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This paper focuses on the synthesis of well-conditioned rnultivariable robust controllers for a broad class 
of multi-input multi-output two-time-scale nonlinear systems with time-varying uncertain variables, 
modeled within the framework of singular perturbations. The proposed controller stabilizes the fast 
dynamics, guarantees boundedness of trajectories, and ensures that the ultimate discrepancy between the 
outputs and the external reference inputs in the closed-loop system can be made arbitrarily small by 
an appropriate choice of controller parameters, provided that the singular perturbation parameter is 
sufficiently small. The developed control method is tested, through simulations, on a fluidized catalytic 
cracking reactor, i~ 1997 Elsevier Science Ltd 

All practical control systems must be robust with 
respect to uncertainty. Uncertain time-varying variables 
arise naturally in chemical engineering applications 
from unknown or partially known process parameters 
(e.g. heat transfer coefficients, kinetic constants, etc.) 
and unmeasured disturbance inputs (e.g. concentration 
of inlet streams). It is well-established that controllers 
that guarantee offsetless output tracking and stability in 
the nominal closed-loop system may lead to poor transi- 
ent performance, offset and even closed-loop instability 
in the presence of uncertain variables. The traditional 
approach followed to ensure asymptotic offsetless rejec- 
tion of uncertain variables is to incorporate integral 
action in the controller. This approach is adequate in the 
case of cons tant  uncertain variables but it may lead to 
severe failure in the presence of t ime-vary ing  uncertainty. 

Motivated by this, the design of robust controllers 
that are capable of coping with uncertain variables has 
received considerable attention in the past. Research 
initially focused on the development of robust control 
methods for linear systems in the frequency-domain 1, 
including H~,/z-synthesis, etc. More recently, the state- 
space counterparts of the H ~  frequency-domain results 
have been developed 2. This motivated research on the 
extension of H ~  control methods to certain classes of 
uncertain nonlinear systems. In this direction, theoreti- 
cal results have been derived 3~4, but their practical 
applicability is still in question because the explicit 
construction of the controllers requires the analytical 
solution of  nonlinear partial differential equations. The 
interested reader may refer to Allg6wer et al. 5 for a 
critical analysis on the applicability of nonlinear H ~  
control methods to engineering applications. 

*Present address: Department of Chemical Engineering, University of 
California at Los Angeles, Los Angeles, CA 90095, USA. 

An alternative approach for the synthesis of robust 
control systems for linear/nonlinear uncertain systems is 
based on Lyapunov's direct method. The basic idea is to 
design a controller, utilizing the knowledge of certain 
bounding functions on the size of the uncertainty, so 
that the time-derivative of an appropriate Lyapunov 
function calculated along the trajectories of the uncer- 
tain closed-loop system is negative definite as long as 
the state of the system is larger than a constant which 
can be made arbitrarily small by a suitable choice of 
controller parameters. This guarantees that the ultimate 
discrepancy between the output of the closed-loop sys- 
tem and the reference input is arbitrarily small. This 
idea was originally proposed in Corless and Leitman 6 
and was further explored for robust controller design 7,g. 
For single-input single-output input-output linearizable 
nonlinear systems, combination of this approach with 
geometric control schemes was studied 9-11. 

Another important feature of many engineering 
applications is that they involve physicochemical phe- 
nomena occurring in different time-scales (e.g. catalytic 
reactors, biochemical reactors, flexible mechanical 
systems, etc.). It is well-established that a direct 
application of standard nonlinear control algorithms 
to multiple-time-scale systems, neglecting the presence 
of time-scale multiplicity, may lead to controller ill- 
conditioning and/or closed-loop instability 12. Singular 
perturbation methods have proven to be a successful 
analytic tool for stability analysis and the synthesis of 
well-conditioned controllers for multiple-time-scale 
processes 13. We employed a combination of singular 
perturbations and geometric control methods to 
synthesize well-conditioned feedback controllers for 
two-time-scale nonlinear systems that enforce a prespe- 
cified input/output response in the closed-loop system, 
provided that the time-scale separation is sufficiently 
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large 12. This methodology was extended 14 within a 
feedforward/feedback control framework to syn- 
thesize well-conditioned controllers that achieve an 
arbitrary degree of elimination of the effect of measur- 
able disturbances on the output of the process for all 
times. 

The combination of singular perturbations and con- 
trol methods for uncertain systems, for the synthesis of 
well-conditioned controllers for stabilization of uncer- 
tain single-input single-output singularly perturbed sys- 
tems, has been studied x5-17. In Christofides and 
Daoutides 18, robust control laws were synthesized that 
ensure restricted (i.e. the initial conditions, uncertainty, 
and rate of change of uncertainty should be sufficiently 
small) asymptotic output tracking for nonlinear single- 
input single-output singularly perturbed systems, as 
long as the time-scale separation is sufficiently large. 
In Christofides and Teel ~9, a robustness result for 
the input-to-state stability property with respect to 
singular perturbations was established and used in 
Christofides et al. 2° to prove that, under appropriate 
assumptions on the inverse dynamics of the reduced 
system, the controller derived in Christofides and 
Daoutides Is ensures semi-global (i.e. the initial con- 
ditions, the uncertainty, and the rate of change of 
uncertainty can be arbitrarily large) asymptotic output 
tracking for the same class of singularly perturbed 
systems. 

In this work, we extend the robust output tracking 
control methodology previously proposed 2° to multi- 
input multi-output two-time-scale nonlinear systems, 
for which the fast dynamics may be unstable or 
singular. The uncertainty is allowed to be time-varying. 
The objective is to provide an explicit formula of a 
multivariable state feedback controller that guarantees 
boundedness of the trajectories and an arbitrarily 
small ultimate discrepancy between the outputs and 
the reference inputs in the closed-loop system by a 
suitable selection of controller parameters. The result- 
ing controller is a continuous function of the state 
of the system, and its construction requires the knowl- 
edge of appropriate bounding functions on the size 
of the uncertain terms. In the case of two-time-scale 
systems with stable fast dynamics, our main result 
establishes a fundamental robustness property of a 
controller synthesized on the basis of the low- 
dimensional slow model, with respect to both the 
parametric uncertainty and the fast (unmodeled) 
dynamics. The performance and robustness properties 
of the developed robust controller design method are 
evaluated through simulations in an fluidized catalytic 
cracking reactor, modeled in the standard singularly 
perturbed form, with unknown heat of the combustion 
reaction. 

Mathematical prefiminaries 

We consider multi-input multi-output two-time-scale 
nonlinear systems with the following state-space repre- 
sentation: 

k = f l  (x, O(t)) + Q1 (x, o(t))z + G1 (x, O(t))u 

E~? = f2(x, O( t) ) + Qz(x, o( t) )z + G2(x, O( t) )u 

yi = hi(x), i = 1 ..... m 

(1) 

where x E ~ and z E NP denote vectors of state vari- 
ables, u =  [Ul '"um]rE ~ denotes the vector of 
manipulated inputs, O(t) = [01 ( t ) . . .  Og(t)] E ~ denotes 
the vector of uncertain variables, yi E ~R, denotes the/th 
controlled output, and E is a small positive parameter, 
which quantifies the degree of coupling between the fast 
and slow dynamical phenomena of the system. 

f l ( x ,  O(t)),f2(x, O(t)) are sufficiently smooth vector 
functions, Q1 (x, O(t)), Q2(x, o(t)), Gl (x, O(t)), 
Gz(x, O(t)) are sufficiently smooth matrices of appropri- 
ate dimensions, and hi(x), i = 1 ..... m are sufficiently 
smooth scalar fields. The notation and some definitions 
used in the paper are given in the Appendix. 

The fact that E multiplies the time-derivative of the 
state z allows decomposing the system of Equation (1) 
into separate lower-order systems evolving in different 
time-scales ~3. Defining a fast time-scale, r = t, and set- 
ting equal to zero, the following fast  subsystem is 
obtained: 

dz 
~r = f2(x,  O) + Qz(x, O)z + G2(x, O)u (2) 

where x can be considered equal to its initial value x(0) 
and 0 can be thought of as constant. Assumption 1 
states a stabilizability requirement on the fast sub- 
system. 

