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This paper introduces a methodology for the synthesis of nonlinear finite-dimen-
sional output feedback controllers for systems of quasi-linear parabolic partial

Ž .differential equations PDEs , for which the eigenspectrum of the spatial differen-
tial operator can be partitioned into a finite-dimensional slow one and an infinite-
dimensional stable fast complement. Combination of Galerkin’s method with a
novel procedure for the construction of approximate inertial manifolds for the

Ž .PDE system is employed for the derivation of ordinary differential equation ODE
Ž .systems whose dimension is equal to the number of slow modes that yield

solutions which are close, up to a desired accuracy, to the ones of the PDE system,
for almost all times. These ODE systems are used as the basis for the synthesis of
nonlinear output feedback controllers that guarantee stability and enforce the
output of the closed-loop system to follow up to a desired accuracy, a prespecified
response for almost all times. Q 1997 Academic Press

1. INTRODUCTION

Parabolic PDE systems arise naturally as models of diffusion-convec-
w xtion-reaction processes 16 and typically involve spatial differential opera-

tors whose eigenspectrum can be partitioned into a finite-dimensional slow
w xone and an infinite-dimensional stable fast complement 11, 1 . This

implies that the dynamic behavior of such systems can be approximately
described by finite-dimensional systems. Motivated by this, the standard
approach to the control of parabolic PDEs involves the application of
Galerkin’s method to the PDE system to derive ODE systems that de-

Ž .scribe the dynamics of the dominant slow modes of the PDE system,
which are subsequently used as the basis for the synthesis of finite-dimen-
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w xsional controllers 1, 16 . However, there are two key controller implemen-
tation and closed-loop performance problems associated with this ap-
proach. First, the number of modes that should be retained to derive an
ODE system that yields the desired degree of approximation may be very

w xlarge, leading to high dimensionality of the resulting controllers 12 .
Second, there is a lack of a systematic way to characterize the discrepancy
between the solutions of the PDE system and the approximate ODE
system in finite time, which is essential for characterizing the transient
performance of the closed-loop PDE system.

A natural framework to address the problem of deriving low-dimen-
sional ODE systems that accurately reproduce the solutions of dissipative

Ž . Ž w xPDEs is based on the concept of inertial manifold IM see 18 and the
.references therein . An IM is a positively invariant, finite-dimensional

Lipschitz manifold, which attracts every trajectory exponentially. If an IM
exists, the dynamics of the parabolic PDE system restricted on the inertial
manifold is described by a set of ODEs called the inertial form. Hence,
stability and bifurcation studies of the infinite-dimensional PDE system
can be readily performed on the basis of the finite-dimensional inertial

w xform 18 . However, the explicit derivation of the inertial form requires the
computation of the analytic form of the IM. Unfortunately, IMs have been

Žproven to exist only for certain classes of PDEs for example, the Ku-
w x.ramoto]Sivashinsky equation and some diffusion-reaction equations 18 ,

and even then it is almost impossible to derive their analytic form. In order
to overcome the problems associated with the existence and construction

Ž .of IMs, the concept of approximate inertial manifold AIM has been
w xintroduced 9, 10 and used for the derivation of ODE systems whose

dynamic behavior approximates the one of the inertial form.
In the area of control of nonlinear parabolic PDE systems, few papers

have appeared in the literature dealing with the application of IM for the
w xsynthesis of finite-dimensional controllers. In particular, in 17 the prob-

lem of stabilization of a parabolic PDE with boundary finite-dimensional
feedback was studied; a standard observer-based controller augmented

w xwith a residual mode filter 3 was used to induce an inertial manifold in
the closed-loop system, and thus reduce the stabilization problem for the
PDE system to a stabilization problem for the finite-dimensional inertial

w xform. In 5 , the theory of inertial manifolds was utilized to determine the
extent to which linear boundary proportional control influences the dy-
namic and steady-state response of the closed-loop system.

In this paper, we introduce a methodology for the synthesis of nonlinear
finite-dimensional output feedback controllers for systems of quasi-linear
parabolic PDEs. Singular perturbation methods are initially employed to
establish that the discrepancy between the solutions of an ODE system of
dimension equal to the number of slow modes, obtained through Galerkin’s
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method, and the PDE system is proportional to the degree of separation of
the fast and slow modes of the spatial operator. Then, a procedure,
motivated by the theory of singular perturbations, is proposed for the
construction of AIMs for the PDE system. The AIMs are used for the
derivation of ODE systems of dimension equal to the number of slow
modes, that yield solutions which are close, up to a desired accuracy, to the
ones of the PDE system, for almost all times. These ODE systems are used
as the basis for the synthesis of nonlinear output feedback controllers that
guarantee stability and enforce the output of the closed-loop system to
follow up to a desired accuracy, a prespecified response for almost all
times.

2. PRELIMINARIES

We consider quasi-linear parabolic PDE systems of the form

2­ x ­ x ­ x
s A q B q wb z u q f xŽ . Ž .2­ t ­ z ­ z

1Ž .
ziq1i iy s c z kx dz , i s 1, . . . , lŽ .H

zi

subject to the boundary conditions

­ x
C x a , t q D a , t s RŽ . Ž .1 1 1­ z

2Ž .
­ x

C x b , t q D b , t s RŽ . Ž .2 2 2­ z

and the initial condition

x z , 0 s x z , 3Ž . Ž . Ž .0

TŽ . w Ž . Ž .xwhere x z, t s x z, t ??? x z, t denotes the vector of state variables,1 n
w x w xa , b ; R is the domain of definition of the process, z g a , b is the

w . w 1 2 l xT lspatial coordinate, t g 0, ` is the time, u s u u ??? u g R de-
notes the vector of manipulated inputs, and y i g R denotes a controlled

2 2output. ­ xr­ z, ­ xr­ z denote the first- and second-order spatial deriva-
Ž .tives of x, f x is a vector function, w, k are constant vectors,

A, B, C , D , C , D are constant matrices, R , R are column vectors, and1 1 2 2 1 2
Ž . Ž .x z is the initial condition. b z is a known smooth vector function of z0

Ž . w 1Ž . 2Ž . lŽ .x iŽ .of the form b z s b z b z ??? b z , where b z describes how the
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iŽ . w x w xcontrol action u t is distributed in the spatial interval z , z ; a , b ,i iq1
iŽ .and c z is a known smooth function of z which is determined by the

w xdesired performance specifications in the interval z , z . Whenever thei iq1
w xcontrol action enters the system at a single point z , with z g z , z0 0 i iq1

Ž . iŽ .i.e., point actuation , the function b z is taken to be nonzero in a finite
w xspatial interval of the form z y e , z q e , where e is a small positive0 0

w xreal number, and zero elsewhere in z , z . Throughout the paper, wei iq1
Ž . Ž . Ž .will use the order of magnitude notation O e . In particular, d e s O e

< Ž . < < <if there exist positive real numbers k and k such that d e F k e ,1 2 1
< <; e - k .2

Ž . Ž . Žw x n.We formulate the system of Eqs. 1 ] 3 in a Hilbert space HH a , b , R ,
with HH being the space of n-dimensional vector functions defined on
w x Ž .a , b that satisfy the boundary condition of Eq. 2 , with inner product
and norm

b
v , v s v z , v z dznŽ . Ž . Ž .Ž .H1 2 1 2 R

a 4Ž .
1r25 5v s v , v ,Ž .21 1 1

Žw x n. Ž . nwhere v , v are two elements of HH a , b ; R and the notation ?, ?1 2 R

denotes the standard inner product in R n. Defining the state function x on
Žw x n.HH a , b , R as

w xx t s x z , t , t ) 0, z g a , b , 5Ž . Ž . Ž .
Žw x n.the operator AA in HH a , b , R as

2­ x ­ x
AAx s A q B ,2­ z ­ z

­ x
nw xx g D AA s x g HH a , b ; R ; C x a q D a s R ,Ž . Ž . Ž .Ž . 1 1 1½ ­ z

6Ž .

