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This paper focuses on the synthesis of well-conditioned multivariable robust controllers for a broad class
of multi-input multi-output two-time-scale nonlinear systems with time-varying uncertain variables,
modeled within the framework of singular perturbations. The proposed controller stabilizes the fast
dynamics, guarantees boundedness of trajectories, and ensures that the ultimate discrepancy between the
outputs and the external reference inputs in the closed-loop system can be made arbitrarily small by
an appropriate choice of controller parameters, provided that the singular perturbation parameter is
sufficiently small. The developed control method is tested, through simulations, on a fluidized catalytic

cracking reactor. © 1997 Elsevier Science Ltd

All practical control systems must be robust with
respect to uncertainty. Uncertain time-varying variables
arise naturally in chemical engineering applications
from unknown or partially known process parameters
(e.g. heat transfer coeflicients, kinetic constants, etc.)
and unmeasured disturbance inputs (¢.g. concentration
of inlet streams). It is well-established that controllers
that guarantee offsetless output tracking and stability in
the nominal closed-loop system may lead to poor transi-
ent performance, offset and even closed-loop instability
in the presence of uncertain variables. The traditional
approach followed to ensure asymptotic offsetless rejec-
tion of uncertain variables is to incorporate integral
action in the controller. This approach is adequate in the
case of conmstant uncertain variables but it may lead to
severe failure in the presence of time-varying uncertainty.

Motivated by this, the design of robust controllers
that are capable of coping with uncertain variables has
received considerable attention in the past. Research
initially focused on the development of robust control
methods for linear systems in the frequency-domain',
including H ., u-synthesis, etc. More recently, the state-
space counterparts of the H,, frequency-domain results
have been developed?. This motivated research on the
extension of H,, control methods to certain classes of
uncertain nonlinear systems. In this direction, theoreti-
cal results have been derived®#, but their practical
applicability is still in question because the explicit
construction of the controllers requires the analytical
solution of nonlinear partial differential equations. The
interested reader may refer to Allgdwer et al’> for a
critical analysis on the applicability of nonlinear H
control methods to engineering applications.
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An alternative approach for the synthesis of robust
control systems for linear/nonlinear uncertain systems is
based on Lvapunov’s direct method. The basic idea is to
design a controller, utilizing the knowledge of certain
bounding functions on the size of the uncertainty, so
that the time-derivative of an appropriate Lyapunov
function calculated along the trajectories of the uncer-
tain closed-loop system is negative definite as long as
the state of the system is larger than a constant which
can be made arbitrarily small by a suitable choice of
controller parameters. This guarantees that the ultimate
discrepancy between the output of the closed-loop sys-
tem and the reference input is arbitrarily small. This
idea was originally proposed in Corless and Leitman®
and was further explored for robust controller design’-®.
For single-input single-output input-output linearizable
nonlinear systems, combination of this approach with
geometric control schemes was studied®'!.

Another important feature of many engineering
applications is that they involve physicochemical phe-
nomena occurring in different time-scales (e.g. catalytic
reactors, biochemical reactors, flexible mechanical
systems, etc.). It is well-established that a direct
application of standard nonlinear control algorithms
to multiple-time-scale systems, neglecting the presence
of time-scale multiplicity, may lead to controller ill-
conditioning and/or closed-loop instability’?. Singular
perturbation methods have proven to be a successful
analytic tool for stability analysis and the synthesis of
well-conditioned controllers for multiple-time-scale
processes!®. We employed a combination of singular
perturbations and geometric control methods to
synthesize well-conditioned feedback controllers for
two-time-scale nonlinear systems that enforce a prespe-
cified input/output response in the closed-loop system,
provided that the time-scale separation is sufficiently
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large!?. This methodology was extended' within a
feedforward/feedback control framework to syn-
thesize well-conditioned controllers that achieve an
arbitrary degree of elimination of the effect of measur-
able disturbances on the output of the process for all
times.

The combination of singular perturbations and con-
trol methods for uncertain systems, for the synthesis of
well-conditioned controllers for stabilization of uncer-
tain single-input single-output singularly perturbed sys-
tems, has been studied'>'”. In Christofides and
Daoutides'®, robust control laws were synthesized that
ensure restricted (i.e. the initial conditions, uncertainty,
and rate of change of uncertainty should be sufficiently
small) asymptotic output tracking for nonlinear single-
input single-output singularly perturbed systems, as
long as the time-scale separation is sufficiently large.
In Christofides and Teel!®, a robustness result for
the input-to-state stability property with respect to
singular perturbations was established and used in
Christofides et al.?® to prove that, under appropriate
assumptions on the inverse dynamics of the reduced
system, the controller derived in Christofides and
Daoutides'® ensures semi-global (i.. the initial con-
ditions, the uncertainty, and the rate of change of
uncertainty can be arbitrarily large) asymptotic output
tracking for the same class of singularly perturbed
systems.

In this work, we extend the robust output tracking
control methodology previously proposed®® to multi-
input multi-output two-time-scale nonlinear systems,
for which the fast dynamics may be unstable or
singular. The uncertainty is aliowed to be time-varying.
The objective is to provide an explicit formula of a
multivariable state feedback controller that guarantees
boundedness of the trajectories and an arbitrarily
small ultimate discrepancy between the outputs and
the reference inputs in the closed-loop system by a
suitable selection of controller parameters. The result-
ing controller is a continuous function of the state
of the system, and its construction requires the knowl-
edge of appropriate bounding functions on the size
of the uncertain terms. In the case of two-time-scale
systems with stable fast dynamics, our main result
establishes a fundamental robustness property of a
controller synthesized on the basis of the low-
dimensional slow model, with respect to both the
parametric uncertainty and the fast (unmodeled)
dynamics. The performance and robustness properties
of the developed robust controller design method are
evaluated through simulations in an fluidized catalytic
cracking reactor, modeled in the standard singularly
perturbed form, with unknown heat of the combustion
reaction.

Mathematical preliminaries

We consider multi-input multi-output two-time-scale
nonlinear systems with the following state-space repre-
sentation:

X =f1(x,6(1)) + Q1(x,6(1))z + Gy (x, 8(¢))u
€z = fo(x,0(1)) + Q2(x, 6(1))z + Ga(x, 6(1) )u (1)

y,':h,'(X), i = 1,...,m

where x € R and z € R? denote vectors of state vari-
ables, u= [ ---um]T € ™ denotes the vector of
manipulated inputs, 6(¢) = [6:(¢) - - - 6g(r)] € R? denotes
the vector of uncertain variables, y; € R, denotes the ith
controlled output, and ¢ is a small positive parameter,
which quantifies the degree of coupling between the fast
and slow dynamical phenomena of the system.
S1(x,0(1)), f(x,6(r)) are sufficiently smooth vector
functions,  Qi(x,6(8)), Q2(x,6(8)), Gy(x,6(r)),
G»(x, 6(1)) are sufficiently smooth matrices of appropri-
ate dimensions, and A;(x), { = 1,..., m are sufficiently
smooth scalar fields. The notation and some definitions
used in the paper are given in the Appendix.

