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Abst rac t  

This work addresses the nonlinear control of a non-isothermal packed-bed reactor, modeled by two quasi- 
linear parabolic partial differential equations (PDEs). Initially, nonlinear Galerkin's method and the concept 
of approximate inertial manifold are used to derive a minimal-order ordinary differential equation (ODE) 
model, which accurately describes the dynamics of the process. This model is then used for the synthesis of 
a nonlinear finite-dimensional controller that guarantees closed-loop stability and enforces output tracking. 
Computer simulations are used to evaluate the performance of the controller. 

1 I n t r o d u c t i o n  

Transport/reaction processes arising in chemical engineering, are inherently nonlinear and are characterized 
by strong spatial variations due to the underlying convection and diffusion phenomena. Whenever convective 
mechanisms dominate over diffusive ones, these processes can be adequately described by systems of quasi-linear 
hyperbolic PDEs. These systems are characterized by spatial differential operators, whose eigenvalues cluster 
along vertical or nearly vertical asymptotes in the complex plane. In [4], we developed an output feedback 
control methodology for hyperbolic PDE systems by addressing the controller synthesis problem on the basis 
of the original PDE model. However, in a large number of practical applications, diffusive phenomena play 
a prominent role, and thus cannot be neglected. Examples include fluidized-bed and packed-bed reactors, 
coating processes, etc.. These processes are typically modeled by quasi-linear parabolic PDEs. In contrast to 
hyperbolic PDE systems, parabolic PDE systems involve spatial differential operators, whose eigenspectrum can 
be partitioned into a finite dimensional slow one and an infinite dimensional stable fast one. This fact suggests 
addressing the control problem on the basis of reduced-order ODE models which are able to approximately 
reproduce the solutions and the dynamic behavior of the original PDE model. 

Motivated by the above, control methods for linear/quasi-linear parabolic PDEs utilize eigenfunction 
expansion techniques to obtain an approximate ODE representation of the original PDE system, which is then 
used for controller design purposes [1, 10, 3]. In this approach, the solution of the system is initially expanded 
as the sum of an infinite series of the eigenfunctions of the parabolic differential operator with time-varying 
coefficients. This expansion is used to derive an infinite set of ODEs for the coefficients of the expansion. Then, 
a finite dimensional ODE model is derived by discarding an infinite set of equations and is used for the design 
of finite-dimensional controllers. Finally, standard results from center manifold theory for PDE systems are 
employed to derive conditions for the asymptotic stability of the closed-loop system. Although this approach 
has been very useful in designing control systems for parabolic PDEs, it may require keeping a large number of 
modes to derive an ODE model that yields the desired degree of approximation, leading to high dimensionality of 
the resulting controllers [8]. Furthermore, this approach does not provide any information about the discrepancy 
between the solutions of the PDE model and the reduced-order ODE model in finite time, which is essential for 
characterizing the transient performance of the closed-loop system. 

In [5], we presented a general framework for the synthesis of output feedback controllers for systems of 
quasi-linear parabolic PDEs that guarantee closed-loop stability and enforce output tracking, on the basis of 
minimal-order ODE models that  accurately reproduce the spatio-temporal behavior of the PDE model. The 
minimal-order ODE models are derived via the construction of an approximate inertial manifold for the original 
PDE system, and the closed-loop system is analyzed using singular perturbation theory to establish that the 
requested stability and performance objectives are enforced in the closed-loop system for all times. In this 
paper, we illustrate the application of this control methodology to a representative diffusion-convection-reaction 
process, a nonisothermal packed-bed reactor. We will begin with a brief summary of the control methodology 
proposed in [5] and will continue with the presentation of the application. 
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2 S u m m a r y  of  contro l  m e t h o d o l o g y  

We consider processes modeled by quasi-linear parabolic PDEs, for which the manipulated input and the 
controlled output are distributed in space, and which have the following state-space representation: 

