector of dimension q 

1. INTRODUCTION 

The majority of physicochemical processes are 
inherently nonlinear and are often characterized 
by the copresence of dynamical phenomena 
occurring in multiple time-scales. Typical ex- 
amples of nonlinear multiple-time-scale systems 
include reaction networks (Breusegem and 
Bastin, 1991), catalytic reactors (Chang and 
Aluko, 1984; Denn, 1986), fluidized catalytic 
crackers (Monge and Georgakis, 1987), bioche- 
mical reactors (Bastin and Dochain, 1990; 
Christofides and Daoutidis, 1996), distillation 
columns (Levine and Rouchon, 1991), DC motor 
models (Kokotovic et al., 1986) and electrical 
circuits (Khalil, 1992). Singular perturbation 
theory has proven to be the natural framework 
for the analysis and control of multiple-time- 
scale systems (Kokotovic et al., 1986). Within 
this framework, stability issues (Saberi and 

Khalil, 1984; Christofides and Teel, 1995, 1996) 
and geometric properties (Fenichel, 1979) of 
nonlinear two-time-scale systems have been 
studied, and feedback control algorithms have 
been developed using optimal control (Kokoto- 
vie et al., 1986), the integral manifold approach 
(Sharkey and O’Reilly, 1987), sliding mode 
techniques (Heck, 1991) and geometric control 
methods (Christofides and Daoutidis, 1996). 

An additional problem encountered in the 
synthesis of control systems for actual processes 
is the presence of exogenous disturbances that 
may vary arbitrarily with time. It is well known 
that the presence of disturbances may cause 
significant degradation of the nominal perfor- 
mance and in some instances closed-loop 
instability. Motivated by this, the problem of 
disturbance decoupling for standard nonlinear 
systems has been studied extensively. Geometric 
conditions for the solvability of this problem via 
static state feedback (Isidori et al., 1981) and 
static feedforward/static state feedback (Moog 
and Glumineau, 1983) have been derived, while 
the solution of this problem through dynamic 
feedforward/static state feedback (Daoutidis and 
Kravaris, 1993) has also been obtained. Other 
available results on the treatment of disturbance 
inputs deal with the use of high-gain feedback to 
achieve almost disturbance decoupling (see e.g. 
Marino et al., 1988), and the use of feedforward 
compensation in the context of exact state-space 
linearization (Calvet and Arkun, 1988). How- 
ever, a direct application of the aforementioned 
control methods to multiple-time-scale systems 
may lead to controller ill-conditioning and/or 
instability of the closed-loop system due to 
possible slightly non-minimum-phase behavior 
(Kokotovic et al., 1986; Christofides and 
Daoutidis, 1996). 

The problem of rejection of disturbances for 
linear two-time-scale systems has been addressed 
using H” control methods (Khalil and Chen, 
1992; Pan and Basar, 1993), stochastic control 
methods (see Kokotovic et al., 1986, and 
references therein), and controller design via 
Lyapunov functions (Corless et al., 1993). For 
nonlinear two-time-scale systems with stable fast 
dynamics, combination of singular perturbation 
theory and adaptive control schemes (Taylor et 
al., 1989) has been proposed for this purpose. 
For nonlinear two-time-scale systems with 
unstable fast dynamics, an alternative approach 
that utilizes combination of singular perturba- 
tions and Lyapunov’s direct method has been 
proposed in Khorasani (1989). 

In this paper, a broad class of two-time-scale 
nonlinear systems modeled within the singular 
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perturbation framework, with measurable time- 
varying disturbances, is considered; these include 
both systems in standard and nonstandard form. 
For these systems, we synthesize well- 
conditioned control laws that utilize feedback of 
the full state vector and feedforward compensa- 
tion of disturbances to exponentially stabilize the 
fast dynamics and enforce a prespecified 
input/output behavior independently of the 
disturbances in the closed-loop slow subsystem. 
Singular perturbation methods are employed to 
establish that the discrepancy between the 
output of the closed-loop full-order system and 
the output of the closed-loop slow subsystem is 
proportional to the value of the singular 
perturbation parameter. Key differences in the 
nature of the control problem between systems 
in standard and nonstandard form are identified 
and discussed. The stability of the closed-loop 
system is analyzed using Lyapunov functions, 
and precise conditions that guarantee bounded- 
ness of the trajectories of the closed-loop system, 
for sufficiently small values of the singular 
perturbation parameter, are derived. Finally, the 
developed methodology is applied to a catalytic 
continuous stirred tank reactor modeled as a 
singularly perturbed system in nonstandard form. 

2. PRELIMINARIES 

We will consider two-time-scale nonlinear 
systems with the following state-space 
representation: 

i =fi(x) + Q,(x)z + g,(x)u + l%(x)@), 

Ei =fi(x) + Q&)z + g,(x)u + W,(x)d(t), (1) 

y = h(x), 

where x E X c R” and z E 2 t IF!?’ denote vectors 
of state variables, with X and Z open and 
connected sets that contain the equilibrium point 
of interest, u E R denotes the manipulated input, 
d = [d,(t) . . . d&t)] E UP denotes the vector of 
disturbance inputs, which are assumed to be 
measurable and sufficiently smooth functions of 
time, and y E R denotes the controlled output. E 
is a small positive parameter, which can be 
interpreted as the speed ratio of the slow versus 
the fast dynamical phenomena of the system. 
Furthermore, A(x), h(x), g,(x) and gz(x) are 
analytic vector fields, Q,(x), Qz(x) and W,(x), 
W,(x) are analytic matrices of dimensions n x p, 
p X p and n X q, p X q respectively, and h(x) is 
an analytic scalar function. In what follows, for 
simplicity, we shall suppress the time depen- 
dence in the notation of the disturbance input 
vector d(t). 

Modeling a two-time-scale process in a 
singularly perturbed form involves defining the 
singular perturbation parameter E, taking into 
account the physicochemical characteristics of 
the process, so that the separation of the fast and 
slow variables becomes explicit, with E 
multiplying the time derivatives of the fast 
variables z. E usually represents small process 
parameters or the reciprocal of large process 
parameters (e.g. small/large masses, capaci- 
tances). The reader may also refer to Kokotovic 
et al. (1986) for further discussion of this issue. 
Referring to the specific singularly perturbed 
system (1) we note that the parameter E appears 
only in the left-hand side (multiplying the time 
derivative i), while the fast variable z enters in a 
linear fashion. The first assumption is made for 
notational simplicity, and can readily be relaxed 
(see Remark 8), while the second assumption is 
consistent with the fact that in many chemical 
processes the main nonlinearities are associated 
with the slow variables, and also allows 
explicitness and analytical insight in the theoreti- 
cal development. 

The intrinsic two-time-scale property of the 
system (1) can be analyzed by decomposing it 
into separate reduced-order systems evolving on 
different time scales (Kokotovic et al., 1986). In 
particular, assuming that the system (1) is in 
standard form, i.e. the matrix Q*(X) is 
nonsingular uniformly in x E X, and, setting 
E = 0, the system (1) takes the form 

i =fi(x) + Q,(x)z, +g,(x)u + W,(x)d, (2) 

J%) + Q&h + g&h + W(xb’ = 0, (3) 

where z, denotes a quasi-steady state for z. The 
invertibility of the matrix Qz(x) guarantees that 
the system of algebraic equations (3) admits a 
unique solution for zs, of the form 

2, = -[Qdx)lp’M4 + &)u + W,(x)4 (4) 

Substituting (4) into (2) the following reduced 
system or slow subsystem is obtained: 

i = F(x) + G(x)u + W(x)d, 

y” = h(x), 
(5) 

where y” denotes the output associated with the 
slow subsystem and 

F(x) =h(x) - Qdx)[Q&)l-!/XX), 
G(x) = g,(x) - Q&MQ4W’&), (6) 
W(x) = w,(x) - Q,(x)[Q&)l-‘J%(x). 

Note that the input u and the disturbance input 
vector d appear in an affine and separable 
fashion in the system (5) because of the linearity 
in z in the original system. To obtain a 
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representation of the system that describes the 
fast dynamics of the system (l), we define a fast 
time scale 

,=I 
E’ (7) 

In this new time scale, the original system takes 
the form 

2 = h(x) + Qz(x)z + g,(x)u + W,(x)d. (9) 

Setting E equal to zero, the following fast 
subsystem is obtained: 

dz 
z =.Mx) + Qz(x)z + g&b + W,(x)4 (10) 

where x can be considered approximately equal 
to its initial value x(O) and d is constant. The 
affine appearance of the fast state z in the system 
(10) implies that its bounded-input bounded- 
state stability depends exclusively on the 
eigenstructure of the matrix QZ(x). The follow- 
ing assumption states our stabilizability require- 
ment on the open-loop fast subsystem (10). 

