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Abstract--This paper addresses the feedforward/output feedback control problem for single-input single- 
output minimum-phase nonlinear processes. Combination of dynamic feedforward/static state feedback 
laws and state observers is employed to synthesize nonlinear dynamic feedforward/output feedback 
controllers that completely eliminate the effect of measurable disturbances and induce a desired in- 
put/output behavior. The developed methodology in applied to an exothermic continuous chemical reactor 
and extensive simulations illustrate the controller performance and robustness. 

I N T R O D U C T I O N  

The majority of control problems in continuous 
chemical processes concern the regulation of output 
variables to desired steady states in the presence of 
disturbance inputs. Moreover, typical control prob- 
lems in batch and semi-batch processes involve track- 
ing of output profiles in the presence of disturbance 
inputs. Whenever measurements of the disturbances 
are available, feedforward compensation combined 
with output feedback, is widely used in linear process 
control to improve the controller performance. The 
solution of the associated linear feedforward/output 
feedback control problem is by now well understood 
[see e.g. Morari and Zafiriou (1989)]. 

In the context of nonlinear control, the recent years 
have witnessed a flourishing research activity within 
the methodological and mathematical framework of 
differential geometry [see e.g. the tutorial papers of 
Kravaris and Kantor (1990a, b) and the review paper 
by Kravaris and Arkun (1991)]. Within this frame- 
work, significant research effort was devoted in the 
study of disturbance inputs for analysis and controller 
synthesis purposes; geometric conditions were derived 
for the solvability of the problem of decoupling the 
disturbances from the outputs via static state feed- 
back (Hirchorn, 1981; Isidori et al., 1981; Nijmeijer 
and van der Schaft, 1983) or static feedforward/state 
feedback (Moog and Glumineau, 1983); the problem 
of feedforward compensation of disturbances within 
the context of exact state-space linearization was also 
addressed and solved (Calvet and Arkun, 1988a, b); 
a general dynamic feedforward/static state feedback 
synthesis problem was posed and solved by Daoutidis 
and Kravaris (1993) achieving complete elimination 
of the effect of measured disturbances on the control- 
led outputs and a well-characterized input/output be- 
havior in the closed-loop system. 

In this paper we address the feedforward/output 
feedback control problem for general single-input 
single-output minimum-phase nonlinear processes. 
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The objective is to develop explicit reduced-order 
realizations of dynamic controllers that use measure- 
ments of the output and the disturbances to enforce 
desired objectives in the closed-loop system. The ap- 
proach followed for the solution of this problem is 
a state-space one, based on combination of feedfor- 
ward/static state feedback laws and state observers. 
To overcome the difficulties associated with the exist- 
ence and construction of nonlinear state observers 
[see e.g. Tsinias (1989, 1990) and Grizzle and Moraal 
(1990)], and in analogy with the approach for the pure 
output feedback problem (Daoutidis and Kravarfs, 
1992), the natural modes of the process (i.e. the pro- 
cess dynamics or the process zero dynamics) are used 
for the state observation. 

In what follows, we will start with a brief discussion 
on key differential geometric concepts, and a brief 
review of the feedforward/static state feedback prob- 
lem and its solution. Then, the feedforward/output 
feedback synthesis problem will be formulated pre- 
cisely for the class of processes under consideration. 
The synthesis problem will be addressed and solved, 
initially for open-loop stable processes and sub- 
sequently for processes with possible open-loop insta- 
bility. Controller implementation issues will be ad- 
dressed and conditions that guarantee the stability of 
the closed-loop system will be also derived. Finally, 
the developed control methodology will be applied to 
an exothermic continuous reactor example and will be 
evaluated through simulations. 

PRELIMINARIES 
We will consider nonlinear processes with a con- 

tinuous-time state-space description of the form: 

2 = f ( x )  + u(t)9(x) + ~ d~(t)w~(x) 
K=I 

y = h(x) (1) 
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where x denotes the vector of state variables, u de- 
notes the manipulated input, dK denotes a measurable 
disturbance input, and y denotes the output (to be 
controlled). It is assumed that xG X c R", where 
X is open and connected, while u(t)e • and 
d(t) = [dl(t) . . . . .  dp(t)]rG R p, VtG [0, ~ ) ,  yG R, and 
dK(t) are sufficiently smooth functions of time. 
f (x) ,  9(x), w,(x) denote analytic vector fields on X, 
and h(x) denotes an analytic scalar field on X. For the 
theoretical development it is also assumed that the 
input variables in eq. (1) represent deviations from 
some nominal values. 

Throughout the paper we will be using the standard 
Lie derivative notation, where 

Oh(x) ,,, , 
L:h(x) ~=2"1 --~xt Jttx ) 

and J~(x) denotes the lth row element off(x).  One 
can define higher-order Lie derivatives, L}h(x) 
= L:L}- :h(x)  as well as mixed Lie derivatives, 

LgL~-lh(x), in an obvious way. 
Referring to the nonlinear system of the form of eq. 

(1), we define the relative order of the output y with 
respect to the manipulated input u as the smallest 
integer r such that 

L,Uf - ~ h(x)~O (2) 

for xG X. If no such integer exists, r = oo. Without 
loss of generality, it will be assumed that X does not 
contain any singular points, i.e. points xG R" for 
which LgL':-lh(x)=O. In particular, as long as 
LeL':- i h(xo) # O, where Xo is the nominal equilibrium 
point, by the continuity of L,L}- 1 h(x) one can always 
redefine X as an open and connected set that contains 
Xo and is such that LgL' f lh(x)  # O, VxG X. We also 
define the relative order of the output y with respect to 
the disturbance input vector d as the smallest integer 
p for which 

[Lw,LS-lh(x) . . .LwL°:-ah(x)]~[O ... O] (3) 

for xe X. 
In the rest of this section we will briefly review the 

solution to the feedforward/static state feedback con- 
trol problem for processes of the form ofeq. (1). In this 
problem, we seek a feedforward/static state feedback 
law of the form: 

u = p(x) + q(x)v + Q'(x, d(t),d(t)m,d(t) ~2),...) (4) 

where p(x),q(x) are algebraic functions of the states 
with q(x) invertible on X, d(t) (k) denotes the kth order 
derivative of d(t), and Q' is an algebraic function 
which is nonsingular under nominal conditions (i.e. 
remains finite when d(t) = 0 for a finite time interval), 
that induces a desired input/output behavior indepen- 
dent of the values of the disturbance inputs. The basic 
result is taken from Doutidis and Kravaris (1993) and 
is summarized in Theorem 1 that follows. 