The fact that € multiplies the time-derivative of the
state z allows decomposing the system of Equation (1)
into separate lower-order systems evolving in different
time-scales'?. Defining a fast time-scale, T = £, and set-
ting equal to zero, the following fast subsystem is
obtained:

:—‘i = fo(x,0) + O2(x, 0)z + G2x, O)u (2)

where x can be considered equal to its initial value x(0)
and 6 can be thought of as constant. Assumption 1
states a stabilizability requirement on the fast sub-
system.

Assumption 1. The pair [Q>(x,0)Ga(x,0)] is stabiliz-
able uniformly in x € ®*, 8 € R4, in the sense that there
exists a sufficiently smooth matrix K(x) such that the
matrix Q>(x, 8) + Ga2(x, 8)K(x) is Hurwitz uniformly in
xeR, ORI

The fact that (x, 6) can be considered as constant in
the fast subsystem of Equation (2) implies that the
matrix K(x) can be designed utilizing standard pole
placement or optimal control methods!3. Assuming that
the matrix Q>(x, ) is invertible uniformly in x € R",
0 € R? and setting € = 0, the following representation
for the equilibrium manifold of the fast dynamics of the
system of Equation (1) is obtained:

2= ~[0a(x,6)] [ x. 0) + G (x, O)u B)

where z; denotes a quasi-steady-state for the fast state
vector z. Utilizing the above equation, the reduced sys-
tem or slow subsystem takes the form:

x = F(x,0) + G(x,0u @
vi=h(x),i=1, ... m

where the superscript s in y{ denotes that this output is
associated with the slow subsystem and



Robust control of nonlinear systems: P. D. Christofides and P. Daoutidis 315

F(x.8) = fi(x,8) — 01(x.0)[Q2(x,0)] ' fa(x, 6)
G(x.8) = Gi(x.0) — Qi(x,0)[02(x.8)] "' Ga(x, 0)

Robust controller design
Control objectives

In this work, we will address the problem of synthesiz-
ing well-conditioned (i.e. independent of the singular
perturbation parameter €) robust static state feedback
laws of the form:

u=Rx )+ K(x)z (6)

where R(x, vtk’) 1s a vector function, vﬁk) denotes the kth
time derivative of the external reference input v;, which
is assumed to be a smooth function of time and K(x) is
a sufficiently smooth matrix, which preserve the two-
time-scale property of the open-loop system of Equa-
tion (1) and enforce the following objectives in the
closed-loop system:

1. Boundedness of the trajectories.

2. Output tracking of external reference inputs with
arbitrary degree of asymptotic attenuation of the
effect of uncertainty on the outputs.

The above requirements will be enforced in the
closed-loop system for sufficiently small values of the
singular perturbation parameter e.

Assumptions

In the general case where Q»(x,6) is singular or
unstable, a preliminary control law of the form!!1%;

u=u-+ K(x)z (7)

where # denotes an auxiliary input and K(x) is a suffi-
ciently smooth matrix of dimension mxp can be used to
stabilize the fast dynamics, and thus induce a well-
defined stable quasi-steady-state for the states z. More
specifically, substitution of the control law of Equation
(7) into the singularly perturbed system of Equation (1)
yields:

X =fi(x,0) + [Qi(x, 0) + Gi(x,0)K(x)]z + Gi(x, 0)u
€2 = f2(x.0) + [Q2(x, 8) + Ga(x, 0)K(x)]z + G2 (x, 6)it
vi= h(xX).i=1,.m

(8)

From Assumption 1, K(x) can be chosen so that the
matrix Q»(x, 8) + Ga(x, 8)K(x) is Hurwitz, uniformly in
x € ", 6 € N9, and thus the fast dynamics of the above
system is exponentially stable. The reduced system then
takes the form:

x = F(x.0) + G(x.6)i
:C (x,0) - (x, 6)u )
Fi=hix), i=1..,m

where

F(x.0) = fi(x.0) — A(x,0)f2(x.6) (10)
G(x,6) = G (x.6) — A(x.0)G(x, 6)

and  A(x,0) = [Q1(x,0) + G (x,0)K(x)][Q2(x,0) + G2
{x, 0)K(x)]7'. Referring to the system of Equation (9)
we will state three assumptions that will allow us to
proceed with the robust controller design.

Assumption 2. Referring to the system of Equation (9),
there exist a set of integers (7, 72, .... F,) and a co-ordi-
nate transformation (¢, n) = T(x,6) such that the
representation of the system, in the co-ordinates (¢, ),
takes the form:

(1 (1
UM

(1) (h

G = 5;,
&' =L (T (2. n.6))

A3 L LT (T 0)i
J=1

“(m) _ (m)

a7 =56 (11)

(m)  (m)
-1 = %5,

& = Lrhn(T7'(81,6))
+ D L LT (T (4.0, 0))i
=1

= (L. 1.6.0)
f]n_zl B \pn_zlr‘,(gv n.6,0)

V= g‘,”,i: l....m

where x=T7'(¢,n,60), ¢= Wt =
Sy ;I]T, and G’ denotes the jth column vector of the

matrix G(x, 8). Moreover, for each 6 € R4, the states
¢, n are bounded if and only if the state x is bounded.

Assumption 2 states that the nominal system of
Equation (9) is input/output linearizable and also
incorporates the matching condition of our methodol-
ogy, namely that a direct time-differentiation of the
output y; up to order F; — 1 yields a set of equations
which are independent of the vector of uncertain vari-
ables 8. We note that, from an application point of view.
this matching condition is less restrictive from the stan-
dard one imposed®, which restricts 6(z) to enter the
system in the same differential equations as u. The
consequence of this generalization is that the n-subsys-
tem depends on 6(z), which implies that we need to
assume that 6(r) exists and is bounded (cf. Theorem 1).
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Referring to the system of Equation (11), we will
assume, for simplicity, that the matrix:

Lo L2 hy(x, 0) Lgn L hi(x, 6)
C(x,0) = : :
Lgn L7 m(x, 6)

(12)

L L h(x, 6)

is non-singular uniformly in x € ", 6 € 17 (see Remark
6 for a discussion on how to handle the case of singular
C(x, 6)).

Assumption 3. The dynamical system:
m =W n,8,6)

: (13)
nn_z;i = ‘Il"—z;[(;, n, 9, 9)

is input-to-state stable with respect to ¢, 6, 6.

The above assumption is more restrictive compared
to the standard one of asymptotic stability of the zero
dynamics without inputs®. However, it is necessary in
order to prove that the states of the closed-loop system
are bounded for initial conditions, uncertainty and rate
of change of uncertainty arbitrarily large (see also Teel
and Praly?!). Furthermore, this assumption could be
relaxed to local asymptotic stability of the n-subsystem
with (¢, 6, 0) identically equal to zero, leading to local
stability results for the closed-loop system (see Remark 2).