Assumption 1. The pair [Q2(x) g*(x)] is stabiliz- 
able, in the sense that there exists an analytic 
covector kT(x) such that the matrix Q*(x) + 
g2(x)kT(x) is Hurwitz uniformly in x E X. 

In what follows, we review various concepts of 
relative order that will allow us to formulate and 
solve specific controller synthesis problems. 

Definition 1. Referring to the nonlinear system 
(5) the relative order of the output y” with respect 
to the input u is defined as the smallest integer r 
for which 

L,L;:‘h(x) f 0 (11) 

or r = ~0 if such an integer does not exist. 

Throughout this paper, it will be assumed that 
(11) holds for all x E X. 

Definition 2. Referring to the nonlinear system 
(5), the relative order of the output y”-with respect 
to the disturbance input vector d is defined as the 
smallest integer p for which 

[I,&,$-‘h(x) . . . L,J$.-‘h(x)] f [O . . . 01, 

(12) 

where W” denotes the Kth column vector of the 

matrix W, or p = 03 if such an integer does not 
exist. 

In closing this section, we recall the order of 
magnitude notation, which will be used in the 
subsequent sections. 

Definition 3. (Khalil (1992).) a(~) = O(E) if 
there exist positive constants k and c such that 

]a(~)] 5 k IEJ V Jej CC. (13) 

3. FORMULATION OF THE CONTROL PROBLEM 

We shall address and solve the problem of 
synthesizing well-conditioned control laws that 
preserve the two-time-scale nature of the 
open-loop system, with the following objectives 
for the closed-loop system: 

(i) boundedness of the trajectories; 

(ii) the output of the closed-loop system satisfies 
a relation of the form 

y(t) = y”(t) + O(E), t 2 0, (14) 

with y”(t) being the output of the closed- 
loop reduced system, where a prespecified 
input/output response is enforced indepen- 
dently of the disturbances. 

The above requirements will be enforced in 
the closed-loop system for sufficiently small 
values of the singular perturbation parameter E. 
The control laws will utilize feedback of the state 
z to stabilize the fast dynamics and feedback of 
the state x combined with feedforward compen- 
sation of disturbances to enforce the desired 
behavior on the output. 

The above-specified control problem will be 
initially addressed for systems in standard form 
and then for systems in nonstandard form. For 
systems in standard form, it will be established 
that the requisite control law can be synthesized 
utilizing exclusively information concerning the 
original system (l), while for systems in 
nonstandard form it has to be preceded by the 
feedback regularization of the fast dynamics. 

4. DISTURBANCE COMPENSATION FOR SYSTEMS 
IN STANDARD FORM 

In this section, we shall consider systems of 
the form (1) in standard form, with possibly 
unstable fast dynamics, i.e. systems for which 
some of the eigenvalues of the matrix Q*(x) may 
lie in the open right half of the complex plane 
for some x E X. The instability of the fast 
dynamics dictates the need to employ feedback 
of the state z (Kokotovic et al., 1986; 
Christofides and Daoutidis, 1996). In particular, 
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motivated by the affine appearance of the fast (b) the relative order of y” with respect to the 
state z in the model (l), let us initially consider disturbance input vector d is equal to p, if 
control laws of the form p I r. 

u = fi + kT(X)Z, (15) 

where kT(x) is in W, and fi is an auxiliary input, 
to achieve stabilization of the fast dynamics of 
the system. Under a control law of the form (15) 
the two-time-scale system (1) takes the form 

i =fi(x) + [Q,(x) +&N*(~)lz 
+ g,(x)6 + W,(x)4 

In order to enforce the desired behavior 
on the output, let us now consider feedforward/ 
state feedback laws of the form 

ci =h(x) + [Q,(x) + gd4kT(41z 
(16) 

+ g*(x)E + W,(x)d. 

One can immediately observe that a control law 
of the form (15) preserves the two-time-scale 
nature of the process, and the linearity with 
respect to the state z, the auxiliary input ti and 
the disturbance vector d. Furthermore, perform- 
ing a standard two-time-scale decomposition, 
one can easily show that the fast subsystem is 
given by 

2 = Mx) + [Q,(x) + g&PT(x)lz 

+ gdx)c + W,(x)4 (17) 

while the reduced system takes the form 

c =p(x) + q(x)u + Q(x, d, d(l), . . .), (20) 

where p(x) and q(x) are analytic scalar 
functions, with q(x) # 0 uniformly in x E X, u is 
the reference input, and Q is a smooth algebraic 
function that is nonsingular under nominal 
conditions (x0, 0, . . .) and well defined and finite 
for all possible smooth functions of time d. 
Given the asymptotic stability of the fast 
dynamics of the system (16) the control law (20) 
uses feedback of the slow state vector x only, to 
avoid destabilization of the fast dynamics, while 
dynamic feedforward terms are allowed in order 
to achieve complete elimination of the effect of d 
on y in the closed-loop reduced system. 

Substitution of the control law (20) into the 
system (16) yields the following closed-loop 
system: 

i= M(x) + g,(x)&)1 + [Q,(x) + gdx)~*(x)lz 
+ g,(x)q(x)u + g,(x)Q(x, 4 d(‘), . . .> 

+ W(x)4 i = p(x) + C? (x)fi + @(x)d, 

ys = h(x), 
tw 

where 

F(x) =fi(x) - [Q,(x) + &)ITWIQ4x) 
+ &)k*(x)l- ‘h(x>, 

e(x) = g,(x) - [Q,(x) f s&)~‘(x)l[Q&) 
+ &)~*(wg&)~ 

(19j 

@l(x) = w,(x) - [Q,(x) + g,(x)k*Wl[Q&) 
+ &)kT(X)l- ‘W(x). 

Clearly, the z-dependent control law (15) allows 
stabilization of the fast dynamics of the system 
by a choice of kT(x) such that the matrix 

Q&I + &)k*(x) is Hurwitz uniformly in 
x E X (Assumption 1). Proposition 1 that follows 
establishes conditions for the invariance of 
relative orders r and p, under the control law 
(15). The proof of the proposition can be found 
in the Appendix. 

Proposition 1. Consider the two-time-scale 
system of (16), assumed to be in standard form. 
Then, referring to the reduced system (18), 

(a) the relative order of y” with respect to the 
auxiliary input fi is equal to r, and 

Ei = us(x) + Sz(X)P(~)l (21) 

+ [Q;?(x) + d4~T(~)1~ + &)q(xb 
+ sz(x)Qk 4 d(l), . . .) + K(x)4 

y = h(x). 

On the basis of (21), it is clear that the control 
law (20) does not modify the two-time-scale 
nature of the system, and the linearity with 
respect to the state vector z and the reference 
input u. Employing a two-time-scale decomposi- 
tion for the system (21), it can be easily shown 
that the closed-loop fast subsystem is given by 

dz 
; = vi(x) + &)P(X)l 

+ [Qh) + &)kT(41z + shMx)u 

+ Q(x, d, d(l), . . .] + W,(x)d, (22) 

and the closed-loop reduced system takes the 
form 

i = [F(x) + @)p(x)] + G(x)[q(.x)u 

+ Q(x, d, d”‘), . . .] + @(x)d, (23) 

y” = h(x), 

where p(x), G(x) and w(x) are defined in (19). 
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Referring to (22), one can immediately see that 
the feedforward/state feedback law (20) pre- 
serves the stability characteristics of the fast 
dynamics of the original system. Proposition 2 
that follows will allow the formulation of the 
controller synthesis problem in the closed-loop 
reduced system. 

Proposition 2. Consider the two-time-scale 
system of (16), assumed to be in standard form. 
Then a feedforward/static state feedback control 
law of the form (20) preserves the relative order 
r, in the sense that the relative order of the 
output y” with respect to the reference input u in 
the closed-loop reduced system (23) is equal to r. 

Proof: The proof of the Proposition involves the 
application of the two-time-scale decomposition 
procedure to the resulting closed-loop system, 
and the standard argument for nonlinear systems 
of the form (23) under feedforward/state 
feedback of the form of (20) (see. e.g. Daoutidis 
and Kravaris, 1993). q 

The result of proposition 2 suggests requesting 
an input/output response of relative order r in 
the closed-loop reduced system. For simplicity, 
the following linear input/output response will 
be postulated 

p$&Y+... dy” +PI,,+w=u, (24) 

where PO, . . . , pr are adjustable parameters, 
which can be chosen to guarantee input/output 
stability in the closed-loop reduced system and 
enforce desired performance characteristics. 