­ x
C x b q D b s RŽ . Ž .2 2 2 5­ z

and the input and output operators as

BBu s wbu, CC x s c, kx , 7Ž . Ž .
w 1 2 l x Ž . Ž .where c s c c . . . c , the system of Eqs. 1 ] 3 takes the form

x s AAx q BBu q f xŽ .˙
y s CC x 8Ž .

x 0 s x ,Ž . 0
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Ž Ž .. Ž Ž .. Ž .where f x t s f x z, t and x s x z . We assume that the nonlinear0 0
Ž . Ž .term f x satisfies f 0 s 0 and is also locally Lipschitz continuous, i.e.,

there exist positive real numbers a , K such that for any x , x g HH that0 0 1 2
�5 5 5 5 4satisfy max x , x F a , we have that2 21 2 0

5 5f x y f x F K x y x . 9Ž . Ž . Ž .21 2 0 1 22

For AA, the standard eigenvalue problem is of the form

AAf s l f , j s 1, . . . , `, 10Ž .j j j

where l denotes an eigenvalue and f denotes an eigenfunction;. thej j
Ž .eigenspectrum of AA, s AA , is defined as the set of all eigenvalues of AA,

Ž . � 4i.e., s AA s l , l , . . . , . Assumption 1 that follows states our hypotheses1 2
Ž .for the properties of s AA .

Ž .Assumption 1. 1 Re l G Re l G ??? G Re l G ??? , where Re l1 2 j j
denotes the real part of l .j
Ž . Ž . Ž . Ž . Ž . Ž .2 s AA can be partitioned as s AA s s AA q s AA , where s AA1 2 1

Ž . Ž . � 4consists of the first m with m finite eigenvalues, i.e., s AA s l , . . . , l ,1 1 m
< < < < Ž .and Re l rRe l s O 1 .1 m

Ž . < < < < Ž .3 Re l - 0 and Re l r Re l s 0 e where e [mq 1 m mq 1
< < < <Re l rRe l - 1 is a small positive parameter.1 mq1

Assumption 1 states that the eigenspectrum of AA can be partitioned into
a finite-dimensional part consisting of m slow, possibly unstable, eigenval-

Ž . � 4ues, s AA s l , . . . , l and a stable infinite-dimensional part containing1 1 m
Ž . � 4the remaining fast eigenvalues, s AA s l , . . . , , and that the separa-2 mq1

tion between slow and fast eigenvalues of AA is large. The assumption of
the finite number of unstable eigenvalues is always satisfied for parabolic

w xPDEs 11 , while the existence of only a few dominant modes that capture
the dominant dynamics of a parabolic PDE system is well-established for

Žthe majority of diffusion-convection-reaction processes see, for example,
w xthe applications in the book 16 , and the packed-bed reactor example

w x.studied in 8 .
w xAssumption 1 guarantees 11 that AA generates a strongly continuous

Ž .semigroup of bounded linear operators U t which implies that the gener-
Ž .alized solution of the system of Eq. 8 is given by

t
x s U t x q U t y s BBu s q f x s ds. 11Ž . Ž . Ž . Ž . Ž .Ž .Ž .H0

0

Ž .U t satisfies the growth property

a t1U t F K e , ; t G 0, 12Ž . Ž .2 1
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where K , a are real numbers, with K G 1 and a G Re l . If a is1 1 1 1 1 1
strictly negative, we will say that AA generates an exponentially stable

Ž .semigroup U t . Throughout the manuscript, we will focus on local expo-
Ž . w xnential stability, and not on weak asymptotic stability 11 , because of its

Žrobustness to bounded perturbations e.g., uncertain variables, distur-
. w xbances , which are always present in most practical applications 3 .

We will now review the application of Galerkin’s method to the system
Ž .of Eq. 8 to derive an approximate finite-dimensional system. Let HH , HHs f

� 4be modal subspaces of AA, defined as HH s span f , f , . . . , f and HH ss 1 2 m f
� 4 Žspan f , f , . . . , the existence of HH , HH follows from Assump-mq 1 mq2 s f
.tion 1 . Defining the orthogonal projection operators P and P suchs f

Ž .that x s P x, x s P x, the state x of the system of Eq. 8 can bes s f f
decomposed as

x s x q x s P x q P x . 13Ž .s f s f

Ž .Applying P and P to the system of Eq. 8 and using the aboves f
Ž .decomposition for x, the system of Eq. 8 can be equivalently written in

the form
dxs s AA x q BB u q f x , xŽ .s s s s s fdt
­ x f s AA x q BB u q f x , xŽ .f f f f s f­ t 14Ž .

y s CC x q CC xs f

x 0 s P x 0 s P x , x 0 s P x 0 s P x ,Ž . Ž . Ž . Ž .s s s 0 f f f 0

where AA s P AAP , BB s P BB, f s P f , AA s P AAP , BB s P BB, and f ss s s s s s s f f f f f f
P f and the notation ­ x r­ t is used to denote that the state x belongs inf f f
an infinite-dimensional space. In the above system, AA is a diagonal matrixs

� 4 Ž . Ž .of dimension m = m of the form AA s diag l , f x , x and f x , xs j s s f f s f
are Lipschitz vector functions, and AA is an unbounded differential opera-f
tor which generates a strongly continuous exponentially stable semigroup
Ž Ž . .following from part 3 of Assumption 1 and the selection of HH , HH .s f
Neglecting the fast modes, the following finite-dimensional system is
derived,

dxs s AA x q BB u q f x , 0Ž .s s s s sdt 15Ž .
y s CC x ,s s

where the subscript s in y denotes that the output is associated with thes
slow system. The above system can be directly used for controller design

w xemploying standard control methods for ODEs 1, 16, 7 .
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Remark 1. We note that the large separation of slow and fast modes of
the spatial operator in parabolic PDEs ensures that a controller which
exponentially stabilizes the closed-loop ODE system, also stabilizes the

w xclosed-loop infinite-dimensional system 1 . This is in contrast to the
application of this approach to hyperbolic PDEs where the eigenmodes
cluster along nearly vertical asymptotes in the complex plane and thus, the
controller has to be modified to compensate for the destabilizing effect of

w xthe residual modes 3 .