T h e o r e m  1: Consider the nonlinear process described 
by eq. (1). Let r, p denote the relative orders of the 
output y with respect to the manipulated input u and the 
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disturbance input vector d, respectively, and assume 
that p < r. Then, the conditions 

Lgdpdx, d ( t ) ) -O ,  l = 0 , 1  . . . . .  r - - p -  1 (5) 

where 

(: ') dp,(x, d(t)) = ~. Ltf -~ d.(t)Lw. + 
i t = 0  r ; = l  

( : ')' x Lf  + d,(t)Lw. + -~ LOs - t h(x) (6) 
K = I  

are necessary and sufficient in order for a feedfor- 
ward/static state feedback law of the form of eq. (4) to 
induce the input~output behavior: 

~ ?ky Ik) = v (7) 
k = O  

where ?k are adjustable parameters, independently of 
the disturbance inputs. I f  these conditions are satisfied, 
the appropriate control law takes the form: 

u = [y.LaL':- 'h(x)]- '  {v - ,=oi ykL}h(x) 

-- ~ ?kd?k-o(x,d(t),d(t) m . . . . .  d(t)tk-°))}. 
k=p 

(8) 

Remark 1: Theorem 1 provides a precise character- 
ization of the class of nonlinear systems of the form of 
eq. (1) for which the posed problem is solvable, as well 
as an explicit synthesis formula for its solution. In the 
case that p < r, derivatives of certain disturbance in- 
puts up to order r - p are required in the control law 
in order to achieve complete elimination of their effect 
on the output. Whenever these disturbance signals are 
not sufficiently smooth, and, thus, exact evaluation of 
their derivatives is not possible, standard filtering (or 
smoothing) techniques can be employed for the ap- 
proximate evaluation of the derivatives. Obviously, 
when such approximations are employed, disturbance 
attenuation instead of complete disturbance elimina- 
tion will be achieved in the closed-loop system, with 
transient characteristics depending on the filter de- 
sign. 

FORMULATION OF THE FEEDFORWARD/OUTPUT 

FEEDBACK SYNTHESIS PROBLEM 

We will now formulate a feedforward/output feed- 
back controller synthesis problem for nonlinear pro- 
cesses of the form of eq. (1) that satisfy the conditions 
of eq. (5) and exhibit minimum-phase behavior (in the 
usual sense of stability of the zero dynamics) when 
d = 0. The objective is to calculate state-space realiza- 
tions of feedforward/output feedback controllers that 
enforce certain properties in the closed-loop system 
(see Fig. 1). The desirable closed-loop properties in- 
clude: 

• input/output stability and tracking of changes in 
the output set-point, 
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Fig. 1. General feedforward/output feedback control structure. 
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• complete elimination of the measured distur- 
bances and asymptotic rejection of unmeasured dis- 
turbances and modeling errors, 

• asymptotic stability of the unforced closed-loop 
system. 

In particular, we will request a disturbance-free linear 
input/output behavior with no zeros, of the form: 

7rY (') + ' "  + 71Y (1) + Y = Ysp (9) 

where Ysp denotes the output set-point. The in- 

itself, forced by the manipulated and disturbance in- 
puts, as an open-loop state observer: 

r~ =f(r / )  + u(t)g(rl) + ~ d~(t)w~(rl). (10) 
K = I  

A feedforward/output feedback controller that solves 
the posed synthesis problem can then be derived, by 
combining the state observer of eq. (10) with the 
feedforward/state feedback law of eq. (8) and a linear 
error feedback controller with state-space realization: 

0 1 

0 0 

0 0 

0 0 

0 
7, 

0 --. 0 0 

1 --. 0 0 

0 ... 0 0 
: " . .  : : 

0 ... 0 1 
72 ~ r -  2 7 r -  1 

7, 7, 7r 

0 

0 

0 
~+ 

0 
1 

7r 

e (11) 

put/output stability and performance characteristics 
in closed loop will then be directly related to the 
choice of the adjustable parameters 7~. The above 
input/output behavior will essentially result by can- 
celing the zero dynamics of the process. 

In what follows we will present a solution to the 
posed synthesis problem, initially for open-loop stable 
processes and then for processes that may be open- 
loop unstable• The problem will be addressed within 
the conceptual framework introduced by Daoutidis et 
al. (1990), i.e. combining the appropriate feedfor- 
ward/state feedback law with a linear error feedback 
controller with integral action and an appropriate 
state observer (see Fig. 2). In analogy with the ap- 
proach for the pure output feedback case (Daoutidis 
and Kravaris, 1992), an open-loop state observer will 
be employed in the case of stable processes, while in 
the more general case of possibly unstable processes, 
an observer based on the process zero dynamics will 
be used instead. 

F E E D F O R W A R D / O U T P U T  F E E D B A C K  C O N T R O L  O F  

O P E N - L O O P  S T A B L E  M I N I M U M  P H A S E  P R O C E S S E S  

The assumption of open-loop stability of the pro- 
cess dynamics allows us to use the process model 

and output map: 

v = ~1 ÷ e .  (12) 

The basic synthesis result, in the form of a reduced- 
order controller realization, is summarized in theorem 
2 that follows (the proof can be found in the Appen- 
dix): 

T h e o r e m  2: Consider the nonlinear process described 
by eq. (1), and assume that the conditions of eq. (5) are 
satisfied. Then, the dynamic system 

P 

f /=f ( r / )  + ~ d~(t)wK(rl) + g(rl)[y,LgL'f- t h(rl)] - ~ 
K=I  

-- ~ 7krPk-o(rl, d(t),d(t) ") . . . . .  d(t)tk-°))} (131 
k = p  

u = [TrLgL~ - l h ( , t ) ] - '  

x {e -- k~=l TkL~h(rl) 

-- ~ 7kdPk-p(~l,d(t),d(t) 0) . . . . .  d(t)tk-P~) } 
k = p  
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Y ~-"~+_ ~ i)-~ i~r~n~s dtbac k~ ~iP~ic k ~ - 

State 
Observer 

t 
Fig. 2. Proposed feedforward/output feedback control structure. 

is a state-space realization of a feedforward/output 
feedback controller that induces the input/output behav- 
ior of eq. (9), independently of the disturbance inputs 

Remark 2: Whenever p = r, the following relation 
holds: 

P 
d~o(x,d) = ~ d~(t)LwL'r-Xh(x), 

and the controller realization of eq. (13) simplifies to 

0 = f (q )  + ~ d~(t)w~(rl) + O(tl)[?kLoL'j.-lh(rl)] -x 
t~=l 

x { e -  k=l ~ 7kL~h(r/) 

--~" ~=1 ~ d~(t)LwL'r-'h(x)} (14) 

u = [?kLoL ~- lh(q)]-  1 

x ( e -  k=, ~ ykLkyh(q) 

-- Yk.=x ~ d . ( t )L~L~- th(x )} .  

