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Abstract--This work concerns systems of quasi-linear first-order hyperbolic partial differential 
equations (PDEs) with uncertain variables and unmodeled dynamics. For systems with uncer- 
tain variables, the problem of complete elimination of the effect of uncertainty on the output via 
distributed feedback (uncertainty decoupling) is initially considered; a necessary and sufficient 
condition for its solvability as well as explicit controller synthesis formulas are derived. Then, 
the problem of synthesizing a distributed robust controller that achieves asymptotic output 
tracking with arbitrary degree of attenuation of the effect of uncertain variables on the output of 
the closed-loop system is addressed and solved. Robustness with respect to unmodeled dynam- 
ics is studied within a singular perturbation framework. It is established that controllers which 
are synthesized on the basis of a reduced-order slow model, and achieve uncertainty decoupling 
or uncertainty attenuation, continue to enforce these objectives in the presence of unmodeled 
dynamics, provided that they are stable and sufficiently fast. The developed controller synthesis 
results are successfully implemented through simulations on a fixed-bed reactor, modeled by 
two quasi-linear first-order hyperbolic PDEs, where the reactant wave propagates through the 
bed with significantly larger speed than the heat wave, and the heat of reaction is unknown and 
time varying. © 1997 Elsevier Science Ltd 
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1. I N T R O D U C T I O N  

Systems of quasi-linear PDEs arise naturally in chem- 
ical engineering as models of transport-reaction pro- 
cesses.The conventional approach to the control of 
PDE systems involves the discretization of the orig- 
inal model to derive a set of ordinary differential 
equations (ODEs) followed by the application of linear/ 
nonlinear control methods for ODEs. Although this 
approach may lead to satisfactory control quality in 
processes with mild spatial variations, it usually leads 
to poor performance in processes with strong spatial 
variations. Motivated by this, in the last five years, 
there is an emerging research activity on the develop- 
ment of control methods for quasi-linear PDE sys- 
tems that explicitly account for the effect of spatial 
variations. The reader may refer to Lasiecka (1995) for 
a historical perspective on control of PDEs and to 
Christofides and Daoutidis (1996b) for a review of 
recent results in this area. 

A class of quasi-linear PDE systems which can 
adequately describe the majority of convection- 
reaction processes is the one of first-order hyperbolic 
PDEs. Representative chemical processes modeled by 
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such systems include plug-flow reactors (Ray 1981), 
fixed-bed reactors (Stangelland and Foss, 1970), 
pressure swing absorption processes (Ruthven and 
Sircar, 1994) etc. The distinct feature of hyperbolic 
PDEs is that all the eigenmodes of the spatial differen- 
tial operator contain the same, or nearly the same, 
amount of energy, and thus an infinite number of 
modes is required to accurately describe their dy- 
namic behavior. This feature distinguishes hyperbolic 
PDEs from parabolic PDEs (which arise as models of 
diffusion-convection-reaction processes), prohibits 
the application of modal decomposition techniques to 
derive reduced-order ODE models that approxim- 
ately describe the dynamics of the PDE system and 
suggests addressing the control problem on the basis 
of the infinite-dimensional model itself. Following this 
approach, a methodology for the design of distributed 
state feedback controllers, based on combination 
of the method of characteristics and sliding mode 
techniques was proposed in Sira-Ramirez (1989) and 
Hanczyc and Palazoglu (1995). A geometric control 
methodology was developed in Christofides and 
Daoutidis (1996a) for the synthesis of nonlinear dis- 
tributed output feedback controllers that enforce 
output tracking and guarantee stability of the closed- 
loop system. An alternative approach to the control 
of quasi-linear hyperbolic PDE systems is based 
on Lyapunov's direct method (Wang, 1964; Wang, 
1966). The basic idea in this approach is to design 

85 



86 P.D. Christofides 

a controller so that the time-derivative of an appropri- 
ate Lyapunov functional calculated along the trajec- 
tories of the closed-loop system is negative definite, 
which ensures that the closed-loop system is asymp- 
totically stable. This approach was followed by 
Alonso and Ydstie (1995), where concepts from 
thermodynamics were employed to construct a 
Lyapunov functional candidate, which was used to 
derive conditions that guarantee asymptotic stability 
of the closed-loop system under boundary propor- 
tional-integral-derivative control. 

One of the most important theoretical and practical 
problems in control is the one of designing a control- 
ler that compensates for the presence of mismatch 
between the model used for controller design and the 
actual process model. Typical sources of model uncer- 
tainty include unknown or partially known time-vary- 
ing process parameters, exogenous disturbances and 
unmodeled dynamics. It is well known that the pres- 
ence of uncertain variables and unmodeled dynamics, 
if not taken into account in the controller design, may 
lead to severe deterioration of the nominal closed- 
loop performance or even to closed-loop instability. 

Research on robust control of PDEs with uncertain 
variables has been limited to linear systems. For  linear 
parabolic PDEs, the problem of complete elimination 
of the effect of uncertain variables on the output via 
distributed state feedback (known as disturbance 
decoupling) was solved in Curtain (1984, 1986). Re- 
search on the problem of robust stabilization of linear 
PDE systems with uncertain variables led to the 
development of H °~ control methods in the frequency- 
domain (e.g. Curtain and Glover, 1986; Palazoglu and 
Owens, 1987; Gauthier and Xu, 1989). The derivation 
of concrete relations between frequency-domain and 
state-space concepts for a wide class of PDE systems 
in Jacobson and Nett (1988) motivated research on 
the development of the state-space counterparts of the 
H ~ results for linear PDE systems (see Keulen, 1993; 
Burns and King, 1994 for example). Within a state- 
space framework, an alternative approach for the de- 
sign of controllers for linear PDE systems, that deals 
explicitly with time-invariant uncertain variables, in- 
volves the use of adaptive control methods (Wen and 
Balas, 1989; Hong and Bentsman, 1994; Demetriou, 
1994; Balas, 1995). 

On the other hand, the problem of robustness of 
control methods for PDE systems with respect to 
unmodeled dynamics is typically studied within the 
singular perturbation framework (e.g., Wen and Balas 
1989). This formulation involves synthesizing a con- 
troller on the basis of a reduced-order PDE model 
(which captures the dominant (slow) dynamics of the 
process) and deriving conditions under which the 
same controller stabilizes the actual closed-loop sys- 
tem (which includes the unmodeled dynamics). This 
approach was employed in Wen and Balas (1989) to 
establish robustness of a class of finite-dimensional 
adaptive controllers, which asymptotically stabilize a 
PDE system with time-invariant uncertain variables, 
with respect to unmodeled dynamics, provided that 
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they are stable and sufficiently fast. Furthermore, the 
singular perturbation framework allows studying the 
control and order reduction of PDE systems with fast 
and slow dynamics. Soliman and Ray (1979) utilized 
singular perturbation techniques to design well-con- 
ditioned state estimators for two-time-scale parabolic 
PDE systems, while Dochain and Bouaziz (1993) re- 
cently used singular perturbations to reduce the para- 
bolic PDE model that describes a fixed-bed reactor 
with strong diffusive phenomena to an ODE one. 

In this article, we consider systems of first-order 
hyperbolic PDEs with uncertainty, for which the mani- 
pulated input and the controlled output are distrib- 
uted in space. The objective is to develop a framework 
for the synthesis of distributed robust controllers that 
handle explicitly time-varying uncertain variables and 
unmodeled dynamics. For  systems with uncertain 
variables, the problem of complete elimination of the 
effect of uncertainty on the output via distributed 
feedback is initially considered; a necessary and suffi- 
cient condition for its solvability as well as explicit 
controller synthesis formulas are derived. Then, a dis- 
tributed robust controller is derived that guarantees 
boundedness of the state and achieves asymptotic 
output tracking with arbitrary degree of asymptotic 
attenuation of the effect of uncertain variables on the 
output of the closed-loop system. The controller is 
designed constructively using Lyapunov's direct 
method and requires that there exist known bounding 
functions that capture the magnitude of the uncertain 
terms and a matching condition is satisfied. The prob- 
lem of robustness with respect to unmodeled dynam- 
ics is then addressed within the context of control 
of two-time-scale systems modeled in singularly per- 
turbed form. Initially, a robustness result of the 
bounded stability property of a reduced-order PDE 
model with respect to stable and fast dynamics is 
proved. This result is then used to establish that the 
controllers which are synthesized on the basis of a 
reduced-order slow model, and achieve uncertainty 
decoupling or uncertainty attenuation, continue to 
enforce these control objectives in the full-order 
closed-loop system, provided that the unmodeled dy- 
namics are stable and sufficiently fast. The developed 
control method is tested through simulations on 
a nonisothermal fixed-bed reactor, where the reactant 
wave propagates through the bed with significantly 
larger speed than the heat wave, and the heat of 
reaction is unknown and time varying. 

2. FIRST-ORDER HYPERBOLIC P D E s  

2.1. Description of hyperbolic PDEs 
with uncertain variables 

We will focus on systems of quasi-linear first-order 
hyperbolic PDEs in one spatial variable, with the 
following state-space description: 

0_._~x 
= A(x)~zz +f(x) + 9(x)b(z)a + W(x)r(z)O(t) 

at 

y~ = ~h(x)  (1) 



ul(t) 1 

x 

Robust control of hyperbolic PDE systems 

0(t) ui(t)l 0(t) u/(t)l 

x AL 
~ O  • • • -~0 • • • 

O(t) 

lyl(t)  1 .yi(t) 

lr  

l~l  (t) 

Fig. l. Specification of the control problem in a prototype example. 
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subject to the boundary condition: 

Cax(c~, t) + C2x( f l ,  t )  = R ( t )  (2) 

and the initial condition: 

x(z ,  O) = Xo(Z). (3) 

In the above description, x(z ,  t) = [x l ( z ,  t) ... x , ( z ,  t)] T 
denotes the vector of state variables, x ( z , t ) ~  
oaf" [(~, fl), •"],with Y¢'" being the infinite-dimensional 
Hilbert space of n-dimensional vector functions de- 
fined on the interval [~, fl] which satisfy the boundary 
condition of eq. (2) and whose spatial derivatives up to 
nth order are square integrable, and z e [a, ]Y] = 

and t ~ [0, oo ), denote position and time, respec- 
tively, ff = [t/1 -.. fft]T~ ~t denotes the vector of 
manipulated inputs, 0 = [01 ..- 0q] ~ •q denotes the 
vector of uncertain variables, which may include un- 
certain process parameters or exogenous distur- 
bances, Ys = [P~ " "  )~-]T ff ~l denotes the vector of 
controlled outputs. Figure 1 shows the location of the 
manipulated inputs and controlled outputs in the case 
of a prototype example. A(x ) ,  W ( x )  are sufficiently 
smooth matrices of appropriate dimensions,f (x) and 
g(x)  are sufficiently smooth vector functions, h(x)  is 
a sufficiently smooth scalar function, C1, C2 are con- 
stant matrices of appropriate dimensions, R ( t )  is 
a time-varying column vector, and Xo(Z) e 
~ [ (~ ,  fl), R"], with J¢~[(~, fl), R"] being the Hilbert 
space of n-dimensional vector functions which satisfy 
the boundary condition of eq. (2) and are square 
integrable on the interval [~, fl]. b(z)  is a known 
smooth vector function of the form: 

b(z)  = [(H(z - z l )  - -  H ( z  - z2))b 1 (z) ... ( H ( z  - z,) 

- -  H ( z  - -  z l +  1))bl(z)] (4) 
where H denotes the standard Heaviside function 
and hi(z)  describes how the control action ti~(t) 
is distributed in the spacial interval [z~,z~+a]. r(z)  
is a known matrix whose (i, k)th element is of the form 
r~(z), where the function rj,(z) specifies the position 
of action of the uncertain variable 0k on [z~, zi+ 1 ] .  

is a bounded linear operator, mapping o~¢g" into R t, 

of the form 

= [(n(z - z l )  - H ( z  - z 2 ) ) ~  1 ... ( n ( z  - z,) 

- -  H ( Z  - -  ZI+ 1))c1~1"1T (5 )  

where the operator c~i depends on the desired perfor- 
mance specifications and in most practical applica- 
tions is assumed to be of the form 

- i  t f f~+~  y~( ) = C~ih(x) = c i ( z ) h ( x ( z ,  t))dz (6) 
i 

where c i(z) is a known smooth function. For simpli- 
city, the functions bi(z),  ci(z), r~(z), i =  1 . . . . .  l, k = 
1,... ,9 are assumed to be normalized in the interval 
[a, fl], i.e., 

i = l  i i = 1  i 

The quasi-linear hyperbolic PDE system of eq. (1), 
with O(t) - 0, describes the majority of convection- 
reaction processes arising in chemical engineering 
(Rhee et  al., 1986) and is a natural generalization 
of linear models considered in Ray (1981) and 
Christofides and Daoutidis (1996a) in the context of 
linear distributed state estimation and control. The 
assumption of affine and separable appearance of 
ff and 0 is a standard one in uncertainty decoupling 
and robust control studies for linear PDEs (e.g., 
Curtain, 1984, 1986), and is satisfied in most practical 
applications, where the jacket temperature is usually 
chosen to be the manipulated input (see, for example, 
Ray, 1981; Christofides and Daoutidis, 1996a), and 
the heat of reactions, the pre-exponential constants, 
the temperature and concentration of lateral inlet 
streams, etc. are typical uncertain variables. 