Theorem 1 that follows summarizes the main 
result of this section. The proof of the theorem 
can be found in the Appendix. 

Theorem 1. Consider the two-time-scale non- 
linear system (l), assumed to be in standard 
form. Consider also the reduced system (5) and 
assume that p < r. Then the conditions 

L&,(x, d) = 0, 1 = 0, 1, . . . , r - p - 1, (25) 

where 

@,(x, d) = && L:-“[ $, U)Lv~ + $1 

+ LF + 2 d,(t)L,. + $ 
[ 

FL$-‘h(x) 
K=l 1 

(26) 
are necessary and sufficient in order for a control 
law of the form (20) to induce an input/output 
behavior of the form (24) in the closed-loop 

reduced system. If these conditions are satisfied 
and Assumption 1 also holds, the control law 

u = (1 + kT(x)IQ,(x)l-‘g,(x)}[P,L,L’,-‘h(x)J-’ 

x u - i &L;h(x) 
[ k=O 

- 2 P#_Jx, d, d(l), . . . , d”-“)I 
k=p 

+ kT(4[Q,(x)l-‘[hW + W(x)4 + kTW, 
(27) 

where the feedback gain kT(x) is such that the 
matrix QZ(x) + g2(x)kT(x) is Hurwitz uniformly 
in x E X, 

(a) guarantees exponential stability of the fast 
dynamics of the closed-loop system; 

(b) ensures that the output of the closed-loop 
system satisfies a relation of the form 

y(t) = y”(t) + O(E), t 2 0, (28) 

for E sufficiently small, with y”(t) being the 
solution of (24). 

Remark 1. The form of the functions defined in 
(26) and the pattern of the conditions of (25) can 
be found in Daoutidis and Kravaris (1993). From 
the result of the theorem, we note that the 
verification of the solvability conditions (25) and 
the evaluation of the functions a,, I= 0, 
1 ’ . , r - p - 1, are independent of the selec- 
tion of the feedback gain kT(x) used for the 
stabilization of the fast dynamics, and thus can 
be performed on the basis of the open-loop 
reduced system (5). This fact is an immediate 
implication of the results of Propositions 1 and 2. 

Remark 2. The feedforwardlstate feedback law 
(27) can be decomposed into two separate 
components: the components kT(x)(z - &), 
where 5 denotes a control-dependent quasi- 
steady state for the fast dynamics of the 
closed-loop system, defined as 

5 = -LQ&)l-fM4 + g,(x)[PI.L~;L;-‘h(x)l-’ 

x u - i PkL$h(x) I 
L k=O 

- 2 &@‘k_/,(x, d, d(l), . . . , d(k-p)) 
k=p 1 

+ WW}, (29) 

which acts in the fast time scale and stabilizes 
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the fast dynamics 
component 

of the system, and the 

r 
wrwF’h(x)]-‘p - c p&-h(x) 

k=O 

- i &&,(x, d, d(l), . . , d’“-“l)] , (30) 
k=p 

which acts in the slow time scale and addresses 
the posed synthesis problem, i.e. induces the 
desired input/output behaviour in the closed- 
loop reduced system independently of the 
disturbances. 

Remark 3. The fact that the component 
kT(x)(z - 5) acts on the fast time scale, where 
the state vector x can be considered approxim- 
ately equal to its initial value x(O), allows design 
of the feedback gain kT(x) using standard 
control methods, such as pole placement, 
optimal control etc. (Kokotovic et al., 1986). 

Remark 4. In the case of two-time-scale systems 
of the form (1) with stable fast dynamics, i.e. 
when the matrix Q*(x) is Hurwitz uniformly in X, 
there is no need to employ feedback of the fast 
variable to stabilize the fast dynamics and the 
feedforward/feedback law (27) reduces to 

u = [&&‘lh(x)]--l[ u - i &!$h(x) 
k=O 

- i: &@&x, d, d(l), . . . , d(k--p)) (31) 
k=p I 

In the remainder of this section, motivated by 
the available results on disturbance decoupling 
for standard nonlinear systems of the form (5) 
via static state feedback (Isidori et al., 1981) of 
the form 

u = P(X) + q(x)% (32) 

we shall provide necessary and sufficient 
conditions for the solvability of the control 
problem formulated in Section 3, via well- 
conditioned static state feedback laws of the 
form 

u = p(x) + q(x)u + kT(x)z. (33) 

The main result is given in Proposition 3 that 
follows (the proof is included in the Appendix). 

Proposirion 3. Consider the two-time-scale 
system (1) in standard form, for which 

Assumption 1 holds. Consider also the reduced 
system (5). Then, the conditions 

(i) r < P; 

(ii) kT(x)[Q2(x)]-‘&(x) = 6, 

where 0 is the zero covector of dimension q, are 
necessary and sufficient in order for a well- 
conditioned static state feedback law of the form 
(33) to achieve approximate decoupling of the 
effect of d on y (in the sense made precise in 
requirement (ii) in Section 3) with stabilization 
of the fast dynamics in the closed-loop system. 

Remark 5. Condition (i) of the proposition is 
expected to hold for the solvability of this 
problem, since it is necessary and sufficient for 
the solvability of the disturbance decoupling 
problem via static state feedback of the form 
(32) (see e.g. Isidori, 1989) and the approximate 
disturbance decoupling problem for two-time- 
scale systems (1) with exponentially stable fast 
dynamics, via the same class of control laws (see 
Levine and Rouchon, 1991). Condition (ii) of the 
proposition guarantees that the relative order of 
the output y” with respect to the disturbance 
input vector d in the reduced system (18) say b, 
is p = p > r. 

5. DISTURBANCE COMPENSATION FOR SYSTEMS 
IN NONSTANDARD FORM 

In this section, we shall consider two-time- 
scale nonlinear systems (1) in nonstandard form, 
i.e. systems for which the matrix QJx) is 
singular for some x E X. The direct consequence 
of the singularity of the matrix Q2(x) is the 
absence of a well-defined quasi-steady-state for 
the fast variables z (Khalil, 1989; Christofides 
and Daoutidis, 1996), and thus the lack of a 
well-defined open-loop reduced system. There- 
fore the results of Propositions 1 and 2 that 
allowed the verification of the solvability 
conditions (25) and the synthesis of the 
controller (27) on the basis of the open-loop 
reduced system (5) cannot be recovered. 
Motivated by this, we shall follow a two-step 
procedure for the synthesis of a feedforward/ 
state feedback law that solves the posed 
problem. In the first step, appropriate feedback 
of the state vector z will be employed to 
regularize the fast dynamics, in the sense of 
inducing an exponentially stable quasi-steady- 
state for the fast dynamics. In the second step, 
we shall formulate and solve the synthesis 
problem on the basis of the resulting two-time- 
scale system in standard form. 
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More specifically, we shall initially consider a 
control law of the form 

u = li + kT(x)z, (34) 

where kT(x) is a covector field in l!F and Li is an 
auxiliary input, to achieve regularization of the 
fast dynamics. Under the control law (34), the 
system (1) takes the form 

1 =fi(x) + [Q,(x) + &WkT(X)lZ 
+ g,(x)2 + W,(X)4 

l 2 =f2(x) + tQ&) + gd~)k~(~)l~ 
(35) 

+ g,(x)fi + W*(x)d. 

Performing a two-time-scale decomposition, the 
corresponding fast subsystem takes the form 

dz 
,,=fi(x) + [Qdx) + g&)kTWlz 

+ g,(x)fi + K(x)d, (36) 

while the corresponding slow subsystem is given 

by 

i = F(x) + (5 (x)Li + W (x)d, 

9” = h(x), 
(37) 

where the vector fields P(x), G(x) and m(x) are 
given in (19). It is clear that the z-dependent 
control law (34) allows us to regularize the fast 
dynamics of the system by choosing kT(x) in 
such a manner that the matrix Q*(x) + 
gZ(x)kT(x) is Hurwitz uniformly in x E X. It is 
now possible to formulate and solve a controller 
synthesis problem on the basis of the system 
(35). More specifically, we shall seek a 
feedforward/state feedback law of the form 

a=B(x)+g(x)u+~(x,d,d(‘) ,... ), (38) 

where p(x) and q(x) are scalar fields, with 
q’(x) # 0 for all x E X, Q is a smooth algebraic 
nonsingular function and u is the reference 
input. Referring to the system (37), let i and 6 
denote the relative orders of the output y with 
respect to the auxiliary input ti and the 
disturbance input vector d, and let the 
input/output behavior 

p;d$+... dy^” 
+ p, x+ p&+= v (39) 

be postulated in the closed-loop reduced system. 
Theorem 2 that follows summarizes the main 

result of this section. The proof of the theorem 
can be found in the Appendix. 