Feedforward/output feedback control for processes with 
deadtime 

The result of theorem 2 can also be used to develop 
a solution to the feedforward/output feedback control 
problem for open-loop stable processes with a state- 
space description of the form: 

!v 

= f ( x )  + u(t)g(x) + ~" dK(t)(t)WK(X) 
t¢=l (15) 

y = h(x(t - 0)) 

where 0 denotes a deadtime in the output map. The 
synthesis problem in this case becomes the one of 
calculating a state-space realization of a feedfor- 
ward/output feedback controller that induces the in- 
put/output behavior: 

Try t') + "'" + 71y (x) + y = Ysp(t -- O) (16) 

independently of the disturbance inputs. Motivated 
by the Smith-type operator structure for nonlinear 
processes without disturbances (Kravaris et al., 1994), 
the above synthesis problem can be conveniently ad- 
dressed within the structure shown in Fig. 3. Within 
this structure, the appropriate feedforward/output 
feedback controller is synthesized on the basis of an 
auxiliary output y*, which represents the prediction of 

I Feedforward 
Output 
Feedback 

I Controller 

Ysp u 

8y I Smith-type 
Predictor 

l d 

P r = s s  

Fig. 3. Feedforward/output feedback control structure for open-loop stable processes with deadtime. 
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the output if there were no deadtime, and can be 
obtained by adding a corrective signal 3y to the on- 
line measurement of the actual output y: 

y* = y + @. 

This corrective signal is obtained through a Smith- 
type predictor, which is driven by both the manipu- 
lated and disturbance inputs, and simulates the differ- 
ence in the responses between the process model with- 
out deadtime and the procegs model with deadtime: 

/ /=f(r /)  + u(t)g(rl) + i d~(t)w~(rl) 

6y = h(rl) - h(~l(t - 0)). 

It is then straightforward to verify that for processes 
of the form of eq. (15) and assuming that the condi- 
tions of eq. (5) are satisfied, the dynamic system 

p 

/ /=ff f / )  + ~ d~(t)w~(rl) + O(tl)[?,LoL'f Xh(rl)]-' 
t¢=l 

x {e + h(rl(t- 0 ) ) -  h(rl)- k=, ~ ?kL}h(rl) 

- ~ 7k~Pk_o(rl, d(t),d(t) m ... . .  d(t)(k-P))} (17) 
k=p 

u = [7,LoL~-'h(tl)]-' 

× {e + h(rl(t- 0 ) ) -  h ( , ) -  k=, ~ ?kL}h(rl) 

- i ?kC~k-o(,. d(t). d(t) (') . . . . .  d(t)(k-o)) } 
k=p 

consists a reduced-order realization of a controller 
that induces the input/output behavior of eq. (16) 
independent of the disturbance inputs, and thus solves 
the posed synthesis problem. 

R e m a r k  3:  The controller realizations of eq. (13) and 
eq. (17) share a common underlying structure which is 
depicted in Fig. 4. Referring to this structure, feedback 
of the model states is combined with feedforward 
compensation of the disturbance inputs to impose 
cancellations at the process modes and allow the 
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reduction of the feedforward/output feedback syn- 
thesis problem to a feedforward/state feedback syn- 
thesis one. As expected, in the absence of disturbance 
measurements, this structure reduces to the pure 
model state feedback structure given by Kravaris 
et al. (1994) [see also Coulibaly et al. (1992) for a sim- 
ilar structure for linear systems]. 

FEEDFORWARD/OUTPUT FEEDBACK CONTROL OF 

GENERAL MINIMUM-PHASE PROCESSES 

We will now proceed with the solution of the syn- 
thesis problem formulated earlier in the paper, for 
general minimum-phase processes, with possibly un- 
stable open-loop dynamics. The minimum-phase 
property of such processes will be exploited through 
the use of the process zero dynamics for the state 
reconstruction. The task is complicated significantly 
by the presence of the disturbance inputs in the pro- 
cess realization. In what follows, we will first describe 
in detail the proposed scheme of state reconstruction 
in the presence of disturbances; we will then develop 
the controller synthesis result, and will finally address 
controller implementation issues. To facilitate the de- 
velopment, we will be working with the state-space 
description of the process transformed in appropriate 
normal form coordinates. 

State reconstruction 
Consider the nonlinear process of eq. (1) in the 

general case where p < r. Consider also the 
Byrnes-Isidori coordinate transformation: 

= 

~n-r 

~ n - r + l  

~n r+2 

~n -r+p 

~n-r+p+l 

q ( x )  

t._,(x) 
h(x) 

= T(x)= Lfh(x) 

LPr- l h(x) 
Layh(x) 

=L~-lh(x) 

(18) 

[ Input / Output 
Linearizing 

- Feedforward 
State Feedback 

U 

Process Dynamics ~ ~ 

Fig. 4. Feedforward/model state feedback controller structure. 
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where 

• tx(X) . . . . .  t . - , ( x ) , h ( x ) , L s h ( x )  . . . . .  L ' f a h ( x )  are 
linearly independent scalar fields, and 

• Let i(x)  = O, i = I . . . . .  (n - r). 

The system of eq. (1), under the coordinate trans- 
formation of eq. (18) takes the form (Daoutidis and 
Kravaris, 1989): 

~i = Lyt l (~)  + ~ d~(t)L~ tl(~) 
~=1  

PRODROMOS DAOUTIDIS a n d  PANAGIOTIS D. CHRISTOFIDES 

P 

( ._ ,  = Lf t ._,( r . )  + ~, d~(t)Lw t._,(r,) 
I ¢=1  

~.-,+~ = ~.- ,+~ 

~ n - , + p -  1 ~" ~ n - r + p  

P 

(n-r+p = ~n-r+p+l  "Jr" E d~( t )L- ,L~-Xh(~)  
g = l  

(19) 

P 
( . - , +p+~  = C . - , + p + 2 +  ~ d~( t )LwL~h(~)  

P 
( . - 1  = ~. + ~ d~(t)L~.L~-2h(~)  

~. = L'fh(~) + u ( t ) L a L ' T l h ( O  

P 

+ E d~(t)L~,L~ - l h ( ~ )  

Y = ~n-r+l 

where the ~-dependence in the expressions of 
the right-hand side implies their evaluation at 
x = T-~(O.  Furthermore, it is straightforward to 
verify that whenever the conditions of eq. (5) are 
satisfied, the expressions for the derivatives of the 
output  y in the ~-coordinates take the following form: 

Y = ~.-~+l 

y(1) = ~ . - ,+2  

7 

y(V-l) = ~n-,+v 

Y(P) = ~.- ,+p+ , + q~o(~, d(t)) (20) 

y(O+ l) = ( . - ,+p+ 2 + c~l(~, d(t) ,d(t)  0)) 

y(,-x) = ~. + (a,-p-x(~,  

d(t ), d(t ) (1) . . . . .  d(t )(,-p - i)). 