2.2. M a t h e m a t i c a l  p re l im inar i e s  
In this subsection, we specify precisely the class of 

systems of the form of eq. (1) considered in this work, 
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and review some basic stability properties and results 
for these systems, including a converse Lyapunov 
theorem. First, we define the inner product and the 
norm in Jef ([a, fl]; 0~"). 

Let col, 022 be two elements of ~ ( [ a ,  fl]; R"). Then, 
the inner product and the norm in 3¢f([c~, fl]; N") are 
defined as follows: 

;o (091, 012) = ((/)1 (Z), 0)2 (Z)) R" dz 

II ~o, Ih = (~o, ,  ~o~) ~/~ (7) 

where the notation (',')R~ denotes the standard inner 
product in R". 

Our requirement that the PDE system of eq. (1) is 
hyperbolic is precisely formulated in the following 
assumption. 
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satisfies the following growth property: 

II U(t)]12 ~< g e  at, t >1 0 (11) 

where K /> 1, a is the largest real part of the 
eigenvalues of the operator ~ ,  and an estimate of K, 
a can be obtained utilizing the Hiller-Yoshida 
theorem (Friedman, 1976). Whenever the parameter 
a is strictly negative, we will say that the operator of 
eq. (9) generates an exponentially stable semigroup 
u(t). 

The fact that the operator of eq. (9) generates 
a strongly continuous semigroup allows applying 
Lyapunov stability theorems for infinite-dimensional 
systems to the system in eq. (1) (Wang, 1964, 1966). In 
particular, the following standard converse Lyapunov 
theorem for systems of the form of eq. (1) will be 
important for our purposes. 

Assumption 1. The matrix A(x) is real symmetric, and 
its eigenvalues satisfy: 

2~(x) ~< ..- ~< ,Ik(x) < 0 < ,~k+~(x) ~< .. .  ~< 2 . (x )  (8) 

for all x e ~,~ [(a, fl), ~ n]. 

Assumption 1 is satisfied by most convection- 
reaction processes, where the matrix A(x) is usually 
diagonal and its eigenvalues are the fluid velocities 
(e.g. plug-flow reactors, heat exchangers, countercur- 
rent absorbers-reactors). Assumption 1 also guaran- 
tees the local existence, uniqueness and continuity 
of solutions of the system of eq. (1) (Russell, 1978), 
in the sense that the operator of the corresponding 
linearized system 

~x 
5~x = A ( z ) ~  z + B(z )x  (9) 

where A(z) = A(xs(z)), B(z) = (3f(x) /Sx)x-  x,(~), and 
x, (z) denotes some steady-state profile, defined on the 
domain in W [(~, fl); R ~] consisting of functions x 
~,,,1 [(a, fl); R"] which satisfy the boundary condition 
of eq. (2), generates a strongly continuous semigroup 
U(t) of bounded linear operators on ogg [(a, fl); N"]. In 
particular, the generalized solution of this system is 
given by 

f: x = U(t) + U(t -- "c)f(x)d'c 

+ U(t - z)G(x)ba(z)dz  
0 

;o + g ( t  - z)W(x)rO(~)dz + C(t)R (10) 

where C(t) is a bounded linear operator for each 
t mapping af[(0,  t); ~"]  into o~[(a, fl); R"]. From 
eq. (10), it is clear that U(t) evolves the initial condi- 
tion x0 forward in time, and thus U(t) can be thought 
of as an analog of the notion of state transition matrix, 
used for linear finite-dimensional systems, in the case 
of infinite-dimensional systems. From general semi- 
group theory (Friedman, 1976), it is known that U(t) 

Theorem 1 (Wang, 1966). Consider the system oJ 
eq. (1), with (lfi[ = ]0l - 0), and assume that the oper- 
ator of  eq. (9) generates a locally exponentially stable 
semigroup. Then, there exists a smooth functional V: 
~f~n x [~, fl] ~ R >1 o of  the form 

V(t) -- xT q(z )xdz  (12) 

where q(z) is a known positive definite function satisfy- 
in# Sz, q(z)dz = 1, and a set of  positive real 
numbers al,  a2, a3, a4, a5 such that /f IF x 112 ~< a5 the 
following conditions hold: 

al I[ x I[ 2 ~< V(t) <~ a2 II x 112 

dV aV [ c~x -] 
--=dt ~ x  [ A ( X ) ~ z + f ( x )  J <~ - a3]lxl[2 

I 

8V ~< a4 II x 112. (13) 
Ox 2 

Remark 1. Note that, for infinite-dimensional sys- 
tems, stability with respect to one norm does not 
necessarily imply stability with respect to another 
norm. This difficulty is not encountered in finite- 
dimensional systems since all norms defined in a finite 
dimensional vector space are equivalent. In our case, 
we choose to study stability with respect to the L2- 
norm since for hyperbolic systems it represents 
a measure of the total energy of the system at any 
time, and thus exponential stability with respect to 
this norm implies that the system's total energy tends 
to zero as t ~ oo (i.e., since V(t) is a quadratic func- 
tion: V(t) ~ 0 as t ~ 0o ~ exponential stability). 

2.3. Concepts of  characteristic index and zero 
dynamics 

We will initially review the concept of characteristic 
index between the output jT~ and the input a i intro- 
duced in Christofides and Daoutidis (1996a) that will 
be used in the formulation and solution of the uncer- 
tainty decoupling and robust uncertainty attenuation 
control problems. 
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Definition 1 (Christofides and Daoutidis, 1996a). Re- 
ferring to the system of eq. (1), we define the character- 
istic index of the output ~ with respect to the input ~-1 i a s  

the smallest integer a i for which 

t / 2. Oxj f ' -  C~ Lo~ j~ ,  ~z  La, + Ly_  h(x)bi(z) -~ 0 (14) 

where aj denotes the jth column vector of the matrix 
A(x), and L~, Lf denote the standard Lie derivative 
notation, or a ~ = oc if such an integer does not exist. 

From the above definition, it follows that a ~ de- 
pends on the structure of the process (matrix A(x) and 
functionsf(x), g(x), h(x)), as well as on the actuator 
and performance specification functions, bt(z) and 
d(z), respectively. In most practical applications, the 
selection of (bi(z), d(z)) is typically consistent for all 
pairs ()7~, fit), in a sense which is made precise in the 
following assumption. 
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used to state conditions that guarantee stability of the 
closed-loop system. 

Definition 3 (Christofides and Daoutidis, 1996a). The 
zero dynamics associated with the system of  eq. (1), with 
0 ( t ) -  0, is the system obtained by constraining the 
output to zero, i.e., the system: 

Ox ~x 
--Ot = A-~z + f ( x ) -  g(x)b(z) 

x CgL 9 t?xj L + L f  h(x) b(z) 
j ~z ~J 

x cg ~z  L . ~ + L y  h(x) 
) 

Cgh(x) = 0 

Clx(~, t) + C2x(fl, t) = R(t). (16) 

Assumption 2. Referring to the system of first-order 
partial differential equations of the form of eq. (1), 
O ' 1 = 0 " 2 =  , . .  ~ O - 1 ~ 0  -. 

Given the above assumption, a can be also thought 
of as the characteristic index between the output vec- 
tor 37~ and the input vector t~. 

We will now define a concept of characteristic index 
between the output y~ and the uncertainty vector 0, 
for systems of the form of eq. (1) that will be used to 
express the solvability condition of the uncertainty 
decoupling problem via distributed state feedback 
and the matching condition in the robust uncertainty 
attenuation problem. 

Definition 2. Referring to the system of eq. (1), 
we define the characteristic index of the output ~i s 
with respect to the vector of uncertainties 0 as the 
smallest integer 6 t for which there exists k e [1, q] such 
that 

Lw, l L - -  La + L f  h(x) r~(z) ~ 0 (15) J 

where Wk denotes the kth column vector of the matrix 
W(x), or 6i = ~ if such an integer does not exist. 

From the above definition, it follows that 6 ~ 
depends on the structure of the process (matrices 
A(x), W(x)  and functions f (x) ,  h(x)), as well as on 
the position of action of the uncertain variables 
0 (functions r~(z)) and the function d(z). In order 
to simplify the statement of our results, we define 
the characteristic index of the output vector 17s 
with respect to the vector of uncertainties 0 as 
6 = min{61, i~ 2 . . . . .  61} ,  

Finally, we recall a concept of zero dynamics for 
systems of the form of eq. (1), with O(t) - O, proposed 
in Christofides and Daoutidis (1996a); this will be 

3. U N C E R T A I N T Y  D E C O U P L I N G  

In this section, we consider systems of the form of 
eq. (1) and address the problem of synthesizing a dis- 
tributed state feedback controller that stabilizes the 
closed-loop system and forces the output to track the 
external reference input in a prespecified manner for 
all times, independently of the uncertain variables. 
More specifically, we consider control laws of the 
form 

a = S e ( x ) + s ( x ) v  (17) 

where 5 ~ (x) is a smooth nonlinear operator mapping 
og¢'" into ~t, s(x) is an invertible matrix of smooth 
functionals, and v e W is the vector of external refer- 
ence inputs. Under the control law of eq. (17), the 
closed-loop system takes the form 

c3x c3x 
--~ = A (x) ~z + f (x) + g (x) b (z) 6 a (x) + g (x) b(z) s(x)v 

+ W(x)  r(z)O(t) 

f~s = C~h(x) (18) 

It is clear that feedback laws of the form of eq. (17) 
preserve the linearity with respect to the external 
reference input v. We also note that the evolution of 
the closed-loop system of eq. (18) is locally governed 
by a strongly continuous semigroup of bounded lin- 
ear operators, because b(z)Se(x), b(z)s(x), r(z)O(t) are 
bounded, finite-dimensional perturbations, ensuring 
that the solution of the system of eq. (18) is well 
defined. Proposition 1 that follows allows specifying 
the order of the input/output response in the nominal 
closed-loop system (the proof can be found in the 
appendix). 

Proposition 1. Consider the system of eq. (1), for which 
assumption 1 holds, subject to the distributed state 
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feedback law of eq. (17). Then, referrin9 to the closed- 
loop system of eq. (18): 
(a) the characteristic index of Ys with respect to the 

external reference input v is equal to a, and 
(b) the characteristic index of ~¢~ with respect to 0 is 

equal to 6, if 6 <~ a. 