OX 
o~ = Lx + wb(z)u + f(~)  

y(t) = /ac(z)~xdz 

Ox 
Ax(z , t )  + B ~ z ( Z , t  ) = R(t), on. F 

(1) 

where x(z,  t) C 7/[f~, IRn], with 7i being the infinite dimensional Hilbert space of n-dimensional square integrable 
vector functions defined on the domain f~, t is the time, z = [Zl z2 za] T denotes the vector of spatial variables, 
P denotes the boundary of the spatial domain fl, u E IR denotes the manipulated input, y E IR denotes the 
output to be controlled, L is a linear n x n diagonal spatial differential operator of the form L = diag{Li},  
which involves first- and second-order spatial derivatives, f ( x )  is a sufficiently smooth vector function, b(z) is 
a smooth function which determines how the control action is distributed in space, c(z) is a smooth function 
which depends on the desired performance specifications, w, k are constant vectors, A, B are constant matrices, 
and R(t)  is a column vector. Throughout the paper, we will use the order of magnitude notation O(e). In 
particular, 6(e) = O(e) if there exist positive constants k and e such that: ]6(e)[ < kle] , Y le] < c. 

The developed framework for the synthesis of finite-dimensional output feedback controllers for systems 
of the form of Eq.1 entails the following steps: 

• Initially, nonlinear Galerkin's method is employed to transform the model of Eq.1 into an interconnection 
of a finite-dimensionM (possibly unstable) system with an infinite dimensional stable system. To this 
end, two appropriate sets of orthogonal basis functions, which completely span the space 7-/, are selected 
and used to derive a two-time-scMe system, modeled within the mathematical framework of singular 
perturbations, whose slow subsystem is of dimension equal to the number of slow modes of the system 
operator L, and the fast subsystem is infnite dimensional and stable. 

• Then, singular perturbation methods are employed to decompose the resulting two-time-scale system into 
two separate models which describe the evolution of the original system in the fast and slow time-scale, 
and derive a minimal-order slow subsystem which yields approximate solutions of desired accuracy. Given 
the fact that the fast subsystem is exponentially stable, a finite dimensional nonlinear output feedback 
controller is synthesized on the basis of the minimal-order slow subsystem, through combination of a novel 
iterative procedure developed in [5] and geometric nonlinear control methods (e.g. [6]), to enforce output 
tracking and guarantee exponential stability of the closed-loop slow subsystem. 

• Finally, the resulting infinite-dimensional closed-loop system (PDE model and controller) is analyzed 
utilizing singular perturbation theory to derive a lower bound on the degree of separation of the slow 
versus the fast modes that guarantees the exponential stability of the closed-loop system and that the 
output satisfies a relation of the form: 

Y(t) = Y ' ( t ) + O ( ~ ) ,  t >0  (2) 

with yS (t) being the output of the closed-loop slow subsystem and ( is a small positive parameter which 
depends on the degree of approximation of the original parabolic PDE model from the slow system and 
is chosen to meet certain performance specifications. 

3 Contro l  of  a p a c k e d - b e d  reactor  

3.1 P r o c e s s  de scr ip t ion  and analys i s  

We consider a non-isothermal packed-bed reactor, where an elementary endothermic reaction of the form A ---* B 
takes place. Under standard modeling assumptions, the dynamic modelof the  process expressed in dimensionless 
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variables takes the form [10, 3]: 

21 
Oxl _ Oxl 1 0221 ~ - -  

PeT ~O"z ~ BT B c e x p  1 + x l  x2 +/3T(U -- xl)  
Ot Oz 

21 
9 

Bcexp l + xl x2 

(3) 
Ox2 &:2 1 0222 

Ot Oz P e c  Oz 2 

subject to the boundary  conditions: 

021 022 0Xl 022 
z = O, P e T z l  = --~-z' PeG(x2 - 1) = -&-z; z = 1, 0~- - 0~- - 0 (4) 

where 21, x= denote dimensionless temperature and concentration in the reactor, PeT, PeG are the heat and 
mass Peclet numbers,  BT, B c  denote a dimensionless heat of reaction and a dimensionless pre-exponential factor, 
7 is a dimensionless activation energy, fiT is a dimensionless heat transfer coefficient, and u is a dimensionless 
jacket temperature  which is assumed to be spatially uniform. The control objective is to control the temperature 