One can then immediately observe that the state vari- 
ables ~ . - ,+~ ,~ . - ,+2  . . . . .  ~._,+p can be directly ob- 
tained from the measurement of the output  y and 

the evaluation of its derivatives up to order (p - 1). 
Furthermore, provided that that state variables 
~ . - , + p + l , ( . - , + p + 2  . . . . .  ~ . - l , ~ .  can be expressed as 
functions of ~1 . . . . .  ~ . - , , ~ . - ,+1 ,~ . - ,+2  . . . . .  ~.- ,+p, 
d . . . . .  d ( ' -p -  ~) from the expressions for y(P>-y('-a) of 
eq. (20), the remaining states ~ . . . .  ,~._,  can be ob- 
tained by simulating the zero dynamics of the process, 
forced by the output  and the disturbance inputs and 
their derivatives, i.e. the dynamical system: 

zl  = L f t  l (Z i . . . .  ,Zn-r, y,  .., ,y( ' -  l),d . . . . .  d ( ' -p -  1)) 

P 
+ ~ d ~ ( t ) L w t l ( z l  . . . . .  z . - , , y  . . . . .  i f - l ) ,  

K=I 

d . . . . .  d ( ' -p -  j) ) (21) 

z . - ,  = L f t ,  - , ( z l  . . . . .  z .  _, ,  y . . . . .  i f -  1), 

d . . . . .  d ( ' - p - l ) )  

+ ~ d ~ ( t ) L w t . - , ( z l  . . . . .  z . - , ,  
K=I  

Y . . . . .  f f - i ) , d  . . . . .  d( ' -p- i ) ) .  

Remark 4: The state reconstruction scheme described 
above simplifies significantly whenever p ~> r. In this 
case, the expressions for the derivatives of the output  
y in the ( coordinates take the form: 

y(1) = ~.- ,+2 

y(t,- l) = ~,,-r+a 

Y(P) = ~,- ,+p+l  

y(t,+ t) = ~.- ,+p+2 

y(, -  l) = ~.. 

(22) 

Consequently, the state variables ( ._ ,  + 1, (.  - ,  + 2 . . . .  , 
( .  can be directly obtained from the measurement of 
the output  y and the evaluation of its derivatives up to 
order (r - 1). The remaining states ( l  . . . . .  ( ._ ,  can be 
obtained by simulating the forced zero dynamics of 
the process, which in this case has the form: 

:~l = L f t l  (zl . . . . .  an-, ,  y . . . . .  y( ,-  1)) 

P 

+ Z d~( t )Lwt l (Z l  . . . . .  z . _ , . y  . . . . .  y(,-1)) 
K = I  

: (23) 

"2._, = L i t  n _,(Zl . . . . .  z . - , ,  y . . . . .  y( ,-  1)) 

P 

+ ~ d x ( t ) L w t . - , ( z l  . . . . .  z . - , , y  . . . . .  y(,-a)). 
K=I 



Dynamic feedforward/output feedback control 

Controller synthesis 
The state reconstruction scheme described pre- 

viously will now be combined with the feedfor- 
ward/state feedback law of eq. (8) and the linear error 
feedback compensator  of eqs (11) and (12) to derive 
a state-space realization of a feedforward/output feed- 
back controller that solves the posed synthesis prob- 
lem for general minimum-phase processes. The gen- 
eral synthesis result is summarized in theorem 3 that 
follows (the proof  is completely analogous to the one 
of theorem 2 and is omitted for brevity). 

Theorem 3: Consider the nonlinear process described 
by eq. (19) with the forced zero dynamics of  eq. (21), and 
assume that the conditions of  eq. (5) are satisfied. Then, 
the dynamic system: 
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= 

0 1 0 ... 0 

0 0 1 ... 0 

0 0 0 ... 0 
: • : -. . 

0 0 0 ..- 0 
0 71 72 7 r - 2  

7, 7, 7, 7, 

o o 1 
0 0 

0 0 
~+ 

1 0 
~r-I 1 

_ 7r  

z l  = L i t 1  ( z t ,  . . . ,  z , - , ,  y . . . .  , y ( , -  1), d . . . . .  d ( , - p -  1))  

P 
+ ~ d~(t)Lwtx(zl . . . . .  z , - , , y  . . . . .  y(•-l), d . . . . .  d ( ' - p - l ) )  

K = I  

~.. - ,  = L i t .  - • (z  1 . . . . .  z .  _ , ,  y . . . . .  y ( ,  - 1 ), d . . . . .  d (, - o - 1 ) ) 

P 

+ ~ d~( t )Lwt . - , ( z l  . . . . .  z . - , , y  . . . . .  y(,-1), d . . . . .  d (•-°-l))  

r - 1  ( r -  l) u = [7,LgL s h(zt . . . . .  z . _ , , y  . . . . .  y ,d  . . . . .  d( ' -P-1))]  -1 

(24) 

I r-1 
x ~1 + e - - Y - -  ~ ),ky (k) 

k = l  

- -  y ,L'~ h(Z l . . . . .  z ,_ , ,  y . . . . .  y ( , -  1), d . . . . .  d ( , - p -  1)) 

- 7,~b,-p(zt . . . . .  z ,_ , ,y  . . . . .  y(,- 1), d . . . . .  d('-P))~ 
) 

is a state-space realization of  a feedforward/output 
feedback controller that induces the input/output behav- 
ior of  eq. (9), independently of  the disturbance inputs. 

R e m a r k  5 :  In the case that p > / r  and using the state 
reconstruction scheme described in remark 4, the con- 
troller realization of eq. (24) takes the following form: 
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0 1 0 --. 0 0 

0 0 1 ... 0 0 

0 0 0 ..- 0 0 

: : : ".. : - 

0 0 0 .-. 0 1 
0 Yl Y2 7 r - 2  7 r - 1  

Y~ ?r 7, 7~ 

~+ 

0 

0 

0 
e 

0 
1 

?, 

P 
21 = L f t t ( z l  . . . . .  z . _ , , y  . . . . .  i f - x ) ) +  ~ d ~ ( t ) L ~ t l ( z a  . . . . .  z . _ , , y  . . . . .  i f - l ) )  

~=1 

(25) 
P 

~ . - ,  = L f t . - , ( z l  . . . . .  z . _ , , y  . . . . .  i f - i ) )  + ~ d~( t )L~  t . - , ( z a  . . . . .  z . _ ~ , y  . . . . .  ytr-1))  
J¢=l 

u = [y ,LgL ' f -  I h(zx . . . . .  z . _ , ,  y . . . . .  y ( , -  l))] - i 

f r--I x ~1 + e - y - ~ 7ky ~} -- 7 , L ) h ( z l  . . . . .  z . - , , y  . . . . .  y(,-1)) 
k = l  

- ~, ~=,~ d~(t)Lw LT'(z~ . . . . .  z._,, y . . . . .  y~ ' - ' )} .  