We will now quantify possible knowledge about the
uncertainty by assuming the existence of known
bounding functions that capture the size of the uncer-
tain terms in the system of Equation (11). To this end,
we define the variable §(x, 6) as:

8(x, 0) = [F(x, 8) — Fuom(x)) (14)
where From(x) denotes the vector field resulting from
F(x, 6) by setting 6 equal to its nominal value 8.

Using the fact that L™ hi(x) = LA hy(x),i=1,...m
k=1, ..., 7, Equation (11) can be written as follows:

;(1) ; 1)

(1) (1
é'rl—l - grl

;f(' ) = L;-.I."omh](T_l(;’ n, 9))

+ Y L L b (T (5, 0. 0))iy

Jj=1
+ L LA i (T7 (2, 1, 6))

— ¢m

&
g = ot
é'(m) er (T—l(é', n, 9))
+ ZL@L;-”"Ihm(T'I(C, n, 0))i;
=1 (15)
+ LiLE 0 (T (4, 6))
m = ¥(¢,n,6.6)
-3 5= Y3 7,6, 6,6)
yi= ggi), i=1,..m
(i) _ yk-1 -1 P _
where ¢ -Lﬁ (T e, i=1,....m, k=1,..,
FOr). i

Assumption 4. The terms LG,L" hi(x), i € [1, m], have
the same known constant sign, sgn;, for all x € ®",
¢ € R, for each j € [1, m], (some of these terms may be
zero, but the requirement that C(x, ) is non-singular has
to be satisfied), and there exist known functions ¢,(x, t),
2j(x, 1), such that the following conditions hold:

LY (). LT ()] < & (x, 1)

0 < éy(x, 1) < minygpy py L L hilx))|

(16)

and there exists a known positive real number b such
that the mxm matrix M(x, 6, 1) = C(x,8)A(x, t), where
A(x,t) is an mxm diagonal matrix whose (j,j)th

element is of the form £% ) <, satisfies the property 1 < o

{M(x,0,1)} < amax{M(x 6,1)} <b, for all xe®,
feR, t>0.

Assumption 4 requires the existence of a nonlinear
function that captures the size of the additive uncertain
terms in the system of Equation (11). This requirement
is standard in all Lyapunov-based robust control
methods®®1%, but in contrast we do not impose any
growth conditions on the nonlinear function ¢&(x,¢),
such as quadratic growth, etc. Assumption 4 also
requires the existence of a nonlinear function ¢&y(x, 1)
for each manipulated input u; that lower bounds the
m-coeflicients (LG,L’l Th(x), .. LG,L’”_lh (x)) (note
that this requlrement does not have to be satisfied for
the coeflicients that are zero). This requirement is less
restrictive than the ones imposed in Refs 6, 8, 10, where
an upper bound (typically small) on the size of the
uncertain terms that enter the system coupled with the
manipulated inputs is assumed to exist.

Main result

We are now in position to proceed with the design of
the auxiliary input # to achieve the aforementioned
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control objectives in the closed-loop reduced system.
Specifically, motivated by the requirement of output
tracking, and the presence of additive and multiplicative
uncertainties in the systems of Equation (11), we con-
sider static state feedback laws of the form:

i = Ri(x, )p(x) + Q(x. v + Ry(x, 1)] (17)

where p(x), Ry(x, t) are vector functions, Ry(x,?) is a
matrix, Q(x, vﬁk)) is a column vector, and v,(.k) denotes
the kth time derivative of the external reference input V',
which is assumed to be a smooth function of time. The
motivation for considering control laws of the form of
Equation (17) is provided by the requirement of stabili-
zation with output trackmg in the nominal reduced sys-
tem (term p(x)+ Q(x, v, ), and the fact that the
system in Equation (9) mcludes uncertainties entering
coupled with the input (term R;(x, 1)) as well as addi-
tive ones (term Ra(x, 1)).

Theorem 1 that follows provides an explicit formula
of the controller that solves the control problem for-
mulated in the previous section (the proof is given in the
Appendix). To S1m§>hfy the statement of the theorem,
we set ¥; = . and v = [v73]..57)7.

Theorem 1. Consider the uncertain singularly perturbed
nonlinear system of Equation (1), for which assump-
tions 1, 2, 3 and 4 hold, and the static feedback law:

u=K(x)z + A(x, t){ f:i?k (v, (*)

i=1 k=1

- L} hi(x))

om

m

DVt

+1) Z éi O — L5 h(x)w(x, ¢) }

= L) = 2+ BE,

(18)

where the feedback matrix K(x) is such that the matrix
Oa(x, 0) + G2(x, 0)K(x) is Hurwitz uniformly in x € ®”,
0 ecR, g—k = [g“ gm]T are column vectors of parameters
chosen so that the roots of the equation det(B(s)) =0,
where B(s) i an mxm matrix, whose (i,/)th element is of

the form Z %k 51 tie in the open left-half of the com-
B

k=
plex plane, and the vector function w(x, ¢) is given by:

~

m. I
2
=1k

;1

pros

1 Foy

Lpg(x) = v )

i

w(x, @) = (19)

B Lk lh x)—v N+ ¢

ﬂ_

™z

\

i=1 k=1

[

where ¢ is an adjustable parameter. Then, for each set
of positive real numbers 6y, 8, 8¢, ;. 8, d, there exists ¢~
and for each ¢ < ¢*, there exists €*(¢), such that if
¢ < ¢". e <e(¢) and |x(0)] < 8y, [2(0)] < 8. [|6]] < S,
|6l < 8. Il v II< 8,

a) the state of the closed-loop system is bounded, and
b) the outputs of the closed-loop system satisfy:

Imsup|y;—vw|<d, i=1,.m (20)
1—00
Remark 1. Referring to the result of Theorem 1, we

note that the dependence of the upper bound on the
singular perturbation parameter, €, on the adjustable
parameter, ¢, is due to the presence of ¢ on the dyna-
mical system that describes the fast dynamics of the
closed-loop system.

Remark 2. Theorem 1 establishes a semi-global type
result (the initial conditions, uncertainty and rate of
change of uncertainty can be in arbitrarily large com-
pact sets). while it does not impose any kind of inter-
connection or growth conditions on the nonlinearities of
the system. We note that if the co-ordinate transforma-
tion of Assumption 2 holds locally and the unforced
zero dynamics

m = ¥(£.0,0,0)

.= (£,0,0.0
’MZ, ,,_Zri(g )

are locally exponentially stable, then the result of The-
orem 1 holds locally (i.e. for sufficiently small initial
conditions, uncertainty and rate of change of uncer-
tainty).