3. ACCURACY OF ODE SYSTEM OBTAINED FROM
GALERKIN’S METHOD

In this section, we use singular perturbation methods to establish that if
Ž .the finite-dimensional system of Eq. 15 is exponentially stable, then the

Ž .system of Eq. 14 is also exponentially stable and the discrepancy between
Ž .the solution of the x -subsystem of the system of Eq. 14 and the solutions

Ž .of the system of Eq. 15 is proportional to the spectral separation of the
slow and fast eigenvalues.

< < < < Ž .Using that e s Re l rRe l , the system of Eq. 14 can be written1 mq1
in the form

dxs s AA x q BB u q f x , xŽ .s s s s s fdt
16Ž .

­ x f
e s AA x q e BB u q e f x , x ,Ž .fe f f f s f­ t

where AA is an unbounded differential operator defined as AA s e AA .fe fe f
ŽSince e is a small positive number less than unity following from Assump-

Ž ..tion 1, part 3 and the operators AA , AA generate semigroups with growths fe
Ž .rates which are of the same order of magnitude, the system of Eq. 16 is

in the standard singularly perturbed form, with x being the slow statess
and x being the fast states.f

Introducing the fast time-scale t s tre and setting e s 0, we obtain the
Ž .following infinite-dimensional fast subsystem from the system of Eq. 16 :

­ x f s AA x . 17Ž .fe f­t

From the fact that Re l - 0 and the definition of e , we have that themq 1
above system is globally exponentially stable. Setting e s 0 in the system
of Eq. 16 and using the fact that the inverse operator AAy1 exists and isfe

Ž .also bounded it follows from the fact that zero is in the resolvent of AA ,fe
we have that

x s 0 18Ž .f
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and thus the finite-dimensional slow system takes the form

dxs s AA x q BB u q f x , 0 . 19Ž . Ž .s s s s sdt

We note that the above system is identical to the one obtained by applying
Ž .the standard Galerkin’s method to the system of Eq. 8 , keeping the first

m ODEs and completely neglecting the x -subsystem. Assumption 2 thatf
Ž .follows states a stability requirement on the system of Eq. 19 .

Ž . Ž .Assumption 2. The finite-dimensional system of Eq. 19 with u t ' 0
Ž .is exponentially stable, i.e., there exist positive real numbers K , a , a ,2 2 4

< <with a ) K G 1 such that for all x g HH that satisfy x F a , the4 2 s s s 4
following bound holds:

ya t2x t F K e x 0 , ; t G 0. 20Ž . Ž . Ž .s 2 s

Proposition 1 that follows establishes that the solutions of the open-loop
Ž . Ž .systems of Eqs. 19 ] 17 , after a short finite time interval required for the

Ž .trajectories of the system of Eq. 16 to approach the quasi steady-state of
Ž . Ž .Eq. 18 , consist of an O e approximation of the solutions of the open-loop

Ž .system of Eq. 16 . The proof is given in the Appendix.

Ž . Ž .PROPOSITION 1. Consider the system of Eq. 16 with u t ' 0 and
suppose that Assumptions 1 and 2 hold. Then, there exist positï e real

< Ž . < 5 Ž .5 Ž xnumbers m , m , e* such that if x 0 F m , x 0 F m , and e g 0, e* ,21 2 s 1 f 2
Ž . Ž . Ž .then the solution x t , x t of the system of Eq. 16 satisfies for alls f

w .t g 0, `

x t s x t q O eŽ . Ž . Ž .s s

21Ž .t
x t s x q O e ,Ž . Ž .f f ž /e

Ž . Ž .where x t , x t are the solutions of the slow and fast subsystems of Eqs.s f
Ž . Ž . Ž .19 ] 17 with u t ' 0, respectï ely.

Remark 2. The counterpart of the result of Proposition 1 in finite-di-
Ž w x.mensional spaces is well known Tikhonov’s theorem 19 , while a similar

w xresult has also been established for linear infinite-dimensional systems 2 .
The main technical difference in establishing this result between linear
and quasi-linear infinite-dimensional systems is that, for quasi-linear sys-
tems the proof is based on Lyapunov arguments, while for linear systems
the proof is obtained using combination of estimates of the states, ob-

w xtained from the application of variations of constants formula 2 . This is a
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consequence of the fact that for quasi-linear systems it is not possible to
Ž .derive a coordinate change that transforms the system of Eq. 16 into a

cascaded interconnection where the fast modes are decoupled from the
slow modes, which allows us to derive an exponentially decaying estimate,
for sufficiently small e , for the fast state, which is independent of the one
of the slow state, and thus to prove the result through a direct combination
of these estimates.

Remark 3. We note that it is possible, using standard results from
center manifold theory for infinite-dimensional systems of the form of Eq.
Ž . w x Ž .8 6 , to show that if the system of Eq. 19 is asymptotically stable, then

Ž .the system of Eq. 8 is also asymptotically stable and the discrepancy
Ž .between the solution of the system of Eq. 19 and the x -subsystem of thes

Ž .system of Eq. 16 is asymptotically as t ª ` proportional to e . Although
this result is important because it allows establishing asymptotic stability of
the closed-loop infinite-dimensional system by performing a stability analy-
sis on a low-order finite-dimensional system, it does not provide any
information about the discrepancy between the solutions of these two
systems for finite t.

4. CONSTRUCTION OF ODE SYSTEMS OF DESIRED
ACCURACY VIA AIMs

In this section, we propose an approach originating from the theory of
inertial manifolds for the construction of ODE systems of dimension m

Ž Ž ..which yield solutions that are arbitrarily close closer than O e to the
Ž .ones of the infinite-dimensional system of Eq. 8 , for almost all times. An
Ž .inertial manifold MM for the system of Eq. 8 is a subset of HH, which

w x Ž .satisfies the following properties 18 : i MM is a finite-dimensional Lip-
Ž . Ž .schitz manifold; ii MM is a graph of a Lipschitz function S x , u, es

l Ž x Ž . Ž .mapping HH = R = 0, e* into HH and for every solution x t , x t ofs f s f
Ž . Ž . Ž Ž . .Eq. 16 with x 0 s S x 0 , u, e , thenf s

x t s S x t , u , e , ; t G 0; 22Ž . Ž . Ž .Ž .f s

Ž .and iii MM attracts every trajectory exponentially. The evolution of the
Ž .state x on MM is given by Eq. 22 , while the evolution of the state x isf s

governed by the finite-dimensional inertial form

dxs s AA x q BB u q f x , S x , u , e . 23Ž . Ž .Ž .s s s s s sdt
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Ž . Ž .Assuming that u t is smooth, differentiating Eq. 22 , and utilizing Eq.
Ž . Ž .16 , S x , u, e can be computed as the solution of the partial differentials
equation

­ S ­ S
e AA x q BB u q f x , x q e u s AA x q e BB u q e f x , xŽ . Ž .˙s s s s s f fe f f f s f­ x ­ us