The fact that the characteristic index between the 
output 17~ and the external reference input v is equal to 

suggests requesting the following input/output re- 
sponse for the closed-loop system: 

d~37~ d33~ 
r o - - ~  + ... +71 Z -  + y , = v  (19) 

where 71, 72 . . . . .  7, are adjustable parameters which 
can be chosen to guarantee input/output stability in 
the closed-loop system. Referring to eq. (19), note that, 
motivated by physical arguments, we request, for each 
pair 07L v'), i = 1 . . . . .  l, an input/output response of 
order a with the same transient characteristics (i.e. the 
parameters Yk are chosen to be the same for each pair 
(37~, vi)). The following theorem provides the main re- 
sult of this section. 
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uncertainty decoupling via distributed state feedback 
(see illustrative example in Remark 5 below). 

Remark 3. The solvability condition of the problem 
and the distributed state feedback controller of 
eq. (20) were derived following an approach concep- 
tually similar to the one used to solve the counterpart 
of this problems in the case of ODE systems (e.g. 
Daoutidis and Christofides, 1996a). We note that 
this is possible, because, for the system of eq. (1): 
(a) the input/output spaces are finite dimensional; and 
(b) the input/output operators [functions d(z), bi(z)] 
are bounded. 

Remark 4. We note that the distributed state feed- 
back controller of eq. (20) that solves the uncertainty 
decoupling problem is identical to the one derived in 
Christofides and Daoutidis (1996a) which solves the 
output tracking problem via distributed state feed- 
back, while the conditions (i) and (ii) of Theorem 2, as 
proved in Christofides and Daoutidis (1996a), ensure 
that the controller of eq. (20) exponentially stabilizes 
the nominal closed-loop system [i.e. O(t) - 0]. 

Theorem 2. Consider the system of eq. (1)for which 
assumption 1 holds, and assume that: (i) the roots of 
the equation l + T a s +  "-- + 7 , s  ~ = 0  lie in the 
open left-half of the complex plane, (ii) the zero dynam- 
ics [eq. (16)] is locally exponentially stable, and (iii) 
there exists a positive real number (~ such that 
max{rl01P, ll011]~<3. Then, the condition a < 6 
is necessary and sufficient in order for a distributed 
state feedback law of the form of eq. (17) to completely 
eliminate the effect of 0 on ~ in the closed-loop 
system. Whenever this condition is satisfied, the control 
law: 

[ ).1 ] , aXJL -1 
ff = 7'fgL" -~z a, At- Lf  h(x) b(z) 

J 

az aj+ L ¢ ) h ( x ) }  

(20) 

(a) 9uarantees boundedness of the state of the closed- 
loop system, 

(b) enforces the input~output response of eq. (19) in the 
closed-loop system. 

Remark 2. Referring to the solvability condition of 
the problem, notice that it depends not only on the 
structural properties of the process but also on the 
shape of the actuator distribution functions b(z), the 
position of action of the vector of uncertain variables 
[matrix function r(z)] and the performance specifica- 
tion functions c(z), since tr and 6 depend on c(z), b(z) 
and c(z), r(z), respectively. This implies that it is gener- 
ally possible to select (b(z), e(z)) to allow achieving 

Remark 5 (Illustrative example). Consider a plug- 
flow reactor with lateral feed, where a first-order reac- 
tion of the form A -~ B takes place. Assuming that the 
lateral flow rate is significantly smaller than the inlet 
flow rate (i.e. vt >> F, where vt denotes the velocity of 
the inlet stream to the reactor and F denotes the 
lateral flow rate per unit volume), the dynamic model 
of the process is given by 

OCA OCA 
at -- V l ~  kCA + F(CAt - -  C A )  

aT a_T_T 
at - vt 0z + ( - A H )  kCA + F(TI - T) 

pf Cpf 

+ ~ ( T j  -- T)  (21) 

Ca(0, t) = Cao, T(0, t) = To 

where CA(Z, t) and T(z, t) denote the concentration of 
the species A and the temperature in the reactor, 
z e [0 ,1 ] ,  T~(z,t) denotes the wall temperature, 
Cat, Tt denote the concentration and the temperature 
of the lateral inlet stream, k denotes the reaction rate 
constant, AH denotes the enthalpy of the reaction, py, 
cpl denote the density and heat capacity of the reac- 
ting liquid, Uw denotes the heat transfer coefficient, 
and V, denotes the volume of the reactor. Set xl = 
CA, x2 = T, u = T~ -- Tjs , 01 = T, -- Tt,, 02 = C a l  - -  

CAt,, y = T ,  R l ( t )=Cao( t )  and R2(t )=To( t ) ,  
where T#, Tts, CAt~ denote steady-state values. 
Assume that for the control of the system there is 
available one control actuator with distribution func- 
tion b(z); let also ra (z) and r2 (z) determine the posi- 
tion of action of 0a and 02, respectively, and 
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1 y(t) = So c(z)x2 (z, t)dz; then the system of eq. (21) can 

be written as 

Ox~ ~xi 
& - vt--~z kxl  + F(Cats - xi)  + FO2(t) 

Ox2 _ Ox2 Uw ( - A H )  kxl ~ X2) 
Ot Vl~-z  -}- p f C p f  +pfcp fVr  ( T i s -  

Uw 
+ F(Tzs -- x2) + . b(z)6 + Frl (z)01(t) 

p f Cpf V r 

~(t) = S~ c(z)x2(z, t)dz, xi(O, t) = nl,  x,(O, t) = R2. 

(22) 

Performing a time-differentiation of the output ~(t), 
we have 

; (  __ = + ( - A H )  kxl dy c(z) - Ox2 
dt Vt~z pycpl 

U~ 
(Tjs -- x2) + F(Tt~ -- X2)) dz 

+ p f  Cpf V~r 

+ U~ ~ c(z)b(z)~dz 
p f c p f V r  3o 

+ f c(z)rl(z)Ol(t)dz. (23) 
0 

From the above equation and the result of Theorem 2, 
it follows that if (c(z), b(z)) = S~ c(z)b(z)dz ,# 0 (in 
which case a = 1), then the uncertainty decoupling 
problem via distributed state feedback is solvable 
as long as a < 6 ,  that is when (c(z),rl(z))= 
~ c(z)r~(z)dz = 0 .  Whenever this condition holds, 
the necessary controller can be derived from the syn- 
thesis formula of eq. (20). 

4. ROBUST CONTROL: UNCERTAIN VARIABLES 

In this section, we consider systems of the form of 
eq. (1) for which the condition a < 6 is not necessarily 
satisfied and address the problem of synthesizing 
a distributed robust nonlinear controller of the form: 

= ~(x )  + g(x)v + ~(x ,  t) (24) 

where 57(x) is a smooth nonlinear operator mapping 
ovf" into R z, g(x) is an invertible matrix of smooth 
functionals, where ~(x ,  t) is a vector of nonlinear 
functionals, that guarantees closed-loop stability, en- 
forces asymptotic output tracking, and achieves arbit- 
rary degree of asymptotic attenuation of the effect of 
uncertain variables on the output of the closed-loop 
system. The control law of eq. (24) consists of two 
components, the component 57(x)+ g(x)v which is 
used to enforce output tracking and stability in the 
nominal closed-loop system, and the component 
~(x ,  t) which is used to asymptotically attenuate the 
effect of O(t) on the output of the closed-loop sys- 
tem.The design of 57(x)+ g(x)v will be performed 
employing the geometric approach presented in the 
previous section, while the design of #~(x, t) will be 
performed constructively using Lyapunov's direct 

91 

method. The central idea of Lyapunov-based control- 
ler design is to construct ~ (x ,  t), using the knowledge 
of bounding functions that capture the size of the 
uncertain terms and assuming a certain path under 
which the uncertainty may affect the output, so that 
the ultimate discrepancy between the output of the 
closed-loop system and the reference input can be 
made arbitrarily small by a suitable selection of the 
controller parameters. 

We will assume that there exists a known smooth 
(not necessarily small) vector function, which captures 
the magnitude of the vector of uncertain variables 
0 for all times. Information of this kind is usually 
available in practice, as a result of experimental data, 
preliminary simulations, etc. Assumption 3 states pre- 
cisely our requirement. 

Assumption 3. There exists a known vector 0-(t)= 
[0-1 (t) ... 0-q (t)], whose elements are continuous positive 
definite functions defined on t e [0, oo ) such that 

10k(t)l ~< Ok(t), k = 1 . . . . .  q .  (25) 

Assumption 4 that follows characterizes precisely the 
class of systems of the form of eq. (1) for which our 
robust control methodology is applicable. It deter- 
mines the path under which the vector of uncertain 
variables O(t) may affect the output of the closed-loop 
system. More specifically, we assume that the vector 
of uncertain variables O(t) enters the system in such 
a manner such that the expressions for the time-deriv- 
atives of the output Ys up to order a - 1 are indepen- 
dent of 0. This assumption is significantly weaker than 
the solvability condition required for the uncertainty 
decoupling problem (cf. theorem 2) and is satisfied by 
many convection-reaction processes of practical in- 
terest (including the plug-flow and fixed-bed reactor 
examples studied in this paper). 

Assumption 4. a ~< 6. 

Theorem 3 provides the main result of this section (the 
proof is given in the Appendix). 

Theorem 3. Consider the system of eq. (1), for which 
assumptions 1-4, and the conditions (i)-(iii) of theorem 
2 hold, under the distributed state feedback law of the 
form: 

a -  1 . I n (.3 x ~v 
yv J L h(x) 

/ 

-- 2K(t)A(x, ¢) ~ ~ ~ --~z La, + L$ h(x) 
v = l  j 

71yo v} (26) 
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where d?, 7k are adjustable parameters, and Vk are 
chosen so that 7o > 0 and the polynomial 
s '~-~ + [(:,~-~)/~,,,] s ~ -~  + ... + ( ~ 2 / ~ ) s  + ~,,/~,,, = o 
is Hurwitz, A(x, ~b) is an l x l  diagonal matrix whose 
(i, i)th element is of the form 

(o~I i(~=lOXJ )v-1 
A(x, c~) = 72 cg ~z L~j + Lf h(x) 

\ l v = l  Y,~ j 

- 7 ~ v  i ÷ 4~)  -1  
7~ 

and the time-varying gain K(t) is of the form 

K ( t )  = k j OZ aj q- Lf 

× h (x) rk (Z)0-, (t) ] .  (27) 

Then, for each positive real number d, there exist 
a pair of positive real numbers (~,c~*) such that 
/f max{Ux0U2, 11011, [[0t[} ~< o r and ~b ~(0, ~b*], then: 
(a) the state of the closed-loop system is bounded, and 
(b) the output of the closed-loop system satisfies: 

lim]37~--vll <~d, i =  1 . . . . .  I. (28) 
t~oo  

Remark 6. The calculation of the control action from 
the controllers of eqs (20)-(26) requires algebraic 
manipulations as well as differentiations and integra- 
tions in space, which is expected because of their 
distributed nature. 

Remark 7. The robust nonlinear controller of ¢q. (26) 
guarantees an arbitrary degree of asymptotic attenu- 
ation of the effect of a large class of uncertain 
time-varying variables on the output (those that sat- 
isfy assumption 4). In many practical applications, 
there exist unknown time-invariant process para- 
meters which may not necessarily satisfy assumption 4. 
Since the manipulated input and controlled output 
spaces are finite-dimensional, the asymptotic rejection 
[in the sense that eq. (28) holds] of such constant 
uncertainties can be achieved by combining the 
controller of eq. (26) with an external linear error- 
feedback controller with integral action. 