Theorem 2. Consider the two-time-scale non- 
linear. system (1) assumed to be in nonstandard 

form. Consider also the nonlinear system 
and assume that @ < ?. Then the conditions 

L&(x, d) = 0, 1 = 0, 1, . . . ) i - j - 1, 

where 

(37)Y 

(40) 

X Lp + f$ d,(t)L,+ + & 
F 

rL;-lh(x), 
lc=l 1 

(41) 

are necessary and sufficient in order for a control 
law of the form (38) to induce the input/output 
behavior of the form (39) in the closed-loop 
reduced system. If these conditions are satisfied 
and Assumption 1 also holds, the control law 

u = &LaL$-‘h(x)]-‘[v - i &L;h(x) 
k=O 

- i @k+k-&, d, d(l), . . . , d’*-“‘)I 

k=i, 

+ k”(X)Z, (42) 

where the feedback gain kT(x) is such that the 
matrix QZ(x) + g,(x)k’(x) is Hurwitz uniformly 
in x E X, 

(a) guarantees exponential stability of the fast 
dynamics of the closed-loop system; 

(b) ensures that the output of the closed-loop 
system satisfies a relation of the form 

y(r) = j”(t) + O(E), t 2 0, (43) 

for E sufficiently small, with y”(t) being the 
solution of (39). 

Remark 6. The result of Theorem 2 reveals a 
fundamental difference in the nature of the 
control problem between two-time-scale systems 
in standard and nonstandard form. In particular, 
in the case of systems in standard form, the 
solvability conditions of the problem can be 
checked in the open-loop reduced system (5), 
since they are independent of the feedback gain 
kT(x) used to stabilize the fast dynamics. On the 
other hand, in the case of systems in 
nonstandard form, the solvability conditions 
should be checked in the reduced system (37), 
and thus depend explicitly on kT(x) used to 
regularize the fast dynamics. These considera- 
tions imply that for systems in nonstandard form, 
it is possible, depending on the structure of the 
system under consideration, to select the 
feedback gain kT(x) to guarantee stabilization of 
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the fast dynamics as well as to ensure that the 
solvability conditions are satisfied. 

Remark 7. In the case of two-time-scale systems 
of the form (1) in nonstandard form, one can 
show that the condition i < fi is necessary and 
sufficient for achieving approximate decoupling 
of the effect of the disturbances on the output of 
the closed-loop full-order system via well- 
conditioned static state feedback of the form 
(33). Notice that this condition depends ex- 
plicitly on the feedback gain kT(x) utilized to 
regularize the fast dynamics, because of the lack 
of an analogue of Proposition 1 in the case of 
two-time-scale systems in nonstandard form. 

Remark 8. The control algorithms of Theorems 
1 and 2 can be directly applied to two-time-scale 
systems with e-dependent right-hand side, with 
the following state-space description: 

i =fi(x, EZ, E) + Q,(x, EZ, E)Z 

+8,(x, ez, E)U + W(% l z, E)d, 

pi = R(x, z)[.h(x, a, E) 

+ Q,(x, EZ, E)Z + g,(x, EZ, E)U 
(44) 

+ w,(x, EZ, E)dl, 

Y = h(x), 

where R(x, z) is a diagonal matrix of dimension 
p x p, which is positive-definite for all x E X, 
z, E Z. This is possible because (i) the stabilizabi- 
lity requirement of Assumption 1 suffices to 
ensure that the fast subsystem of the system (44) 
can be made exponentially stable, and (ii) in the 
case of nonsingular Q& EZ, E), the open-loop 
slow subsystem of the system (44) is the same as 
that of (5) (which ensures the applicability of 
Theorem l), while in the case of singular 
Q&, EZ, E), the slow subsystem obtained after 
the regularization of the fast dynamics is the 
same as that of (37) (which ensures the 
applicability of Theorem 2). 

6. STABILITY ANALYSIS OF THE CLOSED-LOOP 
SYSTEM 

In this section, the stability of the closed-loop 
full-order system under the derived control laws 
will be analyzed. Our objective is to specify 
conditions and provide an explicit formula for 
the calculation of the upper bound on E, such 
that the states of the closed-loop system are 
bounded. The presence of time-varying distur- 
bances in the model of the system does not allow 
utilizing standard stability results for two-time- 
scale systems (Saberi and Khalil, 1984; Khalil, 
1992) (which are concerned with asymptotic 
stability), and requires further analysis of the 

closed-loop system to show boundedness of the 
states. Theorem 3 that follows states the main 
stability result for two-time-scale systems in 
standard form, under the control law (27) (the 
proof is given in the Appendix). 

Theorem 3. Consider the two-time-scale non- 
linear system with the state-space representation 
(l), assumed to be in standard form. Then, if 
d(t) and its derivatives up to order T - p + 1 are 
sufficiently small and 

(i) the roots of the polynomial 

&~+p,s+...+pJ’=o (45) 

lie in the open left half of the complex plane, 
and 

(ii) the unforced zero dynamics of the open-loop 
reduced system (5) is exponentially stable, 

there exists an E* such that the trajectories of the 
closed-loop system under the controller of 
Theorem 1 remain bounded for all E E (0, E*]. 

Theorem 3 also holds for two-time-scale systems 
in nonstandard form, with the second condition 
imposed on the reduced system (37). The proof 
of this result is completely analogous to that of 
Theorem 3, and therefore is omitted for brevity. 
Finally, we note that the stability result of 
Theorem 3 holds even in the presence of 
sufficiently small constant parametric uncertainty 
and unmeasured disturbances (see the proof of 
the theorem for the detailed justification). 

7. SIMULATION STUDY: A CATALYTIC 
CONTINUOUS STIRRED TANK REACTOR 

In this section, the proposed control methodo- 
logy will be applied to a representative chemical 
process with time-scale multiplicity. Consider the 
catalytic continuous stireed tank reactor shown 
in Fig. 1, where a homogeneous reaction A + B 
and a catalytic reaction A+ C take place. The 
first reaction leads to the generation of the 
side-product B, while the second reaction leads 
to the production of the desired product C. The 
inlet stream F, consists of pure species A of 
concentration CA”, and temperature TAO. Under 
the assumptions 

l perfect mixing in the reactor, 
. uniform temperature in the homogeneous and 

catalytic phases, 
l constant density and heat capacity of the 

reacting liquid and the catalyst, 
l constant outlet flow rate of the reactor, 

the process dynamic model consists of the 
following set of material and energy balances: 
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FI . cAO. TAO 

1 --------------_ 
A-wB 

Fz, CA,, . c, 9 c, . T, 
w A-C 1 - 

Fig. 1. A catalytic continuous stirred tank reactor. 

reactor mass balance: 

dV 
---‘=F,-F,; 
dt 

(46) 

mole balance for species A (homogeneous 
phase): 

dCAi, 1 
- = 7 

dr r 
WC*0 - CAh) 

v, - &%(CAI, - C,,)] 

(47) 

reactor energy balance (homogeneous phase): 

dT, 1 
Phc,h dt = v PhCphfi(&O - Th) 

* 

+ (-&)k+, exp 

- UWi, - KJ 

- ‘%A&% - T,)] ; 

V, 

(48) 

mole balance for species A (catalytic phase): 

dCt,c Kc& 
- = 7 (CAh - CA,) 

dt c 

C,,; (49) 

reactor energy balance (catalytic phase): 

CAc. (50) 

Here 4 and F2 denote the inlet and outlet flow 
rates, V, and V, denote the volumes of the 
homogeneous and catalytic phases, CAh, Th and 
C ,+_ T, denote the concentration and tempera- 
ture of species A in the homogeneous and 
catalytic phases, kh, k,, Eh, E,, L!d& and AH, 
denote the pre-exponential factors, the activa- 
tion energies and the enthalpies of the two 

reactions, K, and U,, U, denote mass and heat 
transfer coefficients, and A, and A, denote the 
surfaces of the wall and the catalyst. 