Assumption 1. The pair [Q2(x, 0)Gz(x, 0)] is stabiliz- 
able uniformly in x E ~i ~, 0 E ~ ,  in the sense that there 
exists a sufficiently smooth matrix K(x) such that the 
matrix Qz(x, O) -t- Gz(x, O)K(x) is Hurwitz uniformly in 
x E ~R n,0 E ~q. 

The fact that (x, 0) can be considered as constant in 
the fast subsystem of Equation (2) implies that the 
matrix K(x) can be designed utilizing standard pole 
placement or optimal control methods 13. Assuming that 
the matrix Q2(x, O) is invertible uniformly in x E ~R n, 
0 E ~q and setting E = 0, the following representation 
for the equilibrium manifold of the fast dynamics of the 
system of Equation (1) is obtained: 

Zs = -[Q2(x, 0)] -1 [f2(x, 0) + G2(x, 0)u] (3) 

where Zs denotes a quasi-steady-state for the fast state 
vector z. Utilizing the above equation, the reduced sys- 
tem or slow subsystem takes the form: 

k = F(x, O) + G(x, O)u 

yS = hi(x), i = 1 ..... m 
(4) 

where the superscript s in ~ denotes that this output is 
associated with the slow subsystem and 
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F(x, O) =Ji (x, O) - Ql (x, O)[Q2(x, o)]-lfz(x, o) 

G(x, O) = GI (x, O) - QI (x, O)[Q2(x, O)]-l G2(x, O) 

Robust controller design 

Control ob/ectives 

(5) 

In this work, we will address the problem of  synthesiz- 
ing well-conditioned (i.e. independent of  the singular 
perturbation parameter E) robust static state feedback 
laws of  the form: 

u = n (x ,  vl k)) + K(x)z (6) 

where T~(x, v~i k!) is a vector function, vl k) denotes the kth 
time derivative of the external reference input vi, which 
is assumed to be a smooth function of time and K(x) is 
a sufficiently smooth matrix, which preserve the two- 
time-scale property of the open-loop system of  Equa- 
tion (1) and enforce the following objectives in the 
closed-loop system: 

1. Boundedness of  the trajectories. 
2. Output tracking of  external reference inputs with 

arbitrary degree of  asymptotic attenuation of the 
effect of  uncertainty on the outputs. 

The above requirements will be enforced in the 
closed-loop system for sufficiently small values of the 
singular perturbation parameter c. 

Assumptions 

In the general case where Q2(x,O) is singular or 
unstable, a preliminary control law of the form 1 Lie: 

u = 5 + K(x)z (7) 

where h denotes an auxiliary input and K(x) is a suffi- 
ciently smooth matrix of  dimension m xp can be used to 
stabilize the fast dynamics, and thus induce a well- 
defined stable quasi-steady-state for the states z. More 
specifically, substitution of the control law of  Equation 
(7) into the singularly perturbed system of  Equation (1) 
yields: 

-x" = fl  (x, 0) + [Q1 (x, o) + G1 (X, O)K(x)]z + G1 (X, O)[t 

E5 =re(x,  O) + [Q2(x, o) + az(x, O)K(x)]z + G2(x, O)h 

yi = hi(x), i = 1 ..... m 

(8) 

From Assumption 1, K(x) can be chosen so that the 
matrix Q=(x, 0) + G=(x, O)K(x) is Hurwitz, uniformly in 
x c N~, 0 ~ Nq, and thus the fast dynamics of  the above 
system is exponentially stable. The reduced system then 
takes the form: 

(9) 
= P ( x , O )  + O ( ~ , o ) ~  

f ~ = h i ( x ) ,  i =  1 . . . . .  m 

where 

~'(x,O) = ~ ( x ,  0) - A ( x , O ) ~ ( x ,  O) 

8(x,O) = 6,(x,O) - A(x,O)a2(x,O) 
(10) 

and A(x,O) = IQl(X,O) + Gl(x,O)K(x)][Q2(x,O) + G2 
(x, O)K(x)] i. Referring to the system of Equation (9) 
we will state three assumptions that will allow us to 
proceed with the robust controller design. 

Assumption 2. Referring to the system of Equation (9), 
there exist a set of integers (rt, ~2 ..... ~,,) and a co-ordi- 
nate transformation (¢,rl) = T(x,O) such that the 
representation of the system, in the co-ordinates ((, rl), 
takes the form: 

~ 1) ~( 1~ 
h' I = ¢h 
¢~I i =  LFh,(T-I(~,rl ,  O)) 

~ t t f , - l h  ( T - I  

./=1 

?roLl = 
~!m) = 

rm 
tfmhDl(Z-I (~, ~, 0)) 

L;" Jhm(T l ( c o ,  O))u/ 
j =  1 

• 1 (¢, 0, 0, 0) 

% _ ~  ~,(~, 7, o, O) 

~]il, i = 1 ..... m 

( l l )  

where x = T -1 ( ( ,  r/, 0 ) ,  ( = [~.(l)...~.(m)l T ?) = [Tll ... 

~ _ ~ ' 1  T, and GJ denotes the j th  column vector of  the 7/,, 

matrix G(x, 0). Moreover, for each 0 ~ ~q, the states 
(, 0 are bounded if and only if the state x is bounded• 

Assumption 2 states that the nominal system of 
Equation (9) is input/output linearizable and also 
incorporates the matching condition of our methodol- 
ogy, namely that a direct time-differentiation of the 
output ),~ up to order ~:i- 1 yields a set of  equations 
which are independent of the vector of uncertain vari- 
ables 0. We note that, from an application point of view, 
this matching condition is less restrictive from the stan- 
dard one imposed 6, which restricts O(t) to enter the 
system in the same differential equations as u. The 
consequence of this generalization is that the q-subsys- 
tem depends on 0(t), which implies that we need to 
assume that 0(t) exists and is bounded (cf. Theorem 1). 
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Referring to the system of Equation (11), we will 
assume, for simplicity, that the matrix: 

0) = 

LO, LF-l  hl (x, O) ... *~am~p'- r~,-l Ln, (x, O) 

LO, LF"-lhm(x, O) ~.~-1 ... L&,Lp hm(x,O) 

(12) 

is non-singular uniformly in x E ~Y', 0 E ~ (see Remark 
6 for a discussion on how to handle the case of  singular 

0)). 

Assumption 3. The dynamical system: 

= .1,0,0) 

: * ._  O) 
0 3 )  

is input-to-state stable with respect to (, 0, 0. 

The above assumption is more restrictive compared 
to the standard one of  asymptotic stability of  the zero 
dynamics without inputs 6. However,  it is necessary in 
order to prove that the states of  the closed-loop system 
are bounded for initial conditions, uncertainty and rate 
of  change of  uncertainty arbitrarily large (see also Teel 
and Praly21). Furthermore, this assumption could be 
relaxed to local asymptotic stability of the *1-subsystem 
with (¢, 0, t}) identically equal to zero, leading to local 
stability results for the closed-loop system (see Remark 2). 

We will now quantify possible knowledge about  the 
uncertainty by assuming the existence of  known 
bounding functions that capture the size of the uncer- 
tain terms in the system of Equation (1 1). To this end, 
we define the variable g(x, O) as: 

g(x,  0) : [P(x, 0) - P .o . (X)]  (14) 

where F,o,,(x) denotes the vector field resulting from 
/>(x, 0) by setting 0 equal to its nominal value 00. 