24Ž .
l Ž xwhich S has to satisfy for all x g HH , u g R , e g 0, e* . However, evens s

for parabolic PDEs for which it is known that MM exists, the derivation of
Ž . Žan explicit analytic form of S x , u, e is an extremely difficult if nots

.impossible task.
Motivated by this, we will now propose a procedure, motivated by

w x Ž .singular perturbations 15 , to compute approximations of S x , u, es
Ž .approximate inertial manifolds and approximations of the inertial form,

Ž .of desired accuracy. To this end, consider an expansion of S x , u, e ands
u in a power series in e ,

u s u q e u q e 2 u q ??? qe k u q O e kq1Ž .0 1 2 k

S x , u , e s S0 x , u q e S1 x , u q e 2 S2 x , u q ???Ž . Ž . Ž . Ž .s s s s 25Ž .

q e k Sk x , u q O e kq1 ,Ž . Ž .s

where u , Sk are smooth functions. Substituting the expressions of Eq.k
Ž . Ž .25 into Eq. 24 , and equating terms of the same power in e , one can

Ž .obtain approximations of S x , u, e up to a desired order. Substitutings
Ž . Ž .the expansion for S x , u, e and u up to order k into Eq. 23 , thes

following approximation of the inertial form is obtained:

dxs 2 ks AA x q BB u q e u q e u q ??? qe uŽ .s s s 0 1 2 kdt

q f x , S0 x , u q e S1 x , u q e 2 S2 x , u q ???Ž . Ž . Ž .Žs s s s s
26Ž .

qe k Sk x , uŽ . .s

In order to characterize the discrepancy between the solution of the
Ž .open-loop finite-dimensional system of Eq. 26 and the solution of the

Ž .x -subsystem of the open-loop infinite-dimensional system of Eq. 16 , wes
Ž .will impose a stability requirement on the system of Eq. 26 .

Ž . Ž .Assumption 3. The finite-dimensional system of Eq. 26 with u t ' 0
Ž .is exponentially stable, i.e., there exist positive real numbers K , a , a ,2 2 4

< <with a ) K G 1 such that for all x g HH that satisfy x F a , the4 2 s s s 4
following bound holds:

ya t2x t F K e x 0 , ; t G 0. 27Ž . Ž . Ž .s 2 s
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Proposition 2 that follows establishes that the discrepancy between the
Ž .solutions obtained from the open-loop system of Eq. 26 and the expan-

Ž . Ž .sion for S x , u, e of Eq. 29 , and the solutions of the infinite-dimen-s
Ž . Ž kq1.sional open-loop system of Eq. 16 is of O e , for almost all times. The

proof is given in the Appendix.

Ž . Ž .PROPOSITION 2. Consider the system of Eq. 16 with u t ' 0 and
suppose that Assumptions 1 and 3 hold. Then, there exist positï e real

< Ž . < 5 Ž .5 Ž xnumbers m , m , e* such that if x 0 F m , x 0 F m , and e g 0, e* ,21 2 s 1 f 2
Ž . Ž . Ž .then the solution x t , x t of the system of Eq. 16 satisfies for alls f

w .t g t , `b

x t s x t q O e kq1Ž . Ž . Ž .˜s s
28Ž .

kq1x t s x t q O e ,Ž . Ž . Ž .˜f f

Ž . Ž . Ž .where t is the time required for x t to approach x t , x t is the solution˜ ˜b f f s
Ž . Ž . Ž . 1Ž . 2 2Ž .of Eq. 26 with u t ' 0, and x t s e S x , 0 q e S x , 0 q˜ ˜ ˜f s s

k kŽ .??? qe S x , 0 .˜s

Remark 4. The result of Proposition 2 provides the means for charac-
terizing the discrepancy between the solution of the open-loop infinite-

Ž . Ž . Ždimensional system of Eq. 8 , x t and thus the solution of the parabolic
Ž . Ž . Ž . Ž . Ž .PDE system of Eq. 1 with u t ' 0, and the solution x t s x t q x t˜ ˜ ˜s f

Ž . 1Ž Ž . . k kŽ Ž . .s x t q e S x t , 0 q ??? qe S x t , 0 , which is obtained from the˜ ˜ ˜s s s
Ž k . Ž Ž .O e approximation of the open-loop inertial form i.e., Eq. 26 with
Ž . . Ž . Ž . Ž .u t ' 0 . In particular, substituting Eq. 28 into the equation x t s x ts

Ž . Ž . Ž . Ž . Ž kq1.q x t , we have that x t s x t q x t q O e for t G t . Utilizing˜ ˜f s f b
the definition of order of magnitude, we finally obtain the following

Ž . Ž . 5 Ž . Ž .5characterization for the discrepancy between x t and x t : x t y x t˜ ˜ 2

F k e kq1 for t G t , where k is a positive real number.1 b 1

Remark 5. Following the proposed approximation procedure, it can be
Ž . Ž . 0Ž .shown that the O e approximation of S x , 0, e is S x , 0 s 0 and thes s

corresponding approximate inertial form is identical to the system of Eq.
Ž . Ž . Ž .19 obtained via Galerkin’s method with u t ' 0. This system does not
utilize any information about the structure of the fast subsystem, thus

Ž .yielding solutions which are only O e close to the solutions of the
Ž . Ž . Ž 2 .open-loop system of Eq. 8 Proposition 1 . On the other hand, the O e

Ž .approximation of S x , 0, e can be shown to be of the forms

y10 1S x , 0, e s S x , 0 q e S x , 0 s e AA yf x , 0 . 29Ž . Ž . Ž . Ž . Ž .Ž .s s s fe f s

The corresponding open-loop approximate inertial form does utilize infor-
mation about the structure of the fast subsystem, and thus allows us to

Ž 2 .obtain solutions which are O e close to the solutions of the open-loop
Ž . Ž .system of Eq. 8 Proposition 2 .
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Remark 6. The standard approach followed in the literature for the
Ž . Ž .construction of AIMs for systems of the form of Eq. 14 with u t ' 0

Ž w x.see, for example, 4 is to directly set ­ x r­ t ' 0, solve the resultingf
algebraic equations for x , and substitute the solution for x to thef f

Ž .x -subsystem of Eq. 14 , to derive the ODE systems

dxs y1s AA x q f x , AA yf x . 30Ž . Ž .Ž .ž /s s s s f f sdt

Ž .It is straightforward to show that the slow system of Eq. 30 is identical to
Ž 2 . Ž .the one obtained by using the O e approximation for S x, 0, e for the

construction of the approximate inertial form.

Remark 7. The expansion of u in a power series in e is motivated by
our intention to modify the synthesis of the feedback controller appropri-

Ž kq1.ately such that the discrepancy between the output of the O e
approximation of the closed-loop inertial form and the output of the

Ž kq1. Žclosed-loop PDE system will be of O e for almost all times see also
.Remark 8 .