Remark 8. Comparing the uncertainty decoupling re- 
sult of theorem 2 with the result of theorem 3 
[eq. (28)], we note that the latter is clearly applicable to 
a larger class of systems (those satisfying the condition 
a ~< 6), achieving, however, a weaker performance 
requirement. More specifically, in the uncertainty 
decoupling problem a well-characterized input/ 
output response is enforced for all times independently 
of O(t), while in the case of robust uncertainty rejection 
the output error (37~ - v i) is ensured to stay bounded 
and asymptotically approach arbitrarily close to 
zero (by appropriate choice of the parameter ~b). 
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Remark 9 (Illustrative example (cont'd)). Whenever 
(c(z), r~(z)) v~ 0 (which implies that 6 -- a = 1), the un- 
certainty decoupling problem via distributed state 
feedback is not solvable. However, since 6 = a, we 
have that the matching condition of our robust con- 
trol methodology is satisfied. Assuming that there 
exists a known upper bound /7(0 on the size of the 
uncertain term O(t), such that 101 ~< 6(0, the control 
law of theorem 3 takes the form: 

5 = [ p y - ~ f V ,  f~ c(z)b(z)dz l - l  { y o ( V -  f2  x2dz )  

- c(z) _ vz-~z + ( - A H )  kxa 
pfCpf 

) + - -  (Tjs - -  x 2 )  -[- F(Tl~ -- x2) dz 
Pf£pf Vr 

~ x2(z, t)dz - v ] 
20(t) I ~o x2(z, t ) d z  - vl + '~ (29) m 

5. TWO-TIME-SCALE HYPERBOLIC PDE SYSTEMS 

In the rest of the theoretical part of this paper, we 
will analyze the problem of robustness of the control- 
lers of eqs (20)-(26) with respect to stable unmodeled 
dynamics. This problem will be addressed within the 
broader context of control of two-time-scale hyper- 
bolic PDE systems, modeled within the framework of 
singular perturbations. Such a formulation provides 
a natural setting for addressing robustness with re- 
spect to unmodeled dynamics. To this end, in this 
section, we will derive two general stability results for 
two-time-scale hyperbolic PDE systems which will be 
used in the next section, to derive conditions that 
guarantee robustness of the controllers of eqs 
(20)-(26) to stable unmodeled dynamics. 

5.1. Two-time-scale decomposition 
We will focus on singularly perturbed hyperbolic 

PDE systems with the following state-space descrip- 
tion: 

cSx A Ox Oil 
Ot = 11(X)~z + A12(X)~z +fl(x)  + Qx(x)~/ 

+ 91(x)b(z)5 + Wl(x)r(z)O(t) 

Otl A ~x Or I 
e ~  = 21(X)~z + Az2(X)-~z +f2(x) + Q2(x)t/ 

+ a 2 (x) b (z)a  + W 2 (x) r (z) 0 (t) 

y = ~ h ( x )  (30) 

subject to the boundary conditions: 

C~lx(a, t) + C12x(fl, t) = Rl (t) 

C21t/(oc, t) + C22t/(fl, t) = R2(t) (31) 



and the initial conditions: 

x(z, O) = Xo(Z) 

r/(z, O) = no(Z) (32) 

where x(z, t) = [xl(z, t) ... x,(z, t)] v, r/(z, t) = 
[~h (z, t) ... r/v(z, t)] v, denote vectors of state variables, 
x(z, t) e o~  (") [(a, fl), R" ] ,  t/(z, t) e 3rt ~(") [(a, ~), Rv] ,  
with ~/g(°[(a, fl), R s] being the infinite-dimensional 
Hilbert space of j-dimensional vector functions de- 
fined on the interval [e, fl] whose spatial derivatives 
up to ith order are square integrable, A~(x ) ,  
A12(x),A21(x),A22(x ) a r e  sufficiently smooth ma- 
trices, fl(x),f2(x), gl(x), g2(x) are sufficiently smooth 
vector functions, Ql(x), Q2(x), Wl(x),  W2(x) are suffi- 
ciently smooth matrices, e is a small parameter which 
quantifies the degree of coupling between the fast and 
slow modes of the system, and Rx (t), R2(t) are time- 
varying column vectors. The following assumption 
states that the two-time-scalesystem of eq. (30) is hy- 
perbolic. 

Assumption 5. The (n + p) x (n + p) matrix: 

auC(x) = [ All(x) A12(x)l (33) 
[_A21 (x) A 2 2 ( x ) ]  

is real symmetric, and its eigenvalues satisfy: 

~-~(x) ~ ... ~< L ( x ) < 0  < L + ~ ( x )  ~ .-. ~< L+Ax)  

(34) 

for all x e o~ n [(e, fl), R"]. 

The time-scale multiplicity of the system of eq. (30) 
can be explicitly taken into account by decomposing 
it into separate reduced-order models associated with 
different time-scales. Defining £Piax =Ai l  (x)Ox/Oz + 
fi(x), ZP i2 = A j2 Orl/OZ + Qi(x)tl, i ,j  = 1, 2, and setting 
e = 0, the PDE system of eq. (30), reduces to a system 
of coupled partial and ordinary differential equations 
of the form 
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where &°x = ,~al lX - ~a12..~a21,.~21 X, G(x) -~ gl (x)  - 
~a12~22102(X), W(x)  = W l ( x  ) - -  ~ 1 2 ~ 2 1 W 2 ( x ) .  
Defining a fast time-scale z = tie and setting e = 0, the 
fast subsystem, which describes the fast dynamics of 
the system of eq. (30), takes the form 

Dr/ 
--  ,,~.qa21 x + ~'a22/' ] + g2(x)b(z)a & 

+ W2(x) r(z)O(t) 

where x, 0 are independent of time. 

(38) 

5.2. Stability results 
In this subsection, we will give two basic stability 

results for systems of the form of eq. (30) which are 
important on their own right and will also be used in 
the subsequent sections to prove a robustness prop- 
erty of the controllers of eqs (20)-(26) with respect to 
exponentially stable unmodeled dynamics. We will 
begin with the statement of stability requirements on 
the fast and slow subsystems. In particular, we assume 
that the fast subsystem of eq. (38) and the unforced 
(ti = 0- = 0) slow subsystem of eq. (37) are locally ex- 
ponentially stable. Assumptions 6 and 7 that follow 
formalize these requirements. 

Assumption 6. The differential operator ~z~22 ~ gener- 
ates an exponentially stable strongly continuous semi- 
group Uf(t) that satisfies; 

Ilgf(t)ll2 ~<Kre ~,t/~, t>~O (39) 

where Kf  /> 1, and af is some positive real number. 

Assumption 7. The differential operator ~ x  generates 
a locally (i.e.,for x ~ ~ that satisfy II x [I 2 ~< 6~, where 
6~ is a positive real number) exponentially stable strong- 
ly continuous semigroup U~(t) that satisfies: 

II Us(t){[2 ~< K~e -~*t, t >~ 0 (40) 

Ox 
O--~ = ~L~llx + 5Plzrls + gl(x)b(z)a + Wl(x)r(z)O(t) 

0 = 2~2~x + £e22n, + o2(x)b(z)a + W2(x)r(z)O(O 

y~ = ~eh(x) (35) 

The solution of the ODE 5e21x+ZP22rl, + g2(x)b(z~i + 
W2(x) r(z)O(t) = 0 subject to the boundary conditions 
of eq. (31) is of the form 

rl~ = Ze221 (~21 x + g2(x) b(z)a + W2(x) r(z)O(t)). (36) 

The slow subsystem, which captures the slow dynam- 
ics of the system of eq. (30), takes the form 

Ox 
O--t = ~ x  + G(x)b(z)a + W(x)r(z)O(t) 

where Ks >/ 1, and a~ is some positive real number. 

From the above assumption and using eq. (10), the 
smoothness of G(x) and W(x), and the fact that for 
II x II 2 ~< 6x, there exists a pair of positive real numbers 
M1, M2 such that LI a(x)II 2 ~< M1 and 
tl W(x)112 ~< ~r2, we have that the following estimate 
holds for the system of eq. (37): 

Ilxlh ~ Ksl lxolhe . . . .  

I 
I 

+ Ks e - ' (* - r )  ll a(x)b(z)1121a(~)ldz 
3o 

I 
! 

+ Ks e - ' ( ' - ' [ I  W(x)r(z)ilelO(z)ldv 
do 

37s=Cgh(x) (37) ~gs l Jxo l l ze  . . . .  +Mxll t i l l  +MEII011 (41) 
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K~M1 II b(z)112 K~-~t2 II r(z)ll2 
M1 , M2 = 

as as 

provided that the initial condition (llXo 112) and the 
inputs (ti, 0) are sufficiently small to satisfy 
g~llxolh + M~ Ilall + M2 II011 ~< ~x. Theorem 4 pro- 
vides the main stability result of this section (the proof 
is given in the appendix). 

Theorem 4. Consider the system ofeq. (30) with fi - 0, 
for which assumptions 5-7 hold, and define r/f:= 
r~-  r/~. Then, there exist positive real numbers 
(Ks, as, I(f, ~f), such that for each positive real number 
d, there exist positive real numbers (~, e*) such that if 
max{llxoll2, Ilr/foll2, tlOII, I10/I) ~< ~" and ee(O,e*], 
then, for all t ~> 0: 

I lx lh  ~ £sllxoll2e-a" + M211011 +d 

][r/fll2 ~ Kfllr/foll2e a,t/~ + d. 

(42) 

(43) 

Theorem 4 establishes a robustness result of the boun- 
dedness property that the slow subsystem of eq. (37) 
possesses, with respect to exponentially stable singu- 
lar perturbations, provided that they are sufficiently 
fast. Theorem 5 that follows establishes, another 
conceptually important result, namely that the ex- 
ponential stability property of a reduced system 
[consider the system of eq. (37) with lal = 10(t)l - 0] 
is preserved in the presence of exponentially stable 
singular perturbations. The proof of this theorem in 
analogous to the one of theorem 4 and will be omitted 
for brevity. 

Theorem 5. Consider the system of eq. (30) with 
IOl = 1 0 ( t ) [ -  0, for which assumptions 5-7 hold, and 
define r/f: = r / -  ~/s. Then, there exist positive real num- 
bers (~, e*) such that if max { II x0 II 2, II r/fo tl 2) ~< 3" and 
e e (0, e*], the system ofeq. (30) is exponentially stable 
[i.e. eqs (42) and (43) hold with d = 0, 0(f) -- 0]. 

6. R O B U S T N E S S  W I T H  RESPECT 

T O  U N M O D E L E D  D Y N A M I C S  

In this section, we utilize the general stability results 
of the previous section to establish robustness proper- 
ties of the controllers of eqs (20)-(26) with respect to 
unmodeled dynamics. In particular, we use the hyper- 
bolic singularly perturbed system of eq. (30) to repres- 
ent the actual process model, and we assume that the 
model which is available for controller design is the 
slow system of eq. (37). Our objective is to establish 
that the controllers of eqs (20)-(26), synthesized on the 
basis of the slow system, are robust to unmodeled 
dynamics in the sense that they enforce approximate 
uncertainty decoupling and robust disturbance rejec- 
tion in the actual model of eq. (30), provided that the 
separation of the fast and slow modes is sufficiently 
large. 
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6.1. Robustness of  uncertainty decoupling 
to unmodeled dynamics 

In this subsection, we consider the uncertainty 
decoupling problem for the two-time-scale hyperbolic 
system of eq. (30) whose fast dynamics is stable 
(assumption 6). Substitution of the distributed state 
feedback law of eq. (17) into the system of eq. (30) 
yields: 

Ox 
- -  = 5f l l x  + ~cP12r/ + gl(x)b(z)6f(x) & 

+ gl (x) b(z)s(x) v + Wl(x) r(z)O(t) 

e-~ = .~a21x + ~22r /+  92(x)b(z)Sf(x) 

+ 92(x) b(z) s(x) v + W2(x) r(z)O(t) 

y = ~h(x). (44) 

From the above representation of the closed-loop 
system, it is clear that the control law of eq. (17) 
preserves the two-time-scale property of the open- 
loop system and guarantees that the system of eq. (44) 
has a well-defined solution. Performing a two-time- 
scale decomposition on the system of eq. (44), the 
closed-loop fast subsystem takes the form 

Or/ 
- -  = ~O21X + "(~22r/ -1- g2(x) b(z)~f(X) & 

+ g2(x) b(z) s(x) v + W2(x) r(z)O(t) (45) 

where x, 0 are independent of time. From the repres- 
entation of the closed-loop fast subsystem it is clear 
that the control law of eq. (44) preserves the exponen- 
tial stability property of the fast dynamics of the 
closed-loop system. The closed-loop slow system 
takes the form 

dx 
c3t = ZPx + G(x)b(z)6e(x) + G(x)b(z)s(x)v 

+ W(x) r(z)O(t) 

~ = Cgh(x). (46) 

For the system of eq. (46) it is straightforward to show 
that the result of proposition 1 holds, which suggests 
requesting an input/output response of the form of 
eq. (19) in the closed-loop reduced system. 