Remark 3. Regarding the practical application of
Theorem 1, one has to initially verify Assumptions 1-4
on the basis of the process model used for controller
design, and utilize the synthesis formula of Equation
(18) to derive the explicit form of the controller. Then,
given the desired ultimate bound d, the proof of the
theorem can be used to calculate ¢* from the desired
(8x, 82, 89, 84. 85, d) and, in turn, the value €* for ¢ < ¢".
If this € is less than ¢, (the value of the singular per-
turbation parameter for the process), then 4 may need
to be increased so that €* > ¢,. Of course, if ¢, is too
large, there may be no value of 4 that works. On the
other hand, the value of ¢*, calculated from the proof of
the theorem. is typically conservative. and so it may be
useful to check the appropriateness of ¢* (and d)
through computer simulations (see the next section for
an application of this procedure to the fluidized cataly-
tic cracking process).

Remark 4. Referring to the control law of Equation
(18), one can show that if the matrix C(x, 8} in the system
of Equation (9) is independent of 6, then the following
simplifications can be made: A(x, ) = {C(x)}"l, b=0.

and [&1(x. ) + |30 Y 2 (0 — LA my(x))) = & (x. 1),

Remark 5. Referring to the control law of Equation
(18), we note that the explicit expression of the term
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which is responsible for the attenuation of the effect of
additive uncertainties is nonlinear not only in the x-co-
ordinates but also in the (¢, n) co-ordinates (see Equa-
tions (46) and (47)). This is in agreement with the robust
control methods®® and in contrast to the robust control
methodology proposed in Arkun and Calvet!?, where
the expression of the term Rj(x, ¢} is linear in (¢, ) co-
ordinates, and is a consequence of the fact that we allow
¢1(x, t) to be a general nonlinear function.

Remark 6. The singular perturbation formulation
provides a natural setting for addressing robustness
with respect to unmodeled dynamics!3. In particular, if
the open-loop fast subsystem of Equation (2) is expo-
nentially stable uniformly in x € ®",6 € R?, the con-
troller of Equation (18) can be simplified to

u=A(x, t){ zmj Z-‘fﬁ W — Lk hy(x))

i=1 k=1 ﬂir,
+ Z Zg‘lﬁ (v,(k~1) — L’;;Lh,»(x)) — 2+ b)ei(x, 1)
=1 k=1 Pli
+ | Z z’:& (ng) — Ll;,nomhi(X)) + ”w(x’ ¢)}
=1 k=1 "W
(22)

which can be explicitly synthesized utilizing information
about the open-loop reduced system of Equation (4). In
this case, the result of Theorem 1 establishes a funda-
mental robustness property of the controller of Equa-
tion (22), with respect to uniformly exponentially stable
unmodeled dynamics, provided that they are sufficiently
fast. This robustness property is very important in many
practical applications, where fast dynamics, such as
sensor and actuator dynamics, are usually neglected in
the controller design.

Remark 7. Whenever the characteristic matrix C(x, 6)
of the reduced system of Equation (9) is singular, one
can utilize available dynamic extension algorithms®? to
design a dynamic state feedback law of the general
form:
£ = alx,8) + b(x.&)7 )
i=c(x, & +dx,&v
where a(x, £), b(x, §), ¢(x, &), d(x, &) are vector functions
of appropriate dimensions, v € R" denotes a vector of
auxiliary inputs, such that the augmented system

£ =a(x, &)+ b(x, &)V
X = F(x,0) + G(x,0)c(x, &) + G(x,0)d(x,0)F  (24)
Vi=h(x), i=1,..,m

with 7' € R as output vector and v € R™ as input vec-
tor possesses a non-singular characteristic matrix. Then,
the robust control methodology of this paper can be
directly applied to the system of Equation (24).

Application to a fluidized catalytic cracker

In this section, we illustrate the implementation of the
developed control methodology on the industrially sig-
nificant process of fluidized catalytic cracking (FCC)
shown in Figure 1. The FCC unit consists of a cracking
reactor, where the desired reactions include cracking of
high boiling gas oil fractions into lighter hydrocarbons
(e.g. gasoline) and the undesired include carbon forma-
tion reactions, and a regenerator, where the carbon
removal reactions take place. Detailed discussions on
the features of the FCC unit exist>>?%, and applications
of linear control methods to the process can be
found?3?¢, Under the following standard modeling
assumptions:

well-mixed reactive catalyst in the reactor
small-size catalyst particles

constant solid holdup in reactor and regenerator
uniform and constant pressure in reactor and
regenerator,

the process dynamic model takes the form?3:

dCq _

Vi T —60F,.Cear + S0Rf
dCj.
Via FTai —60F,.(C,c — Cy) + 50Rs
dTra
Vra = rc Tr - T,—a
g~ 00F(Tx )
Sy
+ 0.875—§D,thf( Ty — T,4)
_AH,,
+ 0.875(—Sf—)D,fR,f
(—AH C) (25)
0.5—" R,
+ S,
dC,.
Vrng_ = 60Frc(csc - Crc) - SORcb
daT7,
V,g—dtﬁ = 60F,(Ta — T)
Sa
+ 0.5§Rai(Ta[ — Trg)
AH,
+0.5(— g)Rcb

C

where C4, Cs, Cr. denote the concentrations of cataly-
tic carbon on spent catalyst, the total carbon on spent
catalyst, and carbon on regenerated catalyst, T, T,
denote the temperatures in the reactor and the regen-
erator, D, is the density of total feed, V., V., denote
the holdup of the reactor and the regenerator,
AH,,, AH,, are the heat of reactions, AHp, is the heat of
feed vaporization, F,. denotes the flow rate of catalyst
from reactor to regenerator, S,, S., Sy denote specific
heats, Ty, Ty; denote the inlet temperatures of the feed
in the reactor and the air in the regenerator, and
R, Ry, Ry denote reaction rates. The analytic expres-
sions for the reaction rates Ry, Roc, Rey are?*:
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Figure 1 A fluidized catalytic cracker

o KecVraPra —E.
S = o CO06 C"p{R(Tm ¥ 460.0)}
ko VyaPraRyD Ko,
7 Ry+ VeaPuK,

K _ cr ex _Ecr
T CoarC01 PP R(T,, + 460.0) (26)
_ Rai(21 - Ofg)
Rop = 200
VP
Oy, = 2lexp L