/0 profile along the length of the reactor, i.e. the controlled output  is of the form y(t) = x ldz .  The following 

typical values for the process parameters were used in our calculations: 

P E T = 5 . 0 ,  P e c  = 5.0, B c = 0 2 0 0 0 1 ,  BT = I.O, ~ T = 1 5 . 6 2 ,  7 = 2 2 . 1 4  (5) 

It was verified that  the above process parameters correspond to a stable steady-state for the open-loop system. 
The process model of Eq.3 is in the form of Eq.1 with 

= 1 0222 022 
L2 0 P e c  Oz 2 O~ 

(~) 

The solution of the eigenvalue problem for the above spatial differential operator subject to the boundary 
conditions of Eq.4 can be obtained utilizing standard techniques from linear operator theory (see for example 
[9, 10]) and is of the form: 

-2 Pe 
Ai j  = a i j +  i =  1,2, j = 1, oc 

P c - - 4  . . . . .  
Z 

Re-- Pe (7) 
¢~j(z) = B~i~ 2(cos(a~z)+ ~ , i , ( a i j z ) ) ,  i =  1,2, i = 1 , . . . , o o  

(~O(z) = e -P~z¢o(z ) ,  i =  1,2, j = l , . . . , o o  

where Pe = PeT = P e c ,  and Aij, ¢ i j ,  ¢ij, denote the eigenvalues, eigenfunctions and adjoint eigenfunctions of 
Li, respectively, ctij, Bij can be calculated from the following formulas: 

tan(6tij) -- Pe~tij i = 1,2, j = 1 , . . . , o o  
@ - (~)~' 

1 (8) 

Bij = c o s ( a i j z )  + P e s i n ( f i i j z )  dz , i = 1,2, j = 1 , . . . ,  oo 
2gtij 

A direct computa t ion  of the first five eigenvalues of L yields )~11 = A21 = 1.94, A12 = A22 = 4.80, Ala = A23 = 
10.42, X14 = A24 = 20.93, and A15 = A2s = 34.78. These values indicate that the eigenspectrum of L exhibits 
a two-time-scMe property and suggest considering the first two eigenmodes of each PDE as the slow ones and 
the remaining infinite eigenmodes as the fast ones. 

3 . 2  C o n s t r u c t i o n  o f  m i n i m a l - o r d e r  O D E  m o d e l s  

We will initially utilize nonlinear Galerkin's method [10, 2] to transform the PDE model of Eq.3 into an 
equivalent set of infinite ODEs. The solution of the state xi of the system of Eq.3 can be represented in terms 
of the eigenfunctions ¢i j ,  in the following way: 

oo 
2,(z, t) = '~-~ai~(t)¢i~(z) (9) 

j=l 
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where aij(t) are time-varying coefficients. Defining the orthogonal projection operators P,, and P/j, i = 1, 2, 
a s :  

2 oo 

P~,xi(z,  t) = E a i j ( t ) C i j  (z), P: ,x i (z ,  t) = E a i j ( t ) ¢ i j ( z )  (10) 
j = l  j=3 

the state of the system of Eq.3 can be decomposed as 

x = x~ + x] = Rex + P : x  (11) 

where P :  [P~'xl r . r = P,2X2] , P : x  = [P~Xl P~x2] r .  Substituting Eq . l l  into Eq.3 and applying the projection 
operators P, and Pj ,  a dynamical system consisting of an infinite set of ODEs is obtained, which after grouping 
the first 4 equations corresponding to the slow eigenmodes, can be compactly written in the following form: 

dx~ 
= A~x, + wbsu + f~ (x~ ,x : )  

dt 

Ox: (12) 
Ot = ASx': + w b j u +  f s ( x ~ ' x : )  