Theorem 6 that follows establishes a robustness 
property of the solvability condition of the uncertain- 
ty decoupling problem (tr < 6) and the input/output 
response of eq. (19) with respect to stable, sufficiently 
fast, unmodeled dynamics. The proof of the theorem is 
given in the appendix. 

Theorem 6. Consider the system of eq. (30)for which 
assumptions 5 and 6 hold, under the controller of  eq. 
(17). Consider also the slow subsystem of  eq. (37) 
and assume that the condition tr < 6 and the stability 



Robust control of hyperbolic PDE systems 

conditions of theorem 2 hold. Then, for each positive 
real number d, there exist positive real numbers (3:, e*) 
such that if max { II Xo II z, II ~fo II 2, II 0 II, II 0 II } ~< 3: and 

E (0, e*], then: 
(a) the state of the closed-loop system is bounded, and 
(b) the output of the closed-loop system satisfies for all 

t~>0 

y~(t) = y~(t) + d, i = 1 . . . . .  l (47) 

where ~i~(t) are the solutions of eq. (19). 

Remark 10. Referring to the above theorem, note that 
we do not impose any assumptions on the way the 
uncertain variables 0 enter the actual process model of 
eq. (30) [i.e. the condition a < 6 has to be satisfied 
only in the slow subsystem of eq. (37)]. This is 
achieved at the expense of the controller of eq. (17), 
which is synthesized on the basis of the slow subsys- 
tem of eq. (37), enforcing a type of approximate uncer- 
tainty decoupling in the actual process model, in the 
sense that the discrepancy between the output of the 
actual closed-loop system and the output of the 
closed-loop reduced system (which is independent of 
0) can be made smaller than a given positive number 
d (possibly small) for all times, provided that e is 
sufficiently small [eq. (47)]. 

6.2. Robust control: uncertain variables 
and unmodeled dynamics 

In this subsection, we consider the robust uncer- 
tainty rejection problem for two-time-scale hyperbolic 
systems of the form of eq. (30) with stable fast dynam- 
ics. Under a control law of the form of eq. (24), the 
closed-loop system takes the form 

~x 
_ _  = £~al lx  + L, e12t/ 
Ot 

+ 91(x)b(z)[Se(x) + g(x)v + ~(x,  t)] 

+ Wdx)r(z)O(t) 

dO 
~-~ = ~ 2 ~ x  + ~ 2 2 q  

+ g2(x)b(z)[SP(x) + g(x)v + ~(x ,  t)] 

+ W2(x) r(z)O(t) 

y = ~h(x). (48) 

The fast dynamics of the above system is exponenti- 
ally stable and the reduced system takes the form 

0x 
- -  = ~ x  + G(x)b(z)[57(x) + g(x)v + ,~(x, t)] 
Ot 

+ W(x) r(z)O(t) 

Ys = C'gh(x) • (49) 

Theorem 7 that follows establishes a robustness 
property of the controller of eq. (26) to sufficiently 
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fast unmodeled dynamics (the proof is given in the 
appendix). 

T h e o r e m  7. Consider the system of eq. (30)for which 
assumptions 5 and 6 hold, under the controller of 
eq. (26). Consider also the slow subsystem of eq. (37) and 
suppose that assumption 4 and the stability conditions 
of theorem 2 hold. Then, for each positive real number 
d, there exist positive real numbers (3:, c~*) such that if 
max{llxolh,  II~/follz, II0]1, II011} ~< L ~ ~(0, 4~*], there 
exists a positive real number e*((D) such that if 
max{llxoll2, Ilrtfolh, II011, IlOII} ~< 3:, 4~E(0,4~*], and 
e ~ (0, ~* (q~)], then: 
(a) the state of the closed-loop system is bounded, and 
(b) the output of the closed-loop system satisfies: 

lim Ifl - v ' l  ~< d, i =  1 . . . . .  1. (50) 

Remark 11. Regarding the result of the above the- 
orem, a few observations are in order: (i) no matching 
ondition is imposed in the actual process model of eq. 
(30), (ii) the dependence of e* on ~b is due to the 
presence of ~b on the closed-loop fast subsystem, and 
(iii) a bound for the output error, for all times [and not 
only asymptotically as in eq. (50)] can be obtained 
from the proof of the theorem in terms of the initial 
conditions and d. 

Remark 12. Whenever the open-loop fast subsystem 
ofeq. (38) is unstable, i.e. the operator t~O22/" / generates 
an exponentially unstable semigroup, a preliminary 
distributed state feedback law of the form 

t7 = o~t/+ ~ (51) 

can be used to stabilize the fast dynamics, under the 
assumption that the pair [~2202(x),b(z)] is stabiliz- 
able, yielding thus a two-time-scale hyperbolic system 
for which assumption 7 holds. The design of the gain 
operator ~ can be performed using for example stan- 
dard optimal control methods (Balas, 1983). 

7. SIMULATION STUDY: A FIXED-BED REACTOR 

Consider a fixed-bed reactor where an elementary 
reaction of the form A--* B takes place, shown in 
Fig. 2. The reaction is endothermic and a jacket is 
used to heat the reactor. Under the assumptions of 
perfect radial mixing, constant density and heat capa- 
city of the reacting liquid, and negligible diffusive 
phenomena, a dynamic model of the process can be 
derived from material and energy balances and has 
the form 

3T ~T 
Pbcpb y [  = -- p sc~s vt-&z 

Uw 
+ (--AH)koe-EmTCA + --~(Tj  -- T)  

8Ca 
(52) 

O C  A 
* T i -  = -v t -~z  k°e-~/RT Ca 
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CA 0 , TAO II A " - B  

Fig. 2. A nonisothermal fixed-bed reactor. 

CA(1,t), T (1,t) 

subject to the initial and boundary conditions: 

CA(O, t) = CAo, CA(Z, O) = CA~(Z) 

T(O, t) = TAO, T(z ,  O) = T~(z) 

where Ca denotes the concentration of the species A, 
T denotes the temperature in the reactor, g denotes 
the reactor porosity, Pb, cpb denote the density and 
heat capacity of the bed, py, cef denote the density 
and heat capacity of the fluid phase, vt denotes the 
velocity of the fluid phase, Uw denotes the heat trans- 
fer coefficient, Tj  denotes the spatially uniform tem- 
perature in the jacket, V, denotes the volume of the 
reactor, k0, E, AH denote the pre-exponential factor, 
the activation energy, and the enthalpy of the reac- 
tion, CAO, Tao denote the concentration and temper- 
ature of the inlet stream, and Ca,(z), T , (z)  denote the 
steady-state profiles for the concentration of the spe- 
cies A and temperature in the reactor. 

The main feature of fixed-bed reactors is that the 
reactant wave propagates through the bed with a 
significantly larger speed than the heat wave, because 
the exchange of heat between the fluid and packing 
slows the thermal wave down (Stangeland and Foss, 
1970). Therefore, the system of eq. (52) possesses 
an inherent two-time-scale property, i.e., the concen- 
tration dynamics are much faster than the temper- 
ature dynamics (this fact was also verified through 
open-loop simulations). This implies that CA is the 
fast variable, while T is the slow variable. In order 
to obtain a singularly perturbed representation of the 
process, where the parti t ion to fast and slow variables 
is consistent with the dynamic characteristics of the 
process, the singular perturbation parameter e was 
defined as 

= - -  (53) 
pbCpb 

Setting ? =  t/pbCpb, X = T,  rl = Ca,  the system of 
eq. (52) can be written in the following singularly 
perturbed form: 

~x ax U~ 
t?t = -- pfcpyv ~z + ( -AH)koe-E/R~l  + ~ (T~ -- x) 

e - ~  = -- vt ~--~ - koe-E/Rx~l. (54) 

The values of the process parameters are given in 
Table 1. It was verified that they correspond to 
a stable steady-state for the open-loop system. The 

Table 1 Process parameters 

vt = 30.0 m hr- 1 
V, = 1.0 m 3 
g = 0.01 

L = l . 0 m  
E = 2.0 x 104 kcal kmol-1 

k0 = 5.0x 1012 hr -1 
R = 1.987 kcalkmo1-1K 1 

AHo = 35480.111 kcal kmol- 1 

cvs = 0.0231 kcal kg- 1 K-  i 
pf = 90.0 kg m- 3 
Cpb = 6.67 X 10 -4 kcal kg- i K-  1 
Pb = 1500.0 kgm -3 

Uw = 500.0 kcal hr- t K 
Cao = 4.0 kmolm -3 
Tao = 320.0 K 

control problem considered is the one of controlling 
the temperature of the reactor (which is the variable 
that essentially determines the dynamics of the pro- 
cess) by manipulating the jacket temperature. Notice 
that Tj  is chosen to be the manipulated input with the 
understanding that in practice its manipulation is 
achieved indirectly through manipulation of the 
jacket inlet flow rate (for more details see the dis- 
cussion in remark 14). The enthalpy of the reaction is 
considered to be the main uncertain variable. Assum- 
ing that there is available one control actuator 
with distribution function b ( z ) =  1 and defining 

= Tj  - Tj~, 37 = So 1 x dz, 0 = AH -- AHo, we have 
from eq. (54): 

~x ~x 
~ i - -  pfCpfV~-~z + ( - A H ° ) k ° e - E m x q  

Uw Uw 
+ - : - ( T j ~  - x) + - - a  + koe-~mxtlO 

Vr 11", 

0~ a~ 
e - ~  = - vl-~z - koe-e/R~rl 

37 = x dz. (55) 

Performing a two-time-scale decomposit ion of the 
above system, the fast subsystem takes the form 

~? vt~z -- koe-Emxrl (56) 

where f = ?/e and the x in the above system depends 
only on the position z. F rom the system of eq. (56), it 
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is clear that the fast dynamics of the system of eq. (55) 
are exponentially stable uniformly in x, and thus 
they can be neglected in the controller design. Set- 
ting e = 0, the model of eq. (55) reduces to a set of 
a partial and an ordinary differential equation of the 
form: 

~x ~x 
~--~ : -- p fCpfVl -~Z "q- ( -  AHO) koe-  g/Rxtl 

Uw Uw 
+ ~ (Tjs -- x) + -~r a + koe-E/RxvlO 

&l 
0 = -- Vt~z -- koe-E/Rxtl. (57) 

The structure of the ordinary differential equation 
allows an analytic derivation of its solution subject to 
the boundary condition t/(0, t) = Cao(t), which is of 
the form 

rl(z ) = C Aoekojo e-e/RX dz/v, . (58) 

Substituting eq. (58) into eq. (57), the following re- 
duced system can be obtained: 

~x ~x 
~? -- p f C p f V l ~  Z 

+ (-- AHo) koe- E/R~ CAO e k° ~o e - E/R~ dz/v~ 

U~ T 

Uw U e-E/~Xdz/vt 0 + - + koe-E/RXCaoek°~° 

f, 
37~ = x dz. (59) 

do 

The above system is clearly in the form of eq. (1) and 
a straightforward calculation of the time-derivative of 
the output yields that the characteristic indices of the 
output )7, with respect to the manipulated input ~ and 
the uncertain variable 0 are a = ~ = 1. This implies 
that it is not possible to decouple the effect of 0 on 
)7, via distributed state feedback, and a robust control- 
ler of the form of eq. (26) should be synthesized to 
attenuate the effect of 0- on 37~ [this is possible because 
the matching condition, assumption 4, holds for the 
system of eq. (59)]. Moreover, it was verified through 
simulations that the zero dynamics of the system of 
eq. (59) are locally exponentially stable. The explicit 
form of the controller of eq. (26) is 