105 | 100 _E,
7768 Tk, XP { R(T,, +4600) Cre }

where k.., k.», k,» are pre-exponential kinetic rate con-
stants, E.., E., E,, are activation energies, Oy, is the
oxygen in flue gas, Ry is the total feed rate, and R,; is
the air rate. The values of the process parameters and
the corresponding steady-state values are given in
Table 1. The process exhibits a two-time-scale beha-
viour because the residence time in the reactor is signif-
icantly smaller than the one in the regenerator 2>. This
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re
Tr(' CI‘C
Stand Pipe
Tai
ch
/
Feed | -
| OO
Preheater
Fuel Gas
Table 1 Process parameters and steady-state values
E, = 18000.0 Btu Ib"! mole '
E,., = 27000.0 Btu lb ! mole !
E, = 63 000.0 Btu b ! mole'!
k. = 8.59 Mib h™! psia ! ton ' (wt%) 196
ke = 11600 Mbbl day ! psia“! ton {(wt%) ''®
kor = 3,15 % 10" Mibh! psia! ton
™ = 60.0 ton
Via = 200.0 ton
T = 744.0 F
T, = 175.0 F
P, = 25.0 psia
P, = 40.0 psia
AH, = 600 Btulb !
AH,, = 77.2 Btulb!
AH,, = 10561.0 Btu Ib!
S = 0.3 Btulb 'F !
S, = 0.7 Btulb 'F !
F.. = 40.0 ton min~!
R, = 100.0 mbblday~!
Dy = 7.0 Ib gal'!
R,; = 400.0 mlb min-!
Ceut = 0.8723 Wwi%
Cs, = 1.5698 wt%
C,. = 0.6975 wit%
T, = 930.6255 F
T, = 1155.9605 F




320 Robust control of nonlinear systems: P. D. Christofides and P. Daoutidis

implies that although the operator focus is on the reactor,
the control problem must focus on the regenerator which
is the process that essentially determines the dynamic
response of the entire FCC unit. To this end, the control
objective is the regulation of the temperature in the
regenerator, T,,, and the concentration of the carbon on
the regenerated catalyst, C,., by manipulating the inlet
temperatures, Ty, and 7. The uncertain variable for the
system is taken to be the heat of combustion in the
regeneration, which is also assumed to be time-varying.
Defining the singular perturbation parameter € as

€= (27)

and setting x =[x xz]T = [C/. T,g]T, z=|z1 2, 23]T
= [Ccal Csc Tra]T, u= [ul uZ]T = [Tfp Tai]T’ y= [yl yZ]T
=[C, T, ,g]T, 6 = [Ah,,], the system of Equation (25) can
be put into the standard singularly perturbed from:

dx
_dT'-_—f”(xl,xz)—f-QnZz
dx
_d;% = fia{x1, x2,0) + Q1223 + g
dz
€ dl = QZI(ZI’ ZZ,Z3,.X]) (28)
t
dz
GEZ = fa(x1) + On(z1, 22, 23, x1)
dz
e-—d: = fo3(x2) + O3(21, 22, 23, X1) + g3t

where fi1, O11, f12. Q12, g12, Q21, /22, O, f23, 023, g3 are

functions whose specific form is omitted for brevity. It
was verified that the system of Equation (28) possesses
an exponentially stable equilibrium manifold for the fast
dynamics, which implies that it is not needed to utilize a
preliminary feedback law of the form of Equation (7) to
stabilize the fast dynamics. Setting € = 0, the equili-
brium manifold of the fast dynamics can be calculated
analytically and is of the form: z; = g(x), X2, u1), where
g is a smooth vector function (note that the input u;
enters this algebraic equation in a nonlinear fashion,
due to the nonlinear appearance of the fast state z in the
system of Equation (28). The reduced system can then
be found to be of the form:

dx

-at—l = Fi(x1, x2) + G1(x1, x2, 41)

dx )
d_zz = Fy(x1, x2,0) + Goi (x1, X2, u1) + Gaour

with Fi, Gy, F2, Ga21, G2; appropriately defined (their
exact expressions are omitted for brevity) . The system
of Equation (29) is already in the form of Equation (11),
with u appearing in a nonlinear fashion, and the condi-
tion 1 +r; =1+ 1= 2 holds, which implies that this
system does not possess zero dynamics. Furthermore,
Assumption 4 is also satisfied and the function ¢;(x)
takes the form:

c1(x) = Fr(x1, x2, |0]) (30)
where 6] denotes the upper bound on the size of the
uncertain variable, which is assumed to be constant.
Clearly, the assumptions required for the application of
the result of the theorem are satisfied. Referring to the
system of Equation (29), we also note that the uncertain
variable 6 does not appear coupled with the input vari-
ables u;,u; and that the differential equation that
describes the evolution of x; is independent of 6 and 5.
The former fact allows using the simplifications discus-
sed in Remark 3 in the controller formula, while the
latter fact suggests that there is no need for an uncer-
tainty compensation term to be included in the formula
that calculates the control action for the manipulated
input u;. Note that the synthesis formula of Equation
(18) cannot be readily used due to the nonlinear
appearance of the input u; in the system of Equation
(29). To resolve this problem, we first considered the
algebraic equation Gy{xi, x3, ;) =« and derived its
solution in terms of u, i.e. 4 = Gll(xl, x7, «). Then, the
necessary controller was found to be:
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Figure 2 Closed-loop output profiles for regulation
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- 1
U = Gll(xl’XZ,E("l - x1) — Fi(x1, x2))

|

1
{*—(Vz — x2) — [F2(x1, X2, 6p)
B2

U =
Gy
= ) | (31)
+ Gai(x1, X2, Gn(xl,xz,’—g——(vl —Xx1)
I
) - X2 — V2
— Fy(x1. _9 v
1 x2))] Cl(x)lxz—vzl+¢}

For the above robust controller, we note that its practi-
cal implementation requires measurements of only two
of the states of the process (concentration of carbon on
regenerated catalyst and temperature of the regenera-
tor). A slowly-varying uncertainty was considered
expressed by a sinusoidal function of the form:

6 = 180.0in(0.2¢) (32)

The upper bound on the uncertainty was taken to be
|6] = 180.0. From Theorem 1, it is clear that there exists
a trade-off between the upper bound on the value of the
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Figure 3 Closed-loop input profiles for regulation

singular perturbation parameter €* and the level of
asymptotic attenuation d that can be achieved. In the
application in question, the value of the singular per-
turbation parameter is fixed by the design of the pro-
cess, 1.e. €, = 0.3, and thus there exists a lower bound
on the selection of the level d. We performed a set of
computer simulations (for the regulation problem) to
calculate ¢* for certain values of d and, in turn, the value
of €* for ¢ < ¢*. The following set of parameters were
found to give an € < ¢, and used in the simulations

pi1 =0.1.81=0.02.¢=0.5 (33)

to achieve an ultimate degree of attenuation d = 0.1, for
a value of the singular perturbation parameter € = 0.3.