Using the fact that Lk-lhi(x)  = L k hi(x), i = 1 m, 
Fnom ~ """ ~ 

k = 1 ..... ri, Equation (11) can be written as follows: 

e(l) = g(1) 
~l - 1 "FI 

i.p ) = Lg, o hl (V- '  (if, .1, 0)) 
m 

+ Z L & L F - ' h '  ( r - '  (¢, .1, O))~j 
j=l 

+ LgLF-'hl  (T -1 ((, .1, 0)) 

e!'.l = 
rm rm 

e!,< - r,. = eF~omhm(T-l(ff, '1, O)) 
m 

+ Z L&LF'- 'hm(T-I(~ '  .1, O))fij 
j=l 

+ LgLFF-'h,,(T - '  (~, .1, 0)) 

•1 = kI/l(~', .1, 0, 0) 

# n - ~  ~i = k l I n - Z  ~i (¢ '  .1' O, O) 

¢I i) , f? = i =  1 m 

( i s )  

where ff~i) k-i -l =Lp.o, h l (T  (~1).1s, i =  1 ..... m, k =  1 ..... 
 oL). 

Assumption 4. The terms L&L~-lhi(x) ,  i E [1, m], have 
the same known constant sign, sgnj, for all x c ~n, 
0 E ~q, for each j  ~ [1, m], (some of these terms may be 
zero, but the requirement that (~(x, 0) is non-singular has 
to be satisfied), and there exist known functions ct (x, t), 
~2j(x, t), such that the following conditions hold: 

71 - 1 ~ m -  1 T I[LgLp h,(x).. .LgLp hm(x)] I -< ?l(X, t) 

0 < C2j (X ,  t) < mini<l,m] ]L&Lr-thi(x)l 
(16) 

and there exists a known positive real number b such 
that the m x m  matrix M(x,  O, t) = C(x, 0)A(x, t), where 
A(x , t )  is an m×m diagonal matrix whose (j,j)th 
element is of  the form sg,j satisfies the property 1 < O'mi n ?2j ' 
{M(x, 0, t)} < amax{M(x, O, t)} _< b, for all x E ~n, 
OE~q , t>_O.  

Assumption 4 requires the existence of  a nonlinear 
function that captures the size of the additive uncertain 
terms in the system of Equation (11). This requirement 
is standard in all Lyapunov-based robust control 
methods 6,9,1°, but in contrast we do not impose any 
growth conditions on the nonlinear function {a(x, t), 
such as quadratic growth, etc. Assumption 4 also 
requires the existence of a nonlinear function ?2j(x, t) 
for each manipulated input uj that lower bounds the 

~,-I .... L&L~- lhm(x) )  (note m-coefficients (L&Lp hi(x), 
that this requirement does not have to be satisfied for 
the coefficients that are zero). This requirement is less 
restrictive than the ones imposed in Refs 6, 8, 10, where 
an upper bound (typically small) on the size of  the 
uncertain terms that enter the system coupled with the 
manipulated inputs is assumed to exist. 

Main result 

We are now in position to proceed with the design of  
the auxiliary input fi to achieve the aforementioned 
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control objectives in the closed-loop reduced system. 
Specifically, motivated by the requirement of output 
tracking, and the presence of additive and multiplicative 
uncertainties in the systems of Equation (11), we con- 
sider static state feedback laws of the form: 

(*= R l ( x , t ) [ p ( x )  + Q ( x ,  "(k)'v i ) + R2(x , t ) ]  (17) 

where p ( x ) , R 2 ( x ,  t) are vector functions, R~(x,  t) is a 

"(k)~ is a column vector, and v i matrix, Q(x ,  v i ) . (k) denotes 
the kth time derivative of the external reference input v ~, 
which is assumed to be a smooth function of time. The 
motivation for considering control laws of the form of 
Equation (17) is provided by the requirement of stabili- 
zation with output tracking in the nominal reduced sys- 
tem ( term p ( x ) + Q ( x ,  vlk))), and the fact that the 
system in Equation (9) includes uncertainties entering 
coupled with the input (term R~(x, t)) as well as addi- 
tive ones (term R~(x,  t)).  

Theorem 1 that follows provides an explicit formula 
of  the controller that solves the control problem for- 
mulated in the previous section (the proof is given in the 
Appendix). To simplify the statement of the theorem, 
we set vi = [vivl')...,!;')] r and i; = [v,-T-Tv2 ...Vm]-r T. 

Theorem 1. Consider the uncertain singularly perturbed 
nonlinear system of Equation (1), for which assump- 
tions 1, 2, 3 and 4 hold, and the static feedback law: 

u = K ( x ) z  + A(x, t) f l ik,  (k) _ L k_ 
i=1 k=l flii, I'vi F""~hi(x)) 

+ 2_..--z-lvi  - Lk21mhi(x)) -- (2 + b)[[(x, t) 
i=1 k = l  ~ i i ,  ' 

+ l  tv~ - L~% & ( x ) ) l ] w ( x , ¢ )  
i=l k=l (18) 

where the feedback matrix K ( x )  is such that the matrix 
Qz(x ,  O) + G2(x,  O)K(x)  is Hurwitz uniformly in x E ~", 

0 E ~q, __~ = [~ . . .  ~,~i j are column vectors of parameters 

chosen so that the roots of the equation det(B(s)) = O, 
where B(s) is an m × m  matrix, whose (id)th element is of 

r l ]~ i k 

the form ~ - ~ s  ~-I, lie in the open left-half of the com- 
k = 1 P)~, 

plex plane, and the vector function w(x, ¢) is given by: 

i=l k=l t~T, ( Lk~lmhi(x ) -- 
w(x, $) = , (19) 

i = l k = l f l ~ ,  \ Fnom i~ ] 

where ¢ is an adjustable parameter. Then, for each set 
of positive real numbers Sx, S~, S0, S0, &, d, there exists ¢* 
and for each ¢ < &, there exists e*(q~), such that if 
¢ _<.¢*, e _< e*(~b) and [x(O)l _< S~, [z(O)l < S:, 11011 < &, 
II olt <_ so, II ~ 115 s~, 

a) the state of the closed-loop system is bounded, and 
b) the outputs of the closed-loop system satisfy: 

l imsup ly i -v i [  <_ d, i =  1 .. . . .  m (20) 
I--~ OO 

R e m a r k  1. Referring to the result of Theorem l, we 
note that the dependence of the upper bound on the 
singular perturbation parameter, ~*, on the adjustable 
parameter, q~, is due to the presence o f ¢  on the dyna- 
mical system that describes the fast dynamics of the 
closed-loop system. 

R e m a r k  2. Theorem l establishes a semi-global type 
result (the initial conditions, uncertainty and rate of 
change of uncertainty can be in arbitrarily large com- 
pact sets), while it does not impose any kind of inter- 
connection or growth conditions on the nonlinearities of 
the system, We note that if the co-ordinate transforma- 
tion of Assumption 2 holds locally and the unforced 
zero dynamics 

~ = ¢1(~, O, 0,0) 

(21) 

are locally exponentially stable, then the result of The- 
orem 1 holds locally (i.e. for sufficiently small initial 
conditions, uncertainty and rate of change of uncer- 
tainty). 

R e m a r k  3. Regarding the practical application of 
Theorem 1, one has to initially verify Assumptions 1-4 
on the basis of the process model used for controller 
design, and utilize the synthesis formula of Equation 
(18) to derive the explicit form of the controller. Then, 
given the desired ultimate bound d, the proof of the 
theorem can be used to calculate 4~* from the desired 
(a~, 6z, rio, gO, &, d) and, in turn, the value ~* for ¢ _< ¢*. 
If this e* is less than O (the value of the singular per- 
turbation parameter for the process), then d may need 
to be increased so that e* > ~p. Of course, if ep is too 
large, there may be no value of d that works. On the 
other hand, the value of E*, calculated from the proof of 
the theorem, is typically conservative, and so it may be 
useful to check the appropriateness of 4)* (and d) 
through computer simulations (see the next section for 
an application of this procedure to the fluidized cataly- 
tic cracking process). 