y = C k x s + C k x  S 

where As = P~APs, bs = P~b, fs = P~f  , A:  = P :AP: ,  b: = P:b, f :  = P: f .  In the above system, As is a 4 x 4 
diagonal matrix of the form A~ = diag{Al:,  )~, ,  ,~2~, .~2~}, f~ and f :  are smooth vector functions, and AS is an 

exponentially stable differential operator whose smallest eigenvalue is "~3 = -~23- Defining ¢p - $13 - ),23 and 

multiplying the x:-subsystem of Eq.12 by %, the system of Eq.12 can be written in the singularly perturbed 
form: 

dxs 
= A~x~ + wbsu + f~ (xs ,X: )  

dt 

o~: = A ) z s  + ~wb:~ + ~,,::(xs,x:) (:3) 
~P Ot 

y = C k x , + C k x  S 

where A) is an exponentially stable differential operator, whose smaller eigenvalue is identical to the smaller 
eigenvalue of the matrix As. Owing to its two-time-scale property, the trajectories of the system of Eq.13 
starting from arbitrary initial conditions, converge to a finite-dimensional stable inertial manifold M [7], after 
a short initial transient. On the inertial manifold, the solution of the PDE system of Eq.3 is exactly described 
by the solutions of the finite-dimensional slow system (called inertial form): 

dxs 
= A : ~  + wb:~ + f , (x~,  E(x , ,  u, ep)) 

dt (14) 
y~ = Ckxs + CkE(x~,u,  ep) 

and the manifold equation x i  = E(xs, u, %). In order to derive the explicit form of the exact slow system, we 
need to compute the analytic form of E(x~, u, (p). However, this computation cannot be performed analytically 
due to the complexity of the process under consideration. Instead, we will compute approximations of the exact 
slow system of arbitrary accuracy by constructing approximations of E(x~, u, ep) (called approximate inertial 
manifolds). In [5], we developed a novel procedure for the construction of approximations of E(x,,  u, ep) of arbi- 
trary accuracy using singular perturbation theory (see also [2] for an alternative approach for the construction 
of approximate inertial manifolds). This procedure involves expansion of E(xs, u, cp) and u in a power series in 
~p : 

~(~,, ~p) = ~0(~,, ~) + ~:1(~, ,  ~) +. . .  + 4 ~ ( ~ , ,  ~)  + o ( ~  +~) 
(15) 

r(x, ,  u, (p) = r0(~,, ~) + ~pr:(~,, ~) +. . .  + ~rk(x , ,  ~) + o(~+ ~) 

where uk, E k are smooth functions, followed by the substitution of the resulting expressions into the equation: 

0 E .  0 E .  x! = - - x ,  + (16) 
O x , -~u u 

(which was obtained by differentiating in time the manifold equation x:  = E(x~, u, ep)), and equation of terms 
of the same power in ep. Following this procedure, the O(ev) approximation of E(x~, u, ep) is E°(x~, u) = 0 and 
the 0(%) approximation of the exact slow system takes the form: 

dxs 
- -  = Asxs +wb~uo+ f~(x, ,O) 
dt (z7) 
y~ = Ckx~ 
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Furthermore, the O(e~) approximation of E(x, ,  u, ep) has the form: 

~(.T,,  U, (p) = ~0(X,,, U0) "I- (p~ , l (x , ,  U) + O({:p 2) ~--- 0 q- ev(A })-1 [-wbfuo - f j  (x,, 0)] + O(e~) 

and the corresponding O(% 2) approximation of the exact slow system is given by: 

dxs 
= A,x~ + wb~uo + %wb~ul + f.,(x~, ev(A})- l[-wbfuo - ff(x~, 0)]) 

dt 

y~ = Ckx~ + %Ck(d~y)-l[-wbyuo- ff(x~,0)] 

S1075 

(1~) 

(19) 

3.3 Controller synthesis-Simulations 

The ODE model of Eq.19 was used for the synthesis of a nonlinear finite-dimensional controller consisting of a 
static state feedback law u of the form: 