Control ler  implementat ion  

The control ler  realization of eq. (24) includes deriv- 
atives of the measured  ou tpu t  up to order  r - 1, and  
thus, is no t  readily implementable  whenever  r >/2. 
This difficulty can be overcome by combin ing  the 
control ler  of eq. (24) with an  obsever  tha t  provides 
estimates of the ou tpu t  derivatives. For  this purpose,  
we will consider  a linear, high-gain observer  with the 
following state-space descr ipt ion (Khalil  and  Esfan- 
diari, 1992): 

;o  = Yl  + L a o ( y  - Yo) 

;I = Y2 + L 2 a l ( Y  -- Yo) 

: (26) 

; r - 2  = g r - 1  + L r - t a r - 2 ( Y  - Yo) 

; r - a  = L ' a , _ , ( y  -- go) 

where gi, i = 0 . . . . .  r - 1 denotes the est imate of the 
ith derivative of the ou tpu t  y, L is the observer  gain 
and  ao . . . . .  a,_ 1 are addi t ional  adjustable  parameters•  
The l inear s t ructure  of the observer  of eq. (26) allows 
us to determine its stabili ty characterist ics and  the 
rate of convergence of the estimates of the ou tpu t  
derivatives to their  actual  values, by appropr ia te  
choice of the parameters  ao . . . . .  a,_ ~ and  the observer  
gain L, respectively. 

Theorem 4 tha t  follows provides the result ing con- 
troller realization and  establishes tha t  the synthesis 
result of theorem 3 is recovered in the limit as L --* 
(the p roof  can be found in the appendix)• 

Theorem 4: Consider  the nonl inear process  described 

by  eq. (19) with  the f o rced  zero  dynamics  o f  eq. (21), and 

assume that  the condit ions o f  eq. (5) are satisfied. Then, 
the dynamic  system: 

= 

0 1 0 ... 0 0 

0 0 1 ... 0 0 

0 0 0 ... 0 0 

0 0 0 ... 0 1 
0 71 72 Y,-2 ? , -1  

7, 7, Y, 7, 

~+ 

0] 
0 

0 

i l  e 0] 
1 
),, 
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0 0 Lao 

0 0 L2al  

0 0 L3a2 
Y:+ y 

0 1 L ~ lar_ 2 

0 0 L~a,-  t 

Z1 = L y t l ( z l  . . . . .  z . - , , y ,  y l  . . . . .  ~ , - 1 , d  . . . . .  d ~'-0-1)) 

P 

+ ~ d ~ ( t ) L w t l ( Z l  . . . . .  z . - , , y , ~ t  . . . .  ~ , - 1 , d  . . . . .  d ~, o-1)) 
~C= I 

(27) 

~ . - ,  = L f t . - , ( z l  . . . . .  z . - , , y ,  Yl  . . . .  y , - 1 , d  . . . . .  d t ' - p - l~ )  

P 
+ ~ d . ( t ) L w t . - , ( z l  . . . . .  z n - , , y , Y l  . . . . .  Y~,-1,d . . . . .  d t ' -a - l~ )  

u = [~ , ,LgL ' f - lh (z t  . . . . .  z . _ , , y , y ~  . . . . .  ~ , -1 ,  d . . . . .  d¢'-P-~))] -~ 

f r - - I  x ~1 + e - y  - ~ ~'k~ ~k) - - y , L ) h ( Z l  . . . . .  z ~ - , , y , ~ l  . . . . .  ~ , - 1 , d  . . . . .  d ~'-°-1~) 
k = l  

- -  ~ , d p , - o ( z t  . . . . .  z . - , . y .  Y l  . . . . .  Y , -  1. d . . . . .  d {'-a~) 
3 
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is a state-space realization o f  a feedforward/output  
feedback  controller that induces the input/output  behav- 

ior o f  eq. (9) independently o f  the disturbance inputs, in 
the limit as L - ,  o o .  

Remark 6: For large values of the observer gain L, the 
estimates of the output derivatives may exhibit very 
large values at small times, leading to the so-called 
peaking phenonenon, and possibly destabilizing the 
closed-loop system (Khalil and Esfandiari, 1992). To 
circumvent this problem, the saturation function can 
be applied to the observer states used in the controller 
realization. 

CLOSED-LOOP STABILITY CONSIDERATIONS 

The input/output stability of the closed-loop sys- 
tem resulting from theorems 2 and 3 will be guaran- 
teed if the following condition holds: 

(I) The roots of the characteristic polynomial 

1 + Y l s + ' " + 7 : ' = 0  

lie in the open left-half of the complex plane. 
In addition to input/output stability, one must ob- 

tain a characterization for the internal stability of the 
closed-loop system, i.e. the asymptotic stability of the 
states in the unforced closed-loop system, for per- 
turbations in the initial conditions. Employing stan- 
dard Lyapunov arguments, it is straightforward to 
show that the unforced closed-loop system under the 
controller of theorem 2 will be locally exponentially 

stable if the following conditions are satisfied: 
(2) The open-loop process is locally exponentially 

stable. 
(3) The zero dynamics of the process is locally 

exponentially stable. 

Similarly, it can be shown that the unforced closed- 
loop system under the controller of theorem 3 will be 
locally exponentially stable if the second condition 
from above is satisfied. Finally, under the controller of 
theorem 4, it can be shown following a standard 
stability analysis for singularly perturbed systems [see 
e.g. Isidori (1989) and Khalil (1992)] that the unforced 
closed-loop system will be locally exponentially 
stable, for L sufficiently large, if in addition to condi- 
tions 1 and 3, the parameters ao . . . .  ,a,_ ~ are chosen 
such that the roots of the characteristic polynomial 

s" + aos r-1 + ... + a,_2s + a , _ l  = 0  

lie in the left-half of the complex plane. Details of the 
stability analysis are omitted for brevity. 

APPLICATION TO A NONISOTHERMAL CSTR 

An irreversible elementary reaction A--, B is car- 
ried out in a perfectly mixed CSTR, shown in Fig. 5. 
The inlet stream consists of pure A at flowrate F, 
concentration Cao and temperature To. The reaction 
is exothermic and a cooling jacket with nonnegligible 
dynamics is used for the heat removal. Cooling water 
is added to the jacket at a flowrate Fj and an inlet 
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F 

CA° 1 
T o 

Tjo 

Vr C 9  
T r 
CA 

Fig. 5. A continuous stirred tank reactor. 

F j  

F r 

CA 

temperature Tjo. Under standard assumptions (con- 
stant volume in the reactor and the jacket, negligible 
heat losses, constant densities and heat capacities, 
uniform coolant temperature in the jacket) the process 
dynamic model consists of the following equations: 

• Reactor mass balance: 

dCa F ( 
 ooxp ( C A o  - C a )  - CA 

dt t~lr / 

• Reactor energy balance: 

- ( - - E )  dT, F (To - T,) -~ ( - AH,) koexp CA 
dt V~ p,nc,-----~ 

UA, Tj) (29) 
- -  p m c p .  Vr (T, - -  

• Jacket energy balance: 

dTj FJ (Tjo _ Tj) + UA, 
= I t ,  - r j ) .  ( 3 0 )  

The values of the process parameters (Luyben, 1990) 
are given in Table 1. We consider the control of the 

reactor temperature at an unstable equilibrium point, 
by manipulating the jacket flowrate Fj. Measure- 
ments of the reactant feed temperature To which acts 
as a disturbance input are also available. The nominal 
steady-state for this study corresponds to 
CA~ = 5.33 kmol m -  3, T,~ = 328.93 K, Tjs = 326.29 
K, for To~ = 300.17 K and F~s = 5.38 m 3 h -1 (where 
the subscript s denotes a steady-state value). 