R e m a r k  4. Referring to the control law of Equation 
(18), one can show that if the matrix (~(x, 0) in the system 
of Equation (9) is independent of O, then the following 
simplifications can be made: A(x ,  t) = {C(x)} -1, b = 0. 

a n d [ c l ( x , t ) + l k ~ & "  ( k ) _  L~ h i ( x ) ) l ] = c t ( x , t ) .  
i=1 k = l  r, nont 

R e m a r k  5. Referring to the control law of Equation 
(18), we note that the explicit expression of the term 



318 Robust control of nonlinear systems. • P. D. Christofides and P. Daoutidis 

which is responsible for the attenuation of the effect of 
additive uncertainties is nonlinear not only in the x-co- 
ordinates but also in the ((, O) co-ordinates (see Equa- 
tions (46) and (47)). This is in agreement with the robust 
control methods 6,9 and in contrast to the robust control 
methodology proposed in Arkun and Calvet 1°, where 
the expression of the term R2(x, t) is linear in ((, 17) co- 
ordinates, and is a consequence of the fact that we allow 
?l (x, t) to be a general nonlinear function. 

Remark 6. The singular perturbation formulation 
provides a natural setting for addressing robustness 
with respect to unmodeled dynamics 13. In particular, if 
the open-loop fast subsystem of Equation (2) is expo- 
nentially stable uniformly in x C ~n, 0 C ~q, the con- 
troller of Equation (18) can be simplified to 

{ ~~=1 + flik (v!k) -- LkF"°'~hi(x)) a ( x ,  t )  z_ . ,  a .  " , U 
k=  1 t"tri 

+ 
"Jr- d _ . . ~ ' - ,  i - Lk~ol,.hi(x))-(2 +b)[Cl(X,t) 

i=l k=l  t-'tri 

} "~- I Z_..~ A._.a ~i L , Yi - -  Lkroo hi(x) ) + ]]w(x, ¢) 
i=1 k=l  ~i- i  

(22) 

which can be explicitly synthesized utilizing information 
about the open-loop reduced system of Equation (4). In 
this case, the result of Theorem 1 establishes a funda- 
mental robustness property of the controller of Equa- 
tion (22), with respect to uniformly exponentially stable 
unmodeled dynamics, provided that they are sufficiently 
fast. This robustness property is very important in many 
practical applications, where fast dynamics, such as 
sensor and actuator dynamics, are usually neglected in 
the controller design. 

Remark 7. Whenever the characteristic matrix C(x, 0) 
of the reduced system of Equation (9) is singular, one 
can utilize available dynamic extension algorithms 22 to 
design a dynamic state feedback law of the general 
form: 

= a(x, ~) + b(x, ~)~ 

;, = c(x, ~) + d(x, ~)~ 
(23) 

where a(x, ~), b(x, ~), c(x, ~), d(x, ~) are vector functions 
of appropriate dimensions, ~ E ~ denotes a vector of 
auxiliary inputs, such that the augmented system 

= a(x, ~) + b(x, ~)~ 

= P(x, O) + 8(x ,  O)c(x, ~) + 6(x ,  o)a(x, o)~ 

Yi =hi(x) ,  i =  I ..... m 

(24) 

with ~ c ~ as output vector and ~ c ~}~m as input vec- 
tor possesses a non-singular characteristic matrix. Then, 
the robust control methodology of this paper can be 
directly applied to the system of Equation (24). 

Application to a fluidized catalytic cracker 

In this section, we illustrate the implementation of the 
developed control methodology on the industrially sig- 
nificant process of fluidized catalytic cracking (FCC) 
shown in Figure 1. The FCC unit consists of a cracking 
reactor, where the desired reactions include cracking of 
high boiling gas oil fractions into lighter hydrocarbons 
(e.g. gasoline) and the undesired include carbon forma- 
tion reactions, and a regenerator, where the carbon 
removal reactions take place. Detailed discussions on 
the features of the FCC unit exist 23'24, and applications 
of linear control methods to the process can be 
found 25,26. Under the following standard modeling 
assumptions: 

• well-mixed reactive catalyst in the reactor 
• small-size catalyst particles 
• constant solid holdup in reactor and regenerator 
• uniform and constant pressure in reactor and 

regenerator, 

the process dynamic model takes the form23: 

d C c a t  
Vr~ d ~  - 60GcCc~t + 5ORgy 

Vr _~tt 60F,.(Cr~ - Csc) + 50Rcf 

dTr~ 
Vra -d t  - 60Frc(Trg - Tra) 

+ O.875~DtfRtf(Tfp - rra) 

( - a n s v )  , ,  o + 0.875 ~ lJtflxtf 

+ 0.5 ( -  AHcr______) Ro~ 
Sc 

Vrg TdCrc = 60Frc(Csc - -  C r c )  - 50Rcb 

G dTrg _ 60Frc(Tr~ - T~g) 
g dt - 

+ o 5S°Rai(Toi  - T~g) 
• S c  

+ 0.5(- ~ )R~  

(25) 

where Ccat, Csc, Crc denote the concentrations of cataly- 
tic carbon on spent catalyst, the total carbon on spent 
catalyst, and carbon on regenerated catalyst, Tra, T~g 
denote the temperatures in the reactor and the regen- 
erator, Dtf is the density of total feed, Vr,, V~g denote 
the holdup of the reactor and the regenerator, 
A n r g ,  Ancr are the heat of reactions, AHfv is the heat of 
feed vaporization, Fr~ denotes the flow rate of catalyst 
from reactor to regenerator, Sa, S~, Sf denote specific 
heats, Tfp, Ta~ denote the inlet temperatures of the feed 
in the reactor and the air in the regenerator, and 
R~f, Roc, Rcb denote reaction rates. The analytic expres- 
sions for the reaction rates Rcf, Roc, Rcb area3: 
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Ot-g 

Vrg 

Trg, Crc 

Stand Pipe 

Stand Pipe 
Rrc 

Rai 

Feed I 
I _ _  

Preheater 

Fuel Gas 

Figure 1 A fluidized catalytic cracker 

ROC ~ 

g c r  - -  - -  

Rai(21 - Ofg) 
Rob -- 200 

( 

O/g = 2 1 e x p / - - ] o  6 mo 

kccVraPra ( -Ecc ] 
R4--  - ~ , ' a ~  exp~ R(T£ T 460.0)f 

kcr l/raPraRtfDtfKcr 
R,: + Vr,,P,~K,r 

kcr ( -Ecr ] 
exp - - -  - 

C..C°I '5 tR(T~a + 460.0) 

_ VrgP,g 

"°' Ii exp R(r~+460.0) Crc 

(26) 

where k.., k,,r, kor are pre-exponential kinetic rate con- 
stants, Ecc, Ecr, Eor are activation energies, Ofg is the 
oxygen in flue gas, Re is the total feed rate, and R.i is 
the air rate. The values o f  the process parameters and 
the corresponding steady-state values are given in 
Table 1. The process exhibits a two-time-scale beha- 
viour because the residence time in the reactor is signif- 
icantly smaller than the one in the regenerator 23. This 

Table 1 

Ecc 
Ecr 
Eoc 
kcc 
kcr 
kor 
Vr~ 
Vr. 
rj~ 
Ta, 
Prg 
era 

AH,.r 
/X H~ e 
s. 
s, 
F~c 
Rt: 
D,: 
Rai 
C,.,~t 
Cs~ 
Cr~ 

Process parameters and steady-state values 

18000.0 Btu lb ~ mole 
27000.0 Btu lb i mole 
63 000.0 Btu lb ~ mole 
8.59 Mlb h -t psia i ton i (wt%) 1.06 
11600 Mbblday  tps ia  l t on  l(wt% ) ~15 
3, 15 × 10 m Mlb h ~ psia ~ ton 
60.0 ton 
200.0 ton 
744.0 F 
175.0 F 
25.0 psia 
40.0 psia 
60.0 Btu lb 
77.2 Btu lb t 
10561.0 Btu lb 
0.3 Btu lb IF 
0.7 Btu lb ~F t 
40.0 ton rain 
100.0 rabbi day 1 
7.0 lb gal 
400.0 mlb min L 
0.8723 wt% 
1.5698 wt% 
0.6975 wt% 
930.6255 F 
t 155.9605 F 
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implies that although the operator focus is on the reactor, 
the control problem must focus on the regenerator which 
is the process that essentially determines the dynamic 
response of the entire FCC unit. To this end, the control 
objective is the regulation of the temperature in the 
regenerator, T~g, and the concentration of the carbon on 
the regenerated catalyst, Crc, by manipulating the inlet 
temperatures, Tfp and T~. The uncertain variable for the 
system is taken to be the heat of combustion in the 
regeneration, which is also assumed to be time-varying. 
Defining the singular perturbation parameter E as 