5. FINITE-DIMENSIONAL CONTROL

In this section, we use the result of Proposition 2 to establish that a
nonlinear finite-dimensional output feedback controller, that guarantees

Ž .stability and enforces output tracking in the ODE system of Eq. 26 ,
exponentially stabilizes the closed-loop PDE system and ensures that the
discrepancy between the output of the closed-loop ODE system and the

Ž kq1.output of the closed-loop PDE system is of O e , provided that e is
sufficiently small.

The finite-dimensional output feedback controller which achieves the
Ž .desired objectives for the system of Eq. 26 is constructed through a

standard combination of a state feedback controller with a state observer.
In particular, we consider a state feedback control law of the general form

u s u q e u q ??? qe k u0 1 k

s p x q Q x ¨ q e p x q Q x ¨ q ???Ž . Ž . Ž . Ž .0 s 0 s 1 s 1 s 31Ž .
kq e p x q Q x ¨ ,Ž . Ž .k s k s

Ž . Ž . Ž . Ž .where p x , . . . , p x are smooth vector functions, Q x , . . . , Q x0 s k s 0 s k s
are smooth matrices, and ¨ g R l is the constant reference input vector
Žsee Remark 8 for a procedure for the synthesis of the control law, i.e., the

w Ž . Ž . Ž . Ž .x.explicit computation of p x , . . . , p x , Q x , . . . , Q x . The fol-0 s k s 0 s k s
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lowing m-dimensional state observer is also considered for the implemen-
Ž .tation of the state feedback law of Eq. 31 ,

dh
s AA h q BB p h q Q h ¨ q e p h q Q h ¨ q ???Ž . Ž . Ž . Ž .Žs s 0 0 1 1dt

kqe p h q Q h ¨Ž . Ž . .k k

q f h , e S1 h , u q e 2 S2 h , u q ??? qe k Sk h , uŽ . Ž . Ž .Ž .s
32Ž .

1 2 2q L y y CCh q CC e S h , u q e S h , u q ???� Ž . Ž .Ž
k kqe S h , u ,4Ž . .

where h g HH denotes the observer state vector and L is a matrix chosens
Ž . wso that the eigenvalues of the matrix C s AA q ­ f r­h y L CCh qL s s Žhsh . ss

�Ž .Ž 1Ž Ž .. 2 2Ž Ž .. k kŽ Ž ... 4xCC ­r­h e S h, u h q e S h, u h q ??? qe S h, u h lieŽhsh .s

in the open left-half of the complex plane, where h denotes the steadys
Ž .state for the system of Eq. 32 . The finite-dimensional output feedback

controller resulting from the combination of the state feedback controller
Ž . Ž .of Eq. 31 with the state observer of Eq. 32 takes the form

dh
s AA h q BB p h q Q h ¨ q e p h q Q h ¨ q ???Ž . Ž . Ž . Ž .Žs s 0 0 1 1dt

kqe p h q Q h ¨Ž . Ž . .k k

q f h , e S1 h , u q e 2 S2 h , u q ??? qe k Sk h , uŽ . Ž . Ž .Ž .s

0 1 2 2q L y y CCh q CC S h , u q e S h , u q e S h , u� Ž . Ž . Ž .Ž 33Ž .

k kq ??? qe S h , u 4Ž . .
u s p h q Q h ¨ q e p h q Q h ¨ q ???Ž . Ž . Ž . Ž .0 0 1 1

kq e p h q Q h ¨ .Ž . Ž .k k

We note that the static component of the above controller does not use
feedback of the fast state vector x in order to avoid destabilization of thef
fast modes of the closed-loop system. Assumption 4 states the desired

Ž .control objectives under the controller of Eq. 33 .

Assumption 4. The finite-dimensional output feedback controller of the
Ž . Ž kq1.form of Eq. 33 exponentially stabilizes the O e approximation of the

iŽ .closed-loop inertial form and ensures that its outputs y t , i s 1, . . . , l,s
are the solutions of a known l-dimensional ODE system of the form
Ž i Ž r i. i Ž r iy1. i .f y , y , . . . , y , ¨ s 0, where f is a vector function and r is ans s s i

integer.
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Theorem 1 provides a precise characterization of the stability and
Ž .closed-loop transient performance enforced by the controller of Eq. 33 in

Ž .the closed-loop PDE system the proof is given in the Appendix .

Ž .THEOREM 1. Consider the PDE system of Eq. 8 , for which Assumptions
1 and 4 hold. Then, there exist positï e real numbers m , m , e* such that if˜ ˜ ˜1 2
< Ž . < 5 Ž .5 Ž x Ž .x 0 F m , x 0 F m , and e g 0, e* , then the controller of Eq. 33 :˜ ˜ ˜2s 1 f 2

Ž .a guarantees exponential stability of the closed-loop system, and
Ž .b ensures that the outputs of the closed-loop system satisfy for all

w .t g t , `b

y i t s y i t q O e kq1 , i s 1, . . . , l , 34Ž . Ž . Ž . Ž .s
iŽ . Ž kq1.where y t is the ith output of the O e approximation of the closed-loops

inertial form.

Ž .Remark 8. The construction of the state feedback law of Eq. 31 , to
ensure that the control objectives stated in Assumption 4 are enforced in

Ž kq1.the O e approximation of the closed-loop inertial form, can be per-
formed following a sequential procedure. Specifically, the component

Ž . Ž . Ž .u s p x q Q x ¨ can be initially synthesized on the basis of the O e0 0 s 0 s
Ž Ž ..approximation of the inertial form Eq. 19 ; then the component u s1

Ž . Ž . Ž 2 .p x q Q x ¨ can be synthesized on the basis of the O e approxima-1 s 1 s
tion of the inertial form. In general, at the kth step, the component

Ž . Ž . Ž k .u s p x q Q x ¨ can be synthesized on the basis of the O ek k s k s
Ž .approximation of the inertial form Eq. 26 . The synthesis of

w Ž . Ž .xp x , Q x , n s 0, . . . , k, can be performed, at each step, utilizingn s n s
Ž w xstandard geometric control methods for nonlinear ODEs see 13 , for

.example .

Ž .Remark 9. The implementation of the controller of Eq. 33 requires to
kŽ . kŽ .explicitly compute the vector function S h, u . However, S h, u has an

infinite-dimensional range and therefore cannot be implemented in prac-
kŽ . kŽ .tice. Instead a finite-dimensional approximation of S h, u , say S h, u ,t

kŽ .can be derived by keeping the first m elements of S h, u and neglecting
kŽ .the remaining infinite ones. Clearly, as m ª `, S h, u approachest

kŽ .S h,u . This implies that by picking m to be sufficiently large, the
Ž . kŽ . kŽ .controller of Eq. 33 with S h, u instead of S h, u guarantees stabilityt

Ž .and enforces the requirement of Eq. 34 in the closed-loop infinite-dimen-
sional system.