Setting 

X 1 ~ C A 

x 2  = T r 

x 3  = T j  

u=F~-Fj~ 

d =  T o -  To~ 

eqs (28), (29) and (30) can be put in the standard form: 

.~ = f ( x )  + 9(x)u(t) + w(x)d(t) 

y = h(x) (31.) 

where 

f ( x )  = 

F 
(CAo -- xt)  -- ko exp( -- E/Rx2)xl 

F (--  UA, 
(Tos -- x2) + pmAHr)cp, ko exp ( -- E/Rx2)xl  pmcp,, ,  ~ (x2 --  x3) 

F~s UA,. 
( T J °  - -  x 3 )  "~ pjCpj------~j (X2 - -  X3) [o 

0 , w(x )= F V, , h ( x )=x2 .  
9 (x )= Tjo-- X3 

(32) 

(33) 
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Table 1. Process and controller 
parameters 

V, = 1.00 m 3 
Vj = 0.109 m 3 

A, = 23.226 m 2 
CAo = 8.0 kmol m -  a 

U = 226 kcal h -  ~ m -  2 K -  
Tjo = 294.4 K 

R = 1.987 kcal kmol-  1 K -  1 

AH, = - 1.67 x 104 kcal kgmol-  
ko = 7.08 x 101° h -1 
E = 1.67 x 104 kcalkg-  1 

%,~ = 0.231 kcal kg-  1 K - 1 
cvj = 0.308 kcal kg-  ~ K -  
p,. = 809 kg m -  3 
pj= 1000 kgm -3 
F = l . 1 3 m 3 h  -~ 

71 = 0.22 h 
~'2 = 0.01 h 2 
ct~ = 0.22 
a 2 = 0.01 
L = 2 . 1  
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41 ~ ~2 

1 
42 = - 3)2~2 + - - e  

2:2 3)2 

~o = -- Lao~o + Yl + Laoy 

~1 = - L2alyo + L2aly (36) 

(:y) i l  = ~ (CAo -- z l )  -- ko exp  Zl 

u =- [3)2LaL',,- 1 h(Zl, y, .~1, d, d " ) ) ]  - l 

x {~1 + e -  y -  3)1~1 

- 3)2L~h (z l, y, .~1, d, d ")) - y2d, b ~(zl, y, Yl,  d, d 0)) } 

where  

A s t r a igh t fo rward  ca lcu la t ion  of  the  relat ive o rde r s  
p roc e e ds  as follows: 

Lgh(x) = 0 

F ( -  
L f h ( x )  = ~ (Tos -- x2) + AH,)  ko 

Pm Cpm 

UA,  
exp(  --  E/Rx2)x l  p,-~p~l~ (x2 - x3) 

UA, T~o - x3 
LgL:h(x)  = - -  - -  5 0  

pmcpmVr Vj 

Lwh(x) = F/V~ :/: O. 

Consequen t ly ,  r = 2, p = 1, and  p < r. 
Because  of  the  des i red  o p e r a t i o n  a r o u n d  the  uns ta -  

ble  equ i l ib r ium p o i n t  a n d  the  fact t ha t  r = 2, the  
con t ro l l e r  o f  t h e o r e m  4 was  i m p l e m e n t e d  in the  s imu-  
lat ions.  U n d e r  the  c o o r d i n a t e  t r a n s f o r m a t i o n  

af 2 aA aA . 
L~ h = ~ x l A  + -~x2f 2 + -~xay 3 

(37) 

The  quan t i t i e s  LaLfh  , L}h  and  tkl can  be easily ex- 
p ressed  as func t ions  of  (zl ,  y, y(1), d, d (1)) t h r o u g h  the  
inverse  t r a n s f o r m a t i o n  

X1 ~ ~1 

X2 ~- (2 

p,.cpmV, ( F 
x 3 =  UA-----~ ~ s - - ~ ( T o , - - ~ 2 )  

) 
(38) 

= X2 

LL:h(x)_l  --p, (ro~ - x~) + ( - AH, )  ko e x p  - E 
PmCmn 

UA, 
(34) 

the  p rocess  m o d e l  can  be t r a n s f o r m e d  into  the  n o r m a l  
fo rm o f  eq. (19). The  zero  dynamics  o f  the  p rocess  
takes  t hen  the  fo rm 

~1 = ~ (CAo --  ~1) --  koexp  ~, (35) 

a n d  is c lear ly exponen t i a l ly  stable.  Acco rd ing  to eq. 
(27), the  necessary  con t ro l l e r  rea l iza t ion  takes  t hen  the  
fo rm 

a n d  the  re la t ions  

Y = ~ 2  
(39). I7  

y(1) = ~a + ~ d(t). 

The  values of  the  cont ro l le r  p a r a m e t e r s  are  given in 
Table  1. F o r  the  cont ro l le r  i mp l emen t a t i on ,  the  sat-  
u ra t ion  func t ion  was  appl ied  to  the  es t imate  of  the  
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output derivative obtained by the observer, with up- 
per and lower limits equal to 0.3 and - 0.3, respec- 
tively, chosen by trial and error. 

Several simulation runs were performed to evaluate 
the performance and robustness properties of the con- 
troller. In all the simulation runs, a sinusoidal change 
was imposed in the disturbance input To at time 
t = 0 h, with amplitude 5.0 K and period of oscilla- 
tions 1.05 h. 

In the first set of simulations, we addressed the 
capability of the proposed controller to maintain the 
reactor temperature at the nominal steady state. For 
the sake of comparison, we also implemented the 
controller realization without incorporating the dis- 

turbance measurement. Figure 6 illustrates the result- 
ing output and manipulated input profiles. It can be 
clearly seen that the feedforward/output feedback 
controller results in perfect regulation of the output, 
as predicted by the theory, whereas the pure output 
feedback controller cannot compensate for the effect 
of the disturbance, leading to obvious performance 
degradation. 

In the next set of simulation runs, we evaluated the 
set-point tracking capabilities of the controller. 
A 2.0 K change in the output set-point was considered 
at time t = Oh. The corresponding output and 
manipulated input profiles are shown in Fig. 7. The 
feedforward/output feedback controller regulates the 
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Fig. 6. Output  and manipulated input profiles under feedforward/feedback controller ( - - )  and pure 
feedback controller (....) - -  regulation, 
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Fig. 7. Output and manipulated input profiles under feedforward/feedback controller (--) and pure 
feedback controller (...~set point tracking. 

output  to the new set-point value, eliminating the 
effect of the disturbance, whereas the pure output  
feedback controller cannot attenuate the effect of the 
disturbance, and thus, fails to drive the output  to the 
new set-point value. Notice that the output  response 
under the feedforward/output feedback controller is 
very close to the theoretically predicted one, despite 
the error in the estimate of the output  derivative. 