VF¢/ 
E = (27) 

V,e 

and setting x = [xl x2] r = [Crc Trx] T, z = [Zl z2 z3] :r 
: [Cca ' Csc Zra] T, / / :  [u I u2] T :  [Zfp Tail T, y : ~1 Y2] T 
= [C~c T~g] T, 0 = [Ah~g], the system of Equation (25) can 
be put into the standard singularly perturbed from: 

dXl 
dt 

dx2 
dt 
dz] 

' -d7 
dz2 

dz3 
' E 7  

- - = f l l  (Xl, x2) %- QllZ2 

~--fl2(Xl, x2, 0) %- Q12z3 %- g12t/2 

= Q21 (Zl, z2, z3, Xl) 

~-~-j~2(Xl) %- Q22(zl, z2, z3, xl)  

= f23(x2) %- Q23(Zl, z2, z3, Xl) %- g23ul 

(28) 

where f11, Qll , f l2,  Qn ,  gl2, Q21,f22, Q22,f23,023, g23 are 
functions whose specific form is omitted for brevity. It 
was verified that the system of Equation (28) possesses 
an exponentially stable equilibrium manifold for the fast 
dynamics, which implies that it is not needed to utilize a 
preliminary feedback law of the form of Equation (7) to 
stabilize the fast dynamics. Setting E = 0, the equili- 
brium manifold of the fast dynamics can be calculated 
analytically and is of the form: Zs = g(xl ,  X2, U!), where 
g is a smooth vector function (note that the input Ul 
enters this algebraic equation in a nonlinear fashion, 
due to the nonlinear appearance of the fast state z in the 
system of Equation (28). The reduced system can then 
be found to be of the form: 

dx1 
= F1 (xl, X2) "}- Gll (xl, x2, Ul) 

dt 
dx2 
dt = F2(xl, x2, O) + Gzl(Xl, x2, ul) + G22u2 

(29) 

with Fl, Gll, F2, G21, G22 appropriately defined (their 
exact expressions are omitted for brevity) . The system 
of Equation (29) is already in the form of  Equation (11), 
with u appearing in a nonlinear fashion, and the condi- 
tion rl + r2 = 1 + 1 = 2 holds, which implies that this 
system does not possess zero dynamics. Furthermore, 
Assumption 4 is also satisfied and the function ?l (x) 
takes the form: 

(x) = r2(xl, x2, 10i) (3o) 

where 10] denotes the upper bound on the size of the 
uncertain variable, which is assumed to be constant. 
Clearly, the assumptions required for the application of 
the result of the theorem are satisfied. Referring to the 
system of Equation (29), we also note that the uncertain 
variable 0 does not appear coupled with the input vari- 
ables Ul,U2 and that the differential equation that 
describes the evolution of Xl is independent of 0 and u2. 
The former fact allows using the simplifications discus- 
sed in Remark 3 in the controller formula, while the 
latter fact suggests that there is no need for an uncer- 
tainty compensation term to be included in the formula 
that calculates the control action for the manipulated 
input Ul. Note that the synthesis formula of Equation 
(18) cannot be readily used due to the nonlinear 
appearance of  the input ul in the system of Equation 
(29). To resolve this problem, we first considered the 
algebraic equation G11(x1, x2, ul_)= ot and derived its 
solution in terms of ul, i.e. Ul --- Gll(xl ,  x2, or). Then, the 
necessary controller was found to be: 
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Figure 2 Closed-loop output profiles for regulation 
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1 
ul = 611 (xl, x2, ~-7711 ('h - x,)  - F1 (xl, x2)) 

u2 = G,--~ (v2 - x2) - [F2(Xl, x2, Oo) 

Jr- G21 (Xl'  x2 '  Gll  (Xl '  x2'  ~11 (1~1 - x l )  

x2 - v2 } 
- F, (x,, x2))] - 2g, ( x ) i x 2 :  ~2i+ q~ 

(31) 

For the above robust controller, we note that its practi- 
cal implementation requires measurements of only two 
of the states of the process (concentration of carbon on 
regenerated catalyst and temperature of  the regenera- 
tor). A slowly-varying uncertainty was considered 
expressed by a sinusoidal function of the form: 

0 = 180.0sin(0.2t) (32) 

The upper bound on the uncertainty was taken to be 
101 = 180.0. From Theorem 1, it is clear that there exists 
a trade-off between the upper bound on the value of the 

singular perturbation parameter e* and the level of 
asymptotic attenuation d that can be achieved. In the 
application in question, the value of the singular per- 
turbation parameter is fixed by the design of the pro- 
cess, i.e. ~p = 0.3, and thus there exists a lower bound 
on the selection of  the level d. We performed a set of 
computer simulations (for the regulation problem) to 
calculate ~b* for certain values of  d and, in turn, the value 
of E* for 4~ ~ 4~*. The following set of parameters were 
found to give an e _< Ep and used in the simulations 

/311 = 0.1.3"-] = 0.02, 4~ = 0.5 (33) 

to achieve an ultimate degree of  attenuation d = 0.1, for 
a value of the singular perturbation parameter E -- 0.3. 

Two representative simulation runs are reported. In 
both runs, the process was initially (t = 0.0 h) assumed 
to be at steady-state. In the first simulation run, we 
tested the regulatory capabilities of  the controller. 
Figure 2 shows the closed-loop output profiles, while 
Figure 3 displays the corresponding manipulated input 
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Figure 4 Closed-loop output profiles for regulation (no uncertainty 
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profiles. Clearly the controller regulates the output 
at the operating steady-state compensating for the 
effect of  uncertainty and satisfying the requirements 
lim sup~__+o~ [Yl - vll _ 0.1, lim supt_.oo lYe - val < 0.1. 

For the sake of  comparison, we also implemented the 
same controller without the term which is responsible 
for the compensation of  uncertainty, i.e. a decoupling 
input/output linearizing controller for the nominal 
open-loop reduced system. The output profiles for this 
simulation run are shown in Figure 4. One can immedi- 
ately see how strong is the effect of  the uncertainty on 
the outputs of the process, leading to poor transient 
performance and offset. In the next simulation run, we 
tested the output tracking capabilities of the controller. 
A 25.0 F increase in the value of  the output y: was 
imposed at time t = 0.0 h. The output profiles are 
depicted in Figure 5 and the profiles of  the correspond- 
ing manipulated inputs are given in Figure 6. It is clear 
that the controller drives the output y: to its new refer- 
ence input value; achieving the requirement 
lim supt~oo lY2 - v2[ _< 0.01. It can be also observed that 

the output yl stays very close to its reference input value 
(i.e. the requirement lim sup/~oo lyl - vii < 0.01 is satis- 
fied). Finally, Figure 7 shows the closed-loop output 
profiles for the same simulation run in the case of  
implementing the decoupling input/output linearizing 
controller to the process. It is clear that this controller 
cannot attenuate the effect of the uncertainty yielding 
unacceptable performance. From the results of the 
simulation study, we conclude that the proposed meth- 
odology is a powerful tool for the synthesis of  nonlinear 
controllers that compensate for the effect of  uncertainty. 