Remark 10. The proposed control methodology was implemented
through simulations on a packed-bed reactor modeled by two quasi-linear

w xparabolic PDEs 8 . In particular, it was shown that a finite-dimensional
Ž .output feedback controller of dimension 4, of the form of Eq. 33 with an

2Ž . Ž .O e approximation for S h, e , u and m s 3 provides a superior perfor-
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mance compared to a finite-dimensional output feedback controller of the
Ž . Ž .same dimension, with an O e approximation for S h, e , u .

6. CONCLUSIONS

In this work, we developed a methodology for the synthesis of nonlinear
finite-dimensional output feedback controllers for systems of quasi-linear
parabolic PDEs, for which the eigenspectrum of the spatial differential
operator can be partitioned into a finite-dimensional slow one and an
infinite-dimensional stable fast complement. Combination of Galerkin’s
method with a novel procedure for the construction of AIMs was used, for
the derivation of ODE systems of dimension equal to the number of slow
modes, that yield solutions which are close, up to a desired accuracy, to the
ones of the PDE system, for almost all times. These ODE systems were
used as the basis for the synthesis of nonlinear output feedback controllers
that guarantee stability and enforce the output of the closed-loop system
to follow up to a desired accuracy, a prespecified response for almost all
times.

APPENDIX

Proof of Proposition 1. The proof of the proposition will be obtained in
Ž .two steps. In the first step, we will show that the system of Eq. 16 is

exponentially stable, provided that the initial conditions and e are suffi-
ciently small. In the second step, we will use the exponential stability

Ž .property to prove closeness of solutions Eq. 21 .

Ž . Ž .Exponential Stability. First, the system of Eq. 16 with u t ' 0 can be
equivalently written as

dxs s AA x q f x , 0 q f x , x y f x , 0Ž . Ž . Ž .s s s s s s f s sdt
35Ž .

­ x f
e s AA x q e f x , x .Ž .fe f f s f­ t

Let mU , mU with mU G a be two positive real numbers such that if1 2 1 4
< < U 5 5 Ux F m and x F m , then there exist positive real numbers2s 1 f 2
Ž .k , k , k such that1 2 3

5 5f x , x y f x , 0 F k xŽ . Ž . 2s s f s s 1 f
36Ž .

< < 5 5f x , x F k x q k x .Ž . 2f s f 2 s 3 f2
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Pick m - a - mU and m - mU. From Assumption 2 and the converse1 4 1 2 2
w xLyapunov theorem for finite-dimensional systems 14, Theorem 4.10 , we

have that there exists a smooth Lyapunov function V : HH ª R and a sets G 0
Ž .of positive real numbers a , a , a , a , a , such that for all x g HH that1 2 3 4 5 s s

< <satisfy x F a , the following conditions hold:s 4

< < 2 < < 2a x F V x F a xŽ .1 s s 2 s

­ V 2˙ < <V x s AA x q f x , 0 F ya xŽ . Ž .s s s s s 3 s­ xs 37Ž .

­ V
< <F a x .5 s­ xs

From the global exponential stability property of the fast subsystem of Eq.
Ž .17 and the converse Lyapunov theorem for infinite-dimensional systems
w x21, 22 , we have that there exists a Lyapunov functional W : HH ª Rf G 0

Ž .and a set of positive real numbers b , b , b , b , such that for all x g HH1 2 3 4 f f

the following conditions hold:

5 5 2 5 5 2b x F W x F b xŽ .2 21 f f 2 f

1 ­ W b3 2e˙ 5 5W x s AA x F y xŽ . 2f f f fe ­ x ef 38Ž .

­ W
5 5F b x .24 f­ x f 2

Consider now the smooth function L : HH = HH ª R ,s f G 0

L x , x s V x q W x 39Ž . Ž . Ž . Ž .s f s f

Ž . Ž .as a Lyapunov function candidate for the system of Eq. 35 . From Eq. 37
Ž . Ž . Žand Eq. 38 , we have that L x , x is positive definite and proper tendss f

< < 5 5 .to q` as x ª `, or x ª ` , with respect to its arguments. Comput-2s f

ing the time-derivative of L along the trajectories of this system, and using
Ž . Ž . Ž .the bounds of Eq. 37 and Eq. 38 and the estimates of Eq. 36 , the
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following expressions can be easily obtained:

­ V ­ W
L̇ x , x s x q xŽ . ˙ ˙s f f­ x ­ xs f

­ V ­ V
F AA x q f x , 0 q f x , x y f x , 0Ž . Ž . Ž .s s s s s s f s s­ x ­ xs s

­ W ­ W
eq AA x q f x , xŽ .f f f s f­ x ­ xf f

b32 2< < < < 5 5 5 5F ya x q a k x x y x2 23 s 5 1 s f fe

5 5 < < 5 5q b x k x q k xŽ .2 24 f 2 s 3 f

b32< < < < 5 5 5 5F ya x q a k q b k x x y y b k xŽ . 2 23 s 5 1 4 2 s f 4 3 fž /e

a k q b k5 1 4 2
a y3 < <xs2< < 5 5x xF y .2s f 5 5a k q b k b x 25 1 4 2 3 fy y b k4 32 e

40Ž .

Ž ŽŽ . .2 .Defining e s a b r a b k q a k q b k r2 , we have that if e g1 3 3 3 4 3 5 1 4 2
˙Ž . Ž .0, e then L x , x - 0, which from the properties of L directly implies1 s f

Ž .that the state of the system of Eq. 35 is exponentially stable, i.e., there
exists a positive real number s such that

< <x ms 1ys tF e . 41Ž .m5 5x 22f

Ž .Closeness of Solutions. First, we define the error coordinate e t sf
Ž . Ž . Ž .x t y x t . Differentiating e t with respect to t , the following dynam-f f f

ical system can be obtained:

­ ef s AA e q e f x , e q x . 42Ž .Ž .fe f f s f f­t

Referring to the above system with e s 0, we have from the properties of
w xthe unbounded operator AA and the converse theorem of 21, 22 , thatfe

there exists a Lyapunov functional W : HH ª R and a set of positive realf G 0
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Ž .numbers b , b , b , b , such that for all e g HH the following conditions1 2 3 4 f f
hold:

2 2
b e t F W e t F b e tŽ . Ž . Ž .Ž .1 f f 2 f2 2

­ W ­ W 2es AA e F yb e tŽ .f f 3 f 2­t ­ ef 43Ž .