+ (--AHo) ko e-EIR*CAo e k°i° e -~/R*dz/v, 

+ ~ (Ti~ -- x) dz - g(t)  ij. 2 x(z, t) dz - v I + 4~ 

(60) 

where 

K(t)  = 217 11 koV,  E/R~ e-E/RXdz/v, 
.)0 ~ - - ~ e -  CAoe k°~° dz.  
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A time-varying uncertainty was considered expressed 
by a sinusoidal function of the form 

0 = 0.5(--AHo) sin(t) (61) 

The upper bound on the uncertainty was taken to be 
= 0.5 I(--AH0)[. In this application, the value of the 

singular perturbation parameter is fixed, i.e. g = 0.01. 
From theorem 6, it is clear that for a given value of e*, 
there exists a lower bound on the level of asymptotic 
attenuation d that can be achieved. We performed 
a set of computer simulations (for the regulation prob- 
lem) to calculate ¢* for certain values of d, and, in 
turn, the value of e* for ¢ ~< q~*. The following set of 
parameters were found to give an e* ~< 0.01 and used 
in the simulations: 

Yo = 0.2, ~b = 0.1 (62) 

to achieve an ultimate degree of attenuation d = 0.5. 
Two simulation runs were performed to test the 

regulatory, set-point tracking and uncertainty rejec- 
tion capabilities of the controller. In both runs, the 
process was initially (t = 0.0 min) assumed to be at 
steady state. In the first simulation run, we tested the 
regulatory capabilities of the controller. Figure 3 
shows the closed-loop output and manipulated in- 
put profiles, while Fig. 4 displays the evolution of 
the temperature profile through out the reactor. 
Clearly, the controller regulates the output at the 
operating steady-state compensating for the effect 
of uncertainty and satisfying the requirements 
l i m , ~ 1 3 7 - v [  ~< 0.5. For the sake of comparison, 
we also implemented the same controller without the 
term which is responsible for the compensation of 
uncertainty. The output and manipulated input pro- 
files for this simulation run are given in Fig. 5. It 
is obvious that the controller cannot attenuate the 
effect of the uncertainty on the output of the process, 
leading to poor transient performance and offset. In 
the next simulation run, we tested the output tracking 
capabilities of the controller. A 6.6 K increase in 
the value of the reference input was imposed at time 
t = 0.0 h. The output and manipulated input profiles 
are shown in Fig. 6. It is clear that the controller 
drives the output )7 to its new reference input value, 
achieving the requirement lim,~ ~ 1~7 - v l ~< 0.5. 
Figure 7 shows the output and manipulated profiles 
in the case of using the same controller without 
the term which is responsible for the compensation 
of uncertainty. Clearly, the performance is very poor. 
From the results of the simulation study, we conclude 
that there is a need to compensate for the effect 
of the uncertainty as well as that the proposed robust 
control methodology is a very efficient tool for this 
purpose. 
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Fig. 3. Closed-loop output and manipulated input profiles 
for regulation. 
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for reference input tracking. 
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Fig. 7. Closed-loop output and manipulated input profiles 
for reference input tracking (no uncertainty compensation). 

Remark 13. The reduction in the dimensionality of 
the original model of the reactor using the fact 
that the process exhibits a two-time-scale prop- 
erty eliminates the need for using measurements of 
the concentration of the species A in the controller 
of eq. (60), which greatly facilitates its practical 
implementation. 

Remark 14. Regarding the practical implementation 
of the robust distributed controller of eq. (60), we note 
that the manipulated variable Tj cannot be manipu- 
lated directly, but indirectly through manipulation of 
the jacket inlet flow rate. To this end, a controller 
should be designed based on an ODE model that 
describes the jacket dynamics, that operates in an 
internal loop to manipulate the jacket inlet flow rate 
to ensure that the jacket temperature obtains the 
values computed by the distributed robust controller 
(Christofides and Daoutidis, 1996a). Of course, when 
such a controller is used, a slight deterioration of 
the closed-loop performance and robustness obtained 

under the assumption that T i can be manipulated 
directly, will occur. 

8. CONCLUSIONS 

In this work, we considered systems of first-order 
hyperbolic PDEs with uncertainty, for which the 
manipulated input and the controlled output are dis- 
tributed in space. Both uncertain variables and 
unmodeled dynamics were considered. In the case of 
uncertain variables, we initially derived a necessary 
and sufficient condition for the solvability of the prob- 
lem of complete elimination of the effect of uncertain- 
ty on the output via distributed feedback as well as 
an explicit controller synthesis formula. Then, assum- 
ing that there exist known bounding functions that 
capture the magnitude of the uncertain terms and 
a matching condition is satisfied, we synthesized, 
using Lyapunov's direct method, a distributed robust- 
controller that guarantees boundedness of the state 
and asymptotic output tracking with arbitrary degree 
of asymptotic attenuation of the effect of uncertain 
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variables on the output of the closed-loop system, v 
In the presence of uncertain variables and unmodeled v ~ 
dynamics, we established that the proposed distrib- 
uted controllers enforce approximate uncertainty vt 
decoupling or uncertainty attenuation in the closed- W, W1, WE 
loop system as long as the unmodeled dynamics are x 
stable and sufficiently fast. A nonisothermal fixed- )7, .gs 
bed reactor with '~Anown heat of the reaction was z 
used to illustrate the application of the proposed 
control method. The fact that the reactant wave Greek letters 
propaga,es through the bed faster than the heat 
wave was explicitly taken into account, and the orig- fl 
inal model of the process, which consists of two quasi- 7k 
linear hyperbolic PDEs that describe the spatio- AH 
temporal evolution of the reactant concentration r/ 
and the reactor temperature, was reduced to one 6 g 
quasi-linear hyperbolic PDE that describes the 
evolution of the reactor temperature. A distributed 6 
robust controller was then designed on the basis of 
the reduced-order model to enforce output tracking 0 
and compensate for the effect of the uncertainty, p~ 
Computer simulations were used to evaluate the PS 
performance and robustness properties of the con- ~ 
troller. 
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A, A(x), A(z) 
bi(z) 
d(z) 
Cao 
Cat 

C1 ~ C2 
CA 
¢pb 
Cpf 
E 

I;,A,f2 
F 

g, gx, 92 

h 
k0 
1 
01, Q2 
Tao 

TAI 
T 

t 
Uw 
U 
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O" 

external reference input vector 
external reference input for the ith 
actuator 
fluid velocity 
sufficiently smooth matrices 
vector of state variables 
controlled outputs 
spatial coordinate 

Maths Symbols 

boundary of the spatial domain 
boundary of the spatial domain 
adjustable parameters 
enthalpy of the reaction 
observer state vector 
characteristic index of )7~ with respect 
to 0 -~ 
characteristic index of )7 with respect 
to/7 
vector of uncertain variables 
density of the bed 
density of the fluid phase 
characteristic index of 37 i with respect 
to ti ~ 
characteristic index of )7 with respect 
to r7 

(~i 

NOTATION Lfh  

matrices 
smooth function of z L} h 
smooth function of z LoL kr - l h 
inlet concentration of the species A 5 e, 5 ~, 
concentration of the species A in lateral R 
stream R ~> 0 
constant matrices R ~ 
concentration of the species A 
heat capacity of the bed T 
heat capacity of the fluid phase 1' [ 
activation energy 11" 112 
vector fields (',')n. 
lateral inlet flow rate II 0 II 
vector fields associated with the 
manipulated variable u(t) 
controlled output scalar field u~ 
pre-exponential constant 
total number of control actuators 
sufficiently smooth matrices 
inlet temperature of the fluid in the 
reactor 
temperature of lateral stream 
temperature of the reactor 
temperature of the jacket 
time 
heat transfer coefficients 
manipulated variable 
manipulated input vector 
ith manipulated input 
volume of the reactor 

bounded linear operator 
infinite dimensional Hilbert space 
Lie derivative of a scalar field h with 
respect to the vector fieldf 
kth order Lie derivative 
mixed Lie derivative 
nonlinear functionals 
real line 
positive real line 
/-dimensional Euclidean space 
belongs to 
transpose 
standard Euclidean norm 
2-norm in 
inner product in R" 
ess.sup.{[0(t)], t ~> 0}, where 0:R~0 --+ 
R " is any measurable function 
signal defined on I-0, T ] 
signal defined on [0, oo ], given by 
u~(t) = u(t) if  t e [0,z], and u,(t) = 0 if 

REFERENCES 

Alonso, A. A. and Ydstie, E. B. (1995). Nonlinear 
control, passivity and the second law of thermo- 
dynamics. AIChE Annual Meeting, Paper 181i, 
Miami Beach, Florida. 

Balas, M. J. (1983). The Galerkin method and feed- 
back control of linear distributed parameter sys- 
tems. J. Math. Anal. Appl. 91, 527. 

Balas, M. J. (1995). Finite-dimensional direct adaptive 
control for discrete-time infinite-dimensional linear 
systems. J. Math. Anal. Appl. 196, 153. 



Robust control of hyperbolic PDE systems 

Burns, J. A. and King, B. B. (1994). Optimal sensor 
location for robust control of distributed para- 
meter systems. Proceedings of 33rd IEEE Confer- 
ence on Decision and Control, 3965, Orlando, FL, 
U.S.A. 

Christofides, P. D. and Daoutidis, P. (1996). Feedback 
control of hyperbolic PDE systems. A.1.Ch.E.J. 42, 
3063. 

Christofides, P. D. and Daoutidis, P. (1997). Control 
of nonlinear distributed parameter processes: cur- 
rent results and future research directions. Proceed- 
ings of 5th International Conference on Chemical 
Process Control (in press). 

Christofides, P. D. and Teel, A. R. (1996). Singular 
perturbations and input-to-state stability. IEEE 
Trans. Automat. Control. 41, 1645. 

Curtain, R. F. (1984). Disturbance decoupling for dis- 
tributed systems by boundary control. Proceedings 
of 2nd International Conference on Control Theory 
for Distributed Parameter Systems and Applications, 
109, Vorau, Austria. 

Curtain, R. F., (1986). Invariance concepts in infinite 
dimensions, SIAM J. Control Optim. 24, 1009. 

Curtain, R. F. and Glover, K. (1986) Robust sta- 
bilization of infinite dimensional systems by finite 
dimensional controllers. Systems Control Lett. 7, 
41. 

Daoutidis, P. and Christofides, P. D. (1995). Dynamic 
feedforward/output feedback control of nonlinear 
processes. Chem. Engng Sci. 50, 1889. 

Demetriou, M. A. (1994). Model reference adaptive 
control of slowly time-varying parabolic systems. 
Proceedings of 33rd IEEE Conference on Decision 
and Control, Orlando, FI., U.S.A., p. 775. 

Dochain, D. and Bouaziz, B. (1993). Approximation 
of the dynamical model of fixed-bed reactors via 
a singular perturbation approach. Proceedings of 
IMACS International Symposium MIM-S2'93, p. 
34. 

Friedman, A. (1976). Partial differential equations. 
Holt, Rinehart & Winston, New York. 

Gauthier J. P. and Xu, C. Z. (1989). H°°-control of 
a distributed parameter system with non-minimum 
phase. Int. J. Control 53, 45. 

Hanczyc, E. M. and Palazoglu, A. (1995). Sliding 
mode control of nonlinear distributed parameter 
chemical processes. I & EC Res. 34, 455. 

Hong K. and Bentsman, J. (1994). Application of 
averaging method for integro-differential equations 
to model reference adaptive control of parabolic 
systems. Automatica 36, 1415. 

Jacobson, C. A. and Nett, C. N. (1988). Linear 
state-space systems in infinite-dimensional space: 
the role and characterization of joint stabilizabil- 
ity/detectability. IEEE Trans. Automat. Control 
AC-33, 541. 