C o n c l u s i o n s  

This paper proposes a robust multivariable controller- 
design methodology for a broad class of  multi-input 
multi-output two-time-scale nonlinear processes with 
uncertain variables, modeled in singularly perturbed 
form. The proposed controller guarantees boundedness 
of the state and asymptotic output tracking with an 
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F i g u r e  7 Closed-loop output profiles for reference input tracking (no 
uncertainty compensation) 

arbitrary degree of attenuation of the effect of the 
uncertainty on the output by a suitable choice of con- 
troller parameters, as long as the singular perturbation 
parameter is sufficiently small. The method was applied 
to a fluidized catalytic cracking reactor with unknown 
heat of the combustion reaction and its performance 
was successfully tested through computer simulations. 
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APPENDIX 

Definitions 

• For any measurable (with respect to the Lebesgue 
measure) function 0:N>0 ~ Nm, [1011 denotes 
ess.sup.10(t)l, t _> 0. 

• A function ), : N_>0 ~ N_>0 is said to be of class K if 
it is continuous, increasing and is zero at zero. 

• A function /3 : N_>0 x N_>0 ~ N>0 is said to be of 
class KL if, for each fixed t, the function/3(., t) is 
of class K and, for each fixed s, the function/3(s, .) 
is non-increasing and tends to zero at infinity• 

• A matrix A(x,O) of dimension n x n is said to 
be Hurwitz uniformly in x E N", 0 E Nq, if there 
exists a positive real number c such that 
Re[~.i(A(x,O))]<-c, i =  1 ..... n for all x E N ~ ,  
0 E ~q, where ~-i denotes the / th  eigenvalue of the 
matrix• 

• Let x E Nn, y ~ N" be two vectors and A E N~×n be 
a matrix, then if ~max{A},amin{A } denote the 
maximum and minimum singular values of A, the 
following relations hold: 

xrAy  <_ amax{A}[xllyl, - x r A y  <~ -crmi~{A}lxlly[ 
(34) 

Definition26: The system in Equation (4) (with u=0) is 
said to be input-to-state stable (ISS) with respect to 0 if 
there exist a function/3 of class KL and a function ?, of 
class K such that for each x0 E Nn and for each mea- 
surable, essentially bounded input 0(.) on [0,oc) the 
solution of Equation (4) with x(0) = x0 exists for each 
t > 0 and satisfies 

Ix(t)l </3(Ix(0)l, t) + ~'(11011), w _ o (35) 

Proof of  Theorem 1: The proof of the theorem is con- 
ceptually analogous (although notationally more 
involved) to the one given in Christofides et al. 2° for 
single-input single-output systems. In order to stress the 
issues associated with the multivariable nature of the 
problem and avoid repetitions, we will refer without 
proof  to some results established in Christofides et alfl °. 
The proof consists of three parts: initially, the global 
exponential stability of the fast dynamics of the closed- 
loop system is established; then, the closed-loop reduced 
system is analyzed using Lyapunov techniques to derive 
bounds that capture the evolution of the states in terms 
of the initial conditions and the inputs, and a direct 
application of a result developed in Christofides and 
TeeP 9 is made to establish that these bounds continue to 
hold up to an arbitrarily small offset for the singularly 
perturbed system. Finally, the resulting bounds are uti- 
lized, using techniques (small gain theorem-type calcu- 
lations) similar to those used in Tee127 and Jiang et alfl s, 
to show boundedness of the trajectories and establish 
the inequality of Equation (20). All the above results 
will be obtained for sufficiently small values of 4~ and E. 

Part 1." In this part of the proof, we will establish that 
the closed-loop fast subsystem is globally exponentially 
stable. Under the control law of Equation (18) the 
closed-loop system takes the form: 

V '  S-"/3ik (v(k/ 

i=1 k=l fl'-i 

- L k- V "  flik ( ( k - l )  F.omhi(x)) -}- / ~ i ~  ,Vi - Lkg~o',.hi(x)) 
i=l k=l t-'t i 

- - ( 2  n t- b)[cl(X, t)~- t ~ -~ /3i--k-k (1;Ik) -- Lkomhi(x))[] 
i=l k~l fli~, 

w(x, 49)}}+[Ql(x ,O)+Gl(X,O)K(x)]  

- C(x ,  o, 49, v} 

(36) 

E} = [Qz(x, 0) + G2(x, O)K(x)][z - C(x, O, 49, vlk))] 

(37) 

where 

C(x, O, 49, .vi(k)~) = --[Qz(x, 0) + G2(x, O)K(x)] -1 If2(x, O) 
~ 

-~ 62(X , 0) A(X, t) fli~, ~ tVi 
i=1 k=l 

r n  t: i 

- L ,(xtI+ZZ/3ik(v? -LLoh (xtl 
i= 1 k= 1 t"ffi 

(38) 

It is clear that if the matrix K(x) is chosen so that the 
matrix Q2(x, O)+ G2(x, O)K(x) is Hurwitz uniformly in 
x ~ ~n, 0 E ~ the closed-loop fast subsystem 

dz 
d"r -- [Qz(x, o) + G2(x, O)K(x)][z - C(x, O, 49, vlk))] 

(39) 

possesses a globally exponentially stable equilibrium 
manifold of  the form of  Equation (38). 

Part 2: To simplify the notation, set Ci(x,O) 
= [LdlLF-lhi(T-1 ((, q, 0)) ~,-1 - 1  LdmL  h,(r 
i = 1 . . . . .  m, e. -= (z - C(x, O, 49, vlk))). Observing the 
similarity in the structure of the system of Equation (36) 
and the x-subsystem of Equation (9) and using 
Assumption 2, the representation of the closed-loop 
system of Equations (36) and (37) in ((, 17, z) co-ordi- 
nates takes the form: 
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( { ' ) =  (~') + e~{~)(( ,  r/, O, vl k)) 

((1) (1/ e ~9 ) ( r  F,-1 = ~'F, -1- z r, ' , "  / '1 '0 '  Vl k)) 

(~I) = L g h  I ( T  -1 (~', r/, 0 ) )  + e-~(- l ) (c '~  r, rl' O, V5 k)) 

+ G (x, o) A(x, ~) & '  (~) 
i=1 k=l  /~ir7 [vi  

m ri 
_ L ~_ ~ ~ l~ik (v(k-l) 

F.omhi(x)) + / . d _ _ ~ i ~  x i 
i=1 k=l  /~'-i 

- L}:~oahi(x)) - (2 + b)[?(x, t) 

' ~  }}  
+ Z i= 1 k= I t~iF' 

. ( k )  ~ { m )  ~.~m) q._6"zk~.t lm)(c, , ,0 ,  vi ) 

¢(m),,, 1 : ~.~m) + e . tp~m) 1 ( ~ , _  ~ r/, O, Vl k)) 

e kIj(m)(~ V} k) ) ~!m) = L F h m ( r - ~ ( ¢ '  ~ 'O))  + ~ .  ,0 ,0,  

X "  X "  ~ (v (~) + C~(x,  O) A(x ,  O L . ,  z__, ~ ,  , 
i=1 k=l rqr~ 

-- Lk~o~hi(x) ) -- Z Z t~ik (vSk-1) 
i= 1 k= l ~iFi 

- LS~o~hi(x)) - (2 + b)[~(x, t) 

z..., _ , Foo~hi(x) )l] w(x'  4)) 
i=1 k=l  ~ir~ 

. ( k ) ~  
hi = q q ( G o ,  O , O ) + e : C P ~ F , + ~ ( G , , O ,  vi ) 

. ( k )  
h n _ ~ i  L = q d n _ ~  F,((, O, O, O) q- e z ~ n ( ( ,  rl, O, v i ) 

~z" = [Q2(T -1 ((, r/, O), O) 

+ O2(T -1 (~', r/, O), O ) K ( T  -1 (¢, r 1, O))]e- 

y, = ¢i i), i = 1 . . . .  m 

(40) 

where ~(k i), i = 1 ..... m, k = 1 ..... ri, and ~y],~,+l ..... qs, 

are Lipschitz functions of  their arguments.  
In t roducing the variables e~ i) ~i) (k-~l = - v  i , i =  1, 

xl'.i) m ( i ) k F ~ l ~ i k o ( i )  
.... m ,  k = 1 . . . . .  ri' % = ~ eF' + i= 1 k= 1 fli~i ~k ' and the 

notat ion yIi) ~ (i) (i) e~ I) l ]r  y = [ei1)~e(2)~ e(mT]r : -  [6'1 6"2 "'" - ' "'" " 
~1 [~TIIT], ~ ~-(I)-(2) ~(_m)]T r (0) .(1) Vlii-1)]V 