­ W
F b e t .Ž .4 f 2­ ef 2

Ž .Computing the time-derivative of W e along the trajectories of thef
Ž . 5 Ž .5 5 5system of Eq. 42 and using that f x , e q x F k e q k , where2 2f s f f 4 f 5

Žk , k are positive real numbers which follows from the fact that the states4 5
Ž . .x , x are bounded , we haves f

­ W 25 5 5 5 5 5F yb e q e b e k e q kŽ .2 2 23 f 4 f 4 f 5­t

25 5 5 5F y b y e b k e q e b k e . 44Ž .Ž . 2 23 4 4 f 4 5 f

� 4Set e s b rb k and e* s min e , e . From the above inequality, using2 3 4 4 1 2
w x Ž .Theorem 4.10 in 14 , we have that if e g 0, e* , the following bound

5 Ž .5 w .holds for e t for all t g 0, ` ,2f

ya Ž tre .3e t F K e 0 e q ed , 45Ž . Ž . Ž .f 3 f e f2 2

where d is a positive real number. From the above inequality ande f
5 Ž .5 Ž . Ž . Ž .the fact that e 0 s 0, the estimate x t s x tre q O e follows2f f f

directly.
Ž . Ž . Ž .Defining the error coordinate e t s x t y x t and differentiatings s s

Ž .e t with respect to time, the following system can be obtained:s

des s AA e q f x q e , x y f x . 46Ž .Ž .Ž .s s s s s f s sdt

Ž .The representation of the system of Eq. 46 in the fast time-scale t takes
the form

des s e AA e q f x q e , x y f x , 47Ž .Ž .Ž .s s s s s f s sdt
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Ž .where e , x can be considered approximately constant, and thus usings s
< Ž . < Ž .that e 0 s 0 and continuity of solutions for e t , the following bounds s

Ž . w xcan be written for e t for all t g 0, t ,s b

we t F e k t , ;t g 0, t , 48Ž . Ž ..s 6 b b

where k is a positive real num ber and t s t re s6 b b
Ž . Ž . Ž . Ž .O 1 , with t s O e ) 0 is the time required for x t to approach x t ,b f p

5 Ž .5 w .i.e., x t F k e for t g t , ` , where k is a positive real number. The2f 7 b 7
Ž . Ž . Ž . Žsystem of Eq. 46 with x t s x t ' 0 is exponentially stable Assump-s f

. Ž . Ž .tion 2 . Moreover, since x t decays exponentially, the system of Eq. 46s
Ž .is also exponentially stable if x t ' 0. This implies that for the systemf

des s AA e q f x q e , 0 y f x 49Ž .Ž . Ž .s s s s s s sdt

there exists a smooth Lyapunov function V : HH ª R and a set ofs G 0
Ž .positive real numbers a , a , a , a , a , such that for all e g HH that1 2 3 4 5 s s

< <satisfy e F a the following conditions hold:s 4

2 2< < < <a e F V e F a eŽ .1 s s 2 s

­ V 2˙ < <V e s AA e q f x q e , 0 y f x F ya eŽ . Ž . Ž .˜s s s s s s s s 3 s­ es 50Ž .

­ V
< <F a e .5 s­ es

Ž .Computing the time-derivative of V e along the trajectories of thes
Ž . w . < Ž .system of Eq. 46 and using that for t g t , ` f x q e , x yb s s s f

Ž . < 5 5f x q e , 0 F k x F k k e , where k is a positive real number2s s s 8 f 7 8 8
Ž Ž . .which follows from the fact that the states x , x are bounded , we haves f

w .for all t g t , `b

2˙ < < < <V e F ya e q k k a e e . 51Ž . Ž .s 3 s 7 8 5 s

w x < Ž . <From the above inequality, using Theorem 4.10 in 14 , and that e t ss b
Ž . < Ž . < w .O e , we have that the following bound holds for e t for all t g t , ` ,s b

e t F ed , 52Ž . Ž .s es

Ž . Ž .where d is a positive real number. From inequalities of Eqs. 48 ] 52 ,es
Ž . Ž . Ž .the estimate x t s x t q O e for all t G 0 follows directly.s s
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Proof of Proposition 2. The proof of the proposition will be obtained
following a two-step approach similar to the one used in the proof of
Proposition 1.

Exponential Stability. This part of the proof of the proposition is com-
pletely analogous to the proof of exponential stability in the case of
Proposition 1, and thus, it will be omitted for brevity.

Closeness of Solutions. From the first part of the proof, we have that
Ž .exponential stability is guaranteed provided that e g 0, e* , where e* is a

Ž . Ž . Ž .positive real number. Defining the error coordinate e t s x t y x t˜ ˜s s s
Ž .and differentiating e t with respect to time, the following system can bes̃

obtained,

dẽs s AA e q f x q e , x y f x , x , 53Ž .˜ ˜ ˜ ˜ ˜Ž . Ž .s s s s s f s s fdt

0Ž . 1Ž . 2 2Ž . k kŽ .where x s S x q e S x q e S x q ??? qe S x . From As-˜ ˜ ˜ ˜ ˜f s s s s
Ž .sumption 3 and the fact that x t decays exponentially to zero, we have˜s

that the system

dẽs s AA e q f x q e , x y f x , x 54Ž .˜ ˜ ˜ ˜ ˜ ˜Ž .ž /s s s s s f s s fdt

is exponentially stable, which implies that there exists a smooth Lyapunov
˜ Ž .function V : HH ª R and a set of positive real numbers a , a , a , a , a ,˜ ˜ ˜ ˜ ˜s G 0 1 2 3 4 5

< <such that for all e g HH that satisfy e F a , the following conditions˜ ˜s s s 4
hold:

2 ˜ 2< < < <a e F V e F a eŽ .˜ ˜ ˜ ˜ ˜1 s s 2 s

˜­ V 2˙̃ < <V e s AA e q f x q e , x y f x , x F ya eŽ .˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜Ž .ž /s s s s s s f s s f 3 s­ ẽs 55Ž .

˜­ V
< <F a e .ˆ ˜5 s­ ẽs

Ž̃ .Computing the time-derivative of V e along the trajectories ofs̃
Ž . w . < Ž .the system of Eq. 53 and using that for t g 0, ` f x q e , x y˜ ˜s s s f

˜ kq1 ˜ l1 tre ˜ ˜Ž . < Ž .f x q e , x F k e q k e , where k , k are positive real num-˜ ˜ ˜s s s f 1 2 1 2
w .bers and l is a negative real number, we have for all t g 0, `i

˙ 2 kq1 l tre1˜ ˜ ˜< < < <V e F ya e q k e q k e a e . 56Ž .Ž .˜ ˜ ˜ ˜ ˜ž /s 3 s 1 2 5 s
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w xFrom the above inequality, using Theorem 4.10 in 14 and the fact that
< Ž . < < Ž . <e 0 s 0, we have that the following bound holds for e t for all˜ ˜s s

w .t g 0, ` ,

l tre kq11 ˜e t F Ke q Ke , 57Ž . Ž .s̃

l tre1˜where K, K are positive real numbers. Since the term Ke vanishes
w x Žoutside the interval 0, t where t is the time required for x to approachb b f

. Ž . w .x , it follows from Eq. 57 that for all t g t , `˜f b

kq1˜e t F Ke . 58Ž . Ž .s̃

Ž . Ž . Ž kq1.From the above inequality, the estimate x t s x t q O e , for t G t ,˜s s b
follows directly.