Keulen, B. (193). H~-control for distributed parameter 
systems: a state-space approach. Birkhauser, Boston. 

Khalil, H. K. (1992). Nonlinear systems. Macmillan, 
New York, U.S.A. 

Lasiecka, I. (1995). Control of systems governed by 
partial differential equations: a historical perspect- 
ive. Proceedings of 34th IEEE Conference Decision 
Control, 2792, New Orleans, Louisiana. 

Palazoglu A. and Owens, S. E. (1987). Robustness 
analysis of a fixed-bed tubular reactor: impact of 
modeling decisions, Chem. Engng Comm. 59, 213. 

101 

Ray, W. H. (1981) Advanced process control, 
McGraw-Hill, New York. U.S.A. 

Rhee, H. K., Aris, R. and Amundson, N. R. (1986). 
First-order partial differential equations: Vols I & II. 
Prentice-Hall, Englewood Cliffs, NJ. 

Russell, D. L. (1978). Controllability and stabilizabil- 
ity theory for linear partial differential equations: 
recent progress and open questions. SIAM Rev. 20, 
639. 

Ruthven, D. M. and Sircar, S. (1994) Design of mem- 
brane and PSA processes for bulk gas separation. 
Proceedings of the 4th International Conference on 
the Foundations of Computer-Aided Process Design, 
29, Snowmass, Co. U.S.A. 

Sira-Ramirez, H., (1989). Distributed sliding mode 
control in systems described by quasilinear partial 
differential equations. Systems Control Lett. 13, 177. 

Soliman, M. A. and Ray, W. H. (1979). Non-linear 
filtering for distributed parameter systems having 
a small parameter. Int. J. Control 30, 757. 

Stangeland, B. E. and Foss, A. S. (1970). Control of 
a fixed-bed chemical reactor. I & EC Res. 38, 38. 

Wang, P. K. C., (1964). Control of distributed para- 
meter systems. In Advances in Control Systems. Aca- 
demic Press, New York, U.S.A. 

Wang, P. K. C. (1966). Asymptotic stability of distrib- 
uted parameter systems with feedback controls. 
IEEE Trans. Automat. Control AC-11, 46. 

Wen, J. T. and Balas, M. J. (1989). Robust adap- 
tive control in hilbert space. J. Math. Anal. Appl. 
143, 1. 

APPENDIX 

Proof of  Proposition 1 (1) The proof of the first part of the 
proposition is given in (Christofides and Daoutidis, 1996; 
Proposition 2) 

(2) Referring to the open-loop system ofeq. (1), let 6 ~< a. 
We will first show that the result holds in the case ~ < er. 
Consider the closed-loop system of eq. (18). From part one of 
the proposition, we have that the characteristic index of the 
output )Ts with respect to v in the closed-loop system is equal 
to a. From the definition of characteristic index of ~Ts with 
respect to 0, we have that the following relations hold for the 
open-loop system: 

i [/ n ~xj ~ 1 
C~ Lw ! • - -  L~ + L I h(x) rt(z) =- O, '\j=1 & ' / 

V # = I ,  . . . , 3 - 1 ,  i = l ,  . . . , l .  (A1) 

Differentiating the output of the closed-loop system with 
respect to time and using the relations of eq. (A1), we get 

g, = ~h(x) 

d~]s / " ~3xj ~L i )h (x )  
d--7 = c~j~=l ~T Laj 

/ 

d2 , I .   (iOx, ) 
- - =  cg( E -~z Lo, + Ly } Lo, + L: h(x) dt2 \,=1 / \ j = l  az 

/ " c~x. \~ ~( ~ c~x, "~ 
da;-~=cglE~"'L'+L~|dt a \i=, c3z I ~ = I ~ z L ~ , + L ,  jh(x) 

/ " -~zOXJ 3~ 1 

(A2) 
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From the above equations, it is clear that the result of the 
second part of the proposition holds if 6 < tr. The same 
argument can be used to show that the result is also true for 
the case 6 = a. The details in this case are omitted for 
brevity. [] 

Proof of Theorem 2. (1) (uncertainty decoupling). Necessity. 
We will proceed by contradiction. Consider the system ofeq. 
(1) and assume that 6 ~< a. Referring to the closed-loop 
system of eq. (18), we have, from proposition 1, that the 
characteristic indices tr, 6 are preserved, and the condition 

~< a holds. This fact implies that 0 affects directly the &th 
time-derivative of )7~ in the closed-loop system, and thus )7~, 
which yields a contradiction. 

Sufficiency: Referring to the system of eq. (1), suppose that 
¢r < ~. In this case, a time-differentiation of)7 up to ath order 
yields the following expressions: 

y, = ~eh(x) 

- n X .  
d?~= ~ (  ~ OXJ L,~ + L f  ]h(x) 
at \ j = l  Oz / 

d2y~ / " c3xl ) (  " c~x.i L ) 
dt2 =(6~j~_l ~z La'+ j~=I OZ aljF Lf h(x) 

d"y, " Oxj ~- 1 
._~_ = ~(i__~1 ~_z L,, + Lf ) / "  Oxj ~j~ ~z La + Ly)h(x) 

/ " Oxj y - 1  
+ ~La ( ~ ~z L~, + LI/1 h(x) b (z) u. (A3) 

\ j = l  

From the expression of the ath derivative of)7~, it is clear that 
there exists a control law of the form of eq. (17) [e.g.], the 
controller of eq. (20)1 which guarantees that )7, is indepen- 
dent of 0 in the closed-loop system, for all times. Finally, one 
can easily show, utilizing the expressions of eq. (65), that the 
controller of eq. (20) enforces the input/output response of 
eq. (19) in the closed-loop system. 

(2) (boundedness). First, we note that whenever O(t) =- O, 
the conditions (i) and (ii) of the theorem guarantee that the 
nominal closed-loop system is locally exponentially stable 
[Christofides and Daoutidis, 1996; Proposition 4]. Since the 
nominal closed-loop system is locally exponentially stable, 
we have from theorem 1 that there exists a smooth 
Lyapunov functional V : ~ "  x [~, r ]  ---, R of the form of eq. 
(12), and a set of positive real numbers al, as, as, a4, as, such 
that the following properties hold: 

al  Ilxll~ ~< V(t) <~ a211xll~ 

dV 8V _ 
dt - ~x  ~ ( x )  ~< - a 3 II X 1122 

8-~xV 2 ~< a4[Ix[[2 (h4) 

if [] x []2 ~< as. Whenever (0(t)~ 0) the closed-loop system, 
under the control law of eq. (20), takes the form 

0x 
- -  = c.C~(x) + W(x)r(z)O(t) (A5) 
8t 

where LFC(x) is a nonlinear operator. Computing the time- 
derivative of the functional V: ~,~f" x [~t, r ]  ~ R along the 
trajectories of the uncertain dosed-loop system of eq. (A5), 
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using eq. (A6), and using the fact that if I[ x 112 ~< as there exists 
a positive real number a 6 such that II W(x)ll2 ~< a6, we get 

dV OV _ 
"-~ = ~x (2'(x) + W(x)r(z)O(t)) 

~< - a3 Ilx]l~ + a4a6llxlGllr(z) ll2[0(t)[. 

(A6) 

From the last inequality of the above equation, we have that if 

a3a5 
IO(t)l~< ~<8, Vt1>O, 

4a4a6 II r(z)II 2 

then 

dV a 3 
d t  ~< - 2-  II x I122 (A7) 

if as~2 <~ Ilxlh ~< as. Using the result of theorem 4.10 re- 
ported in Khalil (1992), we have that Ilxlh is a bounded 
quantity, which implies that the state of the closed-loop 
system is bounded. [] 

Proof of Theorem 3. First, we define the state vectors 
(~ = (dV-1)7~)/(dH-X), i =  1 . . . . .  l, v =  1 . . . . .  a , ( v =  
E(~ ~ ... (~Y,  (1 = (1 - v, ~ = ~ + (h/7~)~1 + 
(V2/7~)(~ + "'" + (Y~-l/V.)(~-b ~'. = [ ~ ' ~  "" ~ ] t  and for 
ease of notation, we also set: 

- F [" n O X j  ~ - 1  -i 

Using the above notation the controller of eq. (27) takes the 
form 

~i = g(x) - 7o~'~ - ~, 72 (,+1 - 2K(t)A(~'~, ~b) 
v = l  ~ a  

(A9) 

where A(('o, ~b) is an I x I diagonal matrix, whose (i, i)th ele- 
ment is of the form (l~] + ~b) -1. 
(1) Asymptotic output tracking. Using the definition for the 
state vectors (~, v = 1 . . . . .  a, and (-1, ( , ,  the dosed-loop 
system 

Ox Ox [ ~- 1 7~ 
~-~ = A(x)-~z + f(x) + g(x)b(z)g(x)[ - ? o ~  - • --(~+1 

o = 1  ] /a  

¢)~'~} + W(x)r(z)O(t) 

y~ = Cgh(x) (A 10) 

can be equivalently written in the following form 

a-1 ~-1~v 

- 2K(t)A(~'~, ~b)~',, + K(t) 

¢-1 7~ 

- 2K(t)A(~'.,  ¢)~'f~ + W(x)r(z)O. 
) 

(All )  
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To establish the relation of eq. (28), we will first work with 
the ~':subsystem of eq. (73) and establish a bound for the 
state of this system in terms of the initial condition and the 
parameter ~b (in order to simplify the presentation we will 
focus on the ith input/output pair). To this end, we consider 
the following smooth functions Vi: R ~ ~ ~>0, i = 1, . . . ,  1: 

V' = ½ (~,~)2 (A12) 

to show that the time-derivative of V i is negative definite 
outside of a region that includes the steady state in the space 
and this region can be made arbitrarily small by picking 
q~ sufficiently small. Calculating the time-derivative of 
V i along the trajectories of the ~-subsystem of eq. (AIO), we 
have 

dV ~ 
- -  = ~'g[ - ~o~'~, - 2K(t)(l~'gl + q~)- t ~'g + K(t)] 
dt 

<~ - y0(~'g) z - 2K(t)(l~'gl + ~b)- l(~ri) 2 -1- K(t) l~'gl 

~< - ~o(~'~,) 2 - 2K(t)(I ~'~,1 + 4~)- ~(~,~)z 

+ K(t)(l~'~l + q~)-'[(~'g)~ + I~'gl4q 

~< - y o ( ~ o )  z - K ( t ) ( l ~ ' ~ , [  + q ~ ) - '  I ~ o l ( l ~ ' g l  - 40. 

(Al3) 

Clearly, if I~ l  >/4~, ¢~ is negative definite, which implies 
[theorem 4.10] that there exist positive real numbers ~2 /> 1, 
ti, y, such that the following bound holds for the norm of the 
state of the ~-subsystem: 

I~gl ~< I¢l(~g)ole at Ac ~1~ (A14) 

where (~'/)0 denotes the value of ~'~ at time t = 0. Consider 
now the following subsystem: 

~ _ 1  = - - ~ 1 ~ ' i 1 - - ~ 2 ~ - -  ... )~°--1 ~ _ 1  ~.-~:r/ 
Y~ 7o Y~ 

(A15) 

where ~ can be thought of as an external input. Since 
the parameters Yk are chosen so that the polynomial 
1 + 7~s + "-' + 7os ~ =  0 is Hurwitz, we have that there 
exists positive real numbers Kg, % Yr. such that the following 
bound can be written for the state vector (~ = [ ~  ~ ... ~g_ ~ ] 
of the system of eq. (A15): 

Taking the limit as t ~ oo, using the property that 
l im~ ~ sup, .> 0 {l~'gl} = sup~ ~ 0 {lim,~ ~ [~'~, I}, and using eq. 
(A13) we have 

lim Iff~l ~< ec:Tq~. (A17) 

Picking q~* = d/yro 7, the relation of eq. (28) follows directly 
from the fact lim,~ ~ I~1 ~< limt~ ~ Iffi[. 