= = tei ei "" r ~ ' vi = [1~i vi "'" ' 
I~ I~ ~]~ = iv, v 2 ... M i ( x , O ,  t) = C i ( x , O )  A ( x ,  t),  the 

system of  Equat ion (40) takes the form: 

g,{1) =e~l) + e.~t{l)(& ~ ,  ~, r/, O) 

FI-I = 

e! I) = 
r l  

_ • m . . •  
ri-- 1 ~1 

R1 rl 
i=1 k=l  ~iF, i=1 

+ <A41)(a 6'F, ,,, ,, o) 

4- L g L ~ - ~ h ,  ( T - '  (e, eF, ?, tl, 0)) 

F~ a ( l )  
Pik (i) 

+ 2 _ _ , - ~ 6 " ~  
i=I k=l Pff, 

{ + M l ( x , O , t )  - 2 .  -~7-ek+l - ~  
i=1 k=l ~r, 

- (2 + b ) [ ~ ( ( <  ~F, ~. ~. 0). ~1 

• - (m) - - 
4 ") = 4 ") + 6"~'1 (6", 6"F, ~, ~, o) 

•(m) 
Fro_ 1 

O! ml = 
rm 

£ii 
-1 a(m)  m 

~"~laik e ( i ) + V . ~ ( m ) e  ~(m) ( ~ . ~ ,  ~. r],O) 
L . . ~ a ( m  ) k ~ F., : F.,--1 

i=l k=l  PiF, i=l 

6"AC)(a ~F, ~, ,, 0) 

+ LgLv ' - lhm(T 1(0. ~F. ~. , .O)) 

+ 
i=1 k=l  iF, 

{ - 
i=l k=l  ~iT, k+I 

- (2 + b)[gl ((~, &, i~, , ,  0), t) 

} /< ~=1 ~k+~l]w(T '(0. OF. ~. , .0).0) 

il = q h ( &  &, ~ , 0 , 0 , 0 )  + e = q J ~ . q ( e , & ,  ~, 0 , 0 )  

h,,_S-,  = qJ S-,~ (~, &, ?, r/, O, O) + e:CPn(~, &, ~', o, O) 
z.,...g 

z t 

+ G 2 K ( T - 1 ( &  eF, ~, JT, O))]e= 

Yi = (cli), i = 1 . . . . .  m 

(41) 

We will proceed with a two-step procedure to establish 
the ISS bounds that capture the evolution of  the states 
& eF, r /of  the above system• In particular, we will initially 
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obtain these bounds in the absence of  singular 
perturbations (i.e. when the singular perturbation para- 
meter ~ is equal to zero). Once these bounds are derived, 
we will apply the main result reported in Christofides 
and Teel w to establish that these bounds continue to 
hold up to an arbitrarily small offset, for initial condi- 
tions and uncertainties in an arbitrarily large compact 
set, provided that e is sufficiently small. 

Step 1." First, note that the linear structure of  ~ subsys- 
tem of  the reduced system of Equation (41) and the fact 
that it is exponentially stable when & ~_ 0 allows using a 
direct Lyapunov function argument to show that there 
exist positive real numbers, k~, a, 9% such that the fol- 
lowing ISS bound holds for the reduced Y subsystem: 

le(t)l --- k~e-~'lg(0)[ + ×o~ll&ll (42) 

In the rest of this step, we will show that the controller 
of Equation (18) ensures that the subsystem consisting 

r-(1)~(2) ~m)]T of the reduced of the state vector & = [e~, % ... 
system of Equation (41) possesses an ISS property with 
respect to &, e, v, v,/7, 0 and, moreover, the gain func- 
tion saturates at ~b. To this end consider the following 
singularly perturbed system: 

e = e,C~(~, ~, ~,/7, o) + Z@~-'h(T-~(~,  ~, ~,/7, o)) 
m i~ { £ L 

~ J~ik (i) ~ t~ik (i) 
,j÷ 2_,2_.,~._-._ek+~ + M(x,O,t)  - 2_-~..ek+~ 

i=1 k=l  ~iFi i=1 k=l  ~tri 

- ~ - (2  + b)[?~ ((& &, ~,/7, 0),  t) 

- } 
+1 ~i~ek+,J t~  [e,&,L/7,0)),4~) 

i=1 k=l  

~Z = [O2(  T - '  (e, eF, v,/7, 0) ,  0)  

+ 62(T -~ (~, g,~, ~,/7, 0), 0)K(r  -~ (~, ~, ~,/7, 0))]e= 
(43) 

= 0" .;.(m),- where ~ ( &  &, ~,/7, 0) <r~9)(i., , , &, 7,/7, ) . . .%, te, 7~, 7, 

/7, 0)] r, v(~ = [@l. . .v~)]r ,  LgL~-lh(T-I(& &, ~,/7, 0)) = 

L -~,-~,- (T-l(& &, ~,/7, O))...LiL~'-~h~(T-'(O, &, ~, /7, g~p nl 
0))] r. From Part 1, we have that the fast dynamics of 
the above system is globally exponentially stable. Con- 
sider the reduced system corresponding to the singularly 
perturbed system of Equation (43): 

• m r~_..~ ~ik  
e~ = LgL~-lh(T-l(e.,g:f, v,/7,0)) ÷ Z Z.~ _(i) 

i=1 k=,  ~iF~ ¢'k+l 

+ M  - 2..-~7-. ek+~--e~--(2+b)  
i=l k=l t~iri 

~ t ~ik e(i) [c( (& e~' v' /7' O)' t) + l /-.., h-7- k+~l] 
i=1 k=,  I~tri 

~ ( r  -~ (~, ~, ~,/7, 0), ~)~ 
J 

(44) 

To establish that the above system is ISS with respect to 
& &, ~,/7,0, we use the following smooth function 
V: 51~m ~ ~>o: 

1 -  2 V = ~ e~ (45) 

Calculating the time-derivative of V along the trajectory 
of  the system of Equation (44), we have: 

= ~r[Lgffp- 'h(T-l(& &, ~,/7, 0)) f/ 

÷ ~ik _(i) -Jr- M - Z...,-KT.- k+l 
i=1 k=l  j~i~i e'k+' i=1 k=l  t-'iri 

- ~ - (2  + b)[? ,  ((& &, ~,/7, 0), t) 

~--~ + ~ike(il }] +1 /--~a k+ll]W(T-'(&&,~,/7,0),4)) 
i= 1 k= 1 r-'iY~ 

(46) 

Furthermore, it is straightforward to show that the 
representation of the vector function w(x, 4)) in terms of 
the vector & is given by 

~7 
o)(&, 4~) -- ly~l + ~b (47) 

Substituting Equation (47) into Equation (46) and using 
the fact that 1 _< arnin(M(x ,  O, / ) }  < ¢rmax{M(x,  O , / ) }  < 

b and the inequalities of Equation (34), we have: 

< ~ f {  - M(x,  O, t)& - (2 + b)M(x, O, t) f/ 

£ +~6ike(i) I1 er [~(Z l(& &, ~, /7, 0), t) + l /_.~h-7.- ~+l'Jl&(~q~ 
i=l k=l ~lri 

m 7,. 
x--- x-", flik (i) 

+ (M(x, O, t) - Ira×m) 2...a ~ ~--7- ek+l 
i=l k=l t-'tri 

+ L~L~-'h(T-' (~, ~, ~,/7, o))} 

-2 (2+b)[~(T- l (&~,~ , /7 ,0) , t )  -- e 7 -- 

+1 .__..  e ,I + ( l + b )  
i=l k=l  r" i I I "t." 

m r i } 
(&l(I Z w-"/3ik (i) 2..,,-~-.- ek+l l ÷ ?( T-1 (& ~ '  ~' /7' 0), t) ) 

i=1 k-1  t-'iFi 

< - -e~- - [g l (T- l (&&,L/7 ,0 ) , t )  

(48) 
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From the last inequality, it follows directly that if 
I~;1-> ~(l  +b) ,  the time-derivative of  the Lyapunov 
function satisfies I~ _< -2 This fact implies that the - - e  F . 

ultimate bound on the state & of the system of Equation 
(44) depends only on the parameter q~ and is indepen- 
dent of  the states g, r/. 