Proof of Theorem 1. Substituting the output feedback controller of Eq.
Ž . Ž .33 into the system of Eq. 16 , we get

dh
s AA h q BB p h q Q h ¨ q e p h q Q h ¨Ž . Ž . Ž . Ž .Žs s 0 0 1 1dt

q ???

kqe p h q Q h ¨Ž . Ž . .k k

q f h , e S1 h , u q e 2 S2 h , u q ??? qe k Sk h , uŽ . Ž . Ž .Ž .s

1 2 2 k kq L yy CChqCCe S h , u qe S h , u q???qe S h , uŽ . Ž . Ž .Ž .
dxs s AA x q BB p h q Q h ¨ q e p h q Q h ¨ q ???Ž . Ž . Ž . Ž .Žs s s 0 0 1 1dt

kqe p h q Q h ¨ q f x , xŽ . Ž . Ž ..k k s s f

­ x f
e s AA x q e BB p h q Q h ¨ q e p h q Q h ¨ q ???Ž . Ž . Ž . Ž .Žfe f f 0 0 1 1­ t

kqe p h q Q h ¨ q e f x , xŽ . Ž . Ž ..k k f s f

y i s CC x q CC x , i s 1, . . . , l. 59Ž .s f

Performing a two-time-scale decomposition in the above system, the fast
subsystem takes the form

­ x f s AA x 60Ž .fe f­t



CONTROL OF PARABOLIC PDE SYSTEMS 419

Ž kq1.which is exponentially stable. Furthermore, the O e approximation of
the closed-loop inertial form is given by

dh
s AA h q BB p h q Q h ¨ q e p h q Q h ¨ q ???Ž . Ž . Ž . Ž .Žs s 0 0 1 1dt

kqe p h q Q h ¨Ž . Ž . .k k

q f h , e S1 h , u q e 2 S2 h , u q ??? qe k Sk h , uŽ . Ž . Ž .Ž .s

0 1 2 2q L y y CCh q CC S h , u q e S h , u q e S h , u q ???Ž . Ž . Ž .Ž
k kqe S h , uŽ . .

dxs s AA x q BB p h q Q h ¨ q e p h q Q h ¨ q ???Ž . Ž . Ž . Ž .Žs s s 0 0 1 1dt
kqe p h q Q h ¨Ž . Ž . .k k

q f x , e S1 x , u q e 2 S2 x , u q ??? qe k Sk x , uŽ . Ž . Ž .Ž .s s s s s

i 1 2 2 k ky s CC x q CC e S x , u q e S x , u q ??? qe S x , u ,Ž . Ž . Ž .s s s s s

i s 1, . . . , l. 61Ž .

Referring to the above closed-loop ODE system, Assumption 4 yields that
it is exponentially stable and the output y i, i s 1, . . . , l, changes in as
prespecified manner. A direct application of the result of Proposition 2
yields that there exist positive real numbers m , m , e* such that if˜ ˜ ˜1 2
< Ž . < 5 Ž .5 Ž xx 0 F m , x 0 F m and e g 0, e* , such that the closed-loop˜ ˜ ˜2s 1 f 2
infinite-dimensional system is exponentially stable and the relation of Eq.
Ž .34 holds.

ACKNOWLEDGMENT

Financial support for this work from the National Science Foundation, CTS-9624725, is
gratefully acknowledged.

REFERENCES

Ž .1. M. J. Balas, Feedback control of linear diffusion processes, Internat. J. Control 29 1979 ,
523]533.

2. M. J. Balas, Stability of distributed parameter systems with finite-dimensional controller-
Ž .compensators using singular perturbations, J. Math. Anal. Appl. 99 1984 , 80]108.



CHRISTOFIDES AND DAOUTIDIS420

3. M. J. Balas, Nonlinear finite-dimensional control of a class of nonlinear distributed
parameter systems using residual mode filters: A proof of local exponential stability,

Ž .J. Math. Anal. Appl. 162 1991 , 63]70.
4. H. S. Brown, I. G. Kevrekidis, and M. S. Jolly, A minimal model for spatio-temporal

Žpatterns in thin film flow, in ‘‘Pattern and Dynamics in Reactive Media’’ R. Aris, D. G.
.Aronson, and H. L. Swinney, Eds. , pp. 11]31, Springer-Verlag, New YorkrBerlin, 1991.

5. C. A. Byrnes, D. S. Gilliam, and V. I. Shubov, On the dynamics of boundary controlled
nonlinear distributed parameter systems, in ‘‘Preprints of Symposium on Nonlinear
Control Systems Design,’’ Tahoe City, California, 1995,’’ pp. 913]918.

6. J. Carr, ‘‘Applications of Center Manifold Theory,’’ Springer-Verlag, New York, 1981.
7. C. C. Chen and H. C. Chang, Accelerated disturbance damping of an unknown dis-

Ž .tributed system by nonlinear feedback, AIChE J. 38 1992 , 1461]1476.
8. P. D. Christofides and P. Daoutidis, Nonlinear control of diffusion-convection-reaction

Ž .processes, Comput. Chem. Engrg. 20 1996 , 1071]1076.
9. C. Foias, G. R. Sell, and E. S. Titi, Exponential tracking and approximation of inertial

Ž .manifolds for dissipative equations, J. Dyn. Diff. Equat. 1 1989 , 199]244.
10. C. Foias, M. S. Jolly, I. G. Kevrekidis, G. R. Sell, and E. S. Titi, On the computation of

Ž .inertial manifolds, Phys. Lett. A 131 1988 , 433]437.
11. A. Friedman, ‘‘Partial Differential Equations,’’ Holt, Rinehart & Winston, New York,

1976.
12. D. H. Gay and W. H. Ray, Identification and control of distributed parameter systems by

Ž .means of the singular value decomposition, Chem. Engrg. Sci. 50 1995 , 1519]1539.
13. A. Isidori, ‘‘Nonlinear Control Systems: An Introduction,’’ Springer-Verlag, Berlinr

Heidelberg, 1989.
14. H. K. Khalil, ‘‘Nonlinear Systems,’’ Macmillan Co., New York, 1992.
15. P. V. Kokotovic, H. K. Khalil, and J. O’Reilly, ‘‘Singular Perturbations in Control:

Analysis and Design,’’ Academic Press, London, 1986.
16. W. H. Ray, ‘‘Advanced Process Control,’’ McGraw-Hill, New York, 1981.
17. H. Sano and N. Kunimatsu, An application of inertial manifold theory to boundary

Ž .stabilization of semilinear diffusion systems, J. Math. Anal. Appl. 196 1995 , 18]42.
18. R. Temam, ‘‘Infinite-Dimensional Dynamical Systems in Mechanics and Physics,’’

Springer-Verlag, New York, 1988.
19. A. N. Tikhonov, On the dependence of the solutions of differential equations on a small

Ž . w xparameter, Mat. Sb. 22 1948 , 193]204. In Russian
20. E. S. Titi, On approximate inertial manifolds to the Navier]Stokes equations, J. Math.

Ž .Anal. Appl. 149 1990 , 540]557.
21. P. K. C. Wang, ‘‘Control of Distributed Parameter Systems,’’ Advances in Control

Systems, Academic Press, New York, 1964.
22. P. K. C. Wang, Asymptotic stability of distributed parameter systems with feedback

Ž .controls, IEEE Trans. Automat. Control 11 1966 , 46]54.