U = U 0"ff-~pu 1 : p0(xs)-I-  Q0(xs)v-ff-~p[pl(xs,ffp)-~- Ql(xs ,~p)V] (~0) 

where p0, Q0, pl,  Q1 are smooth functions and v is the set point, coupled with an open-loop observer of the form 
of Eq.19 (this is possible because the open-loop process and thus the model of Eq.19 are exponentially stable). 
The synthesis of the static control law was performed following an iterative procedure which was proposed in 
[5]. In particular, the leading term of the expansion, u0, was synthesized employing geometric control methods 
(e.g., [6]) on the basis of the 0(%)  approximation of the exact slow system (Eq.17), followed by the synthesis 
of the term ul on the basis of the O(ep 2) (0(0.036)) approximation of the exact slow system (Eq.19). The O(c~) 
approximation of E(x~, u, ~p) was constructed by retaining the first three of the fast modes for each PDE, and 
discarding the remaining infinite ones (this is because the use of more than three fast modes provides negligible 
improvement in the accuracy of the O(c~) approximation of the fourth-order model). Furthermore, the ODE 
system of Eq.14, with the 0 (%)  and O(c~) approximations of E(xs, u, cp) was found to be minimum-phase (i.e., 
its zero dynamics is exponentially stable), which implies that the controller guarantees exponential stability 
of the closed-loop slow system. Finally, it was also established that the value of % = 0.19 ensures that  the 
controller exponentially stabilizes the closed-loop parabolic PDE system as well. 

Simulation runs were performed to illustrate the advantages obtained by using higher-order approxi- 
mations of E(x~, u, %) in the construction of the slow subsystem of Eq.14 and evaluate the output tracking 
capabilities of the proposed control methodology. In particular, we compared the performance of the controller 
synthesized following the above procedure with that of a controller consisting of the static control law u = u0 
coupled with an open-loop observer of the form of Eq.17 (O(~p) approximation). The results of the simulation 
study are given in Figure 1. The left figures show the output and manipulated input profiles for an 8.0% decrease 
in the value of the set-point (the new set-point value is t, = 1.11). It is clear that the controller synthesized on the 
basis of the model which uses an O(~)  approximation for E(x~, u, cp) provides an excellent performance driving 
the output (solid line) very close to the new set-point (note that as expected, limt_ooly - vl = O(c~)). On the 
other hand, the controller synthesized on the model of Eq.17 drives the output (dotted line) to a neighborhood 
of the set-point (note that limt~oo lY - vl = 0(%))  leading to significant offset (compare with set-point value). 
The right figure displays the evolution of the dimensionless temperature of the reactor for the case of using an 
O(e~) approximation for E(x~, u, cp). The controller achieves excellent performance, regulating the tempera- 
ture at each point of the reactor to a new steady-state value, which is close to 8% lower than the. one of the 
original steady-state. Finally, it was also verified through simulations (not shown here due to space limitations) 
that: i) the closed-loop output profile obtained by using a fourth-order model with an O(e~) approximation 
for F~(xs, u, ep) is comparable to the one achieved by using a tenth-order model with an O(cp) approximation 
for E(x, ,  u, or) , and ii) the use of higher-order approximations for E(xs, u, %) and u(x~, %) (i.e. O(c3)) in 
the construction of the fourth-order model provides minimal improvement. From the results of the simulation 
study, it is evident that  the methodology proposed in [5] is a powerful tool tbr the synthesis of minimal-order 
controllers which yield a desired closed-loop performance for diffusion-convection-reaction processes. 
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Figure 1: Left figures. Comparison of output (top figure) and manipulated input (bottom figure) profiles of 
the closed-loop system, for an 8% decrease in the set point. The solid lines correspond to a controller based 
on the model of Eq.14 with an O(ep) approximation for E, while the dotted lines correspond to a controller 
based on the model of Eq.14 with an O(e~) approximation for ~. Right figure. Profile of evolution of reactor 
temperature, for an 8% decrease in the set point (O(e~) approximation for ~). 
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