The control objective is the regulation of the 
temperature of the catalyst by manipulating the 
inlet flow rate F,, in order to maintain the 
generation of the product species C at the 
desired level. The inlet concentration and 
temperature of the species A, CA0 and TAO 
respectively, as well as the wall temperature T,, 
are assumed to be the measurable disturbances. 
The values of the system parameters and the 
corresponding steady-state values of the system 
variables are given in Table 1. It was verified 
that these conditions correspond to a critically 
stable equilibrium point (the holdup of the 
homogeneous phase acts as an integrator). The 
process exhibits two-time-scale behavior owing 
to the large heat capacity of the catalytic phase 
(i.e. the term pee,, that multiplies the time 
derivative of the catalyst temperature is large). 
This implies that V,, CA,,, Th and CAc are the fast 
process variables, while T, is the slow process 

Table 1. Process parameters 

F, = 500.0 L min-’ 
c,,,, = 0.231 kcal kg-’ K-’ 
c,,= = 2.31 kcal kg-’ K-’ 
P,, = 0.9 kg L-’ 
p,=9O.OkgL-’ 

&A, = 1618.0 L mine’ 
L/,A, = 6667.0 kcal min-’ Km’ 
&A, = 3340.0 kcal min-’ Km’ 

R = 1.987 kcal kmol-’ K-’ 
k, = 164.68L mol-’ min-’ 
E, = 8.0 X 10’ kcal kg-’ 
k, = 2oo0.0 min-’ 
E, = 9.0 x l@’ kcal kg-’ 

AH,, = 69.2006 kcal kmol-’ 
AH, = -99.0781 kcal kmol-’ 

v, = 145.1 L 
v, = 1000.0 L 

CAh = 5.0 mol L-’ 
T,=69OK 

C,, = 3.75 mol L-’ 
r,=720K 

F,, = 500 L min-’ 
c A(,s = 10.0 mol L-l 
T A,k = 305.0 K 
T,, = 310.0 K 
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variable (this fact was also validated through 
open-loop simulations). It was also verified that 
the process exhibits slightly non-minimum-phase 
behavior, i.e. its zero dynamics exhibits a 
two-time-scale behavior with critically stable fast 
dynamics (the fast process modes are part of the 
zero dynamics modes). In order to obtain a 
singularly perturbed representation of the 
process, where the partition to slow and fast 
variables is consistent with the dynamic behavior 
of the process, the parameter E is defined as 

for the synthesis of the controller. In the first 
step, the regularizing feedback law of the form 

u=ii-z, (53) 

was used to transform the original two-time-scale 
system into a new one in standard form with 
exponentially stable fast dynamics. Under this 
preliminary feedback, the original system takes 
the form (where the time derivatives are taken 
with respect to T) 

1 K.L 
e=-=004&--- 

P&c * kcal ’ 

UC 

(51) 
i, = 7 (z3 -xl) + (-AH&, exp 

c 

c.2, = -z, + fi, 

Setting 

XI = Tc, z, = v,, z2 = CA,,, z3 = Th, 

z4 = CAcr u = 6 - F,,, d, = CAlI - CA&, 

d2 = Lo - Los, 

d,= T,-- T,,, y =x,, i=f 
PCC”, ’ 

the original set of equations can be put in the 
following singularly perturbed form (where the 
time derivatives are taken with respect to T): 

f, = 7 (z3 -x,) + (-AHJk, exp z4, 
c 

Ei, = u, 

1 
Ei2 = - 

z, [ 
-& 

W% + -kh exp x ( > z, 

+ (-6, - K,A,)z2 + OLz3 

+ (CA” - z2)u + F,sd, , 1 (52) 
623 = - l fis(71A”-z3)-~ 

Zl [ 
2c;h (~3 - Twd 

UA 
-~(z3-x,)+~khexp(~)zi 

P 3 

+ (Lo - 
U.4 

z3)u + F,,d, + w d 
3 ’ PhCph I 

K&L 
Eiq = - 

v, z2 + 

KA, 
--- k,exp 

v, 

z4. 

From the structure of the differential equation 
for z, in the above system, it is clear that the fast 
dynamics of the process are singular, i.e. there 
exists no well-defined quasi-steady-state for the 
fast state vector z (this is an implication of the 
assumption that the outlet flow rate is constant). 
Since the process is in nonstandard form, the 
two-step procedure of Section 5 will be followed 

&=;{fir&,os+ [%-&-k,exP($jZ, 

+ C-6, - &4&2 

+ K,A,z3 + (C,w - ~216 + W, 
I 

, 

ei3 = ’ 
1 

F,s(T,,, - z3) - 
USA4 

(~3 - T,J 
(54) 

ZI 
phc 

P 
h 

-~(Llr,) 
P 

Ei4 = 

Setting E = 0 in the above system and using the 
fact that for a physically meaningful problem 
z, = V, > 0, the following set of differential and 
algebraic equations can be obtained: 

I, =?(a,-x,)+(-AHc)k,exp(~)z4, 
c I 

CA0 - Zzs - k,, eXp Li 

+ (-F,, - K,A,)zz, + KcAcz3, 

+ (c/+0 - z2s)fi + W, 
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Owing to the nonlinear appearance of the 
algebraic variable z3, in the above model, the 
equilibrium manifold of the fast dynamics is of 
the form z, =g(x,, ii, d,, d2, d3), where g is a 
smooth vector function. The slow subsystem 
takes then the form 

i,=~[g,(x,,li,d,,d,,dl)-x,] 
c 

+ (-AH&, exp 2 
i > 

g&,, fi, d,> &4) 
I 

=:9(x,, G, d,, &4) (56) 

where g3 = z3s and gs = z4S, and 
9(x,, ~2, d, , d2, d3) is a nonlinear function. On 
the basis of this system, it is clear that the 
relative orders are i = 1 and fi = 1. Owing to the 
nonlinear dependence of the auxiliary input ii 
and the disturbances d,, d2 and d, in the system 

(56), the synthesis formula of Theorem 2 could 
not be readily used. Instead, the auxiliary input fi 
was computed numerically by solving the 
nonlinear equation 9(x,, fi, 4,4,4) = (u - 
p,,x,)/p, for i?, so that the response 

p,js + PO,” = u (57) 

is enforced in the closed-loop reduced system, 
where the parameters PO and p, were chosen to 
be 

PO = 1.0, p, = 1.87 min. 

Several simulations were performed to evaluate 
the performance of the controller. 

In the first set of simulation runs, we 
addressed the capability of the controller to 
maintain the output of the system at the 
operating steady state in the presence of the 
following step disturbances: d, = -0.8 mol L-‘, 

723 

722- 

& 

c 

721- 

720 
0 2 4 Tim% 

(min) 
’ 10 12 

500 

400- 

300- 

200- 

; loo- 

z 

Lf 

o- 

ri -loo- 

-200- 

-3Oo- 

-4OO- 

-500 
0 2 4 Tim! 

@in) 
8 10 12 

Fig. 2. Output and input profiles for regulation in the presence of constant disturbances. 
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dZ= -5.OK and d3 = 5.0 K, imposed at t = 
0 min. The corresponding output and input 
profiles are shown in Fig. 2; clearly, the 
controller guarantees stability of the fast 
dynamics and regulates the output at the steady 
state, attenuating the effect of the disturbances. 
In the next set of simulation runs, we evaluated 
the reference input tracking capabilities of the 
controller in the presence of the above constant 
disturbances. A 10 K increase in the value of the 
reference input was imposed at time t = 0 min. 
Figure 3 displays the output and input profiles. 
The performance of the controller is excellent, 
guaranteeing the stability of the fast dynamics, 
regulating the output at the new reference input 
value and compensating for the effect of the 
disturbances. For the sake of comparison, we 
implemented the controller without measure- 

ments of the disturbance. Figure 4 depicts the 
output and input profiles. One can immediately 
see that the controller cannot attenuate the 
effect of the disturbances leading to offset. A 
feedforward/state feedback controller (Daouti- 
dis and Kravaris, 1993) synthesized on the basis 
of the original two-time-scale system was also 
employed in the simulations. Figure 5 shows the 
output profile and the profile of the volume of 
the reactor. Clearly, this controller leads to 
instability of the closed-loop system, because the 
process exhibits a slightly non-minimum-phase 
behavior. 

In the next set of simulation runs, we 
evaluated the capability of the controller to keep 
the output of the system at the operating steady 
state in the presence of time-varying distur- 
bances. In particular, the following disturbances 

Fig. 3. Output and input profiles for reference input tracking in the presence of constant disturbances. 
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Fig. 4. Output and input profiles for reference input tracking in the presence of constant disturbances (pure feedback controller). 

were imposed at t = 0 min: 

d2 = -5.0 + sin $t K, 
( J 

d3 = 5.0 + sin Ft K, 
( > 

where T = 0.2 min. Figure 6 shows the output 
and input profiles. Clearly, the controller 
performance is very satisfactory, guaranteeing 
the stability of the fast dynamics, regulating the 
output at the steady state and attenuating the 
effect of the disturbances. Finally, the servo 
behavior of the controller was evaluated in the 
presence of the above time-varying disturbances. 