Two representative simulation runs are reported. In
both runs, the process was initially (¢ = 0.0 h) assumed
to be at steady-state. In the first simulation run, we
tested the regulatory capabilities of the controller.
Figure 2 shows the closed-loop output profiles, while
Figure 3 displays the corresponding manipulated input

0.7 T T T T T T T

0.69r 4

0.68F AN

Cie (W %)

0.67+ \ R

0.661 \ 4

0.65 : L L L . 1 L . L
0

1230y T 4 T T - T

1220+ -

12101 /

1200F /
1190F /

11801

Trg (F)

1170+

1160}
L

1150 1 L L L L s L L
0

Time (h)

Figure 4 Closed-loop output profiles for regulation (no uncertainty
compensation)
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profiles. Clearly the controller regulates the output
at the operating steady-state compensating for the
effect of uncertainty and satisfying the requirements
limsup,_,o [y1 — vi| < 0.1, limsup,_ [y — 2] <0.L
For the sake of comparison, we also implemented the
same controller without the term which is responsible
for the compensation of uncertainty, i.e. a decoupling
input/output linearizing controller for the nominal
open-loop reduced system. The output profiles for this
simulation run are shown in Figure 4. One can immedi-
ately see how strong is the effect of the uncertainty on
the outputs of the process, leading to poor transient
performance and offset. In the next simulation run, we
tested the output tracking capabilities of the controller.
A 25.0 F increase in the value of the output y, was
imposed at time ¢+ = 0.0 h. The output profiles are
depicted in Figure 5 and the profiles of the correspond-
ing manipulated inputs are given in Figure 6. It is clear
that the controller drives the output y; to its new refer-
ence input value; achieving the requirement
lim sup,_., [y2 ~ v2| < 0.01. It can be also observed that
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Figure 5 Closed-loop output profiles for reference input tracking

the output y; stays very close to its reference input value
(i.e. the requirement lim sup,_, [y1 — v1| < 0.01 is satis-
fied). Finally, Figure 7 shows the closed-loop output
profiles for the same simulation run in the case of
implementing the decoupling input/output linearizing
controller to the process. It is clear that this controller
cannot attenuate the effect of the uncertainty yielding
unacceptable performance. From the results of the
simulation study, we conclude that the proposed meth-
odology is a powerful tool for the synthesis of nonlinear
controllers that compensate for the effect of uncertainty.

Conclusions

This paper proposes a robust multivariable controller-
design methodology for a broad class of multi-input
multi-output two-time-scale nonlinear processes with
uncertain variables, modeled in singularly perturbed
form. The proposed controller guarantees boundedness
of the state and asymptotic output tracking with an
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) 720F
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Figure 6 Closed-loop input profiles for reference input tracking
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Figure 7 Closed-loop output profiles for reference input tracking (no
uncertainty compensation)

arbitrary degree of attenuation of the effect of the
uncertainty on the output by a suitable choice of con-
troller parameters, as long as the singular perturbation
parameter is sufficiently small. The method was applied
to a fluidized catalytic cracking reactor with unknown
heat of the combustion reaction and its performance
was successfully tested through computer simulations.
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APPENDIX
Definitions

e For any measurable (with respect to the Lebesgue
measure) function 6:Rso — R, ||6]] denotes
ess.sup.|6(5)], 1 > 0.

e A function y : R0 — R is said to be of class K if
it is continuous, increasing and is zero at zero.

e A function B: R>o x Ryp — Ryo is said to be of
class KL if, for each fixed t, the function B(-, ¢) is
of class K and, for each fixed s, the function B(s, -)
is non-increasing and tends to zero at infinity.

o A matrix A(x,8) of dimension n x n is said to
be Hurwitz uniformly in x € ®",0 € R4, if there
exists a positive real number ¢ such that
Re[A;(A(x,8))] < ~c, i=1,..,n for all xeR",
6 € R9, where A; denotes the ith eigenvalue of the
matrix.

e Let x € R, y € R" be two vectors and 4 € R**" be
a matrix, then if omg{A4}, omin{A} denote the
maximum and minimum singular values of A, the
following relations hold:

~xTAy < —omin{A}|x||y|
(34)

xTAy < omax{A}|x| |y,

Definition*®: The system in Equation (4) (with u=0) is
said to be input-to-state stable (ISS) with respect to 9 if
there exist a function 8 of class KL and a function y of
class K such that for each x; € ®" and for each mea-
surable, essentially bounded input 6(-) on [0,00) the
solution of Equation (4) with x(0) = x, exists for each
t > 0 and satisfies

Ix(1) < B(1x(0), 1) + v(ll6l]), V2 =2 O (35)

Proof of Theorem 1: The proof of the theorem is con-
ceptually analogous (although notationally more
involved) to the one given in Christofides et al.?® for
single-input single-output systems. In order to stress the
issues associated with the multivariable nature of the
problem and avoid repetitions, we will refer without
proof to some results established in Christofides et al.?°.
The proof consists of three parts: initially, the global
exponential stability of the fast dynamics of the closed-
loop system is established; then, the closed-loop reduced
system is analyzed using Lyapunov techniques to derive
bounds that capture the evolution of the states in terms
of the initial conditions and the inputs, and a direct
application of a result developed in Christofides and
Teel!® is made to establish that these bounds continue to
hold up to an arbitrarily small offset for the singularly
perturbed system. Finally, the resulting bounds are uti-
lized, using techniques (small gain theorem-type calcu-
lations) similar to those used in Teel?” and Jiang et al.?®,
to show boundedness of the trajectories and establish
the inequality of Equation (20). All the above results
will be obtained for sufficiently small values of ¢ and e.

Part 1: In this part of the proof, we will establish that
the closed-loop fast subsystem is globally exponentially
stable. Under the control law of Equation (18) the
closed-loop system takes the form:

i = F(x,0) + G(x, 9){A(x, t){ Yoy B

= = P

-2, h)+ >3 gEOf Y - L hto)

i=1 k=1 i

_@+b) clxtﬂzzg'k W Lk ()]

From

w(x, ¢)}} + [01(x, 8) + Gi(x, 0)K(x)]

[z = C(x. 6, ¢, v
(36)

C(x, 6, ¢, 9]
(37)

€z = [Qa(x, 0) + Gax, 6)K(x)][z —

where
C(x,0, ¢, V) = ~[01(x, 6) + G(x, O)K(x)] " [ 3(x, 6)

+ Ga(x, 9){A(x, t){ iié%(vlw

i=1 k=1
"~ Bi
= Lphi(x)+3 3 g0 =L} hi(x)
i=lk=1 "
(24 b)[é(x, 1) +|ZZ§"‘
i=1 k=1

(38)

It is clear that if the matrix K(x) is chosen so that the
matrix Q»(x, 6) + Ga(x, 8)K(x) is Hurwitz uniformly in
x € R", 0 € N1 the closed-loop fast subsystem

dz

P C(x,6, ¢, vl(.k))]

(39)

= [Q2(x. 6) + Ga(x, H)K(x)][z ~

possesses a globally exponentially stable equilibrium
manifold of the form of Equation (38).