(2) Boundedness o f  the state. The proof that the state is 
bounded, whenever the conditions of the theorem hold, can 
be obtained by using a standard contradiction argument. It 
starts by assuming that there exists a maximal time T such 
that for all t • [0, T), the states (x, (, ~ )  of the system of 
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eq. (A11) (note that T always exists because the system starts 
from bounded initial conditions). Then, the bounds that hold 
for the states (x, (, ~o) for t • [0, T) are derived and is shown 
that they continue to hold for t • [0, T + kr] ,  where k r  is 
some positive number. However, this contradicts the as- 
sumption that T is the maximal time in which the state is 
bounded, which implies that T = oo, and thus the state of 
the closed-loop system is bounded for all times. [] 

P r o o f  of Theorem 4. Using Lq as defined in Section 7.1, the 
representation of the system of eq. (30), with ti = 0, in the 
coordinates (x, t/y) takes the form 

Ox 
- -  = ~ x  + W(x)r(z)O(t)  + ~12 t / y  
#t 

:t/y 
3t =Za2zt/Y+ \ t?x  + 0 0  J" (A18) 

Since from assumption 8, the system: 

e ¢3t/y = (A19) gt ~ 2 2  t/f 

is exponentially stable, we have that if (x, 0, 0) are bounded, 
then there exist a set of positive real numbers KI, ~iy, 7~, such 
that the following bound can be written for the state of the 
t / :subsystem of eq. (A20), for all t >~ 0: 

IIt/:l12 ~< K f  I[t/yo Ihe -~'`/' + y.e. (A20) 

Using assumption 7 and eq. (10), we have that the following 
bound holds for the state of the x-subsystem of eq. (A 19), for 
all t ~> 0: 

Ilxll2 <~ K~llx01he . . . .  

f -~- K s e - a , ( t - z )  II W ( x ) r ( z ) H 2 1 0 ( z ) l d z  
do 

f + K~ e-° ' ( ' -~ l l~z l l21l t /y l l2dz  
do 

~< /~llxol[me . . . .  + MglI01I 

+ M3 sup~>0{ll t/yll2} (A21) 

where 

K jf fI  2 Iq r( z) hi 2 K~ I[ &°12 [I 2 
M 2 and M3 

as as 

provided that the initial condition (11 x0 II 2) and the inputs 
(Ij011, II011,sup{llt/flh}) are sufficiently small. Note that 
since we do not know a priori that the states (x, tls) of the 
system of eq. (A19) are hounded, we have to work with 
truncations and exploit causality in order to prove bounded- 
ness. Let 3 be as given in the statement of the theorem, so 
that max{llx0th, llt/foll2, II01l, II011} ~< 3, and let 6x to be 
a positive real number that satisfies 

6~ > K f i  + M2c~ + d (A22) 

where d is a positive real number specified in the statement of 
the theorem. Note that since K~ >~ 1, 6~ > or, and using 
continuity with respect to initial conditions, we define [0, T) 
to be the maximal interval in which II x, l12 ~ ~x, for all 
t • [0, T) and suppose that T is finite. We will now show by 
contradiction that T = oc, provided that e is sufficiently 
small. 

First, notice that from eq. (A20), we have that for 
all t • [0, T), I1 t/I. II ~< K : ~  + y,e. Let eo be a positive real 
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number so that e ~ (0, e0] and define 6., :=  
Ksor+ 7, Co. Note that 6~, > ~'. 

Lemma (Christofides and Teel, 1996). Referring to the x- 
subsystem of eq. (A18), let eq. (A21) hold. Then,for each pair of 
positive real numbers ~, a, there exists a positive real number 
p* such that for each p ~ [ 0 ,  p*], /f max{llxoll2, tl~trll2, 
II 0 II, II 0 II} ~< ~, then the solution of the x-subsystem of eq. 
(A20) with x(0) = xo exists for each t >! 0 and satisfies: 

Ilxllz ~< KAx o lGe  . . . .  + M2 II011 

+ M3 s u p  { II n~ II :} + d. (A23) 

Applying the result of the above lemma, we have that there 
exists a positive real number p (assume, without loss of 
generality, that p < T), such that if max{llxoll2, 
II r/: II, II 0 II, II 0 ]1 } ~< 6~:, then the solution of the x-subsystem 
of eq. (A18) with x(0)=  x0 exists for each t e  [0, T) and 
satisfies: 

I/xll2 ~< K, lIxoIlze . . . .  + M2[IO] I 

d 
+ M 3 sup { 11 qs II z } + 5.  (A24) 

t~>p 

Substituting eq. (A20) into eq. (A26), ife e (0, Co], we have for 
all t E [0, T): 

d 
11 x I)2 ~< K~ II Xo IIze . . . .  + M2 II 0 II + 

+ M 3 K s  II fifo 112( e -  ~'"/" + 7. ,e)  • (A25) 

From the fact that the last term of the above equation 
vanishes as e --* 0, we have that there exists an el ~ (0, Co] 
such that if e~ (0, ea], then for all t~  [0, T): 

I l x lh  ~< K~llxoll2e . . . .  + M211011 + d. (A26) 

From the definition of 6:, the assumptionthat T is finite and 
continuity of x, there must exist some positive real number 
k such that supt ~ to. r + kl { II X II 2 } < ~x. This contradicts that 
T is maximal. Hence, T = oo and the inequality eq. (42) 
holds for all t ~> 0. 

Finally, letting e3 be such that 7,A ~< d for all e e [0, ca] 
it follows that both inequalities of eqs (42) and (43) hold 
for e e (0, e*] where e* = min {el, e2, e3 }. []  

Proof of Theorem 6. Substituting the controller of eq. (20) 
into the system of eq. (30) and using the expression for the 
output derivatives of the closed-loop slow system of eq. (65), 
we have 

Ox 
- -  = ~ x  + 9(x)b(z) 
8t 

x 7~,~gL. ~ ~z  ~' + L¢ h(x)b(z) 
L \ j =  1 

{1 
x ,  (v - 37) -- ,~=1 7. dV 

+ W~(x)r(z)O(t) + ~ d l :  

ctt = £#22qs + g2(x)b(z) 

F / " Ox~ ~-~ -~ 

x (v - 37) - .  = 1 7. dt" 

\ j = l  

ozsol 
+ W2(x)r(z)O(t) + e ~ -  x x + 

00 ) 

37 = CCh(x). (A27) 

Defining the state vectors (,  = (&-137/dV-1), v = 1 . . . . .  a, 
the system of eq. (A27) can be equivalently written in the 
following form: 

p 

~1 = G + Y, ~a~. h(x)ns 
k = l  

~.-1 = (~, + ~ CgL~;,~2h(x)tl: 
k=l 

L = _ 1 _ _  G - ~2 G 7,-_____~ ~o 
~. 7. 7o 

1 P 
+ - -  v + Y~ CgL~Z,2x h(x)tly 

7a k= 1 

OX 
-- = ~ex + o(x)b(z) 
Ot 

F / " Ox- \.-1 - I-1 

x { ( - - c ¢ (  ~, OX'L. ' + L y Y h ( x ) ~  
ks=, az ) J 

+ ~2f fs  + W(x)r(z)O 

aqs e--~- = .£f 2~rlS + g2(x)b(z) 

I- / "  Oxj )"-' ]- '  
x | y J g L  o [ ~ "~z La~ + L f  h(x)b(z) 
L kj=t 

x _c¢ ~ _ ~ z L . , + L :  h(x) 
J 

/ Oz, -ffffOzs ) 
+ Wz(x)r(z)O(t) + e t ~ x ~  + 0 . (A28) 

Performing a two-time-scale decomposition, it can be shown 
that the fast dynamics of the above system is locally expo- 
nentially stable, and the reduced system takes the form: 

? . - 1  (~, 1 
¢I = - ! q _ 7 ,  ~ + - v 

Y. Y. 7. 7o 
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0x 
0"-~ =.LPx + O(x)b(z) 

x LY-cff£, ~ ,~ i  ~-z £.. + £1 ) h(x'b(z)  1 

~ " Oxj s 

+ W(x)r(z)O. (A29) 

From theorem 2, we have that the state of the above system 
is bounded. Using the result of theorem 4, we have that 
the state of the closed-loop system of eq. (A27) is bounded 
provided that the initial conditions, the uncertainty, the 
rate of change of uncertainty and the singular perturbation 
parameter are sufficiently small. Using the auxiliary variable 
~ = ~ - ~ , v = l  . . . . .  or, the system of eq. (76) can be 
written as 

k = l  

k = l  

7~ 7. 7, Y~ 

+ ~ ULna= 1 h(x)t l l  
k = l  

dx 
- -  = Lex + a(x)b(z) & 

x 7,,UL o -~zLa~ + Ly h(x)b(z) 
i 1 

+ ~ 2 ~ :  + W(x)r(z)O 

e ~  = Lf  =n~  + g~(x)b(z) & 

-~'J L h(x) b(z) x 7,~gLo ~_, L ~ +  I 
j 

J 

+ W2(x)r(z)O(t)  + ~ x  x + N  )"  (A30) 

Using the fact that the state of the above system is bounded 
and the equality ~ ( 0 ) = ~ ( 0 ) ,  holds Vv = 1, . . . , a ,  the 
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following bounds can be written for the evolution of the 
states ~" = [ ~  ... ~ ] x ,  ~b of the above system: 

I~'1 ~< M4 I1 r / f  II 2 

I~/S/2 ~< Kflrlso]h2e-a:t/=+y,~:~ (A31) 

where M 4 is a positive real number. Combining the above 
inequalities, we have 

I~'1 ~< M 4 K s  II~/s012e a;,/~ + M47,~,S" (A32) 

Since M4., K I ,  II ~s0 t 2, 7,, are some finite numbers of order 
one, and the right-hand side of the above inequality is 
a continuous function of e which vanishes as e --+ 0, we have 
that there exists an e* such that if e e(0, e*], then 
MgKyllrlfol]2e . . . .  /' + M47,b.e ~< d, Vt > 0. Thus, 
I .g i ( t ) -y~( t ) l=l~ '~( t ) l  ~ I~'l(r)l ~< I~(t)l ~< d, Vt > 0. [] 

Proof of Theorem 7. The detailed presentation of the proof 
of the theorem is too lengthy and will be omitted for brevity. 
Instead, we will provide a brief outline of the proof. Initially, 
it can be shown, following analogous steps as in the proof of 
theorem 3, that the state of the closed-loop reduced system of 
eq. (49) is bounded and there exist positive real numbers 
Ke, ae, Ye such that the following estimate holds for the ith 
output error for all t ~> 0: 

1.9i= _ vii <~ Kel(p~ -- V')ole . . . .  + 7e~ (A33) 

where (.9i _ Vi)o is the output error at time t = 0. Picking 
4)* = d/2v, ,  we have that for 4> • (0, ~b*]: 

d 
t;~ - vii <~ KeI(Yl - vl)ole . . . .  + ~ .  (A34) 

Now, referring to system of eq. (48) we have shown that 
satisfies the assumption of theorem 4 (the state of the uncer- 
tain closed-loop reduced system is bounded and the bound- 
ary layer is exponentially stable) and thus, the result of this 
theorem can be applied. This means that for each positive 
real number d, there exist positive real numbers 
(Ke, de, 7e, ~'), such that if 4) • (0, 4)*] there exists an ~*((b) 
such that, if max{l]xollz, II~/j~ll2, IlOII,/0/} ~< 3", # • (0, 4~*] 
and e • (O,e*(~b)], the state of the closed-loop system of 
eq. (48) is bounded and the following estimate holds for the 
output error for all t ~> O: 

d 
1.9 i -- vii <~ /(el(.9 i -- d)ole . . . .  + 7elb + ~ (A35) 

Taking the limit as t ~ 0 of the above inequality, we have 
that if max{llxol2, Ilnfolh, I10/, IlOtl} < 3, ~b • (0, 4~*] and 

• (0, ~*(~b)], then: 

d 
lira 1.9' -- v'l <- 7e~P + -~ <~ d (A36) 

[] 