Figure 7 illustrtaes the resulting output and input 
profiles. As expected, the controller stabilizes 
the fast dynamics, while regulating the output at 
the new reference input value and attenuating 
the effect of the disturbances on the output. 

Remark 9. Note that the implementation of the 
controller requires measurements of the volume 
of the reactor and the temperature of the 
catalytic phase for the feedback component, and 
measurements of the three disturbances for the 
feedforward component. It is important to 
compare these requirements with those of 
control methods that do not take explicitly into 
account the multiple-time-scale behavior exhib- 
ited by the process under consideration. For 
example, let us consider a feedforward/state 
feedback controller synthesized on the basis of 
the full-order system (Daoutidis and Kravaris, 
1993). The explicit form of the controller takes 
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Fig. 5. Output and volume profiles for reference input tracking in the presence of constant disturbances (feedforwardlfeedback 
input/output linearizing controller). 

the form which becomes singular as ~40. It can be also 
easily verified that the implementation of this 
control law requires measurements of the full 
state vector of the process (feedback com- 
ponent) as well as measurements of the three 
disturbance inputs (feedforward component). 
This includes measurements of concentrations of 
the species A in both the homogeneous and 
catalytic phases, which are difficult to obtain in 
practice. 

From the results of the simulation study and 
the observations of Remark 9, it is obvious that 
the consideration of the two-time-scale nature of 
the process in question at the modeling and 
control level allows simplifying the synthesis and 
implementation of the control system as well as 
controlling effectively the process. 
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Fig. 6. Output and input profiles for regulation in the presence of time-varying disturbances. 

8. CONCLUSIONS 

In this article, a class of nonlinear two-time- 
scale control systems with external time-varying 
disturbances was considered. Systems in both 
standard and nonstandard form were studied. 
For such systems, we synthesized well- 
conditioned feedforwardfstate feedback laws 
that guarantee exponential stability of the fast 
dynamics and induce a prespecified input/output 
response in the closed-loop system indepen- 
dently of the disturbances in the limit as E+O. 
Utilizing singular perturbation methods, we 
established that the discrepancy between the 
output of the closed-loop full-order system and 
the output of the closed-loop reduced system is 
O(E), for sufficiently small values of the singular 

perturbation parameter. We also identified and 
discussed fundamental differences in the nature 
of the control problem between systems in 
standard and nonstandard form. Lyapunov’s 
direct method was used to study the stability 
properties of the closed-loop system and derive 
precise conditions that guarantee boundedness 
of the trajectories. Finally, the derived control 
methodology was successfully implemented on a 
typical nonlinear chemical process system with 
time-scale separation, modeled by a singularly 
perturbed system in nonstandard form. Com- 
parison with an inversion-based control method, 
which does not take into account the time-scale 
multiplicity exhibited by the process, established 
that the developed control methodology yields 
significantly superior performance. 
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Fig. 7. Output and input profiles for reference input tracking in the presence of time-varying disturbances. 
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APPENDIX 

Proof of Proposition 1 
It is straightforward to show that the control law (15) on 

the quasi-steady-state takes the forms 

u = [l + kT(x)Q;‘(x)g2(x)]-’ 

x @ - kT(~)Q;‘(~)[f2(~) + w,(~)4, (A.1) 
where the scalar function 1 + kT(x)Q;‘(x)g2(x) is nonzero 
uniformly in x E X. 

Under the state feedback law (A.l), the reduced system 
takes the form 

i = F(x) + G(x)[l + kT(x)Q;‘(x)g2(x)]-’ 

x {a - kT(x)Q;‘(x)[fz(x) + W,(x)d]l + W(x)d, (A.2) 
y” = h(x), 

where the vector fields F(x) and G(x) are given by (6). For 
the system (A.2), p denotes the relative order of the output 
y” with respect to the disturbance vector d. For this system, 
one can directly show that the relative order of the output y” 
with respect to the auxiliary input ii is exactly equal to r. On 
the other hand, if p 5 r, direct differentiation of the output of 
the system of (A.2) yields the following expressions: 

y” = h(x), 
y’(l) = L,h(x), 

y”‘“’ = Ly(x) + @,)(x, d), 

y”‘“+‘) = L%+%(x) + @,(x, d, d’“), (A.3) 

yS”-‘) = L;--‘h(x) + @,-s_,(x, d, d”‘, , d”-“-I’), 

yrtr) = L;h(x) + L&-‘h(x)[l + kl‘(x)Q;‘(x)g,(x)]-’ 

x {fi - kT(x)Q;‘(*)[fi(x) + %(x)41 
+0,+(x, d, d”‘, , d”-6’). 

On the basis of (A.3), it is clear that p = p whenever p 5 r. It 
remains to be proved that the closed-loop reduced systems of 
(18) and (A.2) are identical. Lemma A.1 that follows 
establishes this result. 

Lemma A.l. Consider the two-time-scale system of the form 
(1) in standard form, subject to the control law (15), and 
assume that the matrix Q*(x) + g,(x)k’(x) is invertible 
uniformly in x E X. Then the closed-loop reduced systems 
(18) and (A.2), derived by commuting the order of the 
operations (i) closing the feedback loop and (ii) setting E = 0, 
arc identical. 

Lemma A.1 generalizes a standard result for two-time-scale 
systems under linear static state feedback laws (see e.g. 
Corless et al., 1993) to nonlinear two-time-scale systems 
under feedback laws of the form (15). The proof of the 
lemma can be readily obtained along the lines of the one 
given for the linear case (Corless et al., 1993), and will be 
omitted for brevity. 

Proof of Theorem 1 
Part 1. Using the result of Lemma A.l, the reduced system 

(18) can be written equivalently in the form (A.2). 
Substitution of the control law (20) into the reduced system 
(A.2) then yields the following closed-loop reduced system: 

i = F(x) + G(x)[l + kT(x)Q;‘(x)g2(x)]-’ 

x {p(x) + q(x)u + Q(x, d, d”‘, .) (A.4) 
- kT(x)Q~‘(xM(x) + K(x)41 + W(x)4 

y‘ = h(x). 

On the basis of (A.4) and following Daoutidis and Kravaris 
(1993), it can be shown that the input/output behavior of the 
form (24) can be enforced in the above closed-loop reduced 
system if and only if the conditions (25) are satisfied. 

Parr 2. Under the control law (27), the closed-loop system 
takes the form 

i =fi(x) + Q,(x)z +g,(x) 1 (1 + k’(x)[Q,(x)lm’gz(xN 

x [&L&y’h(x)]-’ X u - 2 &L:h(x) 
[ k=O 

- $ &@,_(x, d, d”‘, , d”-“)I] 

+ g,(:Kk’(x)IQZ(x)l-‘[f,(x) + K(x)4 
+ kl‘(x)z} + W,(x)d, 

l i = f*(x) + Q&)z + e(x) 
(A.5) 

x (1 + ~‘(~)[Q~(~)I-‘~~(~)~[PILC;L;-lh(X)I-I 1 

x U- i &L:h(x) 
L k=O 

- k$p &$_Jx, d, d”‘, , d”-“‘)I] 

+~~(x)Ik~(x)[Q,(x,l-‘[f~(x) 
+ W,(x)d] + kT(x)z} + W,(x)d. 