In the next set of simulation runs, we tested the 
robustness of the feedforward/output feedback con- 
troller, in the presence of initialization and modeling 
errors. The same set-point change as previously was 
considered, and the controller was implemented, inio 

tially under a 5% initialization error in the observer 
states, and subsequently under: 

• a 5% change in the inlet concentration, CA0, and 
• a 10% change in the inlet temperature of the 

water in the jacket, Tjo. 
The resulting output profiles are shown in Figs 8 and 

9, respectively; the controller successfully regulates the 
output  to the new set-point value, despite the presence 
of the initialization or modeling errors. 

In the final set of simulation runs, we tested the 
performance of the controller in the presence of noise 
in the process measurements, for the same change in 
the set-point as previously. Initially, the output  
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Fig. 8. Output  profile--effect of initializaiton errors. 
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Fig. 9. Output profile---effect of modeling errors. 

measurement was assumed to be corrupted by white 
noise, of amplitude 0.5 K. Figure 10 presents the re- 
suiting output profile, illustrating the capability of the 
controller to regulate the output to its new set-point 
value. Finally, white noise of the same amplitude was 
considered in the disturbance and a lead-lag element 
with transfer function s/(O.Ols + 1) was employed to 
evaluate the derivative of the disturbance used in the 
controller realization approximately. Figure 11 illus- 
trates the corresponding output profile; clearly the 
output response is very satisfactory, being very close 
to the nominal one. 

CONCLUSIONS 

In this paper we formulated and solved a feedfor- 
ward/output feedback synthesis problem for single- 
input single-output minimum-phase nonlinear pro- 
cesses. Explicit reduced-order realizations of dynamic 
controllers that use measurements of the controlled 
output and the disturbance inputs to induce a pre- 
specified disturbance-free input/output behavior were 
developed. The controllers were successfully applied 
to a continuous stirred tank reactor example and were 
shown to deal effectively with modeling and initializa- 
tion errors, and measurement noise. 
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Fig. 11. Output profile--effect of noise in the disturbance measurement. 
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A~ 

NOTATION 
adjustable parameters 
contact surface between surface and jacket 

ar 
Cpm 
Cpj 
CAo 
C As 
dR 

surface of the reactor 
heat capacity of the reacting mixture 
heat capacity of the water in the jacket 
initial concentration of species A 
steady-state concentration of species A 
disturbance input 
linear observer error coordinate 
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activation energy 
flow rate of the inlet stream 
flow rate in the jacket 
vector field associated with the manipulated 
input 
output scalar field 
reaction rate constant 
pre-exponential factor 
linear observer gain 
relative order with respect to the manipu- 
lated input 
jacket temperature 
inlet stream temperature 
reactor temperature 
time 
manipulated input 
heat transfer coefficient 
auxiliary input 
volume of the jacket 
volume of the reactor 
vector field associated with a disturbance 
input 
vector of the process state variables 
process output  
output set-point 
auxiliary output  
ith output  derivative 
estimate of the ith output  derivative 
vector of the observer state variables 

Greek letters 
adjustable parameters 
heat of the reaction 
reciprocal of linear observer gain 
state vector in normal form coordinates 
vector of controller state variables 
process output  deadtime 
vector of controller state variables 
relative order with respect to the distur- 
bance vector 
density of the water in the jacket 
density of the reacting mixture 
auxiliary functions 

~k 
AHr 

0 

P 

PJ 
pm 

4, 

Math  symbols 
real line 

~" n-dimensional Euclidean space 
E belongs to 
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APPENDIX 
Proof of Theorem 2: Consider the full-order controller real- 
ization resulting by combining the control law ofeq. (8) with 
the state observer of eq. (10) and the linear controller of eqs 
(11) and (12): 



Dynamic  feedforward/output feedback control 1905 

~= 

0 1 0 --. 0 0 

0 0 1 ... 0 0 

0 0 0 --. 0 0 

: : . . . .  : : 

0 0 0 ... 0 1 
7 1  7 2  ? , - 2  7r- I  0 
Y, 7, 7, 7, 

4+ 

0 

0 

0 
e 

0 
1 

Y, 

p 

= f ( q )  + Y' d~(t)w~(rl) + O(q)[y,LgLyth(rl)] 

x ~¢, + e -  h(q)- 7kL~h(q) 
L k = l  

-- K~=p Tk*k-p(tl, d(t),d(t)(1) . . . . .  d(t)(k-P))} 

u = [y,L,L'r- x h(r/)]- t {~1 + e - h(q) 

-- ~ ykLkfh(q)- ~ ?~dPk-o(rl, d(t), 
k = l  k=p 

d(t) (1) . . . . .  d(t)tk-P)) t .  (A1) 

Under  consistent initialization of the controller states, i.e. for 

d ~- 1 [h(~/)(0)] 
~k(0) dtk_ 1 , k = 1 . . . . .  r (A2) 

it follows that 

~t = h(q). (A3) 

v 
.~ = f ( x )  + ~ d~(t )w~(x ) + 9(x )[y, LoL'r- X h(rl ) ] - ' (A4) 

P¢=I  

x h( t l ) -  7k(bk p(tl, d(t), 
k=p 

d(t) I1) . . . . .  d(t)(k-°') } 

y = h(x). 

It is now straightforward to show that, under consistent 
initialization of the x and ~/states, the input /output  behav- 
iour of the form of eq. (9) is indeed enforced in the closed- 
loop system. [] 

Proof of Theorem 4: Under  the feedforward/output feed- 
back controller of eq. (27), the closed-loop system takes the 
form 

~= 

0 1 0 ... 0 0 

0 0 1 ... 0 0 

0 0 0 ... 0 0 

: : : ".. : : 

0 0 0 ... 0 1 
71 72 7,-2 7,-1 

0 
7, 7, 7, 7~ 

I --Lao 1 0 ... 0 0 

- L2al 0 1 ... 0 0 

- L3a2 0 0 ... 0 0 

- L'-aa,_2 0 0 ... 0 1 

- U a , _ a  0 0 . . .  0 0 

~+ 

0 

0 

0 
4+ 

Z 

0 
1 

L a  o 

L2ax 

Laa2 

Lr-lar_2 

Lrar- 1 

Substituting the above relation to eq. (A1), we obtain the 
controller realization of eq. (13). Under  the controller of eq. 
(13), the closed-loop system takes the form 

/ / = f ( q )  + ~ d~(t)wK(q) + 9(q)[y,L,L'f-lh(q)] 
K=I 

X {e-k~lykL~fh(rl)-= ,=p~ ykdpk-p(q,d(t), 

d(t) ") ..... d(t)("-P))} 

z'l = Lstx(zl . . . . .  z , - , ,Y,  Yl . . . . .  Yr- 1,d . . . . .  d(,-p - 1)) 

+ ~ d~(t)Lwtl(zl . . . . .  z . - , , y ,~ l  .... Yr-1, 
•=1 

d ..... d ('-"-I)) 