Part 2: To simplify the notation, set G (x,0)
[LclLr' (T (5, m,0)) .. Ger' lh(T "¢, m0),

i=1, ... me=(z- (x, 0, ¢, vgk))). Observing the
similarity in the structure of the system of Equation (36)
and the x-subsystem of Equation (9) and using
Assumption 2, the representation of the closed-loop
system of Equations (36) and (37) in (¢, n, z) co-ordi-
nates takes the form:
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(1) i =< (1 k
&V =V 4 e ¥V n, 0,9

& =+ e ¥ (g n 600

ri—1

& =LA (T (¢, n.0) + e (5. . 0.0

+ Ci(x, 6){ xt{zm:iﬂlk )

i=1 k=1""
I CIES Mt
i=1 k=1 M
LE hi(x) — 2+ b)[E(x, 1)
+:ZZ§—*< WL () w(x ¢>>}}
=1 k=17
& ="+ e W (2,n,0,v)
g ="+ e W (2n, 0,0

G = L h(T7' (8,7, 0)) + €W (8,1, 6,01%))

+ C(x, 9){ (x, z){zm: Y @(vf_k)

=1 k=1 P

- Lk h,-(x))+i PLANEY

From = = B
LE hi(x)) = (2 + B)[é(x. 1)
SIS BEGE L ) s ¢>}}
i=1 k=1

. = k
= Wi(50.0.6) + ey, (G 6)

. : - k
UHAZF;, = W"“Z Fx(g’ n. 6, 9) + e:q’n(g’ 7,0, v,( ))
€2 = (0T (¢, n,6),06)
+ Go(T (. 1.6). OOK(T™' (£, 1, 6))e:
Vi = gi), i=1,..m
(40)
where \il,(f). i=1,...mk=1,..,F,and \i/z PART \il,,,
are Lipschitz functions of their arguments.
Introducing the variables e(' = g(‘ (-k_”, i=1,
wm k=1, e'-” Ze-') + Z Z ﬁ'kek'), and the
i=1 k=
notation &) = [el”el... egl)_l]T, = [e(‘) e@ . em)T
7= [E 0 ], 6= [ ;l) E2 ~(_m)]T y; = [vl(O) vl(l)m v(f,—l)]T’
V= [vi”vﬁ”... vEnT)]T, Mi(x,6,1) = Ci(x,08) A(x.1), the

system of Equation (40) takes the form:

&) = eV (e,&.7.1.0)

+ Ll (T (2, &. 7. 1.0))
m F (1)
=B
+ =07 %1
i=l k=1 i7,
m Iz ﬂl\
+ Mi(x,6,1) Z L
i=1 k=1 ﬂ”'

-2 +b)lei((e e v.n.6).1)

o m ?,—lﬁ(m) 0 m
m) i i ~
e(;m_1 = Z —‘é‘;—)e,\ + e;m e \Il (e e, v.n, 0)
i—1 k=1 By, =1
(m) _ M5 5
e =eW (e,é;,v,n.0)
+ L(S-LF-’"_lhm(T*I(e e;.v.n, 9))
m_Fi glm)
lek ()
+Z (m) “k+1
i=1 k=1 B,
= Bk (i) ~
+ Mu(x,0,1) —Z ——e | — €&
=7 i P

sz“&

i=l k=1 W

(T (e. &, 7, m, 9),¢)}

n= (66,7 n.60)+ ":‘i’zm (,é:,7,1,0)

 5.0,6.0) +e-V,(e é,7.1,6)

€z = (Qv( L(é, &, 7, 1. 0)8)
+ G2K(T7Y (2, &, 7, 1. 6))]e-

(41)

We will proceed with a two-step procedure to establish
the ISS bounds that capture the evolution of the states
e, é;, n of the above system. In particular, we will initially
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obtain these bounds in the absence of singular
perturbations (i.e. when the singular perturbation para-
meter ¢ is equal to zero). Once these bounds are derived,
we will apply the main result reported in Christofides
and Teel'® to establish that these bounds continue to
hold up to an arbitrarily small offset, for initial condi-
tions and uncertainties in an arbitrarily large compact
set, provided that € is sufficiently small.

Step 1. First, note that the linear structure of e subsys-
tem of the reduced system of Equation (41) and the fact
that it is exponentially stable when &; = 0 allows using a
direct Lyapunov function argument to show that there
exist positive real numbers, ki, a, y;, such that the fol-
lowing ISS bound holds for the reduced e subsystem:

le(0)] < kie™[e(0)] + v 1é] (42)

In the rest of this step, we will show that the controller
of Equation (18) ensures that the subsystem consisting
of the state vector é&; = [egl)e(z)... é';'”)] of the reduced
system of Equation (41) possesses an ISS property with
respect to é;, ¢, v, v, n, 8 and, moreover, the gain func-
tion saturates at ¢. To this end consider the following
singularly perturbed system:

¢ = e.Ws(&, 87, 0,1, 0) + L;L h(T ' (e, &, 7,1, 9))

Il
i}

m

£33l 4 Mex 0.0 - TS

i

)

=1 k=1

—&—(2+b)a((e e, .n,0),10)

+|ZZ—'B'—'°€;(<'+1|]W 1(5’5%9"7*9))"”)}

i=] k=1 "

(43)

where U;(2, &, 7, n,6) = [V (¢, &, 7,7,6).. 0" (2.&;, 7,
n, O, v® = ST, Ll (T (8, 87,5, 1, 0)) =
L;L3 " b (T, &, 7,1, 0))... LyL'z ™ hyn(T~
6))]7. From Part 1, we have that the fast dynamics of
the above system is globally exponentially stable. Con-

sider the reduced system corresponding to the singularly
perturbed system of Equation (43):

B
(€&, v,n,0 +ZZ - fcl+l

i=1 k=1 P

{ ZZ lke(l .
i=1 k=1 ﬂ”" kT
m T
ZZ k+1
i=1 k= Bis

w(T™' (e, &,¥,1,6),¢)

1 - ~ -~
(e, e ¥, m,

é; = LgLi;.‘lh(T
(2+b)

[¢((e. &, ¥, 1,6

[ ——

(44)

To establish that the above system is ISS with respect to
é, é;v,n,0, we use the following smooth function
V.R" - %20;

V==e: (45)

Calculating the time-derivative of V along the trajectory
of the system of Equation (44), we have:

p ol [L L (T (6,8,5,1,0))

m Bix ) & ik (i)
+ E E Ba k+1 +M Zzlg €k+1
i=1 k=1 P =1 !
— &~ (2+b)[c1((e, . V.n,0), ¢

S i 6 0

i=1 k=1 M

Furthermore, it is straightforward to show that the
representation of the vector function w(x, ¢) in terms of
the vector é; is given by

|é| ;' ¢ “7)

w(eéx ¢) =

Substituting Equation (47) into Equation (46) and using
the fact that 1 < gmn{M(x,0, 1)} < oma{M(x,6,1)} <
b and the inequalities of Equation (34), we have:

yv<eél { — M(x,0,)é — (2+ b)M(x,6,1)

(T (@, &,7,1,0), +|i2ﬁzk 0

i=1 k=1 F¥i
7,
Zﬂzk ()
€k+1
7 =7 P

+ L W(T7 (e, &, 5, nﬁ))}

+ (M(x,0,1) — Lixm)

m
i=

S{—e- (2+b)[e(T (2, &,7,1,0),1)

E) ) LTI

i=] k=1 "W

MZZZL

i=1

S{—é

+(1+b)

(T71(e,&,7,n,9), t))}

[E1(T7" (e, &, 7,n,0), t)

) ) DL VLN NSNS

i=] k=17
_ . m Fi ,B, @) 'é-
E(T7" (2, &, 7.n,6), 1) Z;ﬂ" e 1] ,+¢,}

(48)
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From the last inequality, it follows directly that if
lez| > ¢(1 + b), the time-derivative of the Lyapunov
function satisfies ¥ < —¢2. This fact implies that the
ultimate bound on the state &; of the system of Equation
(44) depends only on the parameter ¢ and is indepen-
dent of the states ¢, .