Defining a set of auxiliary variables 5 by 

5 = -~Q,(Wi(fz(4 + gz(x)[P,LGL;-‘h(x)l-’ 

x IJ - i PJ%(X) [ k =,I 

- i pk@k-,(x, d, d”‘, , d”-“‘)I + W,(x)d) (A.6) 
k=p 

the closed-loop system (A.5) takes the form 

i =fi(x) + Q,(x)z +a@) 

- $ j&@&,(x, d, d”‘, , d’*-P’)] 
P 

+ k’(x)(z - .$I} + K(x)4 

pi =fi(x) + Q&b + gz(x) 
(A.7) 

x 
( 

[P,L,L;;‘h(x)]- 
[ 

u - 2, &Lkfh(x) 

- & && Jx, d, d”‘, , d’” --“),I 

+ k.“(x)(z - 6,) + W,(x)d. 
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The properties of the above two-time-scale system can be 
analyzed by performing a standard two-time-scale decom- 
position. More specifically, introducing a new set of variables 
n,, defined as nr= z - 5, one can easily show that the 
closed-loop fast subsystem is given by 

(A.@ 

Since the matrix Q&r) + g&)k’(x) is Hurwitz uniformly in 
x E X by an appropriate choice of the feedback gain kT(r), 
the fast dynamics of the closed-loop system possess an 
exponentially stable equilibrium manifold of the form 

?r = 0 (A.9) 

Furthermore, the closed-loop reduced system takes the form 

i = F(x) + G(x) 

x 
r 7, (A.lO) 

- 2 &@+(x, d, d”‘, , d+P’) 1) 
k-p JI 

+ W(x)d =: 9,(x, u, a), 

y” = h(x), 

where d=[d d(l) d(r-p)]T denotes an extended distur- 
bance vector. From part 1 of the proof, we have that the 
output of the above closed-loop reduced system is completely 
independent of d, and the input/output response of (24) is 
also enforced. Furthermore, from Proposition 2, the relative 
order of y” with respect to u is equal to r, and thus there 
exists a coordinate transformation of the form 

- _ 

(A.ll) 

where n E R”-’ and $(x) is a smooth vector function, such 
that the closed-loop reduced system (A.lO) takes the form 

f = Aj + bv, 

i = Y(C, 794, (A.12) 

YS = t, > 

where A is a Hurwitz matrix of dimension r X r, with Pk 
chosen to satisfy Condition (i) of Theorem 3, b = 
[O 0 l]ER *x’ is a column vector and Y(c, TJ, d) is a 
vector of smooth functions. Now, consider the following form 
of the closed-loop full-order system: 

_t = F(x) + G(x) [&L,L;-‘h(x)]-’ u - & Pl.L:W) 

- $p Pk$-#, d, d”‘, , d’*-@‘)I] (A.13) 

+ W(x)d + [Q,(x) +g&)k’(x)l(z - ~9. 
l i = [Q&) + &)~‘(x)l(z - 5h 

or, in terms of the coordinates ([, 7, z), 

where as and a,,, are matrices of smooth functions. From the 
stability result of Theorem 3, we have that if the hypotheses 
of the theorem are satisfied, there exists an e* > 0 such that if 
c E (0, l *] then the states (6, TJ, z) of the closed-loop 
full-order system of (A.14) are bounded. Let E E (0, E*] and 
consider the singularly perturbed system, resulting from the 
states (l, z) of the system (A.14) 

i= Ai + bu + @&, n)qr, 

ri = [QAL 7) + gz(5. ~WT(L ~11~ (A.15) 

Y=5!? 

where n can be thought of as a bounded input. Performing a 
two-time-scale decomposition on the above system, it can be 
easily seen that the fast subsystem is exponentially stable 
uniformly in x E X, and the reduced system takes the form 

1‘=Ac+bv, 

y” = $“T, 
(A.16) 

where the superscript s denotes state of the reduced system, 
which is also exponentially stable. Utilizing these two 
stability properties, it can be shown (see Theorem 8.4 in 
Khalil, 1992). that, under consistent initialization of the states 
5:. c,, i.e. c:(O) = l,(O), i = I,. , r, there exists an 
E** E (0, c*] such that if B E (0, ,**I then the following 
estimate holds for the solutions of systems (A.15) and 
(A.16): 

l(f) = c(t) + O(E), t 2 0. (A.17) 

From the above estimate, (28) follows directly. The proof of 
the theorem is complete. 0 

Proof of Proposition 3 
Necessity. Consider the two-time-scale system (1). assumed 

to be in standard form. Consider also its corresponding 
reduced system (5) and assume that p I: r. Under the control 
law (33), the two-time-scale system (1) yields 

i = V,(r) +g,(xMx)l+ [Q,(x) +s&P’(x)lz 

+ g,(xM)u + W(x)4 

ri = [h(x) +&)/4x)1 + [Qz(x) + &FT(x)lz 
(A.18) 

+ &Mx)~ + W&W. 

One can now easily verify that the fast subsystem is 
exponentially stable, subject to an appropriate choice of 
kT(x). Moreover, the closed-loop reduced system takes the 
form 

* = [F(r) + c(r)p(x)] + G(x)s(r)u + m(r)d, 

y‘ = h(x). 

(A 19) 

For the above system, one can conclude, utilizing the results 
of Propositions 1 and 2, that the relative orders of the pairs 
(y”, v) and (y”, d) are equal to r and p respectively, for 
which, by assumption, p 5 r. But for nonlinear systems of the 
form (5) it is well established (see e.g. Isidori, 1989) that the 
necessary and sufficient condition for achieving exact 
disturbance decoupling via static state feedback laws of the 
form u =p(x) + 9(x)u is r < p, which establishes the 
necessity of this condition. Finally, if the condition r <p 
holds, but the condition kT(x)[Qz(x)]-’ W,(x) = 0 does not, 
i.e., for some x E X, kT(x)[Qz(x)]-’ W,(x) # 0, we have from 
(A.3) that for the reduced system (I@, @ = r < p, and thus a 
static state feedback law of the form (33) does not suffice to 
completely eliminate the effect of d on y” in the closed-loop 
reduced system of (A.19), which shows the necessity of this 
condition as well. 

Sufficiency. Referring to the reduced system (5), assume 
that r < p and kT(.x)[Q2(x)]~’ W,(x) - 0. Then it is straight- 
forward to show that the control law of Theorem 1 takes the 
form 

11 = 0 + kT(x)[Q,(x)l-‘&N 

x {P,L,L;-‘h(x)]-’ u - c BkLk$h(x) 
[ 

r 
(A.20) 

/I=,1 I 

+ kT(x)[Q,(x)l-‘f2(x) + kT(x)z, 

which clearly belongs in the class of control laws described by 
(33) and does achieve stabilization of the fast dynamics with 
approximate decoupling of the effect of d on y. 

Proof of Theorem 2 
Part 1. Consider the closed-loop reduced system 

i = F(x) + G(x)P(x) + Gnu 

+ c(x)Q(x, d, d”‘, .) + @(x)d, (A.21) 

y‘ = h(x). 
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Following Daoutidis and Kravaris (1993), it can be shown 
that the input/output behavior of the form (39) is enforced in 
the above closed-loop reduced system if and only if the 
conditions (40) are satisfied. 

Part 2. Under the control law (42) the closed-loop system 
takes the form 

f =fi(x) + Q,(x)z +g,(x) 
1 

[P;L&‘h(x)]-’ 

x u - i: p&h(x) 
[ k=,, 

- 5 /3,$_&, d, d(“, , d(‘-;‘)I) 
k=,i 

+ g,(x)kT(x)z + W,(x)d, 

( 

(A.22) 

ci =f2(x) + Qz(x)z + g*(x) [Pd.$-‘h(~)]~’ 

x u - i p&(x) 
[ k--I, 

- $_ P&-p^(~, d, d”‘, . , d(x-6’]] 

+ g,&)k’(x)z + W,(x)d. 

Employing a standard two-time-scale decomposition, it is 
straightforward to show that the closed-loop fast subsystem 
takes the form 

$=M) + IQ&) + &)k’(x)]z + a(x) 

- $+ &6k_6(~, d, d”‘, , d+P’]} 

+ W,(x)d. (A.23) 

Clearly, the fast dynamics of the closed-loop system possess 
an exponentially stable equilibrium manifold of the form 

i = -[Qz(x) + ~W(~)l-$d~) 

+g,(x)([B,L,~~-‘h(x)]-‘[” - i p&h(x) 
k=O 

- 5 flk$mli(x, d, d”‘, , d”-j’)]) + W,(x)d), 
k=b 

(A.24) 

since the matrix Qz(x) +g,(x)kT(x) is Hurwitz uniformly in 
x E X, by an appropriate choice of the feedback gain kT(x). 

Furthermore, the closed-loop reduced system takes the 
form 

i = F(x) + B(x)([B,LiL~-‘h(x)]-‘[v - $, p&h(x) 

- 5 fi,&&, d, d”‘, , d(*-b’)]} + w(x)d, 
k=/? 

j‘= h(x). (A.25) 

Finally, using the same arguments as in Theorem 1, it can be 
shown that the controller (42) enforces the input/output 
response of (39) in the closed-loop system in the limit as 
E-+0. 

0 

Proof of Theorem 3 
The proof of the theorem will be derived utilizing a 

Lyapunov function that is obtained as the composition of two 
Lyapunov functions for the fast and slow closed-loop 
subsystems (see also Saberi and Khalil (1984). Khalil (1992) 
and a Lyapunov argument used in Christofides and Teel 
(1995)). 