~.-,  = L: t . - , ( z l  . . . . .  z.-,,y,3~l . . . . .  ,~,- 1,d . . . . .  d ( ' -"- l~)  

+ ~ d~(t)Lwt,-,(zl . . . . .  z . - , , y ,~ l  . . . . .  .~,-:, 
r=l 

d . . . . .  d ('-"-1~) 
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.~ = f ( x )  + f d~( t )w~(x )  + 9 ( x ) [ y ,  L g L ~  1 

K=I  

h ( z l ,  . . .  , z , - , , y , Y l  . . . . . .  d . . . . .  dt"-v- n)]  

X {  ~l + e -  y - ' ~ l  y k f ; k -  

h ( z l ,  . . .  , z , - , ,  y ,  fil . . . . .  y , -  l , d  . . . . .  d ( ' - 0 - 1 ) )  { %1 
x ~1 + e --  y --  ~)kYk --  Y,L~f 

k = l  

h ( z t  . . . . .  z . - , y l  . . . . .  y , Y ~ r l , d  . . . . .  d ( , - v  11)} 

- -  ) ' ,~b,-~((zl  . . . . .  z . . . .  y,)71 . . . . .  37,_ 1, d . . . . .  d~'- °)) } 

y = h(x ) .  (AS) 

Considering the error coordinates: ~ = U ( y  ") - y~), 
i = 0, . . . , r  - 1, and setting e = 1/L ,  the system (A5) takes 
the form 

P R O D R O M O S  D A O U T I D I S  a n d  P A N A G I O T I S  D .  C H R I S T O F I D E S  

= f ( x ) +  ~ d , ( t ) w ~ ( x )  + o ( x ) [ y , L , L ) -  l h ( z l  . . . . .  z . . . .  
K=I  

eo . . . . .  ~ , -1 ,d  . . . . .  d~'-P-l))]  -1 

x ~1 + e - - y - -  y k Y k - - 7 , L ) h ( z l  . . . . .  z . - , ,  
k = l  

eo . . . . .  e , -  1, d . . . . .  d ~ , - p  - n )  

-- y,~b-p(zl . . . . .  z . - , , ~ o  . . . . .  ~ , - 1 , d  . . . . .  d l ' - °~)}  

y = h(x ) .  

F o r  e suff ic ient ly  s m a l l  (or  equ iva len t ly ,  L suff ic ient ly  

large),  t he  s y s t e m  o f  eq. (A6) exh ib i t s  a t w o - t i m e - s c a l e  

b e h a v i o r  a n d  its p r o p e r t i e s  c a n  be  a n a l y z e d  w i th in  the  

~ =  

0 1 0 ... 0 0 

0 0 1 -.. 0 0 

0 0 0 ... 0 0 

: : : ' . .  : : 

0 0 0 ... 0 1 
Yl 72 Y r - 2  Y r - I  

0 
Y, 7, Y, Yr 

0 

0 

0 
¢ +  

0 
1 

Y, 

~,~= 

- ao 1 0 . . .  0 0 

- a  1 0 1 . . .  0 0 

- a2 0 0 . . .  0 0 

: : : ". : : 

- a , - 2  0 0 . . .  0 1 

- - a , - t  0 0 . . .  0 0 

z l  = L y t l ( z l  . . . . .  z . _ , ,  eo . . . .  , e , -  a, d . . . . .  d ( , - p  - 1)) 

+ ~ d d t ) L w ,  h ( z l  . . . . .  z , - , , ~ o  . . . . .  e , - l ,  
K=I  

d . . . . .  d(r p - n )  

z .  r = L y G - r ( Z l  . . . . .  Z.-r,~o . . . . .  ~ r - l ,d ,  ... ,d ( ' -p-I I )  

+ ~ d , ( t ) L w . G _ , ( z  I . . . . .  z . _ , ,  
K=I  

eo . . . . .  ~r- l , d  . . . . .  d (*-a- 1~ ) 

(A6) 

f r a m e w o r k  o f  s i n g u l a r  p e r t u r b a t i o n s  (see e.g. 

K o k o t o v i c  e t  a l .  (1986)].  I n  pa r t i cu la r ,  t he  fas t  dy-  

n a m i c s  o f  t he  s y s t e m  o f  eq. (A6) c a n  be  eas i ly  f o u n d  to  

be 

d~ 

d~ 

- -  ao  1 0 . . .  0 

- - a x  0 1 . . .  0 

- a2  0 0 . . .  0 

" : " " . .  : 

- -  a t -  2 0 0 . . .  0 

- - a , - 1  0 0 . . .  0 

0 

0 

0 

1 

0 

(A7) 

whe re  z = t i e .  E q u a t i o n  (A7) p o s s e s s e s  a n  e x p o n e n t i -  

al ly s tab le  equ i l i b r i um,  ~ = 0, by  t he  cho ice  o f  the  

a d j u s t a b l e  p a r a m e t e r s  ak .  H e n c e ,  in t he  l imit  as e --, 0 

(i.e. L --* oo ), t h e  s y s t e m  o f  eq. (A6) r educes  to  

= 

0 1 0 -.- 0 0 

0 0 1 .-. 0 0 

0 0 0 .-- 0 0 

: : - " . .  : : 

0 0 0 ...  0 1 
~'1 Y2 Y,-2 7 , -1  

0 ' ' '  

~ +  

0 

0 

0 
e 

0 
1 

y, 
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P 
z l  = Ly ta ( z l  . . . . .  z , - r , y  . . . . .  y (r -a) ,d  . . . . .  d ~" p l)) + ~ d~( t )Lwt~(z l  . . . . .  Z . - r , y  . . . . .  y(,-1), 

x=l 
d . . . . .  d (~-p- 1) ) 

~ . - ,  = L y t . - , ( z l  . . . . .  z . _ , , y  . . . . .  y ( ' - l ) , d  . . . . .  d ~'-0-1~) + ~ d~(t)L, ,  t . - , ( z l  . . . . .  z. ,, 
K - - I  

y . . . . .  y~,-1), d . . . . .  d ( ' -p - I~)  

P 

= f ( x )  + ~ dK(t)w~(x) + O(x ) [TkLoL~- lh ( zx  . . . . .  z . _~ , y  . . . . .  y(" l ) ,d  . . . . .  d( ' -P-x) ) ]  -1 
g=l 

f r-1 x ~ l + e - - Y -  ~ 7 k Y k - 7 , L ) h ( z l  . . . . .  z .  , ,y  . . . . .  y ( ' - l~ ,d  . . . . .  d (, p - l ) )  
k=l 

(r- 1) } - ~,c~,-p(zl  . . . . .  z . _ , , y  . . . . .  y , d  . . . . .  d ~'-p~) 

y = h (x ) .  

O n  the basis of the system of eq. (A8), it is straightfor- 
ward to show tha t  the i npu t /ou tpu t  behavior  of eq. (9) 
is indeed enforced in the closed-loop system. D 
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