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In  this  paper,  we  provide  a  tutorial  review  of  recent  results  in  the design  of  distributed  model  predictive
control  systems.  Our  goal is to not  only  conceptually  review  the  results  in this  area  but  also  to provide
enough  algorithmic  details  so  that  the  advantages  and  disadvantages  of  the  various  approaches  can
become  quite  clear.  In  this  sense,  our  hope  is that this  paper would  complement  a  series of  recent  review
papers  and  catalyze  future  research  in  this  rapidly  evolving  area.  We  conclude  discussing  our  viewpoint

ions  i
on future  research  direct

. Introduction

Continuously faced with the requirements of safety, environ-
ental sustainability and profitability, chemical process operation

as been extensively relying on automated control systems. This
ealization has motivated extensive research, over the last fifty
ears, on the development of advanced operation and control
trategies to achieve safe, environmentally friendly and econom-
cally optimal plant operation by regulating process variables
t appropriate values. Classical process control systems, such
s proportional-integral-derivative (PID) control, utilize measure-
ents of a single process output variable (e.g., temperature,

ressure, level, or product species concentration) to compute the
ontrol action needed to be implemented by a control actuator so
hat this output variable can be regulated at a desired set-point
alue. PID controllers have a long history of success in the con-
ext of chemical process control and will undoubtedly continue
o play an important role in the process industries. In addition to
elative ease of implementation, maintenance and organization of

 process control system that uses multiple single-loop PID con-
rollers, an additional advantage is the inherent fault-tolerance of

uch a decentralized control architecture since failure (or poor tun-
ng) of one PID controller or of a control loop does not necessarily
mply failure of the entire process control system. On the other
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ax:  +1 310 206 4107.
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n  this  area.
© 2012 Elsevier Ltd. All rights reserved.

hand, decentralized control systems, like the ones based on multi-
ple single-loop PID controllers, do not account for the occurrence of
interactions between plant components (subsystems) and control
loops, and this may  severely limit the best achievable closed-
loop performance. Motivated by these issues, a vast array of tools
have been developed (most of those included in process control
textbooks, e.g., Ogunnaike & Ray, 1994; Romagnoli & Palazoglu,
2006; Seborg, Mellichamp, Edgar, & Doyle, 2010) to quantify these
input/output interactions, optimally select the input/output pairs
and tune the PID controllers.

While there are very powerful methods for quantifying
decentralized control loop interactions and optimizing their perfor-
mance, the lack of directly accounting for multivariable interactions
has certainly been one of the main factors that motivated early
on the development of model-based centralized control archi-
tectures, ranging from linear pole-placement and linear optimal
control to linear model predictive control (MPC). In the central-
ized approach to control system design, a single multivariable
control system is designed that computes in each sampling time
the control actions of all the control actuators accounting explic-
itly for multivariable input/output interactions as captured by the
process model. While the early centralized control efforts con-
sidered mainly linear process models as the basis for controller
design, over the last twenty-five years, significant progress has
been made on the direct use of nonlinear models for control sys-
tem design. A series of papers in previous CPC meetings (e.g.,

Allgöwer & Doyle, 1997; Kravaris & Arkun, 1991; Lee, 1997; Mayne,
1997; Ydstie, 1997) and books (e.g., Christofides & El-Farra, 2005;
Henson & Seborg, 1997; Rawlings & Mayne, 2009) have detailed the
developments in nonlinear process control ranging from geometric

dx.doi.org/10.1016/j.compchemeng.2012.05.011
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:pdc@seas.ucla.edu
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ontrol to Lyapunov-based control to nonlinear model predictive
ontrol.

Independently of the type of control system architecture and
ype of control algorithm utilized, a common characteristic of
ndustrial process control systems is that they utilize dedicated,
oint-to-point wired communication links to measurement sen-
ors and control actuators using local area networks. While this
aradigm to process control has been successful, chemical plant
peration could substantially benefit from an efficient integration
f the existing, point-to-point control networks (wired connections
rom each actuator or sensor to the control system using dedicated
ocal area networks) with additional networked (wired or wireless)
ctuator or sensor devices that have become cheap and easy-to-
nstall. Over the last decade, a series of papers and reports including
ignificant industrial input have advocated this next step in the evo-
ution of industrial process systems (e.g., Christofides et al., 2007;
avis, 2007; McKeon-Slattery, 2010; Neumann, 2007; Ydstie, 2002;
ornio & Karschnia, 2009). Today, such an augmentation in sensor
nformation, actuation capability and network-based availability of

ired and wireless data is well underway in the process industries
nd clearly has the potential to dramatically improve the ability
f the single-process and plant-wide model-based control systems
o optimize process and plant performance. Network-based com-

unication allows for easy modification of the control strategy by
erouting signals, having redundant systems that can be activated
utomatically when component failure occurs, and in general, it
llows having a high-level supervisory control over the entire
lant. However, augmenting existing control networks with real-
ime wired or wireless sensor and actuator networks challenges

any of the assumptions made in the development of traditional
rocess control methods dealing with dynamical systems linked
hrough ideal channels with flawless, continuous communication.
n the one hand, the use of networked sensors may  introduce asyn-
hronous measurements or time-delays in the control loop due to
he potentially heterogeneous nature of the additional measure-

ents. On the other hand, the substantial increase of the number of
ecision variables, state variables and measurements, may  increase
ignificantly the computational time needed for the solution of the
entralized control problem and may  impede the ability of cen-
ralized control systems (particularly when nonlinear constrained
ptimization-based control systems such as MPC  are used), to
arry out real-time calculations within the limits set by process
ynamics and operating conditions. Furthermore, this increased
imension and complexity of the centralized control problem may
ause organizational and maintenance problems as well as reduced
ault-tolerance of the centralized control systems to actuator and
ensor faults.

These considerations motivate the development of distributed
ontrol systems that utilize an array of controllers that carry out
heir calculations in separate processors yet they communicate to
fficiently cooperate in achieving the closed-loop plant objectives.
PC is a natural control framework to deal with the design of coor-

inated, distributed control systems because of its ability to handle
nput and state constraints and predict the evolution of a system

ith time while accounting for the effect of asynchronous and
elayed sampling, as well as because it can account for the actions of
ther actuators in computing the control action of a given set of con-
rol actuators in real-time (Camacho & Bordons, 2004). In this paper,
e provide a tutorial review of recent results in the design of dis-

ributed model predictive control systems. We  will focus on results
or nonlinear systems but also provide results for the linear coun-
erpart for some specific cases in which the results for nonlinear

ystems are not available. Our goal is to not only review the results
n this area but also to provide enough algorithmic details so that
he distinctions between different approaches can become quite
lear and newcomers in this field can find this paper to be a useful
mical Engineering 51 (2013) 21– 41

resource. In this sense, our hope is that this paper would comple-
ment a series of recent review papers in this rapidly evolving area
(Camponogara, Jia, Krogh, & Talukdar, 2002; Rawlings & Stewart,
2008; Scattolini, 2009). We  conclude presenting our thoughts of
future research directions in this area.

2. Preliminaries

2.1. Notation

The operator | · | is used to denote the Euclidean norm of a vector,
while we use ‖ · ‖2Q to denote the square of a weighted Euclidean

norm, i.e., ‖x‖2Q = xT Qx for all x ∈ Rn. A continuous function  ̨ : [0,
a) → [0, ∞)  is said to belong to class K if it is strictly increasing
and satisfies ˛(0) = 0. A function ˇ(r, s) is said to be a class KL
function if, for each fixed s, ˇ(r, s) belongs to class K functions
with respect to r and, for each fixed r, ˇ(r, s) is decreasing with
respect to s and ˇ(r, s) → 0 as s → 0. The symbol �r is used to denote
the set �r : = {x ∈ Rn : V(x) ≤ r} where V is a scalar positive definite,
continuous differentiable function and V(0) = 0, and the operator
‘/’ denotes set subtraction, that is, A/B : = {x ∈ Rn : x ∈ A, x /∈ B}. The
symbol diag(v) denotes a square diagonal matrix whose diagonal
elements are the elements of the vector v. The symbol ⊕ denotes the
Minkowski sum. The notation t0 indicates the initial time instant.
The set {tk≥0} denotes a sequence of synchronous time instants
such that tk = t0 + k� and tk+i = tk + i� where � is a fixed time inter-
val and i is an integer. Similarly, the set {ta≥0} denotes a sequence
of asynchronous time instants such that the interval between two
consecutive time instants is not fixed.

2.2. Mathematical models for MPC

Throughout this manuscript, we  will use different types of math-
ematical models, both linear and nonlinear dynamic models, to
present the various distributed MPC  schemes. Specifically, we  first
consider a class of nonlinear systems composed of m intercon-
nected subsystems where each of the subsystems can be described
by the following state-space model:

ẋi(t) = fi(x) + gsi(x)ui(t) + ki(x)wi(t) (1)

where xi(t) ∈ Rnxi , ui(t) ∈ Rnui and wi(t) ∈ Rnwi denote the vec-
tors of state variables, inputs and disturbances associated with
subsystem i with i = 1, . . .,  m,  respectively. The disturbance w =
[wT

1 · · · wT
i
· · ·wT

m]T is assumed to be bounded, that is, w(t) ∈ W
with W := {w ∈ Rnw : |w| ≤ �, � > 0}. The variable x ∈ Rnx denotes
the state of the entire nonlinear system which is composed of the
states of the m subsystems, that is x = [xT

1 · · ·xT
i
· · ·xT

m]T ∈ Rnx . The
dynamics of x can be described as follows:

ẋ(t) = f (x) +
m∑

i=1

gi(x)ui(t) + k(x)w(t) (2)

where f = [f T
1 · · ·f T

i
· · ·f T

m]T , gi = [0T · · ·gT
si
· · ·0T ]T with 0 being the zero

matrix of appropriate dimensions, k is a matrix composed of ki (i = 1,
. . .,  m) and zeros whose explicit expression is omitted for brevity.
The m sets of inputs are restricted to be in m nonempty convex
sets Ui ⊆ Rmui , i = 1, . . .,  m, which are defined as Ui := {ui ∈ Rnui :
|ui| ≤ umax

i
} where umax

i
, i = 1, . . .,  m, are the magnitudes of the input

constraints in an element-wise manner. We  assume that f, gi, i = 1,
. . .,  m,  and k are locally Lipschitz vector functions and that the origin
is an equilibrium point of the unforced nominal system (i.e., system

of Eq. (2) with ui(t) = 0, i = 1, . . .,  m, w(t) = 0 for all t) which implies
that f(0) = 0.

In addition to MPC  formulations based on continuous-time
nonlinear systems, many MPC  algorithms have been developed
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or systems described by a discrete-time linear model, possibly
btained from the linearization and discretization of a nonlinear
ontinuous-time model of the form of Eq. (1).

Specifically, the linear discrete-time counterpart of the system
f Eq. (1) is:

i(k + 1) = Aiixi(k) +
∑
i /=  j

Aijxj(k) + Biui(k) + wi(k) (3)

here k is the discrete time index and the state and control vari-
bles are restricted to be in convex, non-empty sets including the
rigin, i.e., xi ∈ Xi, ui ∈ Ui. It is also assumed that wi ∈ Wi, where Wi
s a compact set containing the origin, with Wi = {0} in the nominal
ase. Subsystem j is said to be a neighbor of subsystem i if Aij /= 0.

Then the linear discrete-time counterpart of the system of Eq.
2), consisting of m-subsystems of the type of Eq. (3),  is:

(k + 1) = Ax(k) + Bu(k) + w(k) (4)

here x ∈ X =
∏

i

Xi, u ∈ U =
∏

i

Ui and w ∈ W =
∏

i

Wi are the

tate, input and disturbance vectors, respectively.
The systems of Eqs. (1) and (3) assume that the m subsystems

re coupled through the states but not through the inputs. Another
lass of linear systems which has been studied in the literature in
he context of DMPC are systems coupled only through the inputs,
hat is,

i(k + 1) = Aixi(k) +
m∑

l=1

Bilul(k) + wi(k) (5)

.3. Lyapunov-based control

Lyapunov-based control plays an important role in determin-
ng stability regions for the closed-loop system in some of the
MPC architectures to be discussed below. Specifically, we  assume

hat there exists a Lyapunov-based locally Lipschitz control law
(x) = [h1(x) . . . hm(x)]T with ui = hi(x), i = 1, . . .,  m, which renders
he origin of the nominal closed-loop system (i.e., system of Eq. (2)
ith ui = hi(x), i = 1, . . .,  m,  and w = 0) asymptotically stable while

atisfying the input constraints for all the states x inside a given
tability region. Using converse Lyapunov theorems (Christofides

 El-Farra, 2005; Lin, Sontag, & Wang, 1996; Massera, 1956), this
ssumption implies that there exist functions ˛i(·), i = 1, 2, 3 of class

 and a continuously differentiable Lyapunov function V(x) for the
ominal closed-loop system that satisfy the following inequalities:

˛1(|x|) ≤ V(x) ≤ ˛2(|x|)

∂V(x)
∂x

(
f (x) +

m∑
i=1

gi(x)hi(x)

)
≤ −˛3(|x|)

hi(x) ∈ Ui, i = 1, . . . , m

(6)

or all x ∈ O ⊆ Rn where O is an open neighborhood of the origin.
e denote the region �� ⊆ O as the stability region of the nominal

losed-loop system under the Lyapunov-based controller h(x). We
ote that �� is usually a level set of the Lyapunov function V(x), i.e.,
� : = {x ∈ Rn : V(x) ≤ �}.

. Model predictive control

.1. Formulation
Model predictive control (MPC) is widely adopted in industry as
n effective approach to deal with large multivariable constrained
ontrol problems. The main idea of MPC  is to choose control actions
y repeatedly solving an online constrained optimization problem,
Fig. 1. Centralized MPC  architecture.

which aims at minimizing a performance index over a finite pre-
diction horizon based on predictions obtained by a system model
(Camacho & Bordons, 2004; Maciejowski, 2001; Rawlings & Mayne,
2009). In general, an MPC  design is composed of three components:

1. A model of the system. This model is used to predict the future
evolution of the system in open-loop and the efficiency of the cal-
culated control actions of an MPC  depends highly on the accuracy
of the model.

2. A performance index over a finite horizon. This index will be
minimized subject to constraints imposed by the system model,
restrictions on control inputs and system state and other con-
siderations at each sampling time to obtain a trajectory of future
control inputs.

3. A receding horizon scheme. This scheme introduces feedback
into the control law to compensate for disturbances and model-
ing errors.

Typically, MPC  is studied from a centralized control point of view
in which all the manipulated inputs of a control system are opti-
mized with respect to an objective function in a single optimization
problem. Fig. 1 is a schematic representation of a centralized MPC
architecture for a system comprised of two  coupled subsystems.
Consider the control of the system of Eq. (2) and assume that
the state measurements of the system of Eq. (2) are available at
synchronous sampling time instants {tk≥0}, a standard MPC  is for-
mulated as follows (García, Prett, & Morari, 1989):

min
u1,...,um∈S(�)

J(tk) (7a)

s.t. ˙̃x(t) = f (x̃) +
m∑

i=1

gi(x̃)ui(t) (7b)

ui(t) ∈ Ui, i = 1, . . . , m (7c)

x̃(tk) = x(tk) (7d)

with

J(tk) =
m∑

i=1

∫ tk+N

tk

[∥∥x̃i(�)
∥∥2

Qci
+
∥∥ui(�)

∥∥2

Rci

]
d�

where S(�) is the family of piece-wise constant functions with sam-
pling period �,  N is the prediction horizon, Qci and Rci are strictly
positive definite symmetric weighting matrices, and x̃i, i = 1, . . .,  m,

are the predicted trajectories of the nominal subsystem i with ini-
tial state xi(tk), i = 1, . . .,  m, at time tk. The objective of the MPC  of
Eq. (7) is to achieve stabilization of the nominal system of Eq. (2) at
the origin, i.e., (x, u) = (0, 0).
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The optimal solution to the MPC  optimization problem defined
y Eq. (7) is denoted as u∗

i
(t|tk), i = 1, . . .,  m, and is defined for t ∈ [tk,

k+N). The first step values of u∗
i
(t|tk), i = 1, . . .,  m,  are applied to the

losed-loop system for t ∈ [tk, tk+1). At the next sampling time tk+1,
hen new measurements of the system states xi(tk+1), i = 1, . . .,  m,

re available, the control evaluation and implementation procedure
s repeated. The manipulated inputs of the system of Eq. (2) under
he control of the MPC  of Eq. (7) are defined as follows:

i(t) = u∗i (t|tk), ∀t ∈ [tk, tk+1), i = 1, . . . , m (8)

hich is the standard receding horizon scheme.
In the MPC  formulation of Eq. (7),  the constraint of Eq. (7a)

efines a performance index or cost index that should be mini-
ized. In addition to penalties on the state and control actions,

he index may  also include penalties on other considerations; for
xample, the rate of change of the inputs. The constraint of Eq. (7b)
s the nominal model, that is, the uncertainties are supposed to be
ero in the model of Eq. (2) which is used in the MPC  to predict
he future evolution of the process. The constraint of Eq. (7c) takes
nto account the constraints on the control inputs, and the con-
traint of Eq. (7d) provides the initial state for the MPC  which is

 measurement of the actual system state. Note that in the above
PC formulation, state constraints are not considered but can be

eadily taken into account.

.2. Stability

It is well known that the MPC  of Eq. (7) is not necessarily
tabilizing. To achieve closed-loop stability, different approaches
ave been proposed in the literature. One class of approaches is to
se infinite prediction horizons or well-designed terminal penalty
erms; please see Bitmead, Gevers, and Wertz (1990), Mayne,
awlings, Rao, and Scokaert (2000) for surveys of these approaches.
nother class of approaches is to impose stability constraints in the
PC  optimization problem (e.g., Chen & Allgöwer, 1998; Mayne

t al., 2000). There are also efforts focusing on getting explicit sta-
ilizing MPC  laws using offline computations (Maeder, Cagienard,

 Morari, 2007). However, the implicit nature of MPC  control law
akes it very difficult to explicitly characterize, a priori, the admis-

ible initial conditions starting from where the MPC  is guaranteed
o be feasible and stabilizing. In practice, the initial conditions are
sually chosen in an ad hoc fashion and tested through exten-
ive closed-loop simulations. To address this issue, Lyapunov-based
PC  (LMPC) designs have been proposed in Mhaskar, El-Farra, and

hristofides (2005, 2006) which allow for an explicit characteriza-
ion of the stability region and guarantee controller feasibility and
losed-loop stability. Below we review various methods for ensur-
ng closed-loop stability under MPC  that are utilized in the DMPC
esults to be discussed in the following sections.

We start with stabilizing MPC  formulations for linear discrete-
ime systems based on terminal weight and terminal constraints.
pecifically, a standard centralized MPC  is formulated as follows:

min
(k),...,u(k+N−1)

J(k) (9)

ubject to Eq. (4) with w = 0 and, for j = 0, . . .,  N − 1,

(k + j) ∈ U , j ≥ 0 (10)

(k + j) ∈ X , j > 0 (11)

(k + N) ∈ Xf (12)

ith
(k) =
N−1∑
j=0

[‖x(k + j)‖2Q + ‖u(k + j)‖2R] + Vf (x(k + N)) (13)
mical Engineering 51 (2013) 21– 41

The optimal solution is denoted u*(k), . . .,  u*(k + N − 1). At each sam-
pling time, the corresponding first step values u∗

i
(k) are applied

following a receding horizon approach.
The terminal set Xf⊆ X and the terminal cost Vf are used to guar-

antee stability properties, and can be selected according to the
following simple procedure. First, assume that a linear stabilizing
control law

u(k) = Kx(k) (14)

is known in the unconstrained case, i.e., A + BK is stable; a wise
choice is to compute the gain K as the solution of an infinite-horizon
linear quadratic (LQ) control problem with the same weights Q and
R used in Eq. (13). Then, letting P be the solution of the Lyapunov
equation

(A + BK)T P(A + BK) − P = −(Q + KT RK) (15)

it is possible to set Vf = xTPx and Xf = {x|xTPx ≤ c}, where c is a
small positive value chosen so that u = Kx ∈ U for any x ∈ Xf. These
choices implicitly guarantee a decreasing property of the opti-
mal  cost function (similar to the one explicitly expressed by the
constraint of Eq. (16e) in the context of Lyapunov-based MPC),
so that the origin of the state space is an asymptotically stable
equilibrium with a region of attraction given by the set of the
states for which a feasible solution of the optimization problem
exists, see, for example, Mayne et al. (2000).  Many other choices
of the design parameters guaranteeing stability properties for lin-
ear and nonlinear systems have been proposed see, for example,
Chmielewski and Manousiouthakis (1996), De Nicolao, Magni, and
Scattolini (1998), El-Farra, Mhaskar, and Christofides (2004), Fontes
(2001), Grimm,  Messina, Tuna, and Teel (2005), Gyurkovics and
Elaiw (2004), Magni, De Nicolao, Magnani, and Scattolini (2001),
Magni and Scattolini (2004), Manousiouthakis and Chmielewski
(2002), Mayne and Michalska (1990).

In addition to stabilizing MPC  formulations based on termi-
nal weight and terminal constraints, we  also review a formulation
using Lyapunov function-based stability constraints since it is
utilized in some of the DMPC schemes to be presented below.
Specifically, we review the LMPC design proposed in Mhaskar et al.
(2005, 2006) which allows for an explicit characterization of the
stability region and guarantees controller feasibility and closed-
loop stability. For the predictive control of the system of Eq. (2),
the LMPC is designed based on an existing explicit control law h(x)
which is able to stabilize the closed-loop system and satisfies the
conditions of Eq. (6).  The formulation of the LMPC is as follows:

min
u1,...,um∈S(�)

J(tk) (16a)

s.t. ˙̃x(t) = f (x̃) +
m∑

i=1

gi(x̃)ui(t) (16b)

u(t) ∈ U (16c)

x̃(tk) = x(tk) (16d)

∂V(x(tk))
∂x

gi(x(tk))ui(tk) ≤ ∂V(x(tk))
∂x

gi(x(tk))hi(x(tk)) (16e)

where V(x) is a Lyapunov function associated with the nonlinear
control law h(x). The optimal solution to this LMPC optimization
problem is denoted as ul,∗

i
(t|tk) which is defined for t ∈ [tk, tk+N).

The manipulated input of the system of Eq. (2) under the control of
the LMPC of Eq. (16) is defined as follows:
ui(t) = ul,∗
i

(t|tk), ∀t ∈ [tk, tk+1) (17)

which implies that this LMPC also adopts a standard receding hori-
zon strategy.
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Fig. 2. Alkylation of ben

In the LMPC defined by Eq. (16), the constraint of Eq. (16e)
uarantees that the value of the time derivative of the Lyapunov
unction, V(x), at time tk is smaller than or equal to the value
btained if the nonlinear control law u = h(x) is implemented in the
losed-loop system in a sample-and-hold fashion. This is a con-
traint that allows one to prove (when state measurements are
vailable every synchronous sampling time) that the LMPC inher-
ts the stability and robustness properties of the nonlinear control
aw h(x) when it is applied in a sample-and-hold fashion. Specif-
cally, one of the main properties of the LMPC of Eq. (16) is that
t possesses the same stability region �� as the nonlinear control
aw h(x), which implies that the origin of the closed-loop system
s guaranteed to be stable and the LMPC is guaranteed to be feasi-
le for any initial state inside �� when the sampling time � and
he disturbance upper bound � are sufficiently small. The stabil-
ty property of the LMPC is inherited from the nonlinear control
aw h(x) when it is applied in a sample-and-hold fashion; please
ee Clarke, Ledyaev, and Sontag (1997), Nešić, Teel, and Kokotovic
1999) for results on sampled-data systems. The feasibility prop-
rty of the LMPC is also guaranteed by the nonlinear control law
(x) since u = h(x) is a feasible solution to the optimization problem
f Eq. (16) (see also Mahmood & Mhaskar, 2008; Mhaskar et al.,
005, 2006 for detailed results on this issue). The main advantage of
he LMPC approach with respect to the nonlinear control law h(x) is
hat optimality considerations can be taken explicitly into account
as well as constraints on the inputs and the states, Mhaskar et al.,
006) in the computation of the control actions within an online
ptimization framework while improving the closed-loop perfor-
ance of the system. We  finally note that since the closed-loop

tability and feasibility of the LMPC of Eq. (16) are guaranteed by
he nonlinear control law h(x), it is unnecessary to use a terminal
enalty term in the cost index and the length of the horizon N does
ot affect the stability of the closed-loop system but it affects the
losed-loop performance.

.3. Alkylation of benzene with ethylene process example
We  now introduce a chemical process network example to dis-
uss the selection of the control configurations in the context of the
arious MPC  formulations. The process considered is the alkylation
 with ethylene process.

of benzene with ethylene and consists of four continuously stirred
tank reactors (CSTRs) and a flash tank separator, as shown in Fig. 2.
The CSTR-1, CSTR-2 and CSTR-3 are in series and involve the alkyla-
tion of benzene with ethylene. Pure benzene is fed through stream
F1 and pure ethylene is fed through streams F2, F4 and F6. Two
catalytic reactions take place in CSTR-1, CSTR-2 and CSTR-3. Ben-
zene (A) reacts with ethylene (B) and produces the required product
ethylbenzene (C) (reaction 1); ethylbenzene can further react with
ethylene to form 1,3-diethylbenzene (D) (reaction 2) which is the
byproduct. The effluent of CSTR-3, including the products and left-
over reactants, is fed to a flash tank separator, in which most of
benzene is separated overhead by vaporization and condensation
techniques and recycled back to the plant, and the bottom product
stream is removed. A portion of the recycle stream Fr2 is fed back
to CSTR-1 and another portion of the recycle stream Fr1 is fed to
CSTR-4 together with an additional feed stream F10 which contains
1,3-diethylbenzene from another distillation process that we do not
explicitly consider in this example. In CSTR-4, reaction 2 and a cat-
alyzed transalkylation reaction in which 1,3-diethylbenzene reacts
with benzene to produce ethylbenzene (reaction 3) take place. All
chemicals left from CSTR-4 eventually pass into the separator. All
the materials in the reactions are in liquid phase due to high pres-
sure.

The control objective is to stabilize the process at a desired
operating steady-state and achieve an optimal level of closed-loop
performance. To accomplish the control objective, we may  manip-
ulate the five heat inputs/removals, Q1, Q2, Q3, Q4, Q5, as well as
the two  ethylene input flow rates, F4 and F6. For a centralized MPC
architecture, all the inputs will be optimized in one optimization
problem as shown in Fig. 3.

4. Decentralized model predictive control

While there are some important reviews on decentralized con-
trol (e.g., Bakule, 2008; Sandell, Varajya, Athans, & Safonov, 1978;
Siljak, 1991; Siljak & Zecević, 2005), in this section we  focus on

results pertaining to decentralized MPC. The key feature of a decen-
tralized control framework is that there is no communication
between the different local controllers. A schematic representa-
tion of a decentralized MPC  architecture with two subsystems is
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hown in Fig. 4. It is well known that strong interactions between
ifferent subsystems may  prevent one from achieving stability and
esired performance with decentralized control (e.g., Davison &
hang, 1990; Wang & Davision, 1973). In general, in order to achieve
losed-loop stability as well as performance in the development of
ecentralized MPC  algorithms, the interconnections between dif-
erent subsystems are assumed to be weak and are considered as
isturbances which can be compensated through feedback so they
re not involved in the controller formulation explicitly.
Consider the control of the system of Eq. (2) and assume that
he state measurements of the system of Eq. (2) are available at

Fig. 4. Decentralized MPC  architecture.
 the alkylation of benzene process.

synchronous sampling time instants {tk≥0}, a typical decentralized
MPC  is formulated as follows:

min
ui∈S(�)

Ji(tk) (18a)

s.t. ˙̃xi(t) = fi(x̃i−(t)) + gsi(x̃i−(t))ui(t) (18b)

ui(t) ∈ Ui (18c)

x̃i(tk) = xi(tk) (18d)

with

Ji(tk) =
∫ tk+N

tk

[∥∥x̃i(�)
∥∥2

Qci
+
∥∥ui(�)

∥∥2

Rci

]
d�

where xi− = [0 · · · xi · · · 0]T, Ji is the cost function used in each individ-
ual local controller based on its local subsystem states and control
inputs.

In Magni and Scattolini (2006), a decentralized MPC  algorithm
for nonlinear discrete time systems subject to decaying distur-
bances was presented. No information is exchanged between the
local controllers and the stability of the closed-loop system relies
on the inclusion of a contractive constraint in the formulation of
each of the decentralized MPCs. In the design of the decentralized
MPC, the effects of interconnections between different subsystems
are considered as perturbation terms whose magnitude depends on

the norm of the system states. In Raimondo, Magni, and Scattolini
(2007), the stability of a decentralized MPC  is analyzed from an
input-to-state stability (ISS) point of view. In Alessio, Barcelli, and
Bemporad (2011), a decentralized MPC  algorithm was  developed
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Fig. 5. Decentralized MPC  configuration for

or large-scale linear processes subject to input constraints. In this
ork, the global model of the process is approximated by several

possibly overlapping) smaller subsystem models which are used
or local predictions and the degree of decoupling among the sub-
ystem models is a tunable parameter in the design. In Alessio and
emporad (2008),  possible date packet dropouts in the communi-
ation between the distributed controllers were considered in the
ontext of linear systems and their influence on the closed-loop
ystem stability was analyzed.

To develop coordinated decentralized control systems, the
ynamic interaction between different units should be considered

n the design of the control systems. This problem of identify-
ng dynamic interactions between units was studied in Gudi and
awlings (2006).

Within process control, another important work on the sub-
ect of decentralized control includes the development of a
uasi-decentralized control framework for multi-unit plants that
chieves the desired closed-loop objectives with minimal cross
ommunication between the plant units under state feedback con-
rol (Sun & El-Farra, 2008). In this work, the idea is to incorporate
n the local control system of each unit a set of dynamic models
hat provide an approximation of the interactions between the dif-
erent subsystems when local subsystem states are not exchanged
etween different subsystems and to update the state of each model

sing states information exchanged when communication is re-
stablished.

In general, the overall closed-loop performance under a decen-
ralized control system is limited because of the limitation on the
kylation of benzene with ethylene process.

available information and the lack of communication between dif-
ferent controllers (Cui & Jacobsen, 2002). This leads us to the design
of model predictive control architectures in which different MPCs
coordinate their actions through communication to exchange sub-
system state and control action information.

4.1. Alkylation of benzene with ethylene process example (cont’d)

For the alkylation of benzene process, we  may  design three
decentralized MPCs to manipulate the seven inputs as shown in
Fig. 5. In this decentralized control configuration, the first controller
(MPC 1) is used to compute the values of Q1, Q2 and Q3, the sec-
ond distributed controller (MPC 2) is used to compute the values
of Q4 and Q5, and the third controller (MPC 3) is used to compute
the values of F4 and F6. The three controllers make their decisions
independently and do not exchange any information. Note that the
number of MPCs are chosen based on the following considerations:
(a) the resulting optimization problem in terms of number of deci-
sion variables in each MPC  is of moderate size and can be solved in
a reasonable time (note that each set of inputs includes 2–3 con-
trol actuators), and (b) in the three sets of inputs we have grouped
either flow rates or heat inputs together, addressing separately
production rate and energy considerations.
5. Distributed model predictive control

To achieve better closed-loop control performance, some level
of communication may  be established between the different
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From Eq. (19), the ith subsystem nominal model is defined as
Fig. 6. Sequential DMPC architecture.

ontrollers, which leads to distributed model predictive control
DMPC). With respect to available results in this direction, several
MPC methods have been proposed as well as some important

eview articles (Rawlings & Stewart, 2008; Scattolini, 2009) have
een written which primarily focus on the review of the various
MPC schemes at a conceptual level. With respect to the DMPC
lgorithms available in the literature, a classification can be made
ccording to the topology of the communication network, the dif-
erent communication protocols used by the local controllers, and
he cost function considered in the local controller optimization
roblem (Scattolini, 2009). In the following, we will classify the
ifferent algorithms based on the cost function used in the local
ontroller optimization problem as used in Rawlings and Stewart
2008). Specifically, we will refer to the distributed algorithms
n which each local controller optimizes a local cost function as
on-cooperative DMPC algorithms, and refer to the distributed
lgorithms in which each local controller optimizes a global cost
unction as cooperative DMPC algorithms.

.1. Non-cooperative DMPC

In Richards and How (2007), a DMPC algorithm was proposed for
 class of decoupled systems with coupled constraints. This class of
ystems captures an important class of practical problems, includ-
ng, for example, maneuvering a group of vehicles from one point to
nother while maintaining relative formation and/or avoiding col-
isions. In Richards and How (2007), the distributed controllers are
valuated in sequence which means that controller i + 1 is evalu-
ted after controller i has been evaluated or vice versa. A sequential
MPC architecture with two local controllers is shown in Fig. 6. An
xtension of this work Trodden and Richards (2006) proposes the
se of the robust design method described in Mayne, Seron, and
akovic (2005) for DMPC.

In the majority of the algorithms in the category of non-
ooperative DMPC, the distributed controllers are evaluated in
arallel, i.e., at the same time. The controllers may  be only eval-
ated once (non-iterative) or iterate (iterative) to achieve a solution
t a sampling time. A parallel DMPC architecture with two  local
ontrollers is shown in Fig. 7.

Many parallel DMPC algorithms in the literature belong to the
on-iterative category. In Camponogara et al. (2002),  a DMPC algo-
ithm was proposed for a class of discrete-time linear systems. In
his work, a stability constraint is included in the problem formu-
ation and the stability can be verified a-posteriori with an analysis
f the resulting closed-loop system. In Keviczky, Borrelli, and Balas

2006), DMPC for systems with dynamically decoupled subsystems
a class of systems of relevance in the context of multi-agents sys-
ems) where the cost function and constraints couple the dynamical
ehavior of the system. The coupling in the system is described
Fig. 7. Parallel DMPC architecture.

using a graph in which each subsystem is a node. It is assumed that
each subsystem can exchange information with its neighbors (a
subset of other subsystems). Based on the results of Keviczky et al.
(2006), a DMPC framework was  constructed for control and coordi-
nation of autonomous vehicle teams (Keviczky, Borrelli, & Fregene,
2008).

In Jia and Krogh (2001),  a DMPC scheme for linear systems cou-
pled only through the state is considered, while Dunbar and Murray
(2006) deals with the problem of distributed control of dynami-
cally decoupled nonlinear systems coupled by their cost function.
This method is extended to the case of dynamically coupled nonlin-
ear systems in Dunbar (2007) and applied as a distributed control
strategy in the context of supply chain optimization in Dunbar and
Desa (2005).  In this implementation, the agents optimize locally
their own policy, which is communicated to their neighbors. The
stability is assured through a compatibility constraint: the agents
commit themselves not to deviate too far in their state and input
trajectories from what their neighbors believe they plan to do. In
Mercangoz and Doyle (2007) another iterative implementation of
a similar DMPC scheme was applied together with a distributed
Kalman filter to a quadruple tank system. Finally, in Li, Zhang, and
Zhu (2005) the Shell benchmark problem is used to test a simi-
lar algorithm. Note that all these methods lead in general to Nash
equilibria as long as the cost functions of the agents are selfish.

5.1.1. A noncooperative DMPC algorithm
As an example of a noncooperative DMPC algorithm for discrete-

time systems described by Eq. (3),  we  now synthetically describe
the method recently proposed in Farina and Scattolini (2011) rely-
ing on the “tube-based” approach developed in Mayne et al. (2005)
for the design of robust MPC. The rationale is that each subsystem
i transmits to its neighbors its planned state reference trajectory
x̃i(k + j), j = 1, . . .,  N, over the prediction horizon and “guarantees”
that, for all j ≥ 0, its actual trajectory lies in a neighborhood of x̃i,
i.e., xi(k + j) ∈ x̃i(k + j) ⊕ Ei, where Ei is a compact set including the
origin. In this way, Eq. (3) can be written as

xi(k + 1) = Aiixi(k) + Biui(k) +
∑

j

Aijx̃j(k) + wi(k) (19)

where wi(k) =
∑

jAij(xj(k) − x̃j(k)) ∈ Wi is a bounded disturbance,

Wi = ⊕jAijEi and the term
∑

jAijx̃j(k) can be interpreted as an input,
known in advance over the prediction horizon. Note that in this
case, we assume that the only disturbance of each model is due to
the mismatch between the planned and real state trajectories.
x̂i(k + 1) = Aiix̂i(k) + Biûi(k) +
∑

j

Aijx̃j(k) (20)
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etting K =diag(K1, . . .,  KM) be a block-diagonal matrix such that
oth A + BK and Aii + BiKi are stable, the local control law is chosen
s

i(k) = ûi(k) + Ki(xi(k) − x̂i(k)) (21)

From Eqs. (19) and (21) and letting zi(k) = xi(k) − x̂i(k), we
btain:

i(k + 1) = (Aii + BiKi)zi(k) + wi(k) (22)

here wi ∈ Wi. Since Wi is bounded and Aii + BiKi is stable, there
xists a robust positively invariant set Zi for Eq. (22) such that, for
ll zi(k) ∈ Zi and wi(k) ∈ Wi, then zi(k + 1) ∈ Zi. Given Zi and assuming
hat there exist neighborhoods of the origin Ei such that Ei ⊕ Zi ⊆ Ei,
t any time instant k, the i-th subsystem computes the value of ûi(k)
n Eq. (21) as the solution of

min
ˆi(k),ûi(k),...,ûi(k+N−1)

Ji(k) (23)

ubject to Eq. (20) and, for j = 0, . . .,  N − 1,

i(k) − x̂i(k) ∈ Zi (24)

ˆi(k + j) − x̃i(k + j) ∈ Ei (25)

ˆi(k + j) ∈ X̂i ⊆ Xi � Zi (26)

ˆ i(k + j) ∈ Ûi ⊆ Ui � KiZi (27)

ˆi(k + N) ∈ X̂fi (28)

In this problem,

i(k) =
N−1∑
j=0

[‖xi(k + j)‖2Qi
+ ‖ui(k + j)‖2Ri

] + ‖x(k + N)‖2Pi
(29)

nd the restricted constraints given by Eqs. (24)–(27) are used to
nsure that the difference between xi and x̃i is effectively limited,
s initially stated, while a proper choice of the weights Qi, Ri, Pi and
f the terminal set Xfi guarantee the stabilizing properties of the
ethod, please see Farina and Scattolini (2011, 2012) for details.

inally, with the optimal solution at time k, it is also possible to
ompute the predicted value x̂i(k + N), which is used to incremen-
ally define the reference trajectory of the state to be used at the
ext time instant k + 1, i.e., x̃i(k + N) = x̂i(k + N).

.2. Cooperative DMPC

The key feature of cooperative DMPC is that in each of the local
ontrollers, the same global cost function is optimized. In recent
ears, many efforts have been made to develop cooperative DMPC
or linear and nonlinear systems.

The idea of cooperative DMPC was first introduced in Venkat,
awlings, and Wright (2005) and later developed in Rawlings and
tewart (2008).  In the latter work, a set of linear systems coupled
hrough the inputs of the type presented in Eq. (5) were considered.

In cooperative DMPC each controller takes into account the
ffects of its inputs on the entire plant through the use of a cen-
ralized cost function. At each iteration, each controller optimizes
ts own set of inputs assuming that the rest of the inputs of its
eighbors are fixed to the last agreed value. Subsequently, the con-
rollers share the resulting optimal trajectories and a final optimal
rajectory is computed at each sampling time as a weighted sum of

he most recent optimal trajectories with the optimal trajectories
omputed at the last sampling time.

The cooperative DMPCs use the following implementation strat-
gy:
mical Engineering 51 (2013) 21– 41 29

1.  At k, all the controllers receive the full state measurement x(k)
from the sensors.

2. At iteration c (c ≥ 1):
2.1. Each controller evaluates its own future input trajectory

based on x(k) and the latest received input trajectories of
all the other controllers (when c = 1, initial input guesses
obtained from the shifted latest optimal input trajectories
are used).

2.2. The controllers exchange their future input trajectories.
Based on all the input trajectories, each controller calculates
the current decided set of inputs trajectories uc.

3. If a termination condition is satisfied, each controller sends its
entire future input trajectory to its actuators; if the termination
condition is not satisfied, go to Step 2 (c ← c + 1).

4. When a new measurement is received, go to Step 1 (k ← k + 1).

At each iteration, each controller solves the following optimiza-
tion problem:

min
ui(k),...,ui(k+N−1)

J(k) (30)

subject to Eq. (4) with w = 0 and, for j = 0, . . .,  N − 1,

ui(k + j) ∈ Ui , j ≥ 0 (31)

ul(k + j) = ul(k + j)c−1 , ∀l /= i (32)

x(k + j) ∈ X , j > 0 (33)

x(k + N) ∈ Xf (34)

with

J(k) =
∑

i

Ji(k) (35)

and

Ji(k) =
N−1∑
j=0

[‖xi(k + j)‖2Qi
+ ‖ui(k + j)‖2Ri

] + ‖x(k + N)‖2Pi
(36)

Note that each controller must have knowledge of the full system
dynamics and of the overall objective function.

After the controllers share the optimal solutions ui(k + j)*, the
optimal trajectory at iteration c, ui(k + j)c, is obtained from a con-
vex combination between the last optimal solution and the current
optimal solution of the MPC  problem of each controller, that is,

ui(k + j)c = ˛iui(k + j)c−1 + (1 − ˛i)ui(k + j)∗

where ˛i are the weighting factors for each agent. This distributed
optimization is of the Gauss–Jacobi type.

In Stewart, Venkat, Rawlings, Wright, and Pannocchia (2010),
Venkat et al. (2005),  an iterative cooperative DMPC algorithm
was designed for linear systems. It was proven that through
multiple communications between distributed controllers and
using system-wide control objective functions, stability of the
closed-loop system can be guaranteed for linear systems, and the
closed-loop performance converges to the one of the correspond-
ing centralized control system as the iteration number increases.
A design method to choose the stability constraints and the cost
function is given that guarantees feasibility (given an initial fea-
sible guess), convergence and optimality (if the constraints of the
inputs are not coupled) of the resulting distributed optimization
algorithm. In addition, the stability properties of the resulting

closed-loop system, output feedback implementations and coupled
constraints are also studied.

The properties of cooperative DMPC are strongly based on con-
vexity. In Stewart, Wright, and Rawlings (2011),  the results were
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Fig. 8. Sequential DMPC architecture using LMPC (Liu, Chen, et al., 2010).

xtended to include nonlinear systems and the resulting non-
onvex optimization problems without guaranteed convergence
f the closed-loop performance to the corresponding centralized
ontrol system.

Two cooperative and iterative DMPC algorithms for cascade
rocesses have been described in Zhang and Li (2007),  where the
erformance index minimized by each agent includes the cost func-
ions of its neighborhoods, communication delays are considered
nd stability is proven in the unconstrained case.

In addition to these results, recent efforts Liu, Chen, Muñoz
e la Peña, and Christofides (2010), Liu, Muñoz de la Peña, and
hristofides (2009) have focused on the development of Lyapunov-
ased sequential and iterative, cooperative DMPC algorithms for
onlinear systems with well-characterized regions of closed-loop
tability. Below we discuss these DMPC algorithms. Below we  dis-
uss these DMPC algorithms. We  note that we use nonlinear models
o present these DMPC algorithms because these results have been
eveloped primarily for nonlinear systems (even though they are
ew even for the linear case).

.2.1. Sequential DMPC
In Liu, Chen, et al. (2010), Liu, Muñoz de la Peña, and Christofides

2009), a sequential DMPC architecture shown in Fig. 8 for fully
oupled nonlinear systems was developed based on the assump-
ion that the full system state feedback is available to all the
istributed controllers at each sampling time. In the proposed
equential DMPC, for each set of the control inputs ui, a Lyapunov-
ased MPC  (LMPC), denoted LMPC i, is designed. The distributed
MPCs use the following implementation strategy:

. At tk, all the LMPCs receive the state measurement x(tk) from the
sensors.

. For j = m to 1
2.1. LMPC j receives the entire future input trajectories of ui,

i = m,  . . .,  j + 1, from LMPC j + 1 and evaluates the future input
trajectory of uj based on x(tk) and the received future input
trajectories.

2.2. LMPC j sends the first step input value of uj to its actuators
and the entire future input trajectories of ui, i = m, . . .,  j, to
LMPC j − 1.

. When a new measurement is received (k ← k + 1), go to Step 1.

In this architecture, each LMPC only sends its future input trajec-
ory and the future input trajectories it received to the next LMPC
i.e., LMPC j sends input trajectories to LMPC j − 1). This implies that
MPC j, j = m, . . .,  2, does not have any information about the values

hat ui, i = j − 1, . . .,  1 will take when the optimization problems of
he LMPCs are designed. In order to make a decision, LMPC j, j = m,

 . .,  2 must assume trajectories for ui, i = j − 1, . . .,  1, along the pre-
iction horizon. To this end, an explicit nonlinear control law h(x)
Fig. 9. Iterative DMPC architecture using LMPC (Liu, Chen, et al., 2010).

which can stabilize the closed-loop system asymptotically is used.
In order to inherit the stability properties of the controller h(x), a
Lyapunov function based constraint is incorporated in each LMPC
to guarantee a given minimum contribution to the decrease rate of
the Lyapunov function V(x). Specifically, the design of LMPC j, j = 1,
. . .,  m,  is based on the following optimization problem:

min
uj∈S(�)

J(tk) (37a)

s.t. ˙̃x(t) = f (x̃(t)) +
m∑

i=1

gi(x̃(t))ui (37b)

ui(t) = hi(x̃(tk+l)), i = 1, . . . , j − 1,

∀t ∈ [tk+l, tk+l+1), l = 0, ..., N − 1
(37c)

ui(t) = u∗s,i(t|tk), i = j + 1, . . . , m (37d)

uj(t) ∈ Uj (37e)

x̃(tk) = x(tk) (37f)

∂V(x(tk))
∂x

gj(x(tk))uj(tk) ≤ ∂V(x(tk))
∂x

gj(x(tk))hj(x(tk)). (37g)

In the optimization problem of Eq. (37), u∗
s,i

(t|tk) denotes the
optimal future input trajectory of ui obtained by LMPC i evaluated
before LMPC j. The constraint of Eq. (37c) defines the value of the
inputs evaluated after uj (i.e., ui with i = 1, . . .,  j − 1); the constraint
of Eq. (37d) defines the value of the inputs evaluated before uj (i.e.,
ui with i = j + 1, . . .,  m);  the constraint of Eq. (37g) guarantees that
the contribution of input uj to the decrease rate of the time deriva-
tive of the Lyapunov function V(x) at the initial evaluation time (i.e.,
at tk), if uj = u∗

s,j
(tk|tk) is applied, is bigger than or equal to the value

obtained when uj = hj(x(tk)) is applied. This constraint allows prov-
ing the closed-loop stability properties of this DMPC (Liu, Chen,
et al., 2010; Liu, Muñoz de la Peña, & Christofides, 2009).

5.2.2. Iterative DMPC
In Liu, Chen, et al. (2010),  a Lyapunov-based iterative DMPC algo-

rithm shown in Fig. 9 was proposed for coupled nonlinear systems.
The implementation strategy of this iterative DMPC is as follows:

1. At tk, all the LMPCs receive the state measurement x(tk) from the
sensors and then evaluate their future input trajectories in an

iterative fashion with initial input guesses generated by h(·).

2. At iteration c (c ≥ 1):
2.1. Each LMPC evaluates its own  future input trajectory based

on x(tk) and the latest received input trajectories of all the
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other LMPCs (when c = 1, initial input guesses generated by
h(·) are used).

2.2. The controllers exchange their future input trajectories.
Based on all the input trajectories, each controller calculates
and stores the value of the cost function.

. If a termination condition is satisfied, each controller sends
its entire future input trajectory corresponding to the small-
est value of the cost function to its actuators; if the termination
condition is not satisfied, go to Step 2 (c ← c + 1).

. When a new measurement is received, go to Step 1 (k ← k + 1).

ote that at the initial iteration, all the LMPCs use h(x) to esti-
ate the input trajectories of all the other controllers. Note also

hat the number of iterations c can be variable and it does not
ffect the closed-loop stability of the DMPC architecture presented
n this section. For the iterations in this DMPC architecture, there
re different choices of the termination condition. For example,
he number of iterations c may  be restricted to be smaller than

 maximum iteration number cmax (i.e., c ≤ cmax) and/or the itera-
ions may  be terminated when the difference of the performance
r the solution between two consecutive iterations is smaller than

 threshold value and/or the iterations maybe terminated when
 maximum computational time is reached. In order to proceed,
e define x̂(t|tk) for t ∈ [tk, tk+N) as the nominal sampled trajectory

f the system of Eq. (2) associated with the feedback control law
(x) and sampling time � starting from x(tk). This nominal sam-
led trajectory is obtained by integrating recursively the following
ifferential equation:

˙̂x(t|tk) = f (x̂(t|tk)) +
m∑

i=1

gi(x̂(t|tk))hi(x̂(tk+l|tk)),

∀� ∈ [tk+l, tk+l+1), l = 0, . . . , N − 1.

(38)

ased on x̂(t|tk), we can define the following variable:

un,j(t|tk) = hj(x̂(tk+l|tk)), j = 1, . . . , m,

∀� ∈ [tk+l, tk+l+1), l = 0, . . . , N − 1.
(39)

hich will be used as the initial guess of the trajectory of uj.
The design of the LMPC j, j = 1, . . .,  m,  at iteration c is based on

he following optimization problem:

min
j∈S(�)

J(tk) (40a)

.t. ˙̃x(t) = f (x̃(t)) +
m∑

i=1

gi(x̃(t))ui (40b)

i(t) = u∗,c−1
p,i

(t|tk), ∀i /= j (40c)

j(t) ∈ Uj (40d)

˜(tk) = x(tk) (40e)

∂V(x(tk))
∂x

gj(x(tk))uj(tk) ≤ ∂V(x(tk))
∂x

gj(x(tk))hj(x(tk)) (40f)

here u∗,c−1
p,i

(t|tk) is the optimal input trajectories at iteration c − 1.
In general, there is no guaranteed convergence of the optimal

ost or solution of an iterated DMPC to the optimal cost or solu-
ion of a centralized MPC  for general nonlinear constrained systems
ecause of the non-convexity of the MPC  optimization problems.
owever, with the above implementation strategy of the iterative

MPC presented in this section, it is guaranteed that the optimal
ost of the distributed optimization of Eq. (40) is upper bounded
y the cost of the Lyapunov-based controller h(·) at each sampling
ime.
Fig. 10. DMPC based on agent negotiation.

Note that in the case of linear systems, the constraint of Eq. (40f)
is linear with respect to uj and it can be verified that the optimiza-
tion problem of Eq. (40) is convex. The input given by LMPC j of Eq.
(40) at each iteration may  be defined as a convex combination of the
current optimal input solution and the previous one, for example,

uc
p,j(t|tk) =

m,i /=  j∑
i=1

wiu
c−1
p,j

(t|tk) + wju
∗,c
p,j

(t|tk) (41)

where
∑m

i=1wi = 1 with 0 < wi < 1, u∗,c
p,j

is the current solution

given by the optimization problem of Eq. (40) and uc−1
p,j

is the convex
combination of the solutions obtained at iteration c −1. By doing
this, it is possible to prove that the optimal cost of the distributed
LMPC of Eq. (5.2.2) converges to the one of the corresponding cen-
tralized control system (Bertsekas & Tsitsiklis, 1997; Christofides,
Liu, & Muñoz de la Peña, 2011; Stewart et al., 2010).

5.2.3. DMPC based on agent negotiation
We  review next a line of work on DMPC algorithms which

adopt an iterative approach for constrained linear systems coupled
through the inputs (Maestre, Muñoz de la Peña, & Camacho, 2011;
Maestre, Muñoz de la Peña, Camacho, & Alamo, 2011). Fig. 10 shows
a scheme of this class of controllers. Note that there is one agent
for each subsystem and that the number of controlled inputs may
differ from the number of subsystems.

In this class of controllers, the controllers (agents, in general) do
not have any knowledge of the dynamics of any of its neighbors, but
can communicate freely among them in order to reach an agree-
ment. The proposed strategy is based on negotiation between the
agents. At each sampling time, following a given protocol, agents
make proposals to improve an initial feasible solution on behalf
of their local cost function, state and model. These proposals are
accepted if the global cost improves the cost corresponding to the
current solution.

The cooperative DMPCs use the following implementation strat-
egy:

1. At k, each one of the controllers receives its local state measure-
ment xi(k) from its sensors and ud is obtained shifting the decided
input trajectory at time step k − a.

2. At iteration c (c ≥ 1):

2.1. One agent evaluates and sends a proposal to its neighbors.
2.2. Each neighbor evaluates the cost increment of applying the

proposal instead of the current solution ud and sends this
cost increment to the agent making the proposal.
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2.3. The agent making the proposal evaluates the total increment
of the cost function obtained from the information received
and decides the new value of ud.

2.4. The agent making the proposal communicates the decision
to its neighbors.

. If a termination condition is satisfied, each controller sends its
entire future input trajectory to its actuators; if the termination
condition is not satisfied, go to Step 2 (c ← c + 1).

. When a new measurement is received, go to Step 1 (k ← k + 1).

everal proposals can be evaluated in parallel as long as they do not
nvolve the same set of agents; that is, at any given time an agent
an only evaluate a single proposal.

In order to generate a proposal, agent i minimizes its own  local
ost function Ji solving the following optimization problem:

min
(k),...,u(k+N−1)

Ji(k) (42)

ubject to Eq. (5) with wi = 0 and, for j = 0, . . .,  N − 1,

l(k + j) ∈ Ul , l ∈ nprop (43)

l(k + j) = ul(k + j)d , ∀l /∈ nprop (44)

i(k + j) ∈ Xi , j > 0 (45)

i(k + N) ∈ Xfi (46)

here the Ji(k) cost function depends on the predicted trajectory of
i and the inputs which affect it. In this optimization problem, agent

 optimizes over a set nprop of inputs that affect its dynamics. The
est of inputs are set to the currently accepted solution ul(k + j)d.

Each agent l who is affected by the proposal of agent i evaluates
he predicted cost corresponding to the proposed solution. To do
o, the agent calculates the difference between the cost of the new
roposal and the cost of the current accepted proposal. This infor-
ation is sent to agent i, which can then evaluate the total cost of

ts proposal, that is, J(k) =
∑

iJi(k), to make a cooperative decision
n the future inputs trajectories. If the cost improves the currently
ccepted solution, then ul(k + j)d = ul(k + j)* for all l ∈ nprop, else the
roposal is discarded.

With an appropriate design of the objective functions, the termi-
al region constraints and assuming that an initial feasible solution

s at hand, this controller can be shown to provide guaranteed sta-
ility of the resulting closed-loop system.

.3. Distributed optimization

Starting from the seminal contributions reported in Findeisen
t al. (1980), Mesarovic, Macko, and Takahara (1970),  many efforts
ave been devoted to develop methods for the decomposition of

 large optimization problem into a number of smaller and more
ractable ones. Methods such as primal or dual decomposition are
ased on this idea; an extensive review of this kind of algorithms
an be found in Bertsekas and Tsitsiklis (1997).  Dual decomposition
as been used for DMPC in Rantzer (2009),  while other augmented
agrangian formulations were proposed in Negenborn R.R. (2007)
nd applied to the control of irrigation canals in Negenborn, Van
verloop, Keviczky, and De Schutter (2009) and to traffic networks,

ee Camponogara and Barcelos de Oliveira (2009), Camponogara,
cherer, and Vila Moura (2009).  In the MPC  framework, algo-
ithms based on this approach have also been described in Cheng,
orbes, and Yip (2007, 2008), Katebi and Johnson (1997).  A dif-
erent gradient-based distributed dynamic optimization method

as proposed in Scheu, Busch, and Marquardt (2010), Scheu and
arquardt (2011) and applied to an experimental four tanks plant

n Alvarado et al. (2011).  The method of Scheu et al. (2010), Scheu
nd Marquardt (2011) is based on the exchange of sensitivities. This
mical Engineering 51 (2013) 21– 41

information is used to modify the local cost function of each agent
adding a linear term which partially allow to consider the other
agents’ objectives.

In order to present the basic idea underlying the application of
the popular dual decomposition approach in the context of MPC,
consider the set of systems of Eq. (3) in nominal conditions (wi = 0)
and the following (unconstrained) problem

min
u(k),...,u(k+N−1)

J(k) =
m∑

i=1

Ji(k) (47)

where

Ji(k) =
N−1∑
j=0

[‖xi(k + j)‖2Qi
+ ‖ui(k + j)‖2Ri

] + ‖xi(k + N)‖2Pi
(48)

Note that the problem is separable in the cost function given
by Eq. (47), while the coupling between the subproblems is due
to the dynamics of Eq. (3).  Define now the “coupling variables”
�i =
∑

j /=  iAijxj and write Eq. (3) as

xi(k + 1) = Aiixi(k) + Biui(k) + �i(k) (49)

Let 	i be the Lagrange multipliers, and consider the Lagrangian
function:

L(k) =
m∑

i=1

⎡
⎣Ji(k) +

N−1∑
l=0

	i(k + l)(�i(k + l) −
∑
j /=  i

Aijxj(k + l))

⎤
⎦ (50)

For the generic vector variable ϕ, let ϕi(k) = [ϕT
i
(k), . . . , ϕT

i
(k +

N − 1)]T and ϕ = [ϕT
1, . . . , ϕT

m]T . Then, by relaxation of the coupling
constraints, the optimization problem of Eq. (47) can be stated as

max
	(k)

min
u(k),�(k)

L(k) (51)

or, equivalently

max
	(k)

m∑
i=1

J̃i(k) (52)

where, letting Aji be a block-diagonal matrix made by N blocks equal
to Aji,

J̃i(k) = min
ui(k),�i(k)

⎡
⎣Ji(k) + 	

T
i (k)�i(k) −

∑
j /=  i

	
T
j (k)Ajixi(k))

⎤
⎦ (53)

At any time instant, this optimization problem is solved accord-
ing to the following two-step iterative procedure:

1. for a fixed 	, solve the set of m independent minimization prob-
lems given by Eq. (53) with respect to ui(k), �i(k);

2. given the collective values of u, � computed at the previous step,
solve the maximization problem given by Eq. (52) with respect
to 	.

Although the decomposition approaches usually require a great
number of iterations to obtain a solution, many efforts have been
devoted to derive efficient algorithms, see for example in Bertsekas
and Tsitsiklis (1997), Necoara, Nedelcu, and Dumitrache (2011).

Notably, as shown for example in Doan, Keviczky, and De Schutter
(2011), the second step of the optimization procedure can be also
performed in a distributed way  by suitably exploiting the structure
of the problem.
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Fig. 11. A distributed MPC configuration for

.4. Alkylation of benzene with ethylene process example (cont’d)

Fig. 11 shows a distributed control configuration for the alkyla-
ion process. In this design, three distributed MPCs are designed to

anipulate the three different sets of control inputs and commu-
icate through the plant-wide network to exchange information
nd coordinate their actions. Specifically, the first controller (MPC
) is used to compute the values of Q1, Q2 and Q3, the second dis-
ributed controller (MPC 2) is used to compute the values of Q4
nd Q5, and the third controller (MPC 3) is used to compute the
alues of F4 and F6. This decomposition of the control loops is moti-
ated by physical considerations: namely, one MPC (1) is used to
anipulate the feed flow of ethylene into the process, another MPC

2) is used to manipulate the heat input/removal (Q1, Q2 and Q3)
o the first three reactors where the bulk of the alkylation reac-
ions takes place and the third MPC  (3) is used to manipulate the
eat input/removal to the separator and the fourth reactor (Q4 and
5) that processes the recycle stream from the separator. Either
equential or iterative communication architectures can be used
n this DMPC design. Please refer to Christofides et al. (2011), Liu,
hen, et al. (2010), Liu, Chen, Muñoz de la Peña, and Christofides
2012) for detailed simulation results and discussion.

. Decompositions for DMPC

An important and unresolved in its generality issue in DMPC

s how to decompose the total number of control actuators into
mall subsets, each one of them being controlled by a different
PC  controller. There have been several ideas for how to do this

ecomposition based on plant layout considerations as well as via
lkylation of benzene with ethylene process.

time-scale considerations. Below, we  review some of these decom-
positions.

6.1. Decomposition into subsystems and multirate DMPC

Partitioning and decomposition of a process into several sub-
systems is an important topic. The recent work Heidarinejad, Liu,
Muñoz de la Peña, Davis, and Christofides (2011b) describes the
design of a network-based DMPC system using multirate sampling
for large-scale nonlinear systems composed of several coupled sub-
systems. A schematic representation of the plant decomposition
and of the control system is shown in Fig. 12.  In the context of the
alkylation of benzene with ethylene process example, this decom-
position means that each reactor or separator has its own MPC
controller, i.e., MPC  1 is used to manipulate Q1, MPC  2 is used
to manipulate Q2 and F4 and so on. Specifically, in Heidarinejad
et al. (2011b), the states of each local subsystem are assumed to be
divided into fast sampled states and slowly sampled states. Further-
more, the assumption is made that there is a distributed controller
associated with each subsystem and the distributed controllers are
connected through a shared communication network. At a sam-
pling time in which slowly and fast sampled states are available, the
distributed controllers coordinate their actions and predict future
input trajectories which, if applied until the next instant that both
slowly and fast sampled states are available, guarantee closed-loop

stability. At a sampling time in which only fast sampled states
are available, each distributed controller tries to further optimize
the input trajectories calculated at the last instant in which the
controllers communicated, within a constrained set of values to
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mprove the closed-loop performance with the help of the available
ast sampled states of its subsystem.

.2. Hierarchical and multilevel MPC

In the process industry, the control structure is usually orga-
ized in a number of different layers. At the bottom level, standard
I-PID regulators are used for control of the actuators, while at

 higher layer MPC  is usually applied for set-point tracking of
he main control variables. Finally, at the top of the hierarchy,
ptimization is used for plantwide control with the scope of pro-
iding efficient, cost-effective, reliable, and smooth operation of
he entire plant. An extensive discussion of hierarchical, multilayer
ontrol is beyond the scope of this review, and reference is made
o the wide literature in the field, with particular reference to the
xcellent and recent survey papers (Engell, 2007; Tatjewski, 2008).
ecent results on the design of two-level control systems designed
ith MPC  and allowing for reconfiguration of the control structure
ave also been reported in De Vito, Picasso, and Scattolini (2010),
icasso, De Vito, Scattolini, and Colaneri (2010).  As an additional
emark, it is worth mentioning that a recent stream of research is
evoted to the so-called economic MPC, with the aim to directly
se feedback control for optimizing economic performance, rather
han simply stabilizing the plant and maintaining steady operation,
ee e.g., Diehl, Amrit, and Rawlings (2011), Heidarinejad, Liu, and
hristofides (2012), Rawlings, Bonné, Jørgensen, Venkat, and Bay

ørgensen (2008).
In  a wider perspective, hierarchical and multilayer structures

re useful for control of very large scale systems composed by a
umber of autonomous or semi-autonomous subsystems, which
ust be coordinated to achieve a common goal. Examples can

e found in many different fields, such as robotics (Baker, 1998;
alckenaers, Van Brussel, Wyns, Peeters, & Bongaerts, 1999),

ransportation networks (Negenborn, De Schutter, & Hellendoorn,
008), voltage control in energy distribution networks (Negenborn,
eirens, De Schutter, & Hellendoorn, 2009), control of irriga-
ion canals (Negenborn, Van Overloop, et al., 2009; Zafra-Cabeza,

aestre, Ridao, Camacho, & Sanchez, 2011), and automation of bag-
age handling systems (Tarău, De Schutter, & Hellendoorn, 2010).
he design of multilayer structures according to a leader-follower
pproach for networked control has been considered in Baç ar and

rikant (2002).  In any case, the design of multilayer structures
equires multi-level and multi-resolution models, which, accord-
ng to Tatjewski (2008),  can be obtained according to a functional,
emporal or spatial decomposition approach.
-point links; dashed line denotes slow state sampling and/or shared communication

6.3. MPC  of two-time-scale systems

Most chemical processes involve physico-chemical phenomena
that occur in distinct (slow and fast) time scales. Singular perturba-
tion theory provides a natural framework for modeling, analyzing
and controlling multiple time-scale processes. While there has been
extensive work on feedback control of two-time-scale processes
within the singular perturbation framework (e.g., Kokotovic, Khalil,
& O’Reilly, 1986), results on MPC  of two-time-scale systems have
been relatively recent (Chen, Heidarinejad, Liu, Muñoz de la Peña,
& Christofides, 2011; Van Henten & Bontsema, 2009). Below, we
discuss some of these results pertaining to the subject of decen-
tralized/distributed MPC.

6.3.1. Slow time-scale MPC
Specifically, in Chen et al. (2011),  MPC  was considered in the

context of nonlinear singularly perturbed systems in standard form
with the following state-space description:

ẋ = f (x, z, �, us, w),  x(0) = x0

�ż = g(x, z, �, uf , w), z(0) = z0

(54)

where x ∈ Rn and z ∈ Rm denote the vectors of state variables, � is a
small positive parameter, w ∈ Rl denotes the vector of disturbances
and us ∈ U ⊂ Rp and uf ∈ Ṽ  ⊂ Rq are two sets of manipulated inputs.
Since the small parameter � multiplies the time derivative of the
vector z in the system of Eq. (2),  the separation of the slow and fast
variables in Eq. (2) is explicit, and thus, we  will refer to the vec-
tor x as the slow states and to the vector z as the fast states. With
respect to the control problem formulation, the assumption is made
that the fast states z are sampled continuously and their measure-
ments are available for all time t (for example, variables for which
fast sampling is possible usually include temperature, pressure and
hold-ups) while the slow states x are sampled synchronously and
are available at time instants indicated by the time sequence {tk≥0}
with tk = t0+ k�,  k = 0, a, . . . where t0 is the initial time and � is
the sampling time (for example, slowly sampled variables usually
involve species concentrations). The set of manipulated inputs uf is
responsible for stabilizing the fast dynamics of Eq. (2) and for this
set the control action is assumed to be computed continuously,
while the set of manipulated inputs us is evaluated at each sam-
pling time tk and is responsible for stabilizing the slow dynamics

and enforcing a desired level of optimal closed-loop performance.
The explicit separation of the slow and fast variables in the system
of Eq. (2) allows decomposing it into two  separate reduced-order
systems evolving in different time-scales. To proceed with such a
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ig. 13. A schematic representation of a composite control system using MPC  in the
low time-scale.

wo-time-scale decomposition and in order to simplify the nota-
ion of the subsequent development, we will first address the issue
f stability of the fast dynamics. Since there is no assumption that
he fast dynamics of Eq. (2) are asymptotically stable, we  assume
he existence of a “fast” feedback control law uf = p(x, z) that renders
he fast dynamics asymptotically stable. Substituting uf = p(x, z) in
q. (2) and setting � = 0 in the resulting system, we obtain:

dx

dt
= f (x, z, 0, us, w) (55a)

 = g(x, z, 0, p(x, z), w) (55b)

ssuming that the equation g(x, z, 0, p(x, z), w)  = 0 possesses a
nique root

 = ĝ(x, w) (56)

e can construct the slow subsystem:

dx

dt
= f (x, ĝ(x, w), 0, us, w) =: fs(x, us, w) (57)

ntroducing the fast time scale � = (t/�) and the deviation variable
 = z − ĝ(x, w), we can rewrite the nonlinear singularly perturbed
ystem of Eq. (2) as follows:

dx

d�
= �f (x, y + ĝ(x, w), �, us, w)

dy

d�
= g(x, y + ĝ(x, w), �, uf , w) − �

∂ĝ

∂w
ẇ

−�
∂ĝ

∂x
f (x, y + ĝ(x, w), �, us, w)

(58)

etting � = 0, we obtain the following fast subsystem:

dy

d�
= g(x, y + ĝ(x, w), 0, uf , w) (59)

here x and w can be considered as “frozen” to their initial values.
he fast subsystem can be made asymptotically stable uniformly
n x ∈ Rn and w ∈ Rl with the appropriate design of uf = p(x, z). MPC
s used to compute the control action us in the slow time-scale. A
chematic representation of the proposed control system structure
s shown in Fig. 13.  Specifically, an LMPC of the type of Eq. (16) was
sed (Mhaskar et al., 2006) which guarantees practical stability of
he closed-loop system and allows for an explicit characterization
f the stability region to compute us. The LMPC is based on the
yapunov-based controller h(x). Using stability results for nonlinear
ingularly perturbed systems, the closed-loop system is analyzed
nd sufficient conditions for stability have been derived (Chen et al.,
011).
.3.2. Fast/slow MPC  design
In addition to the development of the composite control sys-

em of Fig. 13,  the singular perturbation framework of Eq. (54) can
e also used to develop composite control systems where an MPC
Fig. 14. A schematic representation of a composite control system using MPC  in
both the fast and slow time-scales.

controller is used in the fast time scale (Chen, Heidarinejad, Liu,
& Christofides, 2012). In this case, a convenient way from a con-
trol problem formulation point of view is to design a fast-MPC that
uses feedback of the deviation variable y in which case uf is only
active in the boundary layer (fast motion of the fast dynamics) and
becomes nearly zero in the slow time-scale. The resulting control
architecture in this case is shown in Fig. 14 where there is no need
for communication between the fast MPC  and the slow MPC; in
this sense, this control structure can be classified as decentralized.
Specifically, referring to the singularly perturbed system of Eq. (58),
the cost can be defined as

J = Js + Jf

=
∫ N�s

0

[xT (�̃)Qsx(�̃) + uT
s (�̃)Rsus(�̃)]d�̃

+
∫ N�f

0

[yT (�̃)Qf y(�̃) + uT
f (�̃)Rf uf (�̃)]d�̃

(60)

where Qs, Qf, Rs, Rf are positive definite weighting matrices, �s is
the sampling time of us and �f is the sampling time of uf. The fast
MPC can be then formulated as follows

min
uf ∈S(�f )

Jf (61a)

s.t.
dy

d�
= g(x, y + g̃(x, 0),  0, uf , 0) (61b)

uf ∈ V (61c)

stability constraints (61d)

where z = g̃(x, 0) is the solution of the equation g(x, z, 0, 0, 0) = 0.
The slow MPC  is designed on the basis of the system of Eq. (57) with
w = 0 and ĝ(x, w) = g̃(x). Such a two-time-scale DMPC architecture
takes advantage of the time-scale separation in the process model
and does not require communication between the two  MPCs yet
can ensure closed-loop stability and near optimal performance in
the sense of computing control actions that minimize J = Js + Jf as
� → 0.

7. Distributed state estimation and asynchronous/delayed
sampling

7.1. Distributed state estimation

Many algorithms for distributed state estimation have already
been proposed in the literature. Among them, we  can recall the
early contributions reported in Hashemipour, Roy, and Laub (1988),
Rao and Durrant-Whyte (1991),  aimed at reducing the compu-

tational complexity of centralized Kalman filters. In Mutambara
(1998),  a solution based on reduced-order and decoupled models
for each subsystem was  proposed, while subsystems with over-
lapping states were considered in the fully distributed schemes
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f Khan and Moura (2008), Stanković, Stanković, and Stipanović
2009a, 2009b) and in Vadigepalli and Doyle (2003),  where an
ll-to-all communication among subsystems was required. The
roblem of distributed estimation for sensor networks where
ach sensor measures just some of the system outputs and com-
utes the estimate of the overall state have been studied in
lriksson and Rantzer (2006), Carli, Chiuso, Schenato, and Zampieri

2008), Kamgarpour and Tomlin (2008), Olfati-Saber (2007) and in
arina, Ferrari-Trecate, and Scattolini (2009, 2010a, 2010b), where
he Moving Horizon Estimation (MHE) approach has been used
o cope with constraints on noise and state variables. Finally,

HE algorithms for linear constrained systems decomposed into
nterconnected subsystems without overlapping states have been
escribed in Farina, Ferrari-Trecate, and Scattolini (2010c, 2011).

.2. Asynchronous and delayed feedback

Previous work on MPC  design for systems subject to asyn-
hronous or delayed feedback has primarily focused on centralized
PC  designs (Carini, Micheli, & Scattolini, 1990; Findeisen &
arutti, 2009; Grüne, Pannek, & Worthmann, 2009; Jeong & Park,
005; Liu, Muñoz de la Peña, Christofides, & Davis, 2009; Liu, Xia,
hen, Rees, & Hu, 2007; Muñoz de la Peña & Christofides, 2008; Pin

 Parisini, 2009; Scattolini, 1992; Scattolini & Schiavoni, 1995). In
 recent work (Franco, Magni, Parisini, Polycarpou, & Raimondo,
008), the issue of delays in the communication between dis-
ributed controllers was addressed. In addition to these works,
ontrol and monitoring of complex distributed systems with dis-
ributed intelligent agents were studied in Cinar, Palazoglu, and
ayihan (2007), Perk, Teymour, and Cinar (2010), Tatara, Cinar, and
eymour (2007).

Below, we review a recent iterative DMPC scheme (Liu et al.,
012; Liu, Muñoz de la Peña, & Christofides, 2010), taking into
ccount asynchronous and delayed measurements explicitly in
ts formulation and providing deterministic closed-loop stability
roperties.

.3. Iterative DMPC with asynchronous, delayed feedback

We  assume that feedback of the state of the system of Eq. (2),
(t), is available at asynchronous time instants ta where {ta≥0}
s a random increasing sequence of times; that is, the intervals
etween two consecutive instants are not fixed. The distribution
f {ta≥0} characterizes the time the feedback loop is closed or the
ime needed to obtain a new state measurement. In general, if
here exists the possibility of arbitrarily large periods of time in
hich feedback is not available, then it is not possible to provide

uaranteed stability properties, because there exists a non-zero
robability that the system operates in open-loop for a period of
ime large enough for the state to leave the stability region. In order
o study the stability properties in a deterministic framework, we
ssume that there exists an upper bound Tm on the interval between
wo successive time instants in which the feedback loop is closed
r new state measurements are available, that is:

ax
a
{ta+1 − ta} ≤ Tm. (62)

urthermore, we also assume that there are delays in the measure-
ents received by the controllers due to delays in the sampling

rocess and data transmission. In order to model delays in mea-
urements, another auxiliary variable da is introduced to indicate
he delay corresponding to the measurement received at time ta,

hat is, at time ta, the measurement x(ta− da) is received. In order
o study the stability properties in a deterministic framework, we
ssume that the delays associated with the measurements are
maller than an upper bound D. Both assumptions are reasonable
mical Engineering 51 (2013) 21– 41

from process control and networked control systems perspectives
(Mhaskar, Gani, McFall, Christofides, & Davis, 2007; Nešić & Teel,
2004; Walsh, Beldiman, & Bushnell, 2001; Walsh, Ye, & Bushnell,
2002) and allow us to study deterministic notions of stability.
This model of feedback/measurements is of relevance to systems
subject to asynchronous/delayed measurement samplings and to
networked control systems, where the asynchronous/delayed feed-
back is introduced by data losses/traffic in the communication
network connecting the sensors/actuators and the controllers.

In the presence of asynchronous/delayed measurements, the
iterative DMPC presented in Section 5.2.2 cannot guarantee closed-
loop stability and both the implementation strategy and the
formulation of the distributed controllers has to take into account
the occurrence of asynchronous/delayed measurements. Specifi-
cally, we  take advantage of the system model both to estimate the
current system state from a delayed measurement and to control
the system in open-loop when new information is not available. To
this end, when a delayed measurement is received, the distributed
controllers use the system model and the input trajectories that
have been applied to the system to get an estimate of the current
state and then based on the estimate, MPC  optimization problems
are solved to compute the optimal future input trajectory that will
be applied until new measurements are received. The implemen-
tation strategy for the iterative DMPC design is as follows:

. When a measurement x(ta− da) is available at ta, all the dis-
tributed controllers receive the state measurement and check
whether the measurement provides new information. If ta − da >
max
l<a

tl − dl , go to Step 2. Else the measurement does not contain

new information and is discarded, go to Step 3.
. All the distributed controllers estimate the current state of the

system xe(ta) and then evaluate their future input trajectories in
an iterative fashion with initial input guesses generated by h(·).

. At iteration c (c ≥ 1):
3.1. Each controller evaluates its own future input trajectory

based on xe(ta) and the latest received input trajectories of
all the other distributed controllers (when c = 1, initial input
guesses generated by h(·) are used).

3.2. The controllers exchange their future input trajectories.
Based on all the input trajectories, each controller calculates
and stores the value of the cost function.

. If a termination condition is satisfied, each controller sends its
entire future input trajectory corresponding to the smallest value
of the cost function to its actuators; if the termination condition
is not satisfied, go to Step 3 (c ← c + 1).

5 When a new measurement is received (a ← a + 1), go to Step 1.

In order to estimate the current system state xe(ta) based on
a delayed measurement x(ta− da), the distributed controllers take
advantage of the input trajectories that have been applied to the
system from ta− da to ta and the system model of Eq. (2).  Let us
denote the input trajectories that have been applied to the system
as u∗

d,i
(t), i = 1, . . .,  m.  Therefore, xe(ta) is evaluated by integrating

the following equation:

ẋe(t) = f (xe(t)) +
m∑

i=1

gi(x
e(t))u∗d,i(t), ∀t ∈ [ta − da, ta) (63)
with xe(ta− da) = x(ta− da).
Before going to the design of the iterative DMPC, we need

to define another nominal sampled trajectory x̌(t|ta) for t ∈ [ta,
ta + N�), which is obtained by replacing x̂(t|ta) with x̌(t|ta) in Eq.
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38) and then integrating the equation with x̌(ta|ta) = xe(ta). Based
n x̌(t|ta), we define a new input trajectory as follows:

ue
n,j

(t|ta) = hj(x̌(ta + l�|ta)), j = 1, . . . , m,

∀t ∈ [ta + l�,  ta + (l + 1)�),  l = 0, . . . , N − 1
(64)

hich will be used in the design of the LMPC to construct the sta-
ility constraint and used as the initial input guess for iteration 1
i.e., u∗,0

d,i
= ue

n,i
for i = 1, . . .,  m).

Specifically, the design of LMPC j, j = 1, . . .,  m,  at iteration c is
ased on the following optimization problem:

min
j∈S(�)

J(ta) (65a)

.t. ˙̃x
j
(t) = f (x̃j(t)) +

m∑
i=1

gi(x̃
j(t))ui(t) (65b)

i(t) = u∗,c−1
d,i

(t|ta), ∀i /= j (65c)∥∥∥uj(t) − u∗,c−1
d,j

(t|ta)
∥∥∥ ≤ �uj,

∀� ∈ [ta, ta + ND,a�)
(65d)

j(t) ∈ Uj (65e)

˜j(ta) = xe(ta) (65f)

∂V(x̃j(t))
∂x̃j

(
1
m

f (x̃j(t)) + gj(x̃
j(t))uj(t)

)

≤ ∂V(x̌(t|ta))
∂ x̌

(
1
m

f (x̌(t|ta)) + gj(x̌(t|ta))ue
n,j(t|ta)

)
,

∀t ∈ [ta, ta + ND,a�)

(65g)

here ND,a is the smallest integer satisfying ND,a� ≥ Tm + D − da. The
ptimal solution to this optimization problem is denoted u∗,c

d,j
(a|ta)

hich is defined for t ∈ [ta, ta + N�). Accordingly, we define the final
ptimal input trajectory of LMPC j of Eq. (7.3) as u∗

d,j
(t|tk) which is

lso defined for t ∈ [ta, ta + N�). Note again that the length of the
onstraint ND,a depends on the current delay da, so it may  have
ifferent values at different time instants and has to be updated
efore solving the optimization problems.

The manipulated inputs of the closed-loop system under the
bove iterative DMPC for systems subject to delayed measurements
re defined as follows:

i(t) = u∗d,i(t|ta), i = 1, . . . , m, ∀t ∈ [ta, ta+q) (66)

or all ta such that ta − da > max
l<a

tl − dl and for a given ta, the vari-

ble q denotes the smallest integer that satisfies ta+q− da+q > ta− da.
ecent work has also addressed the problem of communication
isruptions between the distributed controllers (Heidarinejad, Liu,
uñoz de la Peña, Davis, & Christofides, 2011a).

.  Future research directions

In this section, we discuss various topics for future research
ork in the area of DMPC; the list is not intended to be exhaustive

nd it is certainly based on our experiences, biases and hopes.

.1. DMPC: loop partitioning and decompositions

While there have been several suggestions for how to partition

he loops in a DMPC system (i.e., what specific control actuators
ach MPC  will manipulate) based on physical arguments, insight
nto process dynamic behavior such as, for example, two-time-scale
ehavior (Jogwar, Baldea, & Daoutidis, 2009; Kumar & Daoutidis,
mical Engineering 51 (2013) 21– 41 37

2002), or plant layout considerations such as one controller per
plant unit, there is no general framework for computing optimal
(in a certain well-defined sense) input (control actuator) decom-
positions for DMPC. Undoubtedly, this problem is very hard in
its full generality, however, even solutions for large-scale systems
of specific structure, such as linear systems (Al-Gherwi, Budman,
& Elkamel, 2010; Motee & Sayyar-Rodsari, 2006) or well-defined
parts of a chemical plant flowsheet, could be very useful. Research
in this direction should go hand-in-hand with the development of
optimal communication strategies between the distributed con-
trollers so that controller evaluation time, communication network
usage and closed-loop stability, performance and robustness are
optimized.

8.2. Distributed state estimation and DMPC

Most of the available DMPC schemes rely on the assumption of
availability of measurements of the complete state vector. How-
ever, it is possible that a distributed controller in a large-scale
control system may  not have access to all the measurements or
that measurements of all the process states are not available. In
this case, in the design of the distributed controllers, we  need to
take into account that different distributed controllers may  have
access to measurements of different parts of the process states,
so that methods for DMPC with partial state measurements are
required. Future research in this direction should take advantage
of the available distributed state estimation schemes reviewed in
Section 7 of this paper and should look at how best the com-
bination of a DMPC algorithm with centralized/distributed state
estimators can be addressed. One approach is to design a different
state observer for each controller (i.e., distributed state estimation),
while an alternative approach is to design a centralized observer
that sends the estimated state to all the distributed controllers. In
this context, the integration of the state estimation schemes with
the DMPC algorithms so that desired levels of stability, performance
and robustness are attained in the closed-loop system should be
rigorously studied.

8.3. Economic DMPC and distributed optimization

Most industrial process control applications are based on hierar-
chical control schemes in which first the operation point of the plant
is determined based on economic, safety and environmental con-
siderations (usually using steady state models), and then process
control systems are used to drive the plant to this steady state (usu-
ally using dynamic models). There have been some recent advances
in integrating economic optimization and process control in a sin-
gle MPC  using centralized approaches, for example the MPC  for
tracking schemes proposed in Ferramosca, Limon, Alvarado, Alamo,
and Camacho (2009), Limon, Alvarado, Alamo, and Camacho (2008,
2010) and the MPC  schemes based directly on an economic cost
function proposed in Diehl et al. (2011), Heidarinejad et al. (2012),
Huang, Harinath, and Biegler (2011).  It is clear that, for large scale
systems, DMPC may  be an appropriate path to tackle the result-
ing economic optimization problem. Furthermore, DMPC stands
to benefit from distributed optimization schemes that are tai-
lored to handle DMPC optimization problems in an optimal fashion
accounting for control-loop decomposition, plant variable interac-

tion patterns and controller communication strategies. Research in
this direction may  start from the extension to the distributed case
of well-known techniques for centralized MPC, such as the multiple
shooting method.
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.4. DMPC and hybrid systems

Hybrid systems constitute an important class of mathematical
odels that explicitly account for the intricate coupling between

ontinuous dynamics and discrete events. While there has been
xtensive work over the last fifteen years on analysis and con-
rol of hybrid systems (see, for example, Bemporad & Morari,
999; Christofides & El-Farra, 2005 and the references therein),
istributed MPC  of hybrid systems is a research topic that has
eceived no attention. In the context of chemical process control
nd operations, due to changes in raw materials, energy sources,
roduct specifications and market demands, and abrupt actua-
or and sensor faults, it is possible to describe process behavior
ith classes of switched nonlinear systems that involve differ-

ntial equation models whose right-hand-side is indexed with
espect to different modes of operation. From a controller design
tandpoint, in order to achieve closed-loop stability, discrete mode
ransition situations should be carefully accounted for in the con-
rol problem formulation and solution. In order to achieve mode
ransitions in an optimal setting and accommodate input/state con-
traints, distributed model predictive control (MPC) framework
an be employed, particularly in cases where the computational
omplexity of a centralized MPC  may  significantly increase as the
umber of operational modes, control inputs and states increases.

.5. Monitoring and reconfigurability of DMPC

Monitoring and reconfiguration of DMPC is an important
esearch topic. DMPC systems offer a vast set of possibilities for
econfiguration in the event of sensor and actuator faults to main-
ain the desired closed-loop performance. In a recent set of papers
Chilin, Liu, Davis, & Christofides, 2012; Chilin, Liu, Muñoz de la
eña, Christofides, & Davis, 2010), a data-based monitoring and
econfiguration system was  developed for a distributed model pre-
ictive control system in the presence of control actuator faults. In
ddition to a monitoring method, appropriate DMPC reconfigura-
ion (fault-tolerant control) strategies were designed to handle the
ctuator faults and maintain the closed-loop system state within a
esired operating region. There is certainly a lot more to be done

n the context of DMPC monitoring and fault-tolerance.
Furthermore, in addition to its importance in the context of

MPC fault-tolerance, reconfigurability of DMPC could provide
exibility to the control system and could be explored in the context
f other areas as follows.

During steady-state operation, it is not necessary to continu-
usly transmit among the distributed estimation/control agents. In
act, in the case where one system does not receive any new infor-

ation (and can be sure that no transmission faults have occurred),
t can be assumed that the other agents basically maintain their pre-
ious state. This reduction of the information transmitted can be
articularly significant in sensor networks with local power supply

n order to have significant energy savings, which could guarantee
 longer “life” of the sensors and/or of the actuators.

For similar reasons, future research efforts could deal with the
o-called “plug and play” control as well as with DMPC scalabil-
ty. In nominal operating conditions, the control system assumes

 minimal configuration, while in perturbed conditions sensors
nd/or actuators are added. The challenge here is to avoid the
edesign of the overall control system, in particular for the ele-
ents not directly dynamically connected with the additional

ensors and actuators. The reader may  refer to De Vito et al. (2010),
nudsen, Trangbaek, and Kallesøe (2008), Michelsen, Zamanabadi,

nd Stoustrup (2008), Stoustrup (2009) for some references on
plug and play” control.

In addition, moving from industrial plants to very large-scale
ystems, such as transportation or distribution networks, or to the
mical Engineering 51 (2013) 21– 41

so-called “System-of-Systems” (i.e., very large-scale infrastructures
of interacting subsystems, which are by themselves composed of
large-scale and complex systems; see, for example, Maier, 1998),
with operational and managerial independence, it is clear that the
problem of reconfiguration of the control system is fundamental to
cope with changing requirements. For these systems, also the prob-
lem of partitioning and clustering is a very important one (recent
work can be found in Ocampo-Martinez, Bovo, & Puig, 2011). In
general, there is a substantial lack of methodologies for appro-
priate temporal and spatial partitions and for the development of
consistent multi-level, multi-scale models for DMPC design.

8.6. Applications

DMPC has a lot to offer in the context of industrial pro-
cess control practice. As plants become increasingly automated
with advanced model-based control systems and the adoption of
advanced communication networks together with the associated
sensors and actuators continuous to broaden, DMPC could provide
the framework for the design of the next-generation, distributed
model-based control systems. But the impact of DMPC could go
well-beyond industrial process control practice and could become
the method of choice for the design of control systems for the
individual components/subsystems of large-scale, heterogeneous
distributed networks (for example, “smart grid”-type networks
where numerous renewable-based energy generation systems are
coupled with the electric grid and “smart” loads). It is our hope that
this paper will contribute towards developing further DMPC theory
and practice.
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iu,  J., Muñoz de la Peña, D., & Christofides, P. D. (2009). Distributed model predictive
control of nonlinear process systems. AIChE Journal, 55,  1171–1184.
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aestre, J. M.,  Muñoz de la Peña, D., Camacho, E. F., & Alamo, T. (2011). Distributed
model predictive control based on agent negotiation. Journal of Process Control,
21,  685–697.

agni, L., De Nicolao, G., Magnani, L., & Scattolini, R. (2001). A stabiliz-
ing model-based predictive control for nonlinear systems. Automatica, 37,
1351–1362.

agni, L., & Scattolini, R. (2004). Model predictive control of continuous-time non-
linear systems with piecewise constant control. IEEE Transactions on Automatic
Control,  49,  900–906.

agni, L., & Scattolini, R. (2006). Stabilizing decentralized model predictive control
of  nonlinear systems. Automatica, 42,  1231–1236.

ahmood, M.,  & Mhaskar, P. (2008). Enhanced stability regions for model predictive
control of nonlinear process systems. AIChE J., 54,  1487–1498.

aier, M.  W.  (1998). Architecting principles for systems-of-systems. Systems Engi-
neering,  4, 267–284.

anousiouthakis, V., & Chmielewski, D. J. (2002). On constrained infinite-time non-
linear optimal control. Chemical Engineering Science, 57,  105–114.

assera, J. L. (1956). Contributions to stability theory. Annals of Mathematics, 64,
182–206.

ayne, D. Q. (1997). Nonlinear model predictive control: An assessment. In Proceed-
ings of 5th International Conference on Chemical Process Control Tahoe City, CA,
(pp.  217–231).

ayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert, P. O. M.  (2000). Constrained model
predictive control: Stability and optimality. Automatica, 36,  789–814.

ayne, D. Q., & Michalska, H. (1990). Receding horizon control of nonlinear systems.
IEEE Transactions on Automatic Control, 35,  814–824.

ayne, D. Q., Seron, M.  M.,  & Rakovic, S. V. (2005). Robust model predictive con-
trol  of constrained linear systems with bounded disturbances. Automatica, 41,
219–224.

cKeon-Slattery, M.  (2010). The world of wireless. Chemical Engineering Progress,
106,  6–11.

ercangoz, M.,  & Doyle, F. J. (2007). Distributed model predictive control of an
experimental four-tank system. Journal of Process Control, 17,  297–308.

esarovic, M. D., Macko, D., & Takahara, Y. (1970). Theory of hierarchical, multilevel,
systems.  New York: Academic Press.

haskar, P., El-Farra, N. H., & Christofides, P. D. (2005). Predictive control of switched
nonlinear systems with scheduled mode transitions. IEEE Transactions on Auto-
matic Control, 50,  1670–1680.

haskar, P., El-Farra, N. H., & Christofides, P. D. (2006). Stabilization of nonlinear
systems with state and control constraints using Lyapunov-based predictive
control. Systems and Control Letters,  55,  650–659.

haskar, P., Gani, A., McFall, C., Christofides, P. D., & Davis, J. F. (2007). Fault-tolerant
control of nonlinear process systems subject to sensor faults. AIChE Journal, 53,
654–668.

ichelsen, A. G., Zamanabadi, R. I., & Stoustrup, J. (2008). Towards automatic model
based controller design for reconfigurable plants. In Proceedings of the 17th IFAC
World Congress Seoul, Korea.

otee, N., & Sayyar-Rodsari, B. (2006). Optimal partitioning in distributed model
predictive control. In Proceedings of the American Control Conference Minneapolis,
Minnesota, (pp. 5300–5305).
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overlapping decentralized estimation with missing observations and commu-
nication faults. Automatica, 45,  1397–1406.
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arău, A. N., De Schutter, B., & Hellendoorn, J. (2010). Model-based control for route
choice in automated baggage handling systems. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, 40,  341–351.

atara, E., Cinar, A., & Teymour, F. (2007). Control of complex distributed systems
with distributed intelligent agents. Journal or Process Control, 17,  415–427.

atjewski, P. (2008). Advanced control and on-line process optimization in multi-
layer structures. Annual Reviews in Control, 32,  71–85.

rodden, P., & Richards, A. (2006). Robust distributed model predictive control using
tubes. In Proceedings of the American Control Conference Minneapolis, Minnesota,
(pp.  2034–2039).

adigepalli, R., & Doyle, F. J. (2003). A distributed state estimation and control algo-

rithm for plantwide processes. IEEE Transactions on Control Systems Technology,
11,  119–127.

alckenaers, P., Van Brussel, H., Wyns, J., Peeters, P., & Bongaerts, L. (1999). Multi-
agent manufacturing control in holonic manufacturing systems. Human Systems
Management,  18,  233–243.
mical Engineering 51 (2013) 21– 41 41

Van Henten, E. J., & Bontsema, J. (2009). Time-scale decomposition of an optimal con-
trol problem in greenhouse climate management. Control Engineering Practice,
17,  88–96.

Venkat, A. N., Rawlings, J. B., & Wright, S. J. (2005). Stability and optimality of dis-
tributed model predictive control. In Proceedings of the 44th IEEE Conference
on  Decision and Control and the European Control Conference Seville, Spain, (pp.
6680–6685).

Walsh, G., Beldiman, O., & Bushnell, L. (2001). Asymptotic behavior of nonlinear net-
worked control systems. IEEE Transactions on Automatic Control, 46,  1093–1097.

Walsh, G., Ye, H., & Bushnell, L. (2002). Stability analysis of networked control sys-
tems. IEEE Transactions on Control Systems Technology,  10,  438–446.

Wang, S.-H., & Davision, E. J. (1973). On the stabilization of decentralized control
systems. IEEE Transactions on Automatic Control, AC-18,  473–478.

Ydstie, E. B. (1997). Certainty equivalence adaptive control: Paradigms puzzles and
switching. In Proceedings of 5th International Conference on Chemical Process Con-
trol Tahoe City, CA, (pp. 9–23).

Ydstie, E. B. (2002). New vistas for process control: Integrating physics and commu-
nication networks. AIChE Journal, 48,  422–426.

Zafra-Cabeza, A., Maestre, J. M.,  Ridao, M.  A., Camacho, E. F., & Sanchez, L. (2011). A
hierarchical distributed model predictive control approach to irrigation canals:
A  risk mitigation perspective. Journal of Process Control, 21,  787–799.
Zhang, Y., & Li, S. (2007). Networked model predictive control based on neighbour-
hood optimization for serially connected large-scale processes. Journal of Process
Control,  17,  37–50.

Zornio, P., & Karschnia, B. (2009). Realizing the promise of wireless. Chemical Engi-
neering Progress, 105, 22–29.


	Distributed model predictive control: A tutorial review and future research directions
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Mathematical models for MPC
	2.3 Lyapunov-based control

	3 Model predictive control
	3.1 Formulation
	3.2 Stability
	3.3 Alkylation of benzene with ethylene process example

	4 Decentralized model predictive control
	4.1 Alkylation of benzene with ethylene process example (cont’d)

	5 Distributed model predictive control
	5.1 Non-cooperative DMPC
	5.1.1 A noncooperative DMPC algorithm

	5.2 Cooperative DMPC
	5.2.1 Sequential DMPC
	5.2.2 Iterative DMPC
	5.2.3 DMPC based on agent negotiation

	5.3 Distributed optimization
	5.4 Alkylation of benzene with ethylene process example (cont’d)

	6 Decompositions for DMPC
	6.1 Decomposition into subsystems and multirate DMPC
	6.2 Hierarchical and multilevel MPC
	6.3 MPC of two-time-scale systems
	6.3.1 Slow time-scale MPC
	6.3.2 Fast/slow MPC design


	7 Distributed state estimation and asynchronous/delayed sampling
	7.1 Distributed state estimation
	7.2 Asynchronous and delayed feedback
	7.3 Iterative DMPC with asynchronous, delayed feedback

	8 Future research directions
	8.1 DMPC: loop partitioning and decompositions
	8.2 Distributed state estimation and DMPC
	8.3 Economic DMPC and distributed optimization
	8.4 DMPC and hybrid systems
	8.5 Monitoring and reconfigurability of DMPC
	8.6 Applications

	References