We will now analyze the time-derivative of  V for 
I~;I -> ~(1 + b). For ease of notation, we set 
U = [~ ~roT~r]r. Then Equation (48) can be written as 

f v_< - g ~ +  (1 + b)l&l[g,(T '(& &, ~, o,0), t) 

+ l Z Z flike2i)+,l] 
i=l k=l fli;i 

-< - d  + (1 + b)l~lP(IUI) 

(49) 

where p is a class K~ function. Summarizing, we have 
that l/satisfies the following properties: 

7 ,121  

- 2 

l~'~] > min{4~(1 + b), (2(1 + b)p(lU[))} =: ~u(lUI) 

(50) 

Using the result of  theorem 4.10 in Khalil ~9, we get that 
the following ISS bound holds for the state & of the 
system of Equation (44): 

]e;(t){ < e °5'lg;(0)t + ~u(llUl{ ) (51) 

Before we proceed with the rest of  this step, we will 
assume that 4~ E (0, 4;], where 

d 
e* = (52) 

(1 + b ) ( l  + 2×~) 

Consider the singularly perturbed system consisting of  
the states (g, ~, z) of  the system of Equation (41). For 
this system, it can be shown that its fast dynamics are 
globally exponentially stable and the 0-subsystem of the 
reduced system is ISS with respect to & &, 0, 0. Fur- 
thermore, the state ~ = [gTOT]T of this system possesses 
an ISS property with respect to &, 0, 02s'3°. Utilizing the 
converse theorem developed in Sontag and Wang 3~, we 
have that there exists a converse function for the system 
comprised of the states (& 0) and the existence of this 
function implies that there exist a function flo of  class 
KL and a function ~ of class K such that the following 
ISS inequality holds for the state ~: 

lO(t){ ~ ~(10(o){, t) + #,({l[Fforbr]r{I) 

_< t~0(10(0)l, t) + #~(ll~;ll) + #0(ll011) + #0(llOll) 
(53) 

where 15~, y0, Y0 are class K functions, respectively, 
defined as #~,(s) = ~o(s) = ??0(s) = ~/3s).  

Step 2. We will now utilize the main result reported in 
Christofides and Tee119 to establish that the ISS inequal- 
ities of Equations (51)-(53) continue to hold up to an 
arbitrarily small offset, for the states g;, ~ of  the singu- 
larly perturbed system of Equation (41). Following 
Christofides et al. 2°, it can be shown that, given the set 
of  positive real numbers (g~, g0, `S=, &, g0, &, S̀O, g~, d~, 
do) (which can be specified from the data of the theo- 
rem; for details see Christofides et al.2°), that there is an 
~'~(q~) such that if e E (0,~(4~)] and ]&(O)l _<`S~, 
[z(0)[ < g:, !101] < go, I]F{[ ~ g,., [l~l] -< gO, [IF;[[ -< g~, then 

I~(t)l _< e-° 5'1~/0)1 + ~.(llUll) + ~ ( 5 4 )  

Furthermore, it can be also shown using the result from 
Christofides and Tee119 that the singularly perturbed 
system comprised of & r/, z, with the same converse 
function which exists for the reduced system comprised 
of  the states & 0 and its resulting (riO,)?s). Thus we have 
that if ~ C- (0,~0(~b)] and [0(0)1 <_ g~, ]z(0)l < g=, 
I}o{I < `so, {{0ll _< g0. {li~ll _< &, [1/;~11 -< g~, then 

{O(t)[ _< fl0({O(0)}, t) + ?5~([][gf0r(}Y]r{[) + d o 

_< ~o(10(o), t) + #~({l~/I) + #({{Ol{) (55) 

+ #0(1101[) + do 

Part 3." The proof  of the theorem can be completed by 
showing that for any given set of positive real numbers `S~, 
`S0, &-, g0, g0, &, d(already specified) and with 4; defined as 
in Equation (52), there exists E*(4~) E (0, E0(~b)], such that 
if ~ E (0, ~*!4~)] and [&(0)l _< g~, 1~(0)1 _< go, [z(0)] _< g~, 
I}011 _ g0, }10rl _< g0, I1~11 -< & the output of  the closed- 
loop system of Equation (37) satisfies the relation of 
Equation (20), for each 4~ E (0, &]. 

This result can be established by analyzing the beha- 
vior of the dynamical system comprised of the states 
&,~ of the system of Equation (41), for which the 
inequalities of  Equations (54) and (55) hold, using cal- 
culations similar to those used in Tee127 and Jiang 2s. 
First, a contradiction argument can be used to show 
that if ~b E (0, &], the evolution of the states &, 0 start- 
ing from initial conditions that satisfy [&(0)l _< go;, 
10(0)l -< s̀0 and for 0, 6i. i; such that [101l _< ,so, ItOl{ _< `so, 
I I~{I _< g~ satisfies the following inequalities: 

(56) 

for all times. Second, the asymptotic behavior of the 
system comprised of the states & gr of Equation (41) is 
analyzed to establish that the inequality of Equation 
(20) holds. These calculations are similar to the ones in 
Christofides et al. 2° and are omitted for reasons of  brevity. 

N o m e n c l a t u r e  

Roman letters 

C o a t  concentration of catalytic carbon on 
spent catalyst 
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C~c 

Crc 

Dtf 

Ecc, Ecr, Eor 
~ - 

F,F,F.om,fl,f2 
Ere 

G, G, G1, G2 
hi 
K(x) 
kcc, kcr, kor 
Oze 
Ol 

02 

Rai 
Rcb, Rcf, Roc 
Rtf 

Sa, so, si  
Tip, To, 

Tra, Trg 
t 
U, 
fi 

Vra, Vr 

concentration of total carbon on spent v 
catalyst x 
concentration of carbon on regenerated Yi 
catalyst z 
density of total feed 
positive real numbers 
activation energies 
vector fields ~ik 
flow rate of  catalyst from reactor to AHrgAHcr 
regenerator AHzv 
vector fields associated with the inputs 3, 3x, 3z, 30, 
ith output scalar field 3 b, @, 3~, 3~, 
sufficiently smooth matrix ao, 3a~, 3~ 
pre-exponential kinetic constants 

•, ~&, ~ ,  E ~ 
oxygen in flue gas 
matrix of dimension n × m associated ( 

0 with the slow state vector x 
matrix of dimension m x m associated 4~ 
with the fast state vector z 
air rate 
reaction rates 
total feed rate 1" I 
integer associated with the input vector sgn(.) 
fi in the reduced system Id 
specific heats Lfh 
temperatures of the feed in the reactor 
and the air in the regenerator L}h 
temperatures in reactor and regenerator LgL~-lh 
time 
manipulated input vectors ~ 
auxiliary input vector c 
reactor and regenerator catalyst holdups T 

Greek letters 

Math symbols 

external reference input vector 
vector of the slow state variables 
ith output 
vector of the fast state variables 

adjustable parameters 
heat of the reactions 
heat of feed vaporization 
positive real numbers 

singular perturbation parameters 
state vector 
state vector 
adjustable parameter 

standard Euclidean norm 
sign function 
identity function 
Lie derivative of a scalar field h with 
respect to the vector field f 
kth order Lie derivative 
mixed Lie derivative 
real line 
/-dimensional Euclidean space 
belongs to 
transpose 