The closed-loop system (A.13) with v = 0, in terms of the 
coordinates x, r)r takes the form 

i = F(x) + c;(x)([B,LGL;-‘h(x)]‘[ - 2 P&h(x) 
k =o 

- k$ &Qk_,(x, d,d”,, , d”+“)I} 
P (A.26) 

+ W(xM + [Q,(x) +g,(x)kT(xh, 

Under Conditions (i) and (ii), it can be shown (following e.g. 
Isidori, 1989) that the above closed-loop reduced system with 
d(t) = 0, that is 

i = F(x) + G(x) [j&&L’,-‘h(x)]-’ 

(A.27) 

is exponentially stable. Using Theorem 4.5 in Khalil (1992), 
we have that there exists a smooth Lyapunov function 
v: R” -+ R,,, and a set of positive real numbers 
(a,, a2, Us, CL,, q) such that the conditions 

dV 
V(x) = x S,(x) 5 -a3 1x12, (A.28) 

hold for all x E X that satisfy 1x1 %ug. Consider the 
closed-loop reduced system with d(t) # 0: 

i = S,(x) + G(x) [P,L,L;~‘h(x)]~’ 

(A.29) 

Observing that the term @x, d) vanishes if d(t) ~0, and 
using the third part of (A.28) and 1x1~ a,, direct computation 
of the time derivative of the function V(x) along the 
trajectories of the above system yields 

(A.30) 

2 -03 Ixl’ + a4 1x1 ah IdI. 

where ah is positive real number. Since d(t) and its 
derivatives are assumed to be sufficiently small, there exists a 
positive real number CL, that satisfies CL, ~u,a~/a~u,+ where 
u, <as, such that IdI 5 p,. Whenever this condition holds, an 
application of Theorem 4.10 in Khalil (1992) gives that the 
state of the system_(A.29) is bounded for all x E X that 
satisfy 1x1~ a,. Let IdI 5 p, and calculate the time derivative 
of V(x) along the trajectories of the x subsystem of (A.26). 

Q(x) 5 -a, Ix/* + a4 1x1 ah ldl+ ax 1x1 hfL (A.31) 

where a, is a positive real number. 
Since the matrix Qz(x) +gz(x)kT(x) is Hurwitz uniformly 

in x E X, the fast subsystem 

l tir = [Qz(x) + &)k “(x)lvt (A.32) 

is exponentially stable. Using Lemma 5.7 in Khalil (1992). 



Two-time-scale systems with disturbances 1573 

there exists a smooth Lyapunov function R: UP x W'+ R,,, 

of the form 

Q(% r/r) = G(X)% (A.33) 

and a set of positive real numbers (b,, b2, bX, h,, bs, bh) such 
that the conditions 

hold for all r), that satisfy IQ 5 b,. Observe that the time 
derivative of the state vector x can be bounded as follows: 

IfIS WI + w2 1x1 + w 1x1 IO‘I. (A.35) 

where w,, w2 and wj are positive constants, for all x E X that 
satisfy 1x1 ‘as. Furthermore. note that since d and its 
derivatives up to order r - p + 1 are sufficiently small, there 
exists a positive real number (possibly small) p2 such that 
IdI s F*. Using this fact and the estimates I&$/&] 51, and 
j&$/ad 1s l4 Ix/, where I, and I4 are positive real numbers, 
we have 

5 I3w, + (13w2 + P2Ld Ix/ + IjWS ILd Id. (A.36) 

Computing the time derivative of the function Q(x, nr) along 
the trajectories of the nr subsystem of (A.26) and using the 
inequalities (A.34) and (A.35) we get 

5 - : Id + b4 hrl [bw + Wz + ~2b) lb 

+ ITWT 1x1 hII + bs Id* (WI + wz IN+ w, 1x1 Id) 

< - 2 - bw, _ 
( 1 

Id* + C&w + be,&+) 1x1 Id’ 

+ hw, Ix/ Id + b&w, Id 

+ b,(lw, + ~214) 1x1 Id (A.37) 

Consider now the smooth function (Saberi and Khahl, 1984) 
L: R” x W-+lR,,,, 

L(x. 17‘) = V(x) + Q(x, 17‘), (A.38) 

as Lyapunov-function candidate for the system (A.26). From 
(A.28) and (A.34), we have that L(x, To) is positive-definite 
and proper (tends to + 30 as 1x14 m, or 1~ + m) with respect 
to its arguments. To establish boundedness of the 
trajectories, we shall follow an approach similar to that in 
Christofides and Tee1 (1995). To this end, we shall specify a 
region in state space where the analysis will be performed. 
First, let ls be some positive real number and define 
wq: = a*(~,)* + I,. Now, define 

0% = max 
l(r.s,)tR”xuJJ:lxl~u5. l’I,lSh(J L(x, 77f). (A.39) 

Let wh > max {We, ws} and define the set &? as follows: 

R={(x,rl‘,d,ci)EIW”X~pX[WYXIWY: 

Ikt 5 PI, 1214 ~2, ~4 5 L(x, w) 5 weI. (A.40) 

The set fi is compact. Computing the time derivative of L 
along the trajectories of the closed-loop system, the following 
expression can be easily obtained: 

(A.41) 

Using the Inequalities of (A.31) and (A.37) the following 
bound for f. can be computed: 

i(x, 71~) 5 -a3 1x1’ + a4 1x1 a6 ldl 

+a,LriI?tl-(~-bsw,)ltlri* 

+ Uwz + b&d Ixl hrlz 

+ bsw 1x1 InI3 

+ bd,w lvrl + b&e + P2U 1x1 1% (A.42) 

Using the fact that Inrl 5 b6, we get 

i(x, sr) 5 -a3 /xl’ + w, 1x1 ldl 

-(~-~s~,jl~t12+~~l~/I~tl+~~~~~,I~tl, 

(A.43) 

where 

lh = a8 + b6b5w2 + bhbAw3 + b&w3 + b41w2 + b4pJ4. 

We shall now use a three-step argument to show that there 
exists a positive real number?* such that if E E (0, E*] then 
i is negative for all (x, nf, d, d) E a. 

Sfep L. af=g. From fh? definition of the set 6, 
(r, nr, d, d) 6 Q n 1(x, nr, d, d): nr = 0) implies that 
L(x, r),) = V(x)? wq, which in turn implies that ]x_l= 
{[u2(u7)~+Js]/a2}“* 2 a,. Using (A.43) we have, R n 
{(I, r/t. d> 0, 

i = V 5 -a3 [xl* + u4ah IxIldl< 0 (A.44) 

Step 2. We shal] now show that-there exists 1, > 0 such that 
for all (x, r~r, 4, d) E R II {(x, qf, d, d): lqrl 5 i,}, L is negative. 
In this case, L takes the form 

i = -a3 1x1’ + u4uh bl ldl - 2 1~~1~ + q(x, qf) (A.45) 

where t&r, nr) is a continuoys scalar function thz$ satisfies 
Y(x, 0) = 0. Since (x, nr, d, d) E A E fl {(x, nf, d, d): qf = 0) 
implies that Ix/ z {[a2(a7)* + ls]/u2} and, since _L, is con- 
tinuous, there exists Ia >O such that (x, nf, d. d) E &2 n 
{(x, qf, d, d): lqfl 5 I,} implies 1x1~ a,. So, from the 
previous step, we already have that the sum of the first two 
terms in (A.45) is negative. Moreover, the sum of the third 
and the fourth terms is nonpositive. Then, using the 
properties of q. there exists 1,~ Ix such that i is negative. 

Step_ 3. (nr( 2 I,. Using (A.43) and the various bounds for 
(x, d, rtr), we have 

L(x, nr) 5 -a3 Ix/* + u4ah 1x1 121 - 
ct 4 

h - b. w l’)r12 

+ k 1x1 In + bdxw 1% 

5-a~x~2-%:+l, (A.46) 
E 

where 1, = a,a,u,p, +.bswl bi + l,a5b, + b41, w, b, From 
(A.46) it is clear that L is negative for all (x, nr. d, d) E R, 
provided that 

c&& 
I,, 

(A.47) 

Using a claim analogous to that in Christofides and Tee) 
(1995), it can be shown that L(x, TJ‘) is bounded for all r ~0. 
Since it is also proper with respect to (x, nr), the 
boundedness of the trajectories follows directly for all 
c E (0, l *]. This completes the proof of the theorem. 0 