We will now analyze the time-derivative of V' for
lez| > ¢(1 +b). For ease of notation, we set
U= [l 7767%7)". Then Equation (48) can be written as

V§{~5§+( + b)|é:|[e (T (e, &:, 7,1, 6), 1)

+ fzzgr ki+1| } (49)

=1 k=1
< —e -+ (1 + b)[&|p(|U))

where p is a class K, function. Summarizing, we have
that V satisfies the following properties:

. &
7 < Lt
V< 3

lé;| = min{e(1 + &), (2(1

2

+6)p(IUN)} = vu(|U])
(50)

Using the result of theorem 4.10 in Khalil?>®, we get that
the following ISS bound holds for the state ¢; of the
system of Equation (44):

lér(1)] < e™*|&(0)} + pu(l|UI]) (51)

Before we proceed with the rest of this step, we will
assume that ¢ € (0, ¢*], where

d

IEIESS (52)

¢ =

Consider the singularly perturbed system consisting of
the states (€. 7, z) of the system of Equation (41). For
this system, it can be shown that its fast dynamics are
globally exponentially stable and the 5-subsystem of the
reduced system is ISS with respect to e, e, 6, 6. Fur-
thermore, the state 7 = [67n7]” of this system possesses
an ISS property with respect to &, 6, 6283, Utilizing the
converse theorem developed in Sontag and Wang?®!, we
have that there exists a converse function for the system
comprised of the states (¢, n) and the existence of this
function implies that there exist a function B; of class
KL and a function y; of class K such that the following
ISS nequality holds for the state #:

7(0)] < Bi(Ia(0)]. 1) + ([T 676717))
< B:(170)], 1) + 7= (l1&:1]) + 7 (ll6l1) + 7(1161])
(53)

where ., s, ; are class K functions, respectively,
defined as 75, (s) = 7a(s) = 75(s) = 7+(39).

Step 2: We will now utilize the main result reported in
Christofides and Teel'? to establish that the ISS inequal-
ities of Equations (51)-(53) continue to hold up to an
arbitrarily small offset, for the states é;, 7 of the singu-
larly perturbed system of Equation (41). Following
Christofides er al.?%, it can be shown that, given the set
of positive real numbers (4;,, 8;, 8-, 8¢, 8, Bﬁ,gﬁ,gg;,dg,»,
d;) (which can be specified from the data of the theo-
rem; for details see Christofides et al.%°), that there is an
€“(¢) such that if €€ (0,€7(¢)] and |&(0)] <4,
12(0)] < 8.. 161 < b, |151] < 5. ]| < 8. ||é5]] < &, then

(0] < @ 0)] + 7u(IIUI]) + ¢ (54)

Furthermore, it can be also shown using the result from
Christofides and Teel!'® that the singularly perturbed
system comprised of e, n,z, with the same converse
function which exists for the reduced system comprised
of the states e, n and its resulting (8;. ;). Thus we have
that if €< (0,€'(¢)] and [7(0)] <&, |2(0)] <8..
11611 < 8. [16]] < 8. |[¥]| < 85, [1&]| < &, then

(0] < B (170, 1) + w(l|[e] 6767 1)) + d
< Bi(17(0). 1) + ve.(llexl]) + vo(l61]) (55)
+ va(l161]) + d

Part 3: The proof of the theorem can be completed by
showing that for any given set of positive real numbers §;.,
85, 82, 84, 84, 85, d (already specified) and with ¢* defined as
in Equation (52), there exists €*(¢) € (0. €’(¢)], such that
if € € (0, ¢ (¢)] and [&:(0)] < 8. [(0)] < &, [=(0)] < &.,
116]] < 84, |6]] < 8;, ||7]] < 85 the output of the closed-
loop system of Equation (37) satisfies the relation of
Equation (20), for each ¢ € (0, ¢*].

This result can be established by analyzing the beha-
vior of the dynamical system comprised of the states
ez, n of the system of Equation (41), for which the
inequalities of Equations (54) and (55) hold, using cal-
culations similar to those used in Teel?” and Jiang?®.
First, a contradiction argument can be used to show
that if ¢ € (0, ¢*], the evolution of the states é;, 7 start-
ing from initial conditions that satisfy |é;(0)] < &,
7(0)| < 8; and for 6, 6. v such that [|6]| < &.i0]| < 8.
|Iv]] < &; satisfies the following inequalities:

|6:(1)] < 85, In(1)] < & (56)

for all times. Second, the asymptotic behavior of the
system comprised of the states ¢, ¢, of Equation (41) is
analyzed to establish that the inequality of Equation
(20) holds. These calculations are similar to the ones in
Christofides et al.?° and are omitted for reasons of brevity.

Nomenclature
Roman letters

Ceat concentration of catalytic carbon on
spent catalyst
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concentration of total carbon on spent
catalyst

concentration of carbon on regenerated
catalyst

density of total feed

positive real numbers

activation energies

vector fields

flow rate of catalyst from reactor to
regenerator

vector fields associated with the inputs
ith output scalar field

sufficiently smooth matrix
pre-exponential kinetic constants
oxygen in flue gas

matrix of dimension n x m associated
with the slow state vector x

matrix of dimension m x m associated
with the fast state vector z

air rate

reaction rates

total feed rate

integer associated with the input vector
u in the reduced system

specific heats

temperatures of the feed in the reactor
and the air in the regenerator
temperatures in reactor and regenerator
time

manipulated input vectors

auxiliary input vector

reactor and regenerator catalyst holdups

i

Greek letters

Bix
AH, AH,,
AHf,,

3, 8x, 8;, 8,
845 8z:» 85, 8z,
8y 8z, 85
€, € €

€,
e
U
¢

Math symbols

|-
sgn(-)
Id

external reference input vector
vector of the slow state variables
ith output

vector of the fast state variables

adjustable parameters
heat of the reactions
heat of feed vaporization
positive real numbers

singular perturbation parameters
state vector

state vector

adjustable parameter

standard Euclidean norm
sign function

identity function

Lie derivative of a scalar field 4 with
respect to the vector field f
kth order Lie derivative
mixed Lie derivative

real line

i-dimensional Euclidean space
belongs to

transpose